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Abstract—In this paper, we introduce a centralized algorithm
which constructs the generalized Čech complex. The generalized
Čech complex represents the topology of a wireless network
whose cells are different in size. This complex is useful to
address a wide variety of problems in wireless networks such
as: boundary holes detection, disaster recovery or energy saving.
We have shown that our algorithm constructs the minimal
generalized Čech complex, which satisfies the requirements of
these applications, in polynomial time.

I. INTRODUCTION

A wireless network generally contains a group of large num-
ber cells. It is interesting to know the topology of the network
coverage structure. Recent works use simplicial homology
to model network coverage. Indeed, a combinatorial object,
named simplicial complex, gives access to the topological
information of the network: connectivity and coverage. Many
applications based on simplicial homology have been devel-
oped. In [1]–[3], some algorithms have been designed in both
centralized and decentralized way to locate the coverage holes.
In [4], the authors proposed an algorithm to turn off redundant
cells without changing the topology of the network. Simplicial
homology also helps to recover the wireless network after a
disaster [5]. These algorithms always need a constructed sim-
plicial complex which represents network coverage structure
as their input. Concerning simplicial complex, there are two
complexes frequently used: the Rips complex and the Čech
complex. The Rips complex represents a group of cells by a
simplex if every two of them are neighbors. The Rips com-
plex still describes the neighborhood relation between cells,
therefore it sometimes represents inaccurately the topology of
the network. The Čech complex represents a group of cells
by a simplex if all of them have a non-empty intersection. If
all these cells have the same size, the Čech complex is called
standard. If they are different in size, then this complex is
defined as a generalized Čech complex. The Čech complex
considers the intersection between cells. As a result, it always
represents exactly the topology of the network [1, Theorem
1]. In Figure 1, there are three cells with a coverage hole
inside them. This hole is represented by an empty triangle
in the Čech representation. However, any two of these cells
are neighbor so the Rips complex represents these cells by a
filled triangle. It means that there is no coverage hole in the
Rips representation. The Čech complex detects successfully
the coverage hole while the Rips complex does not. In [6], an
algorithm has been proposed to construct the standard Čech
complex. This algorithm, which has been designed to use in

computer and graphic science, can only work with a collection
of cells which have the same radius. So, this algorithm is
not suitable to construct the Čech complex for the wireless
networks whose cells are different in size.
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Fig. 1: (a) Cells, (b) Rips complex, (c) Čech complex.

In this paper, we introduce an algorithm which constructs
the generalized Čech complex for a collection of cells that
are different in size. This algorithm is designed to describe
the network coverage structure by a simplicial complex, then
one can analyze the coverage structure through it. We also
discuss the complexity of our algorithm and then present our
simulation results.

The rest of this paper is organized as follows. In section
II, we introduce the background about simplicial homology
and its application in wireless networks. All details of the
construction algorithm of the generalized Čech complex are
presented in section III. In the next section, the complexity of
our algorithm is discussed. Section V presents and discusses
simulation results. Finally, the last section concludes the paper.

II. SIMPLICIAL HOMOLOGY AND APPLICATION

In this section, we first introduce some notions of simplicial
homology. For further details about the simplicial homology,
see documents [7] and [8]. The application of the simplicial
homology in wireless networks is discussed in the latter part
of this section.

Given a set of vertices V , a k-simplex is an unordered subset
{v0, v1, . . . , vk}, where vi ∈ V and vi 6= vj for all i 6= j. The
number k is its dimension.

0-simplex

1-simplex 2-simplex 3-simplex

Fig. 2: Examples of simplices.

Figure 2 presents some examples: a 0-simplex is a point, a
1-simplex is a segment of line, a 2-simplex is a filled triangle,
a 3-simplex is a filled tetrahedron, etc.



An oriented simplex is an ordered type of simplex, where
swapping position of two vertices changes its orientation. The
change of orientation is represented by a negative sign as:

[v0, v1, . . . , vi, vj , . . . , vk] = −[v0, v1, . . . , vj , vi, . . . , vk]

Removing a vertex from a k-simplex creates a (k − 1)-
simplex. This (k−1)-simplex is called a face of the k-simplex.
Thus, each k-simplex has (k + 1) faces.

An abstract simplicial complex is a collection of simplices
such that: every face of a simplex is also in the simplicial
complex.

