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Asynchronous Event-Based Multi-kernel Algorithm

for High Speed Visual Features Tracking
Xavier Lagorce Cédric Meyer Sio-Hoi Ieng David Filliat Ryad Benosman

Abstract—This paper presents a number of new methods for
visual tracking using the output of an event-based asynchronous
neuromorphic dynamic vision sensor. It allows the tracking of
multiple visual features in real-time, achieving an update rate
of several hundred kilohertz on a standard desktop PC. The
approach has been specially adapted to take advantage of the
event-driven properties of these sensors by combining both spatial
and temporal correlations of events in an asynchronous iterative
framework. Various kernels, such as Gaussian, Gabor, combi-
nations of Gabor functions and arbitrary user-defined kernels
are used to track features from incoming events. The trackers
described in this paper are capable of handling variations in
position, scale and orientation through the use of multiple pools
of trackers. This approach avoids the N

2 operations per event
associated with conventional kernel-based convolution operations
with N × N kernels. The tracking performance was evaluated
experimentally for each type of kernel in order to demonstrate
the robustness of the proposed solution.

Keywords—Neuromorphic sensing, Event-based vision, Visual
tracking

I. INTRODUCTION

V ISUAL object recognition and tracking is useful in many
applications, such as video surveillance, traffic moni-

toring, motion analysis, augmented reality and autonomous
robotics. Most object tracking techniques rely on sequences of
static frames which limits algorithmic efficiency when dealing
with highly dynamic scenes. Conventional frame-based video
cameras can acquire data at frequency as high as several
tens of kilohertz, nevertheless this amount of data remains
difficult to process in real-time due to the large amount of
redundant acquired information. Real-time processing at high
acquisition rates usually requires different techniques such as:
sub-sampling of the field of view [1], the use of specific
hardware implementations or a restriction to simple tracking
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algorithm such as image’s centroid and moments computation
[2].

This paper presents an event-based approach to fast visual
tracking of features using the output of an asynchronous
neuromorphic event-based camera. Neuromorphic cameras
(sometimes called silicon retinas) mimic the biological visual
systems [3][4]. The Asynchronous Time-based Image Sensor
(ATIS) camera used in this work reacts to changes of scene
contrast and records only dynamic information, thus reducing
the data quantity [5][6]. The presented algorithms rely on the
change detection circuit of the ATIS, namely it only deals with
relative change events. It can also be applied to other sensors
such as the Dynamic Vision Sensor (DVS) [4] on which the
ATIS is based.

The presented tracking algorithm is computationally inex-
pensive and is thus capable of tracking objects and updating
their properties at a rates in the order of hundreds of kilohertz.
Firstly, an asynchronous event-based Gaussian blob tracking
algorithm is developed and examined. The properties of the
Gaussian kernel allow adaptation to the events’ spatial distribu-
tion by continuously correcting the Gaussian size, orientation
and location with each incoming event. This provides the
object’s position, size, and orientation simultaneously. In a
second stage, the model is extended by using oriented Gabor
kernels that allow tracking specific oriented edges. This work
also considers the combination of several oriented kernels that
are useful in tracking specific focal plane structures such as
corners. Finally, a general kernel approach is presented. It
can use almost any arbitrary kernel and can be seen as a
generalization of the process, with the only constraint that their
center of mass has to be aligned with the center of the kernels
(see section III-C4).

II. TIME ENCODED IMAGING

Biomimetic event-based cameras are a novel type of vision
devices that - like their biological counterparts - are driven
by ”events” happening within the scene. They are not like
conventional vision sensors which, by contrast, are driven by
artificially created timing and control signals (e.g. frame clock)
which have no relation whatsoever to the source of the visual
information [7]. Over the past few years, a variety of these
event-based devices have been implemented, including tempo-
ral contrast vision sensors that are sensitive to relative lumi-
nance change, gradient-based sensors sensitive to static edges,
edge-orientation sensitive devices and optical-flow sensors.
Most of these vision sensors output visual information about
the scene in the form of asynchronous address events (AER)
[8] and encode the visual information in the time dimension
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and not as voltage, charge or current. The presented pattern
tracking method is designed to work on the data delivered by
such a time-encoding sensor and takes full advantage of the
high temporal resolution and the sparse data representation.

The ATIS used in this work is a time-domain encoding
vision sensors with 304×240 pixels resolution. [6]. The sensor
contains an array of fully autonomous pixels that combine an
illuminance relative change detector circuit and a conditional
exposure measurement block.

 

Fig. 1. Functional diagram of an ATIS pixel [5]. Two types of asynchronous
events, encoding change and brightness information, are generated and trans-
mitted individually by each pixel in the imaging array.

