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This paper presents three-dimensional numerical simulations of non-Brownian concen-
trated suspensions in a Couette flow at zero Reynolds number using a fictitious domain
method. Contacts between particles are modelled using a DEM-like approach (Discrete
Element Method), which allows for a more physical description, including roughness and
friction. This work emphasizes the effect of friction between particles and its role on
rheological properties, especially on normal stress differences. Friction is shown to no-
tably increase viscosity and second normal stress difference |N2| and decrease |N1|, in
better agreement with experiments. The hydrodynamic and contact contributions to the
overall particle stress are particularly investigated. This shows that the effect of friction
is mostly due to the additional contact stress since the hydrodynamic stress remains
unaffected by friction. Simulation results are also compared with experiments, such as
normal stresses or effective friction coefficient µ(Iv), and the agreement is improved when
friction is accounted for. This suggests that friction is operative in actual suspensions.

Key words:

1. Introduction

Concentrated suspensions of small particles in low Reynolds number flows are ubiqui-
tous in industry (food transport, cosmetic products, civil engineering, to mention but a
few) as well as in biological or natural flows (blood, mud or lava flows). Fresh concrete
or uncured solid rocket fuel are two examples of industrial concentrated suspensions in
which a very high particle volume fraction is desired while keeping correct rheological
properties and flowing behaviour. Such dense suspensions do exhibit an intricate physics
which is hitherto far from being understood completely. This complexity partly arises
from the wide variety of interactions between particles : Brownian, colloidal, hydrody-
namic, frictional or collisional (see Coussot & Ancey (1999) for a review on those different
regimes) as well as from the physical properties of particles (roughness, shape, size dis-
tribution,...). Even the case of non-Brownian non-colloidal single-sized spherical particles
embedded in a Newtonian fluid – which will be the system investigated in this study – is
likely to show complex non-Newtonian behaviours (Stickel & Powell 2005; Morris 2009).
The rheological behaviour of non-Brownian suspensions was initially described by an

effective suspension viscosity ⌘s, and considerable effort focused on determining this vis-
cosity as a function of particle volume fraction φ. Experimental studies have confirmed
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that suspension viscosity ⌘s increases with φ and diverges as φ approaches a maximal
fraction φm about 0.6 (Ovarlez et al. 2006). Despite some differences among the various
experimental results, the relation between viscosity and particle volume fraction is now
reasonably well documented (Stickel & Powell 2005). By contrast, the normal stresses
Σxx, Σyy, and Σzz (where x, y, and z refer to the direction of velocity, velocity gradient,
and vorticity, respectively) are much less studied and available results are still contro-
versial. From experiments in parallel-plate and Couette geometries, Zarraga et al. (2000)
measured negative normal stress differences N1 = Σxx − Σyy and N2 = Σyy − Σzz with
similar dependence on the volume fraction. The second normal stress difference |N2| is
found to be larger than |N1| with N2/N1 ⇡ 3.6. Later measurements by Singh & Nott
(2003) using similar devices have confirmed that N1 and N2 are both negative but with
a ratio N2/N1 which depends on φ. Dai et al. (2013) used a combination of a parallel-
plate rheometer and the open semi-circular trough method to measure N1 and N2. They
found a good agreement with previous works with negative normal stress differences and
|N1| ⌧ |N2|. Those three studies measured negative normal stress differences with |N1|
smaller than |N2|. On the contrary, some recent experimental works have obtained very
different results, especially on the magnitude of |N1|. By studying the deformation of the
free surface of a suspension flowing in a narrow inclined channel, Couturier et al. (2011)
concluded that N1 was very small compared to N2 and within the experimental uncer-
tainty, they were unable to determine the sign of N1. Likewise, a detailed experimental
study by Dbouk et al. (2013) using a parallel-plate geometry has found this time that
N1 is positive over the entire range of volume fraction investigated 0.2  φ  0.47. The
value of N2 however remains as in the other studies. Numerical simulations of concen-
trated suspensions using Stokesian Dynamics (Sierou & Brady 2002) or Force-Coupling
Method (Yeo & Maxey 2010a) show that N1 and N2 are both negative with N1 ⇡ N2,
which actually does not match any experiments.
Numerical simulation is instrumental in shedding light on the complex physics of sus-

pensions. Among the most widely employed method for low Reynolds number suspensions
is the Stokesian Dynamics (SD) (Bossis & Brady 1984; Brady & Bossis 1985, 1988).
SD has provided among the most relevant results in the field of suspensions (Drazer
et al. 2002, 2004; Sierou & Brady 2002). This technique resembles a molecular dynamics
method in which the driving forces are the hydrodynamic interactions, possibly comple-
mented with Brownian or collisional forces. Hydrodynamic interactions are written as a
truncated multipole expansion and further split into a far-field multi-body contribution
and near-field lubrication contribution. Another popular method relevant to low Reynolds
number suspension flows is the Force-Coupling Method (FCM) (Maxey & Patel 2001;
Lomholt & Maxey 2003; Yeo & Maxey 2010c,a,b). Similarly, hydrodynamic interactions
are written using a multipole expansion in which the standard Dirac delta function is
replaced by a localized force envelope. The latter is incorporated as a body-force in the
Stokes equations that are subsequently solved using classical flow solvers. More recently,
Direct Numerical Simulations (DNS) have emerged as a valuable alternative to the afore-
mentioned SD and FCM methods, such as Lattice-Boltzmann methods (Ladd 1994a,b;
Ladd & Verberg 2001) or fictitious domain methods (Glowinski et al. 1998, 2001; Gallier
et al. 2014; Wachs 2009; Yu & Shao 2007). Because they directly solve the governing
equations (Navier-Stokes or Stokes equations) without any further assumptions other
than numerical approximations, they are more general and appropriate to deal with in-
ertial flows, arbitrary-shaped particles or non-Newtonian fluid. For any methods however,
dealing with concentrated suspensions requires a detailed modelling of lubrication forces
since the average separation distance becomes extremely small. Lubrication forces arise
between particles in near-contact because of the draining of interstitial fluid in the gap,
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and are known to be singular in the limit of touching particles. Consequently, lubrication-
induced dissipation increases and modifies the rheology of suspensions. A last essential
physical ingredient for accurate simulations of suspension is the modelling of collisions,
or contacts, between particles. Contacts inevitably occur in concentrated stokesian sus-
pensions despite lubrication because of particle roughness. It is now well-accepted that
contacts are responsible for fore-aft asymmetry and non-zero normal stress differences.
They are also the source of irreversibility and chaos in sheared suspensions (Metzger &
Butler 2010; Metzger et al. 2013).
As stressed previously, there is a large discrepancy between experiments on N1 and

N2, but also between experiments and simulations, and this has not received much at-
tention so far. On the other hand, normal stresses are crucial since they determine the
migration of particles in suspensions subjected to an inhomogeneous shear field (Nott
& Brady 1994; Mills & Snabre 1995; Morris & Boulay 1999; Nott et al. 2011; Lhuillier
2009). This paper therefore intends to address this issue by considering numerical simula-
tions of suspensions accounting for friction and roughness. Friction implies an additional
tangential force during contact that is likely to alter normal stresses. Using Stokesian
Dynamics simulations, Sierou & Brady (2002) investigated the effect of sliding friction
on the rheological behaviour of a concentrated suspension at φ=0.4 and showed that
friction slightly changes the microstructure which, in turn, modifies N1 and N2. For a
friction coefficient µd=0.5, they noticed an overall 50 % reduction in |N1| and a similar
increase in |N2| as well as a moderate rise in the suspension viscosity ⌘s (about 10 %).
The study was however limited to a single volume fraction and the model used was delib-
erately simple (for instance, particles are supposed to slip irrespective of the magnitude
of the normal force). This effect of friction was also confirmed by Wilson & Davis (2002);
Davis et al. (2003) who reported a moderate effect of friction with a slight increase in
the viscosity and decrease in |N1|. The friction coefficient is known to depend strongly
on normal force, surface roughness, etc. and this could possibly explain the discrepancy
between experiments. Note that friction is also believed to play a major role in jamming
and discontinuous shear-thickening (Seto et al. 2013; Wyart & Cates 2014). A second
potential cause for the noted scatter in normal stresses is the presence of particle rough-
ness. Particles are never perfectly smooth and a dimensionless roughness height of about
10−3 ⇠ 10−2 is generally reported (Smart & Leighton 1989). Such surface asperities pro-
mote an early contact and impose the surface-to-surface separation between particles
and the magnitude of lubrication stress consequently. Surface roughness can therefore
significantly modify the rheological properties and the microstructure of suspensions, as
confirmed by many numerical studies (Sierou & Brady 2002; Drazer et al. 2002, 2004;
DaCunha & Hinch 1996). Theoretical studies in dilute regimes show that large roughness
can decrease viscosity as well as increase |N1| and |N2| (Wilson 2005; Wilson & Davis
2002; Davis et al. 2003; Zarraga & Leighton Jr 2001). Zarraga & Leighton Jr (2001) found
for small roughness that |N1| > |N2| due to a depletion of particles in the extension quad-
rant. The effect is reversed for large roughness due to the additional stress induced by
contact forces and N2 becomes the prevailing normal stress difference. In dense regimes
however, Stokesian Dynamics simulations from Wilson & Davis (2002) attested that |N1|
decreased with increasing roughness height, which suggests that the role of roughness is
not completely understood so far.
This paper intends to contribute to the physics of sheared non-Brownian suspensions

with emphasis on rheology – especially normal stress differences – using numerical simula-
tions. We aim at providing insights that could help understand the discrepancy between
computations and experiments as well as between experiments themselves. The study
specifically addresses the role of friction forces between particles. In present work, we
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make use of a fictitious domain approach as detailed in Gallier et al. (2014). Our method
explicitly solves long-range hydrodynamics and incorporates a modelling of lubrication
interactions as well as DEM (Discrete Element Method)-based contact forces. This allows
for a straightforward implementation of tangential friction forces or particle roughness.
Section 2 presents a brief description of the fictitious domain approach used. In section
3, we consider the simulation of a pair of particles in a shear flow with an eye to demon-
strating that friction and roughness are correctly modelled. Section 4 presents suspension
simulation results in a Couette geometry and highlights the important role of friction
forces during contact.