Let X be a simplicial complex. For each k ≥ 0, we define
a vector space Ck(X) whose basis is a set of oriented k-
simplices of X . If k is bigger than the highest dimension of
X , let Ck(X) = 0. We define the boundary operator to be a
linear map ∂ : Ck → Ck−1 as follows:

∂[v0, v1, . . . , vk] =

k∑
i=0

(−1)i[v0, v1, . . . , vi−1, vi+1, . . . , vk]

This formula suggests that the boundary of a simplex is
the collection of its faces, as illustrated in Figure 3. For
example, the boundary of a segment is its two endpoints. A
filled triangle is bounded by its three segments. A tetrahedron
has its boundary comprised of its four faces which are four
triangles.

v0 v1 ∂−→ v0+ v1− ∂−→ 0

v0 v1
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∂−→
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Fig. 3: Boundary operator.

The composition of boundary operators gives a chain of
complexes:

· · · ∂−→ Ck+1
∂−→ Ck

∂−→ Ck−1 · · ·
∂−→ C1

∂−→ C0
∂−→ 0

Consider two subspaces of Ck(X): cycle-subspace and
boundary-subspace, denoted as Zk(X) and Bk(X) respec-
tively. Let ker be the kernel space and im be the image space.
By definition, we have:

Zk(X) = ker(∂ : Ck → Ck−1)
Bk(X) = im(∂ : Ck+1 → Ck)

Zk(X) includes cycles which are not boundaries while Bk(X)
includes only boundaries. A k-cycle u is said homologous with
a k-cycle v if their difference is a k-boundary: [u] ≡ [v]⇐⇒
u− v ∈ Bk(X). A simple computation shows that ∂ ◦ ∂ = 0.
This result means that a boundary has no boundary. Thus, the
k-homology of X is the quotient vector space:

Hk(X) = Zk(X)\Bk(X)

The dimension of Hk(X) is called the k-th Betti number:

βk = dimHk = dimZk − dimBk (1)

This number has an important meaning for coverage prob-
lems. The k-th Betti number counts the number of k-
dimensional holes in a simplicial complex. For example, the
β0 counts the connected components while β1 counts the
coverage holes, etc.

Definition 1 (Čech complex): Given (M,d) a metric space,
ω a finite set of points in M and ε(ω) a sequence of real
positive numbers, the Čech complex with parameter ε(ω) of
ω, denoted Cε(ω)(ω) is the abstract simplicial complex whose
k-simplices correspond to non-empty intersection of (k + 1)
balls of radius ε(ω) centered at the (k + 1) distinct points of
ω.

If we choose ε(ω) to be the cell’s coverage range R, the
Čech complex verifies the exact coverage of the system. In
the Čech complex, each cell is represented by a vertex. A
covered space between cells corresponds to a filled triangle,
tetrahedron, etc. In contrast, a coverage hole between cells
corresponds to an empty (or non-filled) triangle, rectangle, etc.

Definition 2 (Index of a vertex): The index of a vertex
v is the biggest integer k such that for every i ≤ k each
(i− 1)-simplex of v is a face of at least one i-simplex of v.

The index of a vertex tells us how many times the corre-
sponding cell of this vertex overlaps with its neighbors. An
index of zero indicates that corresponding cell separates from
others (it’s isolated). A cell whose index is one still connects
to others by edges. A cell whose index is higher than one
connects with others by triangles, tetrahedron etc.
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(a) One filled tetrahedral and one triangle.
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(b) Three triangles.
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(c) One empty hole and one triangle.

Fig. 4: Cells and Čech representation.

Once the Čech complex is constructed, we can understand
the topology of the network through its homology. The Figure
4 shows some examples of cells and their presentation by Čech
complex. In Figure 4a, four cells 0, 1, 2 and 4 have intersection
then they are represented by a tetrahedron. Three cells 2, 3 and
4 also have intersection, so they are represented by a triangle.



The Betti number β0 is 1 and β1 is 0. This means all cells are
connected and there is no coverage hole inside them. Cell 0,
1 and their neighbors are always connected by a tetrahedron
then cell 0 and 1 have index 3. Cell 2 and 4 are connected
with cell 3 by a triangle, so cell 2, 3 and 4 only have index
2. In Figure 4b, each cell is connected with its neigbors by a
triangle, so each one has index 2. All cells are connected and
there is no coverage hole so β0 is 1 and β1 is 0. In Figure 4c,
all cells are connected so β0 is 1. There is a coverage hole
inside cell 0, 1, 2 and 4. This hole is counted and β1 is 1 now.
Index of cell 0, 1, 2 and 4 is only 1 which indicates that they
lie on the boundary of the hole. Cell 3 is connected with cell
2 and 4 by a triangle so it has index 2.