As shown in the functional diagram of the ATIS pixel
in Fig. 1, the relative change detector individually and
asynchronously initiates the measurement of an exposure/gray
scale value only if - and immediately after - a brightness
change of a certain magnitude has been detected in
the field-of-view of the respective pixel. The exposure
measurement circuit in each pixel individually encodes the
absolute instantaneous pixel illuminance into the timing of
asynchronous event pulses, represented as inter-event intervals.

Since the ATIS is not clocked like a conventional camera,
the timing of events can be conveyed with a very accurate
temporal resolution in the order of microseconds. The time-
domain encoding of the intensity information automatically
optimizes the exposure time separately for each pixel instead of
imposing a fixed integration time for the entire array, resulting
in an exceptionally high dynamic range and improved signal
to noise ratio. The pixel-wise change detector driven operation
yields almost ideal temporal redundancy suppression, resulting
in a maximally sparse encoding of the image data.

In what follows we will rely only on change detector events
as the timings of events is the main needed information to
perform tracking.

III. MULTI KERNEL EVENT-BASED FEATURES TRACKING

This section describes the tracking algorithms developped in
this paper. After reviewing the state of the art of asynchronous
tracking using event-base silicon retinas, we describe how
bivariate normal distributions are used to track clouds of
events. Then, we will generalize our approach to more arbitrary
kernels. The next two sub-sections tackle the problem of
tracking several objects at once in a scene and how several
trackers interact with one another in a pool mechanism. To
conclude this section, a global algorithm is presented and a
number of possible optimizations are proposed.

A. State of the Art

Image segmentation, feature extraction, optical flow and
high level motion filters are usually used to track moving
objects but they are known to be computationally expensive
tasks. Real-time processing with frame rates reaching several
hundreds of hertz can lead to more robust tracking algorithms
[9]. However, it is currently an almost impossible task to
perform such tasks in real-time unless dedicated hardware
is used. Dedicated hardware solutions introduce additional
implementation complexity that limits the efficiency of such
vision algorithms. Processing at such a high frame rate is only
applicable for tackling simple tasks such as the detection of
the center of mass (or centroid) of moving objects [10], [11].

The newly developed event-based silicon retinas (Dynamic
Vision Sensor [7], Asynchronous Time-based Image Sensor
[5]) inspired by the physiology of biological retinas are
promising sensors for fast vision applications. These sensors
convey a sparse stream of asynchronous time-stamped events
suitable for object tracking as only dynamic information is
captured. Several tracking algorithms have been developed
for this type of sensor. An event clustering algorithm is
introduced for traffic monitoring, where clusters can change
in size but are restricted to a circular form [12], [13]. A
fast sensory motor system has been built to demonstrate the
sensor’s high temporal resolution properties in [14]. Several
event-based algorithms and a remarkable JAVA framework
for the Dynamic Vision Sensor can be found at [15]. In [16],
a pencil balancing robot is developed to stabilize a pencil
using a fast event-based Hough transform. The sensor has
been recently applied to track particles in microrobotics [17]
and in fluid mechanics [18]. It was also used to track a
micro-gripper’s jaws to provide a real-time haptic feedback
from the micro meter scale world (lengths and sizes of objects
around 1e-6m) [19].

To date, the currently developed methods that operate on
events focus on the extraction of features such as lines in the
whole focal plane. In other cases, they are too general to deal
with particular cases where trackers should locally follow a
specific oriented edge or a local shape. We will then extend the
existing work to provide a more general framework allowing
the tracking of specific local features using an event-based
methodology. The tracking approach proposed here is inspired
by the mean-shift technique that has also been extensively used
in conventional frame-based visual tracking [20], [21], [22].

B. Gaussian Blob tracking

A stream of visual events can be mathematically defined as
follows: let ev(u, t) = [u, t, pol]T be a quadruplet giving the
pixel position u = [x, y]T , the time t of the event and pol,
its polarity that can be −1 or 1. When an object moves, the
pixels generates events which geometrically form a point cloud
that represents the spatial distribution of the observed shape.
A moving object generates events that follow a spatial distri-
bution that can be, in a first stage, roughly approximated by
a bivariate normal distribution N (µ,Σ), also called bivariate
Gaussian distribution). The parameters of N (µ,Σ) provide the
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object’s position, size and orientation. The Gaussian mean µ
indicates the object’s position while the covariance matrix Σ
represents its size and orientation. Let us suppose that several
Gaussian trackers have already been initialized on the focal
plane’s locations of several moving objects. When a new event
occurs, it is assigned a score (up to the normalization term)
for each tracker, inspired by the probability this event would
be generated by the Gaussian distribution associated to this
tracker which can be calculated by :

pi(u) =
1

2π
|Σi|

−
1
2 e−

1
2
(u−µi)

TΣ−1(u−µi) (1)

where u = [x, y]T is the pixel location of the event. µi =
[µix, µiy]

T represents the ith tracker’s location and Σi ∈ R
2×2

is its covariance matrix:

Σ =

[

σ2
x σxy

σxy σ2
y

]

(2)

Fig. 2 is showing an example of a ellipse shape tracked by
such a Gaussian tracker.