2. DNS simulation : fictitious domain method

This section briefly describes the numerical method used ; more details can be found
in a previous paper (Gallier et al. 2014). In a fictitious domain method, solid particles are
supposed to be filled with a fluid having the same properties as the actual fluid. From a
computational viewpoint, this means that a classical fluid problem is solved in the whole
domain. Particles are thus considered as some regions of the fluid constrained to have a
rigid body motion.

2.1. Governing equations

LetD be the whole computational domain including a fluid domainDf and a solid particle
domain Dp with D = Df ⊕ Dp. The solid domain is made up of particles P that are
supposed to be rigid and homogeneous. In this study, the fluid is assumed incompressible
and Newtonian and is governed by the Stokes equations (although Navier-Stokes can also
be readily considered). Mass and momentum conservation equations are written in the
whole domain D and read

r · u = 0 (2.1)

r · Σ + ⇢λ = 0 (2.2)

where ⇢ and u are the fluid density and velocity, respectively, while λ is a momentum
forcing term used to enforce the rigid body motion inside particles. Consequently, λ is
non-zero in the particle domain Dp and zero elsewhere. For a Newtonian fluid, the stress
tensor Σ reads

Σ = −pI + 2⌘E (2.3)

where p is the pressure, ⌘ the fluid viscosity and E the rate-of-strain tensor E = 1
2 (ru+

ru
T ). The fluid velocity inside each particle must comply with a rigid body motion, so

that

u = U +Ω ⇥ (x− xg) in Dp (2.4)

where U and Ω stand for the particle translational and rotational velocities and xg is
the position of the centre of gravity of the particle.
Particle motion is given by Newton’s equations. Assuming spherical particles and ne-

glecting inertia, they read

F
h + F

c + F
e = 0 (2.5)

T
h + T

c + T
e = 0 (2.6)

where forces F and torques T are decomposed into their hydrodynamic part (h), contact
part (c) and external part (e) that includes any external forces, such as gravity. In absence
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of inertia, hydrodynamic interactions can be defined as (Gallier et al. 2014; Yu & Shao
2007)

F
h = −⇢

Z

P

λ dx (2.7)

T
h = −⇢

Z

P

(x− xg)⇥ λ dx (2.8)

Contact forces and torques are modelled as usually in Discrete Element Method (DEM),
as addressed in a subsequent section.

2.2. Numerical procedure

The system Eq. (2.1)-(2.8) forms the set of governing equations to be solved. A fractional-
step time scheme is used to decouple this system into two sub-problems. The first sub-
problem Eq. (2.1)-(2.3) is a standard fluid problem. It is solved using finite differences
on a staggered Cartesian grid and incompressible equations are then resolved by a stan-
dard projection method (Chorin 1968) with implicit time-stepping for the diffusive terms
(Crank-Nicolson scheme). The resulting linear systems are inverted using a geometric
multigrid technique. At each iteration n, solving this fluid sub-problem yields the new
fluid velocity u

n+1 and pressure pn+1.
The particle sub-problem Eq. (2.4)-(2.8) consists in enforcing the rigid body motion

inside particles, as well as updating the new forcing term λ
n+1 and eventually computing

particle velocities. Details are skipped in the frame of this overview and may be found
in Gallier et al. (2014). Once particle velocities are known, their position can be tracked
by solving

dX

dt
= U (2.9)

where X and U are the vectors of particle positions and velocities, respectively. This
equation is solved using a second-order Adams-Bashforth scheme.

2.3. Lubrication correction

Lubrication forces play a major role in the rheology of concentrated suspensions. Since
they are very short-range in nature, they can usually not be fully resolved with the typical
grids used in the numerical model and they consequently require an ad hoc model. Our
lubrication model rests on the ideas already used in SD (Brady & Bossis 1988; Durlofsky
et al. 1987) and FCM (Yeo & Maxey 2010a).
Let us consider a system of Np spherical particles suspended in a linear Stokes flow

and let U be the 6Np vector of translational/rotational velocities U = (U ,Ω)T and
F = (F ,T )T the 6Np vector of hydrodynamic forces/torques exerted by the fluid on the
particles. Due to the linearity of the Stokes equations, there are linear relations between
the forces/torques and the flow parameters, and the velocities of particles can be written
in resistance form as (Kim & Karrila 1991)

F = RFU · (U∞ − U) + RFE : E∞ (2.10)

The key idea is to split the resistance matrix describing the hydrodynamic interactions
into long-range interactions – explicitly resolved by the numerical model – and a short-
range lubrication contribution that can not be resolved numerically since it is subgrid

R ⇡ R̃ + Rsub (2.11)
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where the tilde (̃.) denotes the explicitly resolved part and the superscript sub refers to the
subgrid unresolved part of the interaction. It can be shown that the actual lubrication-
corrected particle velocity U can be obtained from the numerically resolved velocity Ũ

by adding in the numerical procedure an external force F lub given as (Gallier et al. 2014)

F lub = Rsub
FU · (U∞ − U) + Rsub

FE : E∞ (2.12)

This force/torque represents the portion of hydrodynamic interactions that can not be
resolved by the numerical approach and is directly included in Eq. (2.5)-(2.6) as an
external force and torque. The subgrid resistance matrices Rsub

FE and Rsub
FU are computed

by subtracting the two-body resistance matrix R̃2B – obtained numerically on two-sphere
configurations – from the exact theoretical two-sphere resistance matrices R2B

theo known
from lubrication theory (Kim & Karrila 1991). For a many-particle system, matrices Rsub

are constructed assuming a pairwise additivity of forces.
The hydrodynamic stresslet Sh is corrected from lubrication as well using a similar

procedure. The deviatoric stresslet is written in resistance form as

Sh = RSU · (U∞ − U) + RSE : E∞ (2.13)

and is similarly decomposed into a resolved and a subgrid part

Sh = S̃ + Rsub
SU · (U∞ − U) + Rsub

SE : E∞ (2.14)

where S̃ corresponds to the resolved stresslet computed by the numerical method. It
can be obtained directly from the momentum forcing λ and, neglecting inertia, is given
as (Yu & Shao 2007)

S̃ = −⇢
2

Z

P

[(x− xg)⌦ λ+ λ⌦ (x− xg)] dx (2.15)

Subgrid resistance matrices Rsub
SU and Rsub

SE are obtained as described previously while
theoretical expressions are found in Kim & Karrila (1991). Finally, a similar correction
procedure is also applied to the trace of Sh – which represents the hydrodynamic con-
tribution to particle pressure Π – using the theoretical resistance functions from Jeffrey
et al. (1993). Particle-wall lubrication interactions are also included using a similar strat-
egy.
Despite its complexity, an accurate treatment of lubrication is crucial for quantitative

simulations of dense suspensions. Some computations without lubrication correction were
attempted but generally failed unless extremely small time steps were considered. In the
latter case, very noisy signals were observed. This is likely to result from large particle
relative velocities implying very intense collisions. Likewise, a too crude lubrication cor-
rection model (e.g. neglecting logarithmic singularities) also involves discrepancies, such
as an underestimation of viscosity.

2.4. Contact modelling

In order to implement a more physical modelling of contact between particles, contact
forces are modelled as in a Discrete Element Method (DEM), which is a very popular
method in the field of granular physics (Radjäı & Dubois 2011; Pöschel & Schwager
2005). For a pair of spherical particles Pi and Pj (of radius a) undergoing contact, the
contact force F

c exerted by particle Pj on particle Pi is classically decomposed into its
normal F c

n and tangential F c
t components :

F
c = F

c
n + F

c
t (2.16)
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Figure 1. Sketch of roughness modelling : δ is the actual separation distance, hr the

roughness height, and contact occurs when δ
0

= δ − hr  0.

The normal contact force is modelled using a Hertz law

F
c
n = −kn|δ|3/2n (2.17)

in which δ = krk − 2a is the overlap distance with r = xj − xi, and n is the normal
vector n = r/krk.
Surface roughness can be readily accounted for in the model, although in a simple

way. Assuming sparse asperities of size hr, contact is supposed to occur whenever krk 6

2a+hr. An easy way to implement roughness thus consists in defining a modified overlap
distance as δ

0

= δ − hr. Hence, contact occurs if δ
0  0. Figure 1 presents a sketch

depicting this roughness modelling between two particles. Note that lubrication forces
are however still evaluated with actual distance δ = δ

0

+ hr.
The normal stiffness kn in Eq. (2.17) can be expressed theoretically using particle me-

chanical properties (Young modulus and Poisson coefficient). For real materials however,
the resulting stiffness is extremely high, which is prejudicial to numerical stability unless
the time step is reduced drastically. For numerical reasons, it is therefore preferred to
prescribe a lower stiffness, which is here given in terms of an average roughness deforma-
tion ✏̄ = |δ̄0 |/hr. Balancing contact and hydrodynamic forces (in dilute regimes) yields
6⇡⌘γ̇a2 = kn(✏̄hr)

3/2 from which kn can be estimated. In the forthcoming computations,
we set ✏̄=0.05, i.e. the stiffness kn is such that the roughness deformation is 5 % under
the hydrodynamic force 6⇡⌘γ̇a2. Parametric simulations on ✏̄ (and so, kn) have shown
that there are no effects on rheology as long as it is sufficiently small, typically below
0.2. However, the actual force exerted on particles is larger than 6⇡⌘γ̇a2 for dense sys-
tems. This means that the roughness deformation can exceed the prescribed value of
0.05. Its value was checked systematically and was found to be always lower than 0.1.
This limited variation in ✏̄ is related to the non-linear nature of the Hertzian force which
scales as δ3/2. The relative importance of contacts with respect to hydrodynamics can
be estimated using parameter Γ̇, which is analogous to a Péclet number :

Γ̇ =
6⇡⌘γ̇a2

F0
(2.18)

where F0 is a typical scale for the contact force. Taking F0 as the force needed to deform

completely a roughness F0 = knh
3/2
r gives Γ̇ = ✏̄3/2 ⇡ 10−2. Since ✏̄ is fixed, this means

that the relative contribution of contact remains similar regardless of roughness height.
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The physical relevance of keeping a constant Γ̇ is questionable. However present work
primarily focuses on friction and the effect of Γ̇ will not be investigated in detail here.
Its role on shear-thickening for instance was studied in other works, e.g. see Seto et al.