III. CONSTRUCTION OF THE ČECH COMPLEX

To construct the Čech complex, one needs to verify if any
group of cells has a non-empty intersection. Obviously, each
0-simplex represents a cell, the set of 0-simplices, denoted
S0, is the list of cells. Each 1-simplex represents a pair of
overlapping cells. The construction of 1-simplices boils down
to the search of neighbors for each cell as in the Algorithm 1.

Algorithm 1 Construction of 1-simplices

Require: S0 {collection of cells};
S1 = ∅; {the set of 1-simplices}
N ← |S0|;
for i = 1→ N − 1 do

for j = i+ 1→ N do
if cell(i) intersects cell(j) then

add s = (i, j) to S1;
end if

end for
end for
return S1

The construction of k-simplices where k ≥ 2 is more
complex. The rest of this section is devoted to the details of the
construction of k-simplices where k ≥ 2. From the definition
of the Čech complex, each k-simplex represents a group of
(k+1) cells which have a non-empty intersection. The number
of combinations of (k + 1) cells in all N cells is huge. We
should first find out a candidate group that has an opportunity
to be a k-simplex. Let us assume that u = {v0, v1, . . . , vk}
is a k-simplex. Then we can deduce that each pair (vi, vj),
where 0 ≤ i 6= j ≤ k, are neighbors. This suggests that
û = {v̂0, v̂1, . . . , v̂k}, where v̂1, . . . , v̂k are neighbors of v̂0,
is a candidate of the cell v̂0 to be a k-simplex. If one of
v̂1, . . . , v̂k is not neighbor of v̂0, then {v̂0, v̂1, . . . , v̂k} can not
be a k-simplex. We now need to verify if each candidate is a k-
simplex. Let us denote xij an xji the two intersection points
of cell vi with cell vj . Let X = {xij , xji|0 ≤ i < j ≤ k}
be the set of intersection points for the candidate û. Let us
denote v∗ the smallest cell in candidate cells v̂0, v̂1, . . . , v̂k.
There are only three cases possible. The first case is when the
smallest cell v∗ is inside the others. We then conclude that
û = {v̂0, v̂1, . . . , v̂k} is a k-simplex.
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Fig. 5: Smallest cell is inside the other cells.

Look at the example from Figure 5, the cell i is the smallest
cell and it is inside the others. So the four cells i, j,m, and n
compose a 3-simplex (i, j,m, n). If the first case is not
satisfied, we consider the second case when the smallest cell
v∗ is not inside others and there exists an intersection point
xij ∈ X that is inside cell vt for all 0 ≤ t ≤ k and t 6= i, j.
We then conclude that û = {v̂0, v̂1, . . . , v̂k} is a k-simplex.
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Fig. 6: One of the intersection points of cell i and cell j is
inside the other cells.

In Figure 6, an intersection point of cell i and cell j is inside
other cells m and n. This point is marked as a red point in
Figure 6. So, we conclude that (i, j,m, n) is a 3-simplex. If
both first case and second case are not satisfied, we conclude
that û = {v̂0, v̂1, . . . , v̂k} is not a k-simplex. The smallest cell
v∗ is not inside others and no intersection point xij ∈ X is
inside cell vt for any 0 ≤ t ≤ k and t 6= i, j. So there must
exist i∗, j∗ and m∗ such that xi∗ and xj∗ are not inside the
cell m∗. So (i∗, j∗,m∗) is not a 2-simplex then it can not be
part of a k-simplex with k ≥ 2.
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Fig. 7: No intersection point of any two cells is inside the
other cells.