If one of the computed scores is superior to a predefined
threshold pi(u) > δp (usually set to 0.1), then this tracker will
adapt its parameters to follow this incoming event. If several
trackers respond to the same event, the one with the maximum
score is always chosen. After the most probable tracker has
been selected, its parameters can be updated using a simple
weighting strategy by integrating the last distribution with the
current event information (see Eq (3) and (4)). Since only the
chosen tracker is examined hereafter, the subscript i indicating
the tracker number is omitted for clarity. The position and size
of a Gaussian tracker can be updated as follows:

µt = α1µt−1 + (1− α1)u (3)

Σt = α2Σt−1 + (1− α2)∆Σ (4)

where α1 and α2 are the update factors. They should be
adjusted according to the event rate and the nature of the
observed scene. These values are typically set between 10−2

and 10−1 and are chosen according to the size and velocity
of the tracked objects. Namely how many events should be
received to drag the shape from its old position to the new one
and to change its size and shape according to the incoming
events’ rates.
The covariance difference ∆Σ is computed using the current
tracker’s location µt = [µtx, µty]

T and event’s location u:

∆Σ =

[

(x− µtx)
2 (x− µtx)(y − µty)

(x− µtx)(y − µty) (y − µty)
2

]

. (5)

Finally, we define the activity of each tracker Ai that is
updated at each incoming event ev(u, t), following an expo-
nential decay function which describes the temporal dimension
of the Gaussian kernel.

Ai(t) =



















Ai(t−∆t)e−
∆t
τ + pi(u),

if ev(u, t) belongs to tracker i

Ai(t−∆t)e−
∆t
τ ,

otherwise.
(6)

Fig. 2. Error ellipse of the covariance matrix of a Gaussian tracker following a
black ellipse moving under a white background. Position, size and orientation
of the tracker automatically adapt to the visual stimuli. Black and white dots
represent respectively OFF and ON events.

where ∆t is the time difference between current and previous
events and τ tunes the temporal activity decrease. This activity
measure is useful for inhibition and repulsion procedures that
will be explained latter. It allows us to shape the interaction
between trackers.

Remark: The object’s size and orientation can be retrieved
by computing the principal components of the covariance
matrix. Computationally, the lengths of the error ellipse’s axes
are the two principal components of the covariance matrix,
which can be explicitly calculated by decomposing the two
eigenvalues λmin and λmax. The semi-axes a and b and the
orientation angle α of the ellipse can be computed as follows:

a = K
√

λmax (7)

b = K
√

λmin (8)

α =
1

2
arctan(

2σxy

σ2
y − σ2

x

) (9)

where K is a scaling factor describing the distribution’s
confidence level. K is given by the confidence intervals, it
provides a tuning parameter linking the Gaussian distribution
parameters to the size of the event cloud it is fitted to in the
image plane. In practice, this value can be set to 1. Readers
wishing to know more about the computation of confidence
intervals should refer to [23].

Computing these parameters can provide additional infor-
mation if the trackers are used to identify unknown objects in
a scene. The size and orientation of the Gaussian distributions
yield information about the shape or orientation of the tracked
objects and can be used either to discriminate between inter-
esting and irrelevant objects or to build more complex objects
from several trackers.
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Fig. 3. Examples of kernels used for tracking. (a) to (d) Gabor oriented
kernels. (e) and (f) Combinations of Gabor kernels. (g) Laplacian of Gaussian.
(h) Gaussian kernel. (i) and (j) Handmade arbitrary kernels.

C. Multi -kernel features tracking

1) Principle: the principle is very similar to the Gaussian
tracker, except that the Gaussian kernel is replaced by various
other kernels. The examples that will be illustrated here are
Gabor oriented kernels, combinations of Gabor functions,
Laplacian of Gaussian and more general handmade kernels
such as a triangle and a square. Some of these kernels are
shown in Fig. 3.