(2013) for very dense systems. We have already mentioned that parametric simulations
(for φbulk=0.4 and frictionless particles) show no effects of ✏̄ if it is small enough. This
is tantamount to varying Γ̇ since Γ̇ = ✏̄3/2. Results are found independent of Γ̇ in the
range 10−3 ⇠ 10−1. Values below 10−3 have not been attempted but are expected to
give similar results because we stay in the asymptotic regime of nearly hard spheres.
For Γ̇ above 10−1, a shear-thickening behaviour is however noticed : since roughness
is softened, the interparticle distance is reduced and the viscosity increases because of
lubrication-induced dissipation. All the results presented in this paper are obtained with
Γ̇ ⇡ 10−2 but are valid at least in the range 10−3 ⇠ 10−1. Keeping Γ̇ constant implies

that knh
3/2
r is also held constant for the same shear rate. Obviously, this is irrelevant for

zero roughness (hr=0), causing an infinite stiffness kn. In that case, an arbitrary high
value of kn should be prescribed instead. However, dense suspensions of perfectly smooth
particles were not investigated in this work.
The tangential force is given by

F
c
t = −ktΥ (2.19)

in which Υ is defined by integrating the slip velocity U
s during the contact

Υ =

Z t

0

U
sdt (2.20)

where the slip velocity is

U
s = U i −U j − [(U i −U j) · n] · n+ (aΩi + aΩj)⇥ n (2.21)

Using the classical Amontons-Coulomb law of friction, the actual tangential force is
modified if it exceeds the friction limit µd|F c

n| and is then given by

F
c
t = µd|F c

n|
F

c
t

|F c
t |

(2.22)

where µd is the dynamic friction coefficient. This work does not consider the static friction
coefficient µs and we implicitly set µs=µd. The tangential stiffness kt is linked with the
normal stiffness kn and a classical choice is kt/kn = 2δ1/2/7 (Silbert et al. 2001; Shäfer
et al. 1996). Finally, the corresponding contact torque is

T
c = an⇥ F

c (2.23)

Contact forces also induce an additional contact stresslet which is given for a particle as

Sc =
1

2
(F c ⌦ r

2
+

r

2
⌦ F

c) (2.24)

This stresslet is not traceless and its trace determines the contribution of contact to
particle pressure. Also note that since F

c ⌦ r may not be symmetric, there exists an
antisymmetric contact contribution to the particle stress due to contact torques. Contact
torques are balanced by hydrodynamic torques by virtue of Eq. (2.6).

3. A pair of rough frictional spheres in a shear flow

The numerical model presented previously has been validated thoroughly on different
configurations in Gallier et al. (2014). However, before turning to the suspension sim-
ulations in §4, we here consider the case of a sheared pair of rough frictional spheres.
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Rheology of suspensions of frictional particles 9

Figure 2. Sketch of a pair of particles interacting in a shear flow.

This preliminary computational study can be viewed as an additional relevant validation
since results will be compared to a reference theoretical solution. It also gives a foretaste
of the forthcoming suspension simulations and allows the reader to become familiar with
rough frictional particles interacting in a shear flow.
Two equally-sized spherical particles (of radius a) are freely suspended in a simple

shear with separation vector r connecting the two sphere centres. A shear flow is gener-
ated by moving the upper and lower boundaries with opposite velocities while the other
boundary conditions (in x and z directions) are periodic. Figure 2 presents a sketch of
this two-particle configuration. A cubic computational domain of size 20a in the three
directions is used. The spheres are initially separated by rinit=(-6a, 0.5a, 0). Due to the
imposed shear flow, the spheres will hydrodynamically interact and possibly touch in the
case of rough spheres. A theoretical reference solution is computed using the approach
already presented in other works (DaCunha & Hinch 1996; Zarraga & Leighton Jr 2001;
Metzger et al. 2013). The relative trajectories are integrated in time using the theoret-
ical resistance functions R2B

theo. We have implemented this approach using Matlab R©. In
addition, this model is supplemented with a DEM-like contact model such as described
in §2.4 to allow us to consider theoretical solutions accounting for friction.
Simulations are three-dimensional and performed using a grid spacing ∆ = a/5 and a

time step ∆t = 10−3γ̇−1 where γ̇ is the imposed shear rate.
Figure 3 displays the computed and theoretical relative trajectories in the plane of

shear (z=0) for particles having different non-dimensional roughness ✏r=hr/a and fric-
tion coefficient µd. The case ✏r=0 corresponds to smooth particles. Note that in this
figure, the vertical coordinate y has been stretched for the sake of clarity. The reference
particle is depicted in black while the steric exclusion limit (non-overlapping region) by
a dotted line. A very good accordance between simulation and theory is noted, which
validates lubrication and contact modelling. As expected, the smooth particle trajectory
remains symmetric by virtue of the reversibility of the Stokes equations. On the con-
trary, rough particles undergo contact since the distance between their surface is smaller
than the roughness height at some point. Since contact forces are compressive but not
tensile, they eventually result in a fore-aft symmetry breaking and the development of
anisotropic microstructures. This asymmetry is clearly visible in the relative trajectories
as a net displacement in the vertical direction which is seen to increase with roughness.
This means that particles separate on streamlines further apart than on their approach.
Surprisingly, friction does not modify trajectories, i.e. frictional or frictionless particles
result in hardly distinguishable trajectories.
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Figure 3. Relative trajectories for a pair of particles having non-dimensional roughness ✏r= 0
; 10−3 ; 10−2 : theory (solid lines) and computations for µd=0 (◦) ; µd=0.3 (⇤).

Because this paper primarily focuses on rheology – especially normal stress differences
–, we plot in Fig. 4 the non-dimensional normal stress differences N∗

1 and N∗
2 as a func-

tion of the pair orientation angle ✓ measured from the flow direction (positive x). The
non-dimensional normal stress differences are here defined by

N∗

1 = 2
(Sh

xx + Sc
xx)− (Sh

yy + Sc
yy)

S∞

(3.1)

N∗

2 = 2
(Sh

yy + Sc
yy)− (Sh

zz + Sc
zz)

S∞

(3.2)

They are made dimensionless using the stresslet S∞ of a sheared pair of spheres with-
out hydrodynamic interactions S∞ = 20/3⇡a3γ̇. The results presented are obtained for
the case of rough frictionless particles. Here again, the agreement between theory and
simulations is satisfactory. The main effect of roughness lies in the extension quadrant
(⇡− ✓ > ⇡/2) where particles are further away, thereby reducing hydrodynamic stresses.
In the compression quadrant (⇡−✓ < ⇡/2), the contact force itself is expected to increase
the normal stress due to the additional contact dipole F c⌦r. As this contact dipole rises,
the hydrodynamic dipole decreases, which leads to a very limited effect on the total stress
as can be seen in Fig. 4. In Zarraga & Leighton Jr (2001), similar results are obtained but
with a stronger contact contribution in the compression region because non-dimensional
roughness ✏r could be as high as 0.5. Surface roughness ✏r in the range 10−3 ⇠ 10−2 is
typical of particles used in suspension studies (Smart & Leighton 1989). Since it decreases
the positive values of N∗

1 (✓) and N
∗
2 (✓) in the extension quadrant, roughness contributes

to overall negative N∗
1 and N∗

2 . Likewise, |N∗
1 | and |N∗

2 | are expected to increase with
surface roughness in agreement with Wilson & Davis (2002); Davis et al. (2003); Zarraga
& Leighton Jr (2001).

The role of friction is investigated in the case of the largest roughness ✏r=10−2 and
the obtained results are presented in Fig. 5 for µd=0 (frictionless case) and µd=0.3.
Unlike roughness, friction alters normal stresses only in the compression quadrant and
not in the extension region. This is coherent with the fact that friction does not change
the pair relative trajectories as pointed out previously. Friction only acts during contact
since it implies an additional tangential contribution F

c
t ⌦ r to the overall stress. The

kind of result presented in Fig. 5 can be used to estimate the role of friction on the
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Figure 4. Non-dimensional normal stress differences N∗

1 and N∗

2 as a function of pair orientation
angle ✓ for three roughness ✏r=0 ; 10−3 ; 10−2 : computations (open symbols) and theory (lines).
Particles are frictionless.

rheology of dilute suspensions by integrating over all possible pair trajectories. This was
done by Wilson & Davis (2000) who found that friction induces a slight rise in |N1|
and |N2| with negative values of N1 and N2, and |N1| > |N2|. However, this may hold
only for dilute suspensions since our simulations for dense systems will show a reverse
trend, i.e. friction leads to a decrease in |N1| and increase in |N2| and |N1| < |N2|. This
was already pointed out by Wilson & Davis (2002) using monolayer SD simulations. Let
us conclude by stressing again that the previous single-trajectory simulations should be
only viewed as a validation. As pointed out, statistical consideration is required to infer
relevant information on the rheology of dilute suspensions.