In Figure 7, we can not find a pair of cells for which one of
their intersection points is inside all the other cells. In addition,
both intersection points of cell i and cell j are not inside cell
m. So the three cells i, j and m do not compose a 2-simplex.
Then, four cells i, j,m and n do not compose a 3-simplex.
The algorithm to verify if a candidate is a k-simplex, where
k ≥ 2, is given in the Algorithm 2:



Algorithm 2 Verification a candidate of k-simplex

Require: û = {v̂0, v̂1, . . . , v̂k} a candidate;
v∗ ← the smallest cell of {v̂0, v̂1, . . . , v̂k};
if cell v∗ is inside cell v̂i for all v̂i 6= v∗ then

verification = true;
else
X = ∅;
for i = 0→ k do

for j = i+ 1→ k + 1 do
{xij , xji} = intersection points of cells i, j;
add {xij , xji} into X;

end for
end for
if there exists xij inside cell v̂t for all t 6= i, j then

verification = true;
else

verification = false;
end if

end if
return verification;

The construction of the Čech complex can be summarized
as in the Algorithm 3:

Algorithm 3 Construction of the Čech complex

Require: S0 and S1;
k = 2;
while (1) do
Sk = ∅; % collection of k-simplices
for each v̂0 ∈ S0 do
S∗ = a set of candidate {v̂0, v̂1, . . . , v̂k} of v̂0;
for each û = {v̂0, v̂1, . . . , v̂k} ∈ S∗ do

verification = verify(û); % call to Algorithm 2
if verification = true then

add û into Sk;
end if

end for
end for
if Sk 6= ∅ then
k = k + 1;

else
break;

end if
end while
return sequence of Sk for all k ≥ 2;

IV. COMPLEXITY

To construct the Čech complex, one needs to verify if any
group of cells has a non-empty intersection. The 0-simplices
are obviously a collection of vertices. Computing 1-simplices
is to search of neighbors for each cell. Its complexity is C2

N ,
where N is the number of cells. To compute 2-simplices, for
each cell we take two of its neighbors and verify if this cell
and the two neighbors have a non-empty intersection. The
verification has complexity O(k2) where k is the dimension

of the simplex. This verification can be done in an instant
time. Let n be the average number of neighbors of each cell,
the complexity to compute 2-simplices for each cell is C2

n on
average. The complexity of the 2-simplices computation for
all cells is NC2

n. Similarly, to compute the k-simplices for
each cell, we take k of its neighbors and verify if this cell and
the neighbors have a non-empty intersection. The complexity
of k-simplices computation of one cell is Ckn and for all cells
is NCkn. Consequently, the complexity to construct the Čech
complex is: C2

N + N
∑dmax
k=2 C

k
n, where dmax is the highest

dimension of the Čech complex. Many applications in wireless
networks such as locating coverage hole or disaster recovery
require only the Čech complex built up to dimension 2. In
this case, the complexity to construct the Čech complex up to
dimension 2 is only O(N2+Nn2). If the Čech complex is built
up to its highest dimension, the sum

∑dmax
k=2 C

k
n can be upper

bounded by 2n. The complexity to construct the Čech complex
up to highest dimension is then as much O(N2 +N2n).

V. SIMULATION RESULTS

In our simulations, the cells are deployed according to the
Poisson point process on a square 6× 6. The density of cells
varies from 1 (medium) to 2 (high). The radius of each cell
can vary from 0.5 to 1. We use our algorithm to construct the
generalized Čech complex for these cells up to dimension 2
and dimension 10. Note that, the generalized Čech complex
built up to dimension 2 satisfies the requirement of almost
applications in wireless networks. Our simulations are written
in C++ language and executed on an Intel Core i7 2Ghz
processor with 4GB of RAM. The construction time of the
Čech complex is listed in Table I.

TABLE I: Execution time (ms)

Density dmax = 2 dmax = 10
1 2.31 25.48

1.5 10.36 580.42
2 30.97 10208.10

Figure 8 shows the simulated cells with their representation
by generalized Čech complex.

Fig. 8: Random cells and their Čech complex.



In this Figure 8, the darker color indicates the higher dimen-
sion simplex, the lighter color indicates the lower dimension
simplex. There is one coverage hole represented by the white
space surrounded by colored simplices.

VI. CONCLUSION

In this paper, we propose a centralized algorithm to build
the generalized Čech complex. This complex is specified to
analyze the coverage structure of wireless networks whose
cells are different in size. This algorithm can build the minimal
generalized Čech complex that is applied to wireless networks
in polynomial time. Although this algorithm is designed for
2D space, it can be enhanced to be used in 3D space. Future
work considers the design of the distributed release of this
algorithm.
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