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Abstract—In this paper, we introduce an algorithm which
constructs the generalized Čech complex. The generalized Čech
complex represents the topology of a wireless network whose
cells are different in size. This complex is often used in many
application to locate the boundary holes or to save energy con-
sumption in wireless networks. The complexity of a construction
of the Čech complex to analyze the coverage structure is found
to be a polynomial time.

I. INTRODUCTION

In recent years, homological topology is often used as an

interesting tool in many algorithms to find the coverage holes

and to save power in wireless networks. This tool was firstly

introduced in [1] to analyze the topology of networks. After

that, some algorithms which aim to locate coverage holes

based on homological topology were developed in [2]–[4].

In [5], authors introduced a homological algorithm which

can be applied to turn off redundant cells in wireless sensor

networks. All these algorithms first require the computation of

a simplicial complex that represents the geometric structure of

network’s cells. There are two complexes that are often used:

the Čech complex and the Vietoris-Rips complex. Let (X, d)
be a metric space and ω be a finite set of points in X . The

Vietoris-Rips complex connects (k+1) points in ω with a k-

simplex if the distance between any two of them is smaler

than ǫ0. This complex doesn’t always describe exactly the

coverage of networks. In this complex, some coverage holes

may be considered as filled regions [6]. The Čech complex

connect (k+1) points in ω with a k-simplex if there is a non-

empty intersection of (k + 1) balls of radius ǫ(ω) centered

at these points. If the ǫ(ω) is equal for every point in ω,

the Čech complex is standard. If ǫ(ω) is a sequence of real

positive numbers, this complex is defined as the generalized

Čech complex. By representing each cell of a network by a

ball in the metric space, the Čech complex describes exactly

the coverage of networks.

In [7], the authors introduced an algorithm to construct the

Čech complex to use in computer and graphics science. This

algorithm considers only the standard Čech complex whose

parameter ǫ is a constant for every ball. So, this algorithm is

not appropriate for the wireless networks whose cells’ radii

are different.

In this paper, we introduce an algorithm which constructs

the generalized Čech complex whose parameter ǫ(ω) is dif-

ferent for each ball. This algorithm aims at representing the

coverage structure of a network by a Čech complex. Then,

one can easily analyze the coverage structure through this

Čech complex. Figure 1 gives an example of representing the

coverage of network by the generalized Čech complex.
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Fig. 1: Cells and their Čech representation.

The rest of this paper is organized as following. In section

2, we introduce the construction algorithm of the generalized

Čech complex. In the next section, the complexity of this

algorithm is computed. In the last section, some conclusions

are drawn.

II. CONSTRUCTION OF THE ČECH COMPLEX

We begin with the definition of the Čech complex:

Definition 1 (Čech complex): Given (X, d) a metric space, ω

a finite set of points in X and ǫ(ω) a sequence of real positive

numbers, a Čech complex with parameter ǫ(ω) of ω, denoted

Cǫ(ω)(ω) is the abstract simplicial complex whose k-simplices

correspond to non-empty intersection of (k+1) balls of radius

ǫ(ω) centered at the (k + 1) distinct vertices of ω.

The construction of the Čech complex is a verification if a

group of cells has a non-empty intersection. Obviously, each

0-simplex represents a cell, the set of 0-simplices, denoted

S0, is the list of cells. Each 1-simplex represents a pair of

intersected cells. The construction of 1-simplices is the search

for neighbors of each cell as in the Algorithm 1.

Algorithm 1 Construction of 1-simplices

Require: S0 {collection of cells};
1: S1 = ∅; {the set of 1-simplices}
2: N ← |S0|;
3: for i = 1→ N − 1 do

4: for j = i+ 1→ N do

5: if cell(i) intersected cell(j) then

6: add s = (i, j) to S1;

7: end if

8: end for

9: end for

10: return S1



The construction of k-simplices where k ≥ 2 is more

complex. The rest of this section is devoted to the details of the

construction of k-simplices where k ≥ 2. From the defintion

of the Čech complex, each k-simplex represents a group of

(k+1) cells which has a non-empty intersection. The number

of combinations of (k + 1) cells in all N cells is huge. We

should first find out a candidate group that has an opportunity

to be a k-simplex. Let us assume that u = {v0, v1, . . . , vk}
is a k-simplex. Then we can deduce that each pair (vi, vj),
where 0 ≤ i 6= j ≤ k, are neighbors. This suggest that

û = {v̂0, v̂1, . . . , v̂k}, where v̂1, . . . , v̂k are neighbors of v̂0,

is a candidate of the cell v̂0 to be a k-simplex. If one of

v̂1, . . . , v̂k is not neighbor of v̂0, then {v̂0, v̂1, . . . , v̂k} can’t

be a k-simplex. We now need to verify if each candidate is a k-

simplex. Let us denote xij an xji the two intersection points of

cell vi with cell vj . Let X = {xij , xji|0 ≤ i < j ≤ k} be the

set of intersection points for the candidate û. Denote v∗ is the

smallest cell in candidate cells v̂0, v̂1, . . . , v̂k. There are only

three cases possible. The first case is that the smallest cell v∗ is

inside the others. We then conclude that û = {v̂0, v̂1, . . . , v̂k}
is a k-simplex.
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Fig. 2: Smallest cell is inside the other cells.

Look at the example from Figure 2, the cell i is the smallest

cell and it is inside the others. So the four cells i, j,m, and n

compose a 3-simplex (