4. Suspension flow simulations : results and discussion

The objective of this study is to investigate the role of roughness and friction on sus-
pension rheology. Numerical simulations of dense suspensions are performed for different
volume fractions 0.1  φ  0.45. The number Np of particles is in the range 600⇠1000,
depending on the volume fraction. The computational domain is a Couette cell of size
Ly=20a, Lz=20a, and Lx ≥ 20a. The length Lx is actually modified so as to adjust the
number of particles in the desired range and can reach Lx=60a for the lowest volume
fraction φ=0.1. A shear flow of magnitude γ̇ is imposed by moving upper and lower walls
with opposite velocities. Periodic boundary conditions are used in x (velocity direction)
and z (vorticity direction). The numerical parameters used are the same as in the previ-
ous section, i.e. a grid spacing ∆ = a/5 and a time step ∆t = 10−3γ̇−1. For simulations
including friction, the time step is however decreased to 5⇥10−4γ̇−1 to allow for a better
time-resolution of the rapidly varying tangential forces. Note that unlike inertial colli-
sional regimes (where the collision duration is very small), dense suspensions are rather
in a frictional regime and a contact lasts longer, about γ̇−1. During most of the contact
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Figure 5. Non-dimensional normal stress differences N∗

1 and N∗

2 as a function of pair orientation
angle ✓ for frictionless (µd=0) and frictional particles (µd=0.3) : computations (open symbols)
and theory (lines).

duration, the tangential force generally changes mildly, except at the beginning of the
contact (initial tangential spring stretching) where rapid variations are captured in only
a few (⇠5) time steps. This explains the time step reduction for frictional simulations.
A further decrease does not change results significantly.
All runs are started using random hard-sphere equilibrium configurations obtained

from a Monte-Carlo procedure, and the first 50 strains γ̇t are discarded so that the sys-
tem is allowed to reach a steady state configuration before computing averages. After
this transient regime, the simulation is continued for another 100-150 strains. The run
is then divided into five statistically independent time-segments of 20-30 strains each.
The standard deviation is computed over the means of those five subintervals and then
divided by

p
5. This represents the statistical variation of the properties and will be given

as error bars on the numerical plots. The resulting statistical error is usually less than
1 % for ⌘s, typically 2⇠4 % for N2, and can reach 5⇠10 % for N1 or Π. Despite the
large number of particles, normal stress differences – most notably N1 – do experience
large intermittent fluctuations. As postulated by Singh & Nott (2000), this might be in
connection with the formation of large gap-spanning network of particles, although this
was not investigated further in this work.
To determine the rheological properties, we recall that the bulk stress in a suspension

of rigid particles subjected to a strain rate E∞
ij is defined as (Batchelor & Green 1972)

Σij = −pδij + 2⌘E∞

ij + Σp
ij (4.1)

where Σp
ij is the particle contribution to the bulk stress. For a statistically significant

number of particles in the suspension, it is given by

Σp
ij = Σh

ij + Σc
ij (4.2)
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with

Σh
ij = nhSh

iji (4.3)

Σc
ij = nhSc

iji (4.4)

where Sh
ij and Sc

ij are the hydrodynamic and contact stresslets, respectively, n is the
number density of particles and the brackets h·i imply an ensemble average. The splitting
of Σp

ij into its hydrodynamic part Σh
ij and contact part Σc

ij will be often used throughout
this study.
For a linear shear flow, the relative viscosity ⌘r = ⌘s/⌘ of the suspension is

⌘r = 1 +
Σp

xy

⌘γ̇
(4.5)

The normal stress differences are given by

N1 = Σp
xx − Σp

yy (4.6)

N2 = Σp
yy − Σp

zz (4.7)

and the particle pressure by

Π = −1

3
(Σp

xx +Σp
yy +Σp

zz) (4.8)

Since we compute a wall-bounded flow with periodicity imposed only in x and z direc-
tions, average quantities depend on vertical position y. As proposed by Yeo & Maxey
(2010a), an average volume fraction hφ(y)i can be defined as

hφ(y)i = 1

LxLz
h
ZZ

χ(x)dxdzi (4.9)

where χ(x) is the particle indicator function which is 1 in the particle and 0 elsewhere.
Note that hφ(y)i is rather an areal fraction but it is known from stereology theory to be
equal to the volume fraction (Delesse principle). Figure 6 presents the average volume
fraction hφ(y)i for three bulk fractions φbulk in the case Ly = 20a. Some simulation
results by Yeo & Maxey (2010a) at φbulk=0.4 are also plotted. Local peaks in the wall
region indicate the presence of a stable particle layering, which has been attested in other
computations (Yeo & Maxey 2010a; Kromkamp et al. 2006) and in experiments (Blanc
2011). Results presented in Fig. 6 are obtained for frictionless particles : friction actually
has a weak influence but the effect of friction on wall-induced ordering is not detailed here
and will be part of a future work. In this case Ly=20a, and for bulk volume fraction φbulk
below 0.5, there is still a flat profile in the core flow which indicates that the suspension
is devoid of wall effects there and is therefore expected to behave like an unbounded
suspension. On the opposite, for φbulk=0.5, wall effects are dominant across the whole
channel. For low volume fractions, this suggests – as proposed by Yeo & Maxey (2010a)
– to split the whole suspension domain D into a core region DC and a wall region DW .
For Ly=20a, this core region DC exists only if φbulk < 0.5 and is chosen as

DC = [0, Lx]⇥ [Ly/4, 3Ly/4]⇥ [0, Lz] (4.10)

This choice follows the works of Yeo & Maxey (2010a) and here corresponds to 5 <
y/a < 15.
The present study intends to highlight the role of friction and roughness for homoge-

neous suspensions because we believe that those effects must be well understood in that
case before adding wall and confinement effects. The reader may wonder why the authors
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Figure 6. Local volume fraction hφ(y)i in the channel width for Ly = 20a and three bulk
fractions φbulk = (0.3, 0.4, 0.5). Open symbols are computations by Yeo & Maxey (2010a).
Particles are frictionless.

did not consider triperiodic Lees-Edwards boundary conditions to remove wall effects.
The reason is that we are also currently studying the effects of confinement, although this
will be deferred to a subsequent paper. Thus we have kept the walls in our simulations
; this is moreover expected to be closer to experimental reality. Consequently, all the
results presented in this paper are for the core region DC . As shown by Yeo & Maxey
(2010a), rheological properties and microstructure in this core region agree well with
results obtained in an unbounded domain. For computational time reasons, most results
are presented for a channel width Ly=20a, which is suitable for bulk volume fractions
φbulk up to 0.4. Some simulations at φbulk=0.4 and Ly=40a did not result in significant
changes. Due to the need to keep a homogeneous core, results presented for φbulk=0.45
are obtained for a wider channel Ly=40a. Here again, the results remain unchanged when
considering a larger channel width. Therefore, all the results presented in this paper –
even for the highest fractions – are checked to be independent of wall effects. Such wall-
induced layering effects on suspension rheology are complex and out of the scope of the
present study. Note that Lees-Edwards boundary conditions are not so difficult to imple-
ment but for higher volume fractions (above 0.5), ordering in monodisperse suspensions
is nevertheless expected even in fully periodic conditions (Kulkarni & Morris 2009; Sierou
& Brady 2002). An improvement would rather be to consider polydispersity.

A last remark is that due to confinement effects, the average volume fraction φcore in
DC might slightly differ from φbulk, typically a few percent. We do consider the actual
value φcore when presented on the numerical plots. Similarly, the particle-phase velocity
profile in the core region is linear but with a slope γ̇core that can vary by a few percent
from the imposed shear rate γ̇. This is an apparent wall slip, as also observed experimen-
tally in concentrated suspensions. The actual value γ̇core is considered when computing
rheological properties, such as Eq. (4.5).
Table 1 compiles the range of the various parameters investigated in this study.

4.1. Effect of roughness

Although this study focuses on friction, we have briefly investigated the role of roughness
for frictionless particles with an eye to assessing to which extent roughness could affect
suspension rheology. Figure 7 presents the relative viscosity (a) and the normal stress
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Volume fraction φbulk 0.1 ⇠ 0.45
Friction coefficient µd 0 ⇠ 1
Reduced roughness ✏r 10−4 ⇠ 10−2

Contact Péclet Γ̇ 10−3 ⇠ 10−1

Table 1. Range of parameters investigated

differences (b) as a function of the reduced roughness ✏r = hr/a for a suspension of
frictionless particles at φbulk=0.4. Rheological properties are evaluated in the core region
DC as discussed above. The total relative viscosity is decomposed into its hydrodynamic
and contact parts as suggested by Eq. (4.2). Note that the solvent contribution (the 1 in
Eq. (4.5)) is lumped into the hydrodynamic contribution.
The relative viscosity decreases monotonically as the roughness increases as seen in

Fig. 7(a). Hydrodynamic and contact parts vary in a similar way so that their relative
contribution to suspension viscosity remains constant and independent of roughness :
⌘h ⇡ 0.68⌘r and ⌘c ⇡ 0.32⌘r. Contact forces are balanced by hydrodynamic forces and
as the hydrodynamic contribution to viscosity decreases, so does the contact contribution.
The hydrodynamic contribution decreases because as asperities grow, the separation dis-
tance between particles becomes larger which, in turn, lowers the lubrication dissipation.
The decrease in viscosity is however modest and is less than 20 % for a hundred-fold
increase in roughness. This weak decrease in viscosity with increasing roughness is also
found in SD (Sierou & Brady 2002; Singh & Nott 2000) and FCM simulations (Yeo &
Maxey 2010a). Note that in SD and FCM simulations, there is no roughness properly
speaking but a repulsive inter-particle force whose range is analogous to an interaction
distance that can be viewed as a roughness.
Figure 7(b) shows the normal stress differences normalized by the shear stress ⌧ = ⌘r⌘γ̇.