The feature tracker generalizes to almost any kernel even for
kernels with no analytical form. If Ki has no closed form, then
it is a numericaly defined function. In this case, the update of
size and orientation cannot be performed easily as this implies
the estimation of rotation and scaling that go beyond the scope
of this paper. We chose, in this case, to restrict kernels to a
fixed size (scale) and orientation. Due to the low computational
cost, this can easily be supplemented by the use of multiple
layers of kernels of different scales and orientations as will be
shown in section IV.

We introduce a local inhibition procedure that prevents the
tracker from being active if the same localized area of the
kernel is always excited. The activity of tracker i, is then given
by Eq (10).

Ai(t) =


















Ai(t−∆t)e−
∆t
τ +

Ginhib,i(ev,u)Ki(xi − x, yi − y),

if ev(u, t) occurs into receptive field of tracker i

Ai(t−∆t)e−
∆t
τ , otherwise,

(10)

where u = [xi, yi]
T is the position of tracker i and Ki is

the matrix representing the tracker’s kernel and Ginhib, the
inhibition gain, is computed as follows :

Ginhib,i(ev,u) = 1− e−∆tev,u/τinhib (11)

Local inhibition is ensured considering ∆tev,u as the temporal
difference between event ev and the last occurrence of an event
into a small spatial neighborhood of the point [xi−x, yi−y]T

in matrix Ki (we usually considered a neighborhood of one
or two pixels radius). This mechanism is equivalent to a local
inhibition of neighboring locations of matrix Ki where the
event occurred. Namely the activated location of the filters
and its surrounding will no longer be able to drive the tracker
even if an event reactivates that location. In that case, ∆tev,u
will go towards 0 thus leading Ginhib to 0. As the temporal
distance increases, Ginhib will gradually tend towards 1. This
ensures that a kernel needs to receive events in all its area to
lead to the tracker’s activation. This inhibition is followed by
an exponential reactivation of the inhibited area thus allowing
the filter to be active to events arriving at that location.

2) Gabor oriented kernels and combinations of Gabors:
it is well known that some areas of our visual cortex V1
respond preferentially to oriented stimuli [24]. Consequently,
we used Gabor functions to build a model of orientation
selective kernels. The response of a θ-oriented Gabor kernel
KGθ(v, σ) located at position v = [xG, yG]

T to the incoming
event ev(u, t) is given by Eq (12):

G(e,KGθ(v, σ)) = e

(

−

x2
u,v+γ2y2

u,v

2σ2

)

cos
(

2π
xu,v

λ

)

, (12)

where xu,v = (x − xG) cos θ + (y − yG) sin θ and yu,v =
−(x− xG) sin θ + (y − yG) cos θ.
To ensure a correct orientation selectivity, we set the param-
eters γ = σ

15 and λ = 4σ. Gabor kernels are illustrated in
Fig. 3 (a) to (d). To track a particular feature like a cross,
we also built kernels by combining Gabor functions following
orthogonal orientations, as shown Fig. 3 (e) and (f).

3) Laplacian of Gaussian kernel: this kernel is inspired by
center-surround biological structures and can be represented by
the Laplacian of Gaussian function (LoG), shown in Fig. 3(g).
This kernel has a behavior similar to Gaussian kernels shown in
Fig. 3(h) but is also sensitive to the size of the tracked events’
cloud. A cloud whose size exceeds the bright central ring (see
Fig. 3(g)) will induce negative contributions to the activity of
events occurring in the dark ring area. This compensates for
the effect of centered events, preventing the tracker from being
activated.

4) General kernels: in fact the algorithm can use any kernel,
with the only constraint being that the center of mass of
the matrix that represents the kernel has to be aligned with
the center of the kernel. This is a weak constraint since any
general kernel can be spatially shifted to meet this restriction
arising from the position’s update principle. Since the tracker is
attracted by the neighboring events, its position will naturally
match the local events’ center of mass. To test if the events’
cloud matches the desired feature, both must share the same
spatial locations.
As an example, general kernels are shown using a square and
a triangle (see Fig. 3 (i) and (j)). These kernels are generated
using a binary representation of a simple geometric shape (+1
on lines, -1 elsewhere) followed by a dilatation algorithm and
a smoothing.
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Fig. 4. Activation scheme of trackers (Gaussian tracker in the example).
(a) A tracker is initialized in the hidden layer with default parameters. (b) It
starts to follow the event cloud from a moving object and adapts to its shape.
(c) When its activity goes above Aup the tracker is upgraded to the visible
layer and a new independent tracker is created in the hidden layer with its
initial position and parameters. (d) The tracker follows the event cloud. (e)
When its activity decreases and falls under Aup, the tracker is downgraded
to the hidden layer but keeps its current parameters and position. (f) Another
step of tracking. (g) Eventually, the activity may rise again over Aup and the
tracker can be upgraded again. (h) Finally, if its activity falls under Adown,
the tracker is deleted.

