Sub-Riemannian structures on groups of diffeomorphisms - Archive ouverte HAL
Article Dans Une Revue Journal of the Institute of Mathematics of Jussieu Année : 2017

Sub-Riemannian structures on groups of diffeomorphisms

Emmanuel Trélat

Résumé

In this paper, we define and study strong right-invariant sub-Riemannian structures on the group of diffeomorphisms of a manifold with bounded geometry. We derive the Hamiltonian geodesic equations for such structures, and we provide examples of normal and of abnormal geodesics in that infinite-dimensional context. The momentum formulation gives a sub-Riemannian version of the Euler-Arnol'd equation. Finally, we establish some approximate and exact reachability properties for diffeomorphisms, and we give some consequences for Moser theorems.
Fichier principal
Vignette du fichier
srshapes.pdf (466.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01069810 , version 1 (29-09-2014)
hal-01069810 , version 2 (22-01-2015)

Identifiants

Citer

Sylvain Arguillere, Emmanuel Trélat. Sub-Riemannian structures on groups of diffeomorphisms. Journal of the Institute of Mathematics of Jussieu, 2017, 16 (4), pp.745--785. ⟨10.1017/S1474748015000249⟩. ⟨hal-01069810v2⟩
464 Consultations
209 Téléchargements

Altmetric

Partager

More