The first and second normal stress differences are negative and have very similar val-
ues N1/⌧ ⇡ N2/⌧ ⇡ −0.15. This is in good agreement with SD simulations in which
N1/⌧ ⇡ N2/⌧ ⇡ −0.135 (Sierou & Brady 2002). An interesting feature is that N1/⌧
and N2/⌧ are independent of roughness within statistical uncertainty. This means that,
as roughness becomes larger, |N1| and |N2| slightly decreases. This is in accord with
the monolayer SD simulations of Wilson & Davis (2002) that have showed that |N1|
increases with increasing roughness for dilute systems (this is also expected from our
two-particle results in §3) but that the trend is reversed in concentrated regimes. This
effect of roughness on the normal stress differences can not explain the experimental
results since |N1|/|N2| ⇡ 1, in contrast with experiments. Roughness could, at most, be
involved in some discrepancies between experiments.
Additional simulations were also performed for another volume fraction (φbulk=0.2) :

the ratio normal stress differences over shear stress has a different value (N1/⌧ ⇡ N2/⌧ ⇡
−0.03) but remains independent of roughness. The fact that the differences N1/⌧ and
N2/⌧ are independent of roughness could suggest that normal stresses may persist in the
limit of vanishing roughness. Nevertheless, we have not investigated this hardly realistic
case of perfectly smooth spheres. As addressed by Melrose & Ball (1995), simulations
of sheared suspensions of perfectly smooth spheres inevitably result in overlaps (hence,
contacts) even for vanishing time steps and high-order integration schemes. As a conse-
quence, we believe that – at least numerically – normal stress differences may exist in
dense sheared suspensions with zero roughness. Furthermore, we recall that, in our con-
tact model, the contact Péclet Γ̇ (see Eq. (2.18)) is constant, irrespective of roughness.
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Figure 7. Relative viscosity (a) and normal stress differences (b) as a function of roughness for
φbulk=0.4. Total (”T”) relative viscosity is decomposed into hydrodynamics (”H”) and contact
(”C”) parts.

We have then conducted simulations with constant normal stiffness kn : in this case, Γ̇
now depends on roughness. The same results were obtained (at least, in the tested range
10−3 . Γ̇ . 10−1). This means that the constant Ni/⌧ with respect to roughness is not
related to our peculiar choice of roughness-independent Γ̇.

Full three-dimensional simulations reporting the effect of roughness on normal stress
differences are scarce. Sierou & Brady (2002) investigated the role of the range of the
inter-particle force (as pointed out, this range might be viewed as a kind of roughness)
but only on the particle pressure Π. They noticed that Π was rather constant, implying
a moderate 25 % increase in Π/⌧ when the force range was increased from 10−4 to 10−2.
Actually, our results are quite similar with Π being relatively constant and Π/⌧ increas-
ing by 35 % for a roughness in the range 10−4 ⇠ 10−2, as seen in Fig. 8(a). A similar
trend is noted for the three normal stresses Σp

ii with a limited rise in |Σp
ii|/⌧ as rough-

ness height grows (Fig. 8(b)). Interestingly, this variation is similar for the three normal
stresses, which results in differences N1/⌧ and N2/⌧ relatively unchanged by roughness.
As already pointed out by Singh & Nott (2000), the fact that simulations predict rather
constant normal stresses (or particle pressure) contrasts with the theoretical predictions
of Brady & Morris (1997) that – in dilute suspensions – the normal stresses vanish as
✏0.22r .

4.2. Effect of friction on viscosity

We now turn to simulations with frictional particles having a roughness maintained to
✏r=5.10−3 throughout the forthcoming simulations. This value is typical for particles
used in suspension studies (Smart & Leighton 1989; Blanc et al. 2011). Figure 9 presents
the φ-dependence of the suspensions relative viscosity ⌘r for different friction coefficients
µd. A number of experimental results by Zarraga et al. (2000) and Dbouk et al. (2013) are
also shown. For frictionless particles (µd=0), the agreement is moderate with predicted
viscosities systematically lower than experimental results. This was already noticed in
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Figure 8. Non-dimensional particle pressure Π/⌧ (a) and normal stresses −Σp
ii/⌧ (b) as a

function of roughness for φbulk=0.4.

previous simulations (Yeo & Maxey 2010a; Sierou & Brady 2002). When friction is taken
into account, a substantial increase in viscosity is noted and the agreement with exper-
iments is significantly improved. The effect of friction is quite limited at low volume
fractions φ . 0.3 because there are less particles in contact. For dense suspensions how-
ever friction gives rise to a notable increase in viscosity. This result suggests that the use
of frictionless contact model could explain the systematic underprediction of viscosity
reported in previous simulations. Indeed, it has been stressed in the previous section
that roughness can only result in limited variations in the viscosity and can therefore not
explain experimental results per se.

Sierou & Brady (2002) studied a suspension at φ=0.4 and noted a limited 10 % rise
in ⌘r for µd=0.5. For present simulations at φ=0.4, the effect is stronger with almost
a two-fold increase. This quantitative difference is likely due to the friction model. The
model used in Sierou & Brady (2002) was deliberately kept simple in order to explore
the effect of friction. It was assumed that particles were sliding (no roll-slip behaviour)
and that the frictional force was always opposing the bulk shearing motion.
The role of friction on viscosity can be better understood by studying the hydrody-

namic and contact contribution to viscosity, as already done in §4.1. Figure 10 presents
the hydrodynamic and contact contribution to viscosity as a function of volume fraction
for the frictionless case (µd=0) and a frictional case µd=0.5. The high-frequency dy-
namic viscosity ⌘∞ is also plotted. It was obtained by simulations on frozen equilibrium
configurations of hard smooth spheres. Note that this viscosity is purely hydrodynamic
in origin and corresponds to the viscous contribution to the stress for an equilibrium
microstructure, i.e. not affected by the flow. A first significant result is that the hydro-
dynamic contribution to viscosity is not sensitive to friction : it can be seen in Fig. 10
that frictionless and frictional hydrodynamic contributions collapse onto the same curve.
The only difference between the frictionless and frictional cases lies in the contact contri-
bution which significantly increases with friction. Another interesting result is that the
hydrodynamic contribution to viscosity ⌘h remains very close to the high-frequency vis-
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Figure 9. Relative viscosity ⌘r as a function of volume fraction φ for different friction coef-
ficients µd. Also shown are experiments from Zarraga et al. (2000) and Dbouk et al. (2013).
Non-dimensional roughness is ✏r=5.10−3.

Figure 10. Hydrodynamic (”H”) and contact (”C”) contribution to relative viscosity ⌘r as a
function of volume fraction φ for friction coefficient µd=0 (white) and µd=0.5 (grey). Non-di-
mensional roughness is ✏r=5.10−3. The high-frequency viscosity ⌘∞ is also shown.

cosity, at least for moderate volume fractions. This agreement might be fortuitous since
it is clear from Fig. 7 that ⌘h depends on roughness. However this dependence is very
limited for usual roughness with a mere 5 % decrease between ✏r=10−3 and 10−2. As a
reasonable assumption, it can be argued that ⌘h ⇡ ⌘∞. This result hints at a very limited
impact of microstructure anisotropy on hydrodynamic viscosity ⌘h. As a consequence,
this means that the well-known excess viscosity ∆⌘ = ⌘r − ⌘∞ can be assimilated to the
contact viscosity, i.e. ∆⌘ ⇡ ⌘c.
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Figure 11. Non-dimensional N1/⌧ (a) and N2/⌧ (b) as a function of volume fraction φ for
different friction coefficients µd. Non-dimensional roughness is ✏r=5.10−3.

4.3. Effect of friction on normal stress differences

Figure 11 presents the results obtained on the normal stress differences (non-dimensional
using the shear stress ⌧ = ⌘r⌘γ̇) for different friction coefficients µd. The effect of friction
on normal stress differences is significant with a reduction in |N1| and a rise in |N2|. This
effect is in accordance with the scarce previous studies (Wilson & Davis 2002; Sierou &
Brady 2002). As already discussed, the only three-dimensional simulations with friction
are the works from Sierou & Brady (2002) who reported for φ = 0.4 and µd=0.5, a 40
% reduction in |N1| and a 75 % increase in |N2|. Our simulations show a slightly dif-
ferent effect with a 30 % reduction in |N1| as well as a three-fold increase in |N2|. The
differences are likewise possibly due to a simpler friction model used by Sierou & Brady
(2002) but the qualitative behaviour is similar. In particular, the effect of friction is more
pronounced on N2. Because contacts predominantly take place in the shear plane (x,y),
friction gives rise to larger normal stresses Σxx and Σyy, resulting in a marked increase
in N2=Σyy-Σzz.

The trends observed are an interesting result since experimental studies show that
the second normal stress difference is always significantly larger than the first normal
difference, i.e. N2/N1 > 1. Figure 12 plots our results in terms of N2/N1 as a function of
volume fraction and friction coefficient. In accordance with simulations from the litera-
ture, frictionless particles (µd=0) are reported to give N2/N1 ⇡ 1. This ratio is relatively
independent of the volume fraction. For low φ however, N2/N1 is slightly smaller than
unity in qualitative agreement with the theoretical results of Zarraga & Leighton Jr
(2001) in dilute regimes. Friction results in a larger N2/N1 ratio that grows with friction
coefficient and volume fraction. For dense regimes φ & 0.4 and large friction coeffi-
cients µd & 0.3, N2/N1 is in the range 3⇠4, which matches quite well the experiments
from Zarraga et al. (2000) who found N2/N1 ⇡ 3.6. Unlike their results however, our
simulations suggest that N2/N1 has a φ-dependence which is well-marked in the range
0.2⇠0.4. Below φ ⇡ 0.2, the effect of friction is very limited. Even though our simulations
with frictional particles are closer to some experimental results from the literature, they
are not likely to explain all of them. Although the values of |N1| in the core flow are

Page 19 of 35



20 S. Gallier, E. Lemaire, F. Peters, and L. Lobry

Figure 12. Ratio N2/N1 as a function of volume fraction φ for different friction coefficients
µd. Non-dimensional roughness is ✏r=5.10−3.

smaller, N1 remains negative unlike some measurements from Couturier et al. (2011)
and Dbouk et al. (2013) where N1 is about zero or even positive. Friction contributes
partly – but not wholly – to the smaller experimental values of |N1|.