D. Multi-target tracking

The algorithm is first initialized with a hidden layer of
pre-constructed trackers that are uniformly distributed among
the whole field of view. Hidden trackers refer to those not
displayed on the screen as active trackers. A hidden tracker is
one that does not represent a real object but serves to seed a
potential tracker.
A tracker will be automatically attracted to the nearest events’
cloud. When a new event occurs, and no active tracker re-
sponds to it, it directly feeds the nearest hidden tracker with
the same update rule as described by equation (3) (see Fig.
4(b)). When the activity of a hidden tracker increases above a
predefined threshold Aup (Fig. 4(c)), the tracker is upgraded to
the visible layer, and a new hidden tracker is added with default
parameters so that the hidden layer always has a fixed number
of trackers distributed across the scene. When its activity falls
under Adown, the visible tracker is deleted (Fig. 4(h)). In the
intermediary step, between Aup and Adown (Fig. 4(f)), the
tracker is downgraded to the hidden layer but keeps its actual
parameters and position. The evolution criteria combines both
spatial and temporal correlation of events. Parameters Adown,
Aup and the temporal decrease constant τ have to be tuned
according to the event rate and the desired behavior.

E. Mutual repulsion and attraction to initial position

In case of strong localized activity, all neighboring trackers
can be attracted to the same location. In order to prevent the
different trackers following the same cloud, a mutual repulsion
process is added. Each time a tracker is activated by an

event, the distance between each tracker pair is computed and
the trackers that are too close are shifted away from each
other, following the weighted repulsion function described in
equation (13). The location µi of a tracker is updated compared
to the location of another tracker at µj as follows:

µi ← µi − αrepe
−

‖µi−µj‖

drep

A2
j

A2
i +A

2
j

(µj − µi), (13)

where parameters αrep and drep set the repulsion behavior.
The mutual repulsion between trackers i and j is designed to
ensure a correct repartition of trackers based on the distance
that separates them but also on the activity of both trackers.
The more a tracker is active (i.e. is efficiently tracking an event
cloud), the less it will be influenced by its neighbors.
Due to this mutual repulsion, inactive trackers are often pushed
far from their initial position by moving active trackers. Thus
empty areas could grow on the field of view. To compensate
this possibility, we also added an attraction force that impacts
on each inactive tracker in the following way:

µi ←

{

µ0
i , if ‖µi − µ0

i ‖ > dmax

µi + αatt(µ
0
i − µi), otherwise.

(14)

where µ0
i is the initial position of tracker i. Thus, an inactive

tracker that moved too far away from its initial position without
being activated will be reset to its initial position.

Two additional constraints are added. Trackers that are near
the border and about to move out of the focal plane are deleted.
The borders are one pixel thick and a tracker is deleted if the
distance of the its center to the border is below its typical
size. For a Gaussian blob this typical size is the length of
the ellipse’s smallest axis (axis b in Fig. 2). For a symetric
tracker (e.g. square, triangle) the size is the circumscribed
circle’s radius. The second constraint prevents the Σ matrix
going below a low threshold value for the Gaussian trackers
to limit the tracking to objects with a reasonable size. These
additional constraints do not have much impact on the overall
tracking performance as the sensor is usually configured to
capture the scene in center of the focal plane.

F. Global algorithm

To summarize, the whole process of event-based features
tracking is given by the following algorithm 1.

1) Remarks: For simplicity, repulsion and attraction are
computed every time a new event occurs, but as trackers
do not move that fast, it is possible to perform computation
less frequently. When adding this optimization, processing
the repulsion and attraction step can usually be done every
millisecond and still yield good performances.
Events are considered regardless of their polarity as we are
interested in the global position and orientation of the object.
In what follows we will focus on a single polarity. This will
be carried out to provide a precise measure of accuracy of the
positionning of a tracker for a thin contour.
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Algorithm 1 Event-based features tracking Algorithm

for every incoming event ev(u, t) do
Update the activity Ai of each tracker of the visible layer
using Eq (6) or (10).
Update the best candidate tracker’s position (and size)
using equations (3) (and (4)).
for every tracker of both layer do

if Ai > Aup then
Upgrade tracker to visible layer.

else if Ai < Adown then
Delete tracker i

else
Downgrade tracker to hidden layer, and keep the
same parameters and position.

end if
end for
for every pair of trackers of both layers do

Update tracker position using repulsion equation (13)
end for
for every tracker of hidden layer do

Update tracker position using attraction equation (14)
end for

end for

Fig. 5. Events cloud accumulated over 15ms (for each subfigure), ON and
OFF events are represented by white and black points respectively. Gaussian
trackers are attracted and deformed in response to the distribution of events
clouds corresponding to different objects. (a) The activity of a hidden tracker
crosses the Aup threshold, it then becomes visible. (b) The tracker rapidly
adapts to the events cloud’s distribution. (c) While the first tracker matches
the rectangle object, another object starts to move, causing a second tracker
to update (d).

IV. RESULTS

The experiments have been carried out using the ATIS
camera considering only its change detection output and gray
levels have not been used. All programs have been written in

Fig. 6. Gaussian tracker accuracy in position and angle. (a) Object position
in x (dashed line with circle markers) and y (dashed line with square
markers). Underlying dots represent the tracker’s positions. They are hardly
distinguishable from the ground truth measure (GT). (b) Object’s angle
(dashed line) and tracker’s angle (underlying dots). (c) and (d) Tracking error
respectively in position and angle computed every millisecond. On top are
shown snapshots (accumulation of events during 10ms) of the segment at
different timestamps during motion and the ellipse representing the active
Gaussian tracker’s position, size and orientation.

C++ under linux. We experimentally set the parameters related
to the activity of trackers to Aup = 0.15 and Adown = 0.1.
Parameters related to the extraction of orientations from the
covariance matrix have been set to K = 1 (Eq (7,8)) and
τ = 20 ms (Eq (6)). The repulsion and attraction rates have
been set to dmax = 40 (Eq (14)) and drep = 20 (Eq (13)).
These have been set according to the mean size of observed
objects. The repulsion and attraction rates have been set to
αatt = 0.01 (Eq (14)) and αrep = 0.1 (Eq (13)). Parameters
τ = 5ms (Eq (10)) and τinhib = 10µs (Eq (11)) have low
values so that trackers adapt to fast motions.
As in every low level image processing technique, these values
can unfortunately only be experimentally adjusted from the
statistics of observed scenes. We found these values to be
optimal for all performed experiments. They appear to comply
with a large variety of conventional indoor environments for
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fast and slow stimuli1.

A. Gaussian blob trackers

Fig. 5 shows the Gaussian trackers growth and adaptation
to events clouds for two independently moving objects (a
rectangle and a disc, note that the rectangle only produces two
lines of events because it moves in a parallel direction to its
two missing edges). The settings of parameters were adjusted
experimentally to: α1 = 0.2 (Eq (3)), α2 = 0.01 (Eq (4)). The
adjustment factors have been set smaller for the covariance
matrix so that the trackers’ size does not collapse in case few
events are generated by the target. In practice, the value of
the position of the tracker has to move fast to keep up with
the motion, while we assume that the shape of the object will
change at a slower rate.

We evaluated the Gaussian tracker accuracy, for position,
angle and size. In a first experiment, the object tracked is a
segment rotating along a circle at constant speed. During ten
rotations, only one Gaussian tracker activated and followed
the segment. As shown in Fig. 6, ground truth position in
x and y (respectively lines with circle and square markers)
are barely distinguishable from the tracker’s position which
is output every millisecond for display purpose but internally
updated asynchronously every time an event occurred. The
position tracking error is computed as the euclidian distance
between the segment’s ground truth position and the tracker’s
position every millisecond: (2.61±0.62 pixels, mean±STD).
The segment angle (dashed line Fig. 6 (b)) is also tracked
(underlying points) with a very high precision (1.59 ± 0.26
degree). Due to symmetries, angles are shown from 0 to 180
degree. Ground truth’s position, angle and scale were measured
by hand-clicking the segment’s extremities periodically on
reconstructed frames.

To measure the tracking error using the Gaussian tracker, we
moved the same line segment closer and further in front of the
retina so that its length changes as we moved closer and farther
away. Fig. 7 shows the ground truth evolution of the length
of the line segment (black dashed line) and the corresponding
Gaussian tracker’s major axis (small dots). The corresponding
tracking error (bottom curve) is 1.9± 1.6 pixel.

Finally we performed an experiment where a pen is thrown
in front of the camera. The result of its real-time tracking
is shown in Fig.8. The pen is successfully tracked in real-
time. Some trackers are activated by the person’s motion, such
as his head and hand that are then also tracked. The mean
error of tracking is 1.2 pixel, it corresponds to the distance
between the gravity center of the pen and that of the tracker.
The ground truth has been performed by manually labeling the
gravity center of the pen on reconstructed frames.