Figure 13 displays the hydrodynamic (”H”) and contact (”C”) contribution to the
normal stress differences N1/⌧ (a) and N2/⌧ (b) for frictionless (µd=0) and frictional
case (µd=0.5). For the first normal stress difference in Fig. 13(a), it is found that the
hydrodynamic contribution is independent of friction while the contact contribution is
less negative in the frictional case. The noted decrease in |N1| is therefore solely due to a
reduction in the contact contribution. This predominant role of contact contribution in
the case of friction has also been noticed previously for viscosity. For moderate volume
fractions, the hydrodynamic stress represents the major contribution to N1 while for
denser regimes, contact and hydrodynamic stresses contribute in a similar way. For the
second normal stress difference in Fig. 13(b), similar conclusions hold : friction weakly
affects the hydrodynamic contribution while it considerably increases the contact contri-
bution. Figure 13(b) clearly shows that the hydrodynamic contribution to N2 is always
small. Therefore normal stress differences do not have the same origin : for N1, it is
mostly hydrodynamic – at least for low and intermediate volume fractions – while for N2

it comes entirely from contacts. This is anticipated since contacts preferentially occur in
the shear plane and in the compression quadrant, so that |Σc

zz| ⌧ |Σc
yy| ⇡ |Σc

xx|.

4.4. Effect of friction on normal stresses

The previous section was entirely dedicated to normal stress differences because of their
importance in rheology. From a more fundamental viewpoint however, the study of nor-
mal stresses is essential. Furthermore, there exist only very scarce experimental data on
normal stresses in suspensions (Zarraga et al. 2000; Dbouk et al. 2013; Couturier et al.

2011; Boyer et al. 2011b; Garland et al. 2012). This section considers the role of friction
on normal stresses and comparisons with experiments will be provided in the forthcoming
sections.
Figure 14 presents the obtained results on normal stresses Σp

ii and particle pressure Π
for frictionless particles (µd=0) and frictional particles with µd=0.5. All those quantities
are made non-dimensional using the shear stress ⌧ . The effect of friction is similar for
all the normal stresses, i.e. friction results in a substantial increase in the stresses for
φ & 0.3. Friction implies a doubling of Π/⌧ , which basically corresponds to a three-fold
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Figure 13. Hydrodynamic (”H”) and contact (”C”) contribution to N1/⌧ and N2/⌧ as a func-
tion of volume fraction φ for friction coefficient µd=0 (white) and µd=0.5 (grey). Non-dimen-
sional roughness is ✏r=5.10−3.

Figure 14. Normal stress -Σp
xx (a) ; -Σp

yy (b) ; -Σp
zz (c) and particle pressure Π as a function of

volume fraction φ for friction coefficient µd=0 (•) and µd=0.5 (⇤). Non-dimensional roughness
is ✏r=5.10−3.

increase in Π. It will be shown hereinafter (§4.7) that the contact particle pressure Πc

also rises significantly because of friction. Since Πc / hF c.ri is a measure of normal
forces, this shows that friction also involves a much higher level of normal forces.
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Figure 15. Angular dependence of the pair-distribution function g(✓) for a system at φbulk=0.4
and µd=0 (•) ; µd=0.5 (⇤). g(✓) is computed for r/a < 2.1 (a) and for contact r/a < 2+ ✏r (b).
Non-dimensional roughness is ✏r=5.10−3. Also shown are results from Yeo & Maxey (2010a).

4.5. Microstructure

In Fig. 15, the pair-distribution function g(r) is plotted as a function of the angle ✓
for µd=0 and µd=0.5. Given a particle at the origin, the pair-distribution function g(r)
describes the probability density of finding a second particle at distance r, normalized by
the particle number density in the suspension. It is here determined in the usual manner
by discretizing the area around each particle and counting the number of neighbouring
particles within the area. In spherical coordinates, r = (r, ✓,  ) where r is the radial
distance, ✓ the azimuthal angle measured from the flow direction (positive x) and  the
polar angle measured from the vorticity direction (positive z). Figure 15(a) shows the
pair-distribution computed in the plane of shear and for r < 2.1a, i.e. g(✓) = g(r/a <
2.1, ✓, ⇡/2) while Fig. 15(b) presents the actual contact pair-distribution, i.e. gc(✓) =
g(r/a < 2 + ✏r, ✓, ⇡/2) with ✏r=5.10−3. For both cases, this pair-distribution function is
calculated in the core region. Considering the mirror symmetry, only 0 < ✓ < ⇡ is shown
in Fig. 15.

Both pair-distribution functions have an asymmetric shape with a high probability
to encounter another particle in the compression region (⇡ − ✓ < ⇡/2) and a marked
depletion zone around the extension axis ⇡ − ✓ ⇡ 3⇡/4. This depletion zone is much
more apparent for particles at contact (Fig. 15(b)). This fore-aft asymmetry is well-known
to be responsible for the non-Newtonian behaviour of dense suspensions and has been
observed in experiments (Blanc et al. 2011; Parsi & Gadala-Maria 1987). Our results in
Fig. 15(a) show an excellent agreement with FCM simulations by Yeo & Maxey (2010a)
for frictionless particles (this paper does not report the contact pair-distribution, so that
the comparison is not shown in Fig. 15(b).)
The effect of friction on the microstructure is clear in the compression region, especially

for particles at contact. Friction involves less particles in the direction of velocity ⇡−✓ ⇡ 0
but more particles in the region ⇡/4 < ⇡−✓ < ⇡/2. This corresponds to a smaller density
of normal force that would give rise to a negative N1 and a larger density of normal force
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that would give rise to a positive N1. As a result, the values of N1 become less negative
with friction. The opposite effect occurs for N2. Overall, this angular redistribution of
particles leads to a rather flat g(✓) profile in the compression region, which is consistent
with small N c

1 as noted in Fig. 13(a). This effect of friction on microstructure is in
qualitative agreement with the simulations from Sierou & Brady (2002).

4.6. Dependence on the friction coefficient

We have investigated the dependence of viscosity and normal stress differences on the
friction coefficient for a suspension at φbulk=0.4, as shown in Fig. 16. The relative viscos-
ity ⌘r increases monotonically with friction coefficient, although a slope break is noted
for µd ⇡ 0.5. On the contrary, the non-dimensional normal stress differences N1/⌧ and
N2/⌧ vary notably at low friction coefficients but saturate at some point, for µd ⇡ 0.5.
This means that the ratio N2/N1 rapidly changes for low friction coefficients but then
becomes independent of µd for µd & 0.5. Note that even in that regime, N1 and N2 keep
changing – albeit moderately – since ⌧ = ⌘r⌘γ̇ increases with µd.
It is apparent from Fig. 17(a) that the normal stresses Σp

ii are actually more affected
by friction than the shear stress ⌧ because the ratio |Σp

ii|/⌧ keeps increasing with µd.
It typically doubles for µd between 0 and 0.8. Figure 17(b) presents the contact contri-
bution Σc

ii to the normal stress Σp
ii. The values of contact normal stresses Σc

xx and Σc
yy

come closer as friction coefficient grows and for µd & 0.5, we have Σc
xx ⇡ Σc

yy. As a con-

sequence, N c
1 ! 0 as friction increases and this results in N1/⌧=N

h
1 /⌧+N

c
1/⌧ ⇡ Nh

1 /⌧ ,
which is independent of µd as already seen in Fig. 13(a). Figure 17(b) shows that the
contact normal stresses Σc

ii/⌧ are rather constant for sufficiently high friction coefficients.
This, in turn, implies that N c

2/⌧=(Σc
yy−Σc

zz)/⌧ is independent of friction coefficient and

so does N2/⌧=N
h
2 /⌧+N

c
2/⌧ .

This splitting between contact and hydrodynamic contributions reveals more clearly
the important role of contacts in dense suspensions. Results in Fig. 17 can be used to
provide the relative contribution of contacts at φ=0.4 as a function of µd. For µd=0.5 for
instance, we calculate Σc

xx/Σ
p
xx ⇡ 0.83, Σc

yy/Σ
p
yy ⇡ 0.91, and Σc

zz/Σ
p
zz ⇡ 0.82. It means

that in this case, contacts are responsible for 80% ⇠ 90 % of the total particle stress.
This predominant role of contact in dense frictional suspensions will be confirmed in the
following sections as well.
Our results show that the normal stress differences are very sensitive to friction, espe-

cially for µd . 0.5, which is the typical range of friction coefficient for usual materials.
This means that friction could be at the origin of some discrepancies between experi-
ments since particles used in suspension studies are made of different material and hence
have different friction coefficients. It is also known that the dynamic friction coefficient
µd may depend upon normal contact force, slip velocity, roughness, temperature, etc.
which may also contribute to the overall discrepancy.