B. Gabor kernels

All Gabor trackers sizes have been initially set to σ = 3
with γ = σ/15 and λ = 4σ (Eq (12)). The kernel for each

1This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This consists of a video
showing the described tracking methods operating in different conditions such
as real-world data and some of the experiments presented in this paper. This
material is 12 MB in size
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Fig. 7. Gaussian tracker accuracy in size. (a) Object’s ground truth size (black
dashed line), and Gaussian tracker’s major axis (underlying dots). (b) Size’s
error computed every millisecond. On top are shown snapshots (accumulation
of events during 10ms) of the segment at different timestamps during motion.
The Gaussian tracker is shown as en ellipse.

orientation has a size of 17× 12 pixel and is constant through
the experiment (so the size and orientation of each filter will
not change during tracking). Four Gabor oriented kernels (see
Fig. 9) are used to track the thrown pen. As shown by Fig. 9,
the oriented trackers successfully track the rotating pen. From
a handmade ground truth we found that the mean distance
between the position of tracked oriented edges and the center
of trackers has a mean value of 1.4 pixel. The oriented filters
show a 100% of success in detecting orientation.

C. Gabor combinations and general kernels

In order to evaluate the spatio-temporal precision of the
algorithm, we tested it with more complex kernels. We used
combinations of Gabor functions (crosses, Fig. 3 (e) and (f))
and more general handmade kernels (triangle and square Fig. 3
(i) and (j)) were used with a 6×3 initialization grid of hidden
trackers for each type of kernel. As in previous experiments,
active trackers are represented in Fig. 10 by corresponding
superimposed shapes. The stimuli were printed on a sheet of
paper that was held by hand and moved in front of the sensor.
During the experiment, one unique tracker per feature was
active, it successfully followed its corresponding shape.

Fig. 11 shows the spatiotemporal precision of the algorithm,
showing the ground truth (line with circle markers) and the
corresponding active tracker’s positions over time (small dots).
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Fig. 8. From top to down and left to right: sequence of snapshots where the Gaussian blob trackers follow a pen thrown in the air. The trackers stick to the
pen’s position. Blobs are also activated when the person on the left of the scene is moving. They are successfully tracking the person’s features and eventually
disappear in absence of motion.

The ground truth is computed every 10ms (line with circle
markers) accumulating OFF events between two measures and
hand-clicking the feature center. We used a single polarity to
provide a precise measurement of the accuracy of the trackers
when following a single contour. In order not to overload Fig
11, the tracker’s position is showed every 1ms. The activities
and positions are updated asynchronously every time an event
occurs.

The tracking error is computed as the euclidian distance
between the tracker’s position and the ground truth. It is shown
in Fig. 12 for all used kernels. The two crosses kernels show a
low error of 0.81± 0.42 pixel and 0.70± 0.38 pixel (mean ±
STD). The error of the square kernel is a bit higher (1.12±0.66
pixel) but remains lower than one pixel. However, the last
kernel (triangle) has a significantly higher tracking error. This
is again due to the event-based acquisition mechanism. When
the relative motion is parallel to a segment of the shape, no
event is acquired from this segment. As shown in Fig. 13,
during vertical motion, the vertical segments of the triangle,
rectangle and straight cross disappear.

Fig. 13 shows the motion of the object (dashed circle),
and the different positions (segments along the circle). These
positions are also reported on Fig. 12 and correspond to the
configurations that lead to an increase of the triangle tracking
error (bottom plot).

D. Computational cost

We estimated the average time per event spent to update
each tracker by measuring the total computation time required
by the algorithm in experiments showing a uniform event rate
when using a single computation thread. On the computer used
in the experiments (Intel Xeon E5520 at 2.27 GHz), this time
is approximately 25ns per event and per tracker for a kernel
size of 70x70 if the kernel’s matrix has been pre-computed and
processing regulation steps (trackers’ repulsion/attraction every
millisecond) when running on a single core. Consequently,
in a typical natural scene (that statistically generates 200000
events per second), we estimate that it is possible to compute
in real-time around 200 of these kernels with one single
core of our cpu. The total performance of a multi-threaded
implementation using all of the cpu’s cores has not been
verifyed experimentally.

The Gaussian trackers are obviously the most computation-
ally expensive ones due to the need to provide a value of
the exponential. For the other filters, the computation costs
are similar. We precomputed the kernel matrices changes for
every position of the incoming event in the kernel. This turns
out to be computationally inexpensive as the cost becomes that
of accessing a lookup table in memory.



9

Fig. 9. From top to down and left to right: sequence of snapshots where oriented Gabor trackers follow the rotation of a pen thrown in the air. The orientation of
the pen is successfully tracked. This experiment uses four pools each containing one particular Gabor tracker with a given size and orientation (though tracking a
total of four different orientations independently). Oriented trackers are activated sequentially while the pen performs a full 360◦ rotation. The orientation filters
are also activated by the person’s movements when they happen. Note how the kernels track the pen but never overlap. This is due to the repulsion mechanism.

Fig. 10. Tracking results for specific features using combinations of Gabors
and general kernels. Each active kernel is represented by the corresponding
shape. The snapshot has been created accumulating events (black dots) during
10ms.

E. Retrieving feature scale and orientation

Feature trackers use kernels with fixed size and orientation
but it is also possible to track a feature even if its size
and orientation evolve during time by computing in parallel
multiple layers of trackers. Each layer behaves as described
in previous sections. This allows to track features’ size and
orientation in a discretized space. In Fig. 14 we show the
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Fig. 11. Horizontal position of the first active tracker (straight cross in top
left corner of Fig. 10) over time (small dots), and the ground truth position
of the tracked shape (line with circle markers).

continuous tracking of a cross that rotates around its center
at a constant speed. Due to the cross radial symmetry, we
discretized the orientation space into 10 orientations from 0 to
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Fig. 12. Tracking errors for all used features. The error is computed as
the euclidian distance between the tracker’s position and the ground truth
position of the corresponding shape. Gray areas show the periods of time of a
single rotation. When the motion direction is parallel to one of the triangle’s
segments, this leads to an increase of the tracking error. This is an expected
result.

Fig. 13. Active trackers’ positions (straight shapes) and the corresponding
ground truth (black dots). Dashed circle indicates the approximate triangle’s
motion. Segments on this circle represent the positions where motion is parallel
to one side of the triangle, leading to an increase of tracking error.

Fig. 14. Continuous tracking of a rotating cross. Each point on the lower plot
represents the activation of an oriented tracker. Its orientation is represented
by its level. The orientation’s ground truth (black line) was measured every
100ms and interpolated considering constant rotational speed. Upper images
represent accumulations of OFF events during 10ms at different timestamps
and corresponding active trackers. Only OFF events are used here to ensure
a precise measurement of trackers to a single contour.

180 degree and also added the ground truth.
The orientation of active tracker regularly alternates to

follows the feature’s orientation. We can in principle merge the
10 oriented trackers used here into a single rotation-invariant
tracker for this cross by computing a global activity as the
maximum of each oriented tracker activity.
Similarly, we can create scale-invariant feature trackers by
combining multiple trackers whose kernels represent a unique
feature at different scales. Fig. 15 shows the continuous
tracking of a square that was moved back and forth in front of
the camera. Six scaled square trackers were used corresponding
to sizes of 16, 32, 48, 64, 80 and 96 pixels.

V. CONCLUSION AND DISCUSSION

This paper presents an event-based methodology to track
shapes. It allows the following of specific shapes at a very
low computational cost thus matching the high temporal
resolution of event-based vision sensors. It can adapt to
orientation and change of scale. Experiments have shown
the stability and repeatability of the algorithm. Because of
its low computational cost, the method can track multiple
targets in parallel. The same technique is also used to make
the algorithm scale and orientation invariant. The method is
particularly adapted to applications such as robotics vision
based navigation, Simultaneous Localization And Mapping
(SLAM) or object recognition. These usually impose tight
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Fig. 15. Continuous tracking of a moving square. Each point on the lower
plot represents the activation of a specific scale tracker. Its size is represented
by its level. The Ground truth (black line) was measured every 10ms. Upper
images represent accumulations of events during 10ms.

constraints on computation times and energy consumption.

The method relies on several parameters that need to be
tuned. This is generally the case for almost every image
processing method. Free-parameters techniques in computer
vision is still an open problem. In this paper we provided a
set of parameters that we have shown to be efficient for a wide
variety of applications including highly dynamic scenes.
This work is currently being extended to link trackers together
in a coherent spatial arrangement to match complex shapes
such as faces and human body. These techniques are known
as part-based approaches [25], they are currently too compu-
tationally greedy in the conventional frame-based approach to
be implemented at several kilohertz. Finally, it is important
to emphasize the particular innovation of the method. The
architecture avoids the N2 operations per event associated
with conventional kernel-based convolutional operations with
N ×N kernels. Our transfer function based approach enables
us to compute (or retrieve from a look-up table) only one value
per tracker for each incoming event which is dependant on
the position of the event with respect to the center of the
trackers. This is a major feature as, due to the number of
incoming events, a full convolution would prevent from real-
time implementation on current off-the-shelf computers.
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