4.7. Continuum models

Particle-resolved simulations offer an inestimable insight into the detailed physics of
suspensions. However they are too computationally expensive to apply for large-scale
industrial systems with complex geometries. Therefore there have been attempts to de-
velop continuum models where the suspension is assimilated to an homogeneous fluid
with some constitutive laws for the particle stress Σp. A successful approach for shear
flows was proposed by Morris & Boulay (1999) – referred to as the suspension balance
model (SBM) –, in which

Σp = −⌘γ̇Q + 2⌘⌘rE (4.11)
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Figure 16. Relative viscosity ⌘r (a) and non-dimensional normal stress differences N1/⌧ and
N2/⌧ (b) as a function of µd. Simulations are performed at φbulk=0.4. Non-dimensional rough-
ness is ✏r=5.10−3.

Figure 17. Normal stresses -Σp
ii (a) and contact normal stresses -Σc

ii (b) as a function of µd.
Simulations are performed at φbulk=0.4. Non-dimensional roughness is ✏r=5.10−3.

with

Q = ⌘pn

2

4

1 0 0
0 λp

2 0
0 0 λp

3

3

5 (4.12)

where ηpn is the normal stress viscosity and λp
2 and λp

3 are anisotropy parameters λp
2 =

Σp
yy/Σ

p
xx and λp

3 = Σp
zz/Σ

p
xx. Superscript p is here added to recall that those quantities

are computed using the particle stress Σp.
Due to the lack of experimental data, Morris & Boulay (1999) proposed constant
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anisotropy parameters λp
2 ⇡ 0.8 and λp

3 ⇡ 0.5. The SBM rests on the idea that the
overall behaviour of the suspension is driven by the particle stress Σp. However the
exact nature of the particle stress to be included in the model is still controversial.
In particular, Lhuillier (2009) and Nott et al. (2011) demonstrated that the contact
contribution to the particle stress, namely Σ c, should be considered in the SBM model
instead of Σp. This possible flaw in the SBM might not impair the good prediction
capabilities of this model, for two reasons. First, the anisotropy parameters have been
chosen by Morris & Boulay (1999) to match experimental results on migration, so that
their exact nature is unimportant ; and second, we have shown that in dense frictional
suspensions, contact stress is the prevailing stress.
In this section, we present simulation results on the SBM parameters, i.e. normal

viscosity and anisotropy parameters. The main purpose is to study the role of friction
but also to analyse whether the particle stress or the contact stress should be considered
in the model. Direct measurements of SBM parameters are very scarce (Dbouk et al.

2013) because the three normal stresses must be measured simultaneously. Furthermore,
strong theoretical arguments are still missing to determine whether experiments actually
measure the particle stress Σp (as defined by Batchelor, see Eq. (4.1)), or the contact
contribution Σ c to particle stress, or another stress.
Our results for anisotropy parameters λp

2 = Σp
yy/Σ

p
xx and λp

3 = Σp
zz/Σ

p
xx are presented

in Fig. 18 for frictionless (µd=0) as well as frictional particles µd=0.5. For frictionless
particles, our simulations are close to Yeo & Maxey (2010a) and a moderate linear
increase in the anisotropy parameters is found. Friction has a modest effect and induces
a slight rise in λp

2 and λp
3. The obtained values remain close to the ones proposed in

the SBM model. However, computations suggest that λp
i may have a φ-dependence.

Anisotropy parameter λp
2 is experimentally noted to increase linearly with φ but with

values slightly above the predictions. Conversely, experimental λp
3 is found to be relatively

constant and close to 0.5, which is the value introduced by Morris & Boulay (1999) in
their model to represent the lack of migration in torsional flows.

Figure 19 presents similar plots for the contact anisotropy parameters, defined as
λc
2 = Σc

yy/Σ
c
xx and λc

3 = Σc
zz/Σ

c
xx. Those parameters are expected to replace the usual

λp
i if the contact stress were to be considered instead of the particle stress. On the figure

are also shown the experimental results from Dbouk et al. (2013). They are the same as
on Fig. 18 since it is not clear whether they are representative of Σp or Σ c. Interestingly,
the agreement with experiments is clearly improved for both parameters. In particular,
there is an excellent match for λc

3 which is relatively constant and close to 0.5 for all
volume fractions. λc

2 is closer to experiments as well, although the φ-dependence seems
to differ since λc

2 decreases with φ. Just as for λp
i , the effect of friction on λc

i is weak and
the values remain close to the ones chosen by Morris & Boulay (1999). The fact that λc

i

parameters match experiments better than λp
i is puzzling. We however believe it is too

premature to conclude whether experiments actually measure the contact particle stress.
The computed normal viscosity ηpn and contact normal viscosity ηcn are shown in Fig. 20

together with experiments from Dbouk et al. (2013). Experimental data are here again
duplicated in both Fig. 20(a) and Fig. 20(b) due to the uncertainty on their physical
meaning. Simulation results from Yeo & Maxey (2010a) are also displayed (available
only for ηpn and frictionless particles) and a good agreement is noted. Unlike anisotropy
parameters, normal viscosities ηpn and ηcn strongly increase with friction – this was already
the case for the shear viscosity ηr. Accounting for friction (µd=0.5) allows us to match
closely the experimental data. This good agreement with experiments is obtained for both
usual normal viscosity ηpn and contact normal viscosity ηcn. This is an additional evidence
that friction must be considered for relevant simulations of dense suspensions.The ratio
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Figure 18. Anisotropy parameters λp
2
(a) and λp

3
(b) as a function of volume fraction φ for

friction coefficient µd=0 and µd=0.5. Non-dimensional roughness is ✏r=5.10−3. Also shown are
simulations from Yeo & Maxey (2010a) (µd=0) and experiments from Dbouk et al. (2013). The
dotted lines are the values taken in the SBM model (Morris & Boulay 1999).

Figure 19. Contact anisotropy parameters λc
2 (a) and λc

3 (b) as a function of volume fraction φ
for friction coefficient µd=0 and µd=0.5. Non-dimensional roughness is ✏r=5.10−3. Experiments
are from Dbouk et al. (2013) (same as on Fig. 18). The dotted lines are the values taken in the
SBM model (Morris & Boulay 1999).

ηcn/η
p
n can be calculated from those results and is found to be relatively constant for

φ & 0.3 with ηcn/η
p
n ⇡ 0.8. This again confirms that contact stress prevails in dense

suspensions. Morris & Boulay (1999) proposed an empirical law for the normal viscosity
given as

ηpn = Kn

✓
φ/φm

1− φ/φm

◆2

(4.13)
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Figure 20. Normal viscosity ⌘p
n (a) and contact normal viscosity ⌘c

n (b) as a function of
volume fraction φ for friction coefficient µd=0 and µd=0.5. Non-dimensional roughness is
✏r=5.10−3. Also shown in (a) are simulations from Yeo & Maxey (2010a) (µd=0). Experiments
are from Dbouk et al. (2013) and are the same in (a) and (b).

with Kn=0.75 and φm=0.68. If this law were plotted in Fig. 20, it would come close to
frictionless simulation results, i.e. would significantly underestimate experiments. A fit
on our frictional (µd=0.5) simulations for ηpn gives Kn=1.13 and φm=0.58.

The contact particle pressure can be recast in terms of ηcn and reads Πc/ηγ̇ = ηcn(1 +
λc
2 + λc

3)/3, so that Πc / ηcn. From the results in Fig. 20(b), we can infer that Πc rises
significantly with friction – by a factor of 2 between µd=0 and µd=0.5 for φ=0.4. As
pointed out in §4.4, this increase in Πc is related to a higher level of normal contact
forces exerted on particles.

4.8. Global µ(Iv) rheology

In a recent work, Boyer et al. (2011a) intended to unify suspension and granular rheology.
They showed that dense confined suspensions have a viscoplastic behaviour similar to dry
granular media that can be described using a single viscous parameter Iv. This viscous
number is defined as Iv = ηγ̇/Pp where Pp is the confining pressure. This parameter is
the ratio between a flow strain time γ̇−1 and a viscous time η/Pp. It is analogous to

the inertial number I used in granular rheology I = aγ̇
p

ρp/Pp where ρp is the particle
density. Using a pressure-imposed cell, they found that the effective friction coefficient
µ and the volume fraction φ were uniquely defined by Iv, i.e. µ = µ(Iv) and φ = φ(Iv)
whatever the confining pressure and for two different types of particles. However, only
dense suspensions (φ > 0.4) and consequently very small viscous numbers Iv were inves-
tigated.
Here, we intend to compare our simulations – for frictional as well as frictionless parti-

cles – to their results. Our goal is to gauge the effect of friction as well as to check whether
their experimental observations still hold for large Iv regimes. In their measurements, the
confining pressure was prescribed by applying a normal force to the suspension using a
porous plate. In order to parallel experiments, this suggests to consider the normal stress
Σp

yy as the confining pressure Pp. To be more specific, we actually have investigated Σc
yy

as well as Σp
yy and have found that results are closer to Boyer’s experiments if we consider

Σc
yy. This could again suggest that actual measurements determine Σ c rather than Σp.
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Figure 21. Volume fraction φ as a function of Iv for frictionless (◦) and frictional (⇤) sim-
ulations. Solid line is Boyer’s results as represented by Eq. (4.14) with φm=0.585 and n=0.5.
Dashed line is for φm=0.64 and n=0.4.

If the viscous number is defined as Iv = ηγ̇/Σc
yy, our simulation results are found to col-

lapse onto a single φ = φ(Iv) curve as expected from Boyer et al. (2011a). Of course, for
high volume fractions, considering Σc

yy rather than Σp
yy brings little improvement since

Σp
yy ⇡ Σc

yy as discussed hereinbefore. Figure 21 shows a semi-logarithmic plot of φ(Iv)
for our computations while the solid line is the model proposed by Boyer et al. (2011a) :

φ =
φm

1 + Inv
(4.14)

with φm=0.585 and n=0.5. The dashed line is a fit of Eq. (4.14) on our results and
yields φm ⇡ 0.64 and n ⇡ 0.4. Our simulation results compile different volume frac-
tions, roughness, friction coefficients, etc. and reasonably collapse onto a single curve,
which confirms the scaling proposed by Boyer et al. (2011a). For low volume fractions,
a deviation between Boyer’s results and our simulations is clearly noted and grows with
increasing Iv. Yet, let us recall that their experimental results are obtained for dense
suspensions with Iv in the range 10−6⇠10−1 while our results are restricted to much
higher viscous numbers 10−1⇠102. It is then questionable whether their experimental
law can be extended to very large Iv. Simulations show that φm and n should be slightly
adjusted in the semi-dilute case with φm ⇡ 0.64 and n ⇡ 0.4. Note that Eq. (4.14) is ob-
tained considering the divergence of viscosity near maximum packing fraction and there
is little chance that very dilute suspensions can be modelled by laws obtained through
the behaviour of suspensions near jamming. The fact that our fitted value φm ⇡ 0.64 is
close to the random-close packing fraction is probably fortuitous.

The second constitutive law addresses the effective friction coefficient µ (not to be
mistaken with material dynamic friction coefficient µd) defined as

µ = τ/Pp (4.15)

where τ is the shear stress τ = ηrηγ̇. Here again, Pp is assimilated to Σc
yy in our sim-

ulations. Boyer et al. (2011a) proposed to model the friction law as the sum of the
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Figure 22. Friction coefficient µ = ⌧/Σc
yy as a function of Iv for frictionless (◦) and fric-

tional suspension (⇤) simulations. Solid line is Boyer’s results as represented by Eq. (4.16) with
φm=0.585. Dashed line is Eq. (4.20) with φm=0.64 and n=0.4.

hydrodynamic µh and contact µc contribution by

µ(Iv) = µ1 +
µ2 − µ1

1 + I0/Iv
| {z }

µc

+ Iv +
5

2
φmI1/2v

| {z }

µh

(4.16)

Using granular rheology results, they prescribed µ1=0.32, µ2=0.7 and I0=0.005.
Figure 22 presents our simulations for the friction coefficient µ. Similarly, there is a

reasonable collapse of all our results onto a single curve. This is an interesting result since
computations span very different roughness or friction coefficient. Like the φ(Iv) curve,
the agreement with Boyer’s results is good for small Iv but a deviation is noted for dilute
suspensions (large Iv). Again, this might be expected since their fit was obtained for
Iv smaller than 10−1. The dashed line represents an improved model for dilute systems
which is described hereafter.

In order to improve the friction law in dilute regimes, we first study separately the
hydrodynamic and contact contribution to µ, defined as

µh =
ηhηγ̇

Σc
yy

(4.17)

µc =
ηcηγ̇

Σc
yy

(4.18)

This is straightforward in computations but complex from an experimental viewpoint.
Those two contributions can then be compared to the expressions of µh and µc proposed
in Eq. (4.16). Results are presented in Fig. 23(a) and Fig. 23(b) for the hydrodynamic
and contact parts, respectively. As seen in Fig. 23(b), the contact contribution to µ shows
a reasonable agreement with the model Eq. (4.16). Note that because Iv is rather large
(Iv 1 I0), Eq. (4.16) boils down to µc ⇡ µ2 = 0.7. This good agreement is a striking
result because the value of µ2 is taken from experiments reported in dry granular media.
This means that the contact contribution in dry granular media and dilute suspensions
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Figure 23. Hydrodynamic friction coefficient µh (a) and contact friction coefficient µc (b) as
a function of Iv for frictionless (◦) and frictional (⇤) simulations. Solid line is Eq. (4.16) with
φm=0.585. Dashed line is Eq. (4.20) with φm=0.64 and n=0.4.

is similar. Note that the contact contribution is moderately dependent on friction – fric-
tional particles would give a mere µ2 ⇡ 0.8 –, at least for this range of Iv. Simulation
results are however in a too dilute regime to provide a refined modelling of µc for a wide
range of Iv, and only the high-Iv limit µ2 can be inferred here.
For moderately dense suspensions, the most important contribution comes from hy-

drodynamics as seen in Fig. 23(a) (note the difference in scale with Fig. 23(b)). Actually,
Eq. (4.16) predicts µc ' µh for Iv ⇡ 10−1. Therefore for dilute systems it is of prime
importance to first improve the hydrodynamic contribution to µ. We have previously
mentioned that ηh ⇡ η∞ seems a reasonable assumption in the semi-dilute regime. The
relation η∞(φ) can be readily inferred from simulations unequivocally. Since it is ob-
tained from a hard-sphere equilibrium non-touching configuration, it does not involve
contacts and is neither related to a distorted microstructure. Past computations (Gallier
et al. 2014) show that the high-frequency viscosity can be correctly modelled using a
Krieger-Dougherty law

η∞ = (1− φ

φ0

m

)−[η]φ
0

m (4.19)

with [η] ⇡ 2.4 and φ
0

m ⇡ 0.68. The approximation ηh ⇡ η∞ is used, with η∞ given by
Eq. (4.19), and further combined with Eq. (4.14). This finally gives

µh = Iv

✓

1− φm

φ0

m

1

1 + Inv

◆−[η]φ
0

m

(4.20)

When Iv is large, and noting that φ
0

m ⇡ φm, this expression becomes

µh = Iv + [η]φmI1−n
v (4.21)

which essentially gives back Boyer’s model Eq. (4.16) with a slight change in the expo-
nent, i.e. 1-n=0.6 instead of 0.5 in the original model.
The previous results Fig. 21 to Fig. 23 display all of our available simulations in or-

der to illustrate that results do collapse onto a single master curve regardless of particle
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Figure 24. Volume fraction φ as a function of Iv for frictionless (◦) and frictional µd=0.5
(⇤) particles. Non-dimensional roughness is ✏r=5.10−3. Solid line is Boyer’s experimental fit
Eq. (4.14) with φm=0.585 and n=0.5.

characteristics (e.g. roughness or friction coefficient). Although the overall collapse is rea-
sonable, a closer look reveals some slight dispersions, meaning that an effect of particle
characteristics – although limited – does exist. Among the investigated parameters (stiff-
ness, roughness, friction), friction is found to play the most important role. Figure 24
reconsiders the φ(Iv) results already presented in Fig. 21, but only retains the frictionless
and frictional (µd=0.5) particles. The aforementioned deviations are here more distinct
and this suggests that – rigorously speaking – a unique master curve is not likely to
exist due to friction. This effect was not noted in Boyer’s measurements : first, because
of the experimental difficulty to vary the friction coefficient significantly ; and second,
because they considered very small Iv numbers where the role of friction might be differ-
ent. Interestingly, Fig. 24 shows that frictional simulations are closer to the experimental
correlation, suggesting that friction is operative in actual suspensions. This is especially
true for high volume fractions (small Iv). A separate fit on our µd=0 and µd=0.5 results
gives φm ⇡ 0.69 and φm ⇡ 0.62, respectively, i.e. the frictional φm is in better agreement
with the experimental φm ⇡ 0.585.
Let us summarize this section. The overlapping range (in volume fraction) between

Boyer’s experiments and our simulations is very small which hinders any further valida-
tions in dense regimes. Yet, one of our primary purpose was to check the existence of the
master curves µ = µ(Iv) and φ = φ(Iv) and our results show that this reasonably works.
The experimental laws seem to be less accurate in dilute regimes and we have therefore
proposed a modified Boyer-like correlation to fit our dilute results. Also, it seems that
friction is responsible for some slight deviations from a unique φ(Iv) curve ; as a con-
sequence, master curves might not exist, rigorously speaking. Frictional simulations are
much closer to experiments, substantiating a role of friction in actual suspensions.
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5. Conclusions

In this paper, we have presented some three-dimensional numerical simulations of con-
centrated suspensions in a Couette flow using a fictitious domain method. Our numerical
method includes a lubrication model as well as a contact model between particles sim-
ilar to DEM (Discrete Element Method). This contact model assumes a Hertz law and
includes roughness and friction. Some validations on a pair of particles are presented in
order to demonstrate that our numerical model is adequate to deal with rough frictional
particles.
This work particularly focuses on the effect of friction and its role on rheological prop-

erties, especially the relative viscosity ηr and the normal stress differences N1 and N2.
A relatively new and significant result is that friction has a profound impact on sus-
pension rheology. Friction increases ηr and |N2| and decreases |N1|, in better agreement
with available experiments. In particular, the N2/N1 ratio is typically about 3⇠4, which
corroborates experiments from Zarraga et al. (2000). Yet, we have not found quasi-zero
or positive N1 as attested by some other measurements (Couturier et al. 2011; Dbouk
et al. 2013). Interestingly, friction is shown to act mostly through the contact stress since
the hydrodynamic stress is found to remain unaffected by friction. Slight modifications
of the microstructure in the compression region are likely to explain the noted effects on
N1 and N2. The systematic splitting between hydrodynamic and contact contributions
to the stress reveals that N1 and N2 have not the same origin since N1 is mostly hy-
drodynamic while N2 arises from contact. This also shows that the contact stress is the
prevailing stress in dense suspensions ; this is particularly true for the normal stresses.
The dependence on the friction coefficient µd is investigated as well and is found to be
significant in the range 0⇠0.4.

The link with continuum models is also studied in the frame of the suspension balance
model. Some important parameters of the model, such as the normal viscosity or the
anisotropy parameters, are computed and are found to be in better agreement with ex-
periments when friction is accounted for. Similarly, our results are compared with recent
µ(Iv) global rheology and appear to collapse onto a single curve, as expected from the
works of Boyer et al. (2011a). Here again, the agreement with experiments is improved
for frictional particles, meaning that friction is operative in actual suspensions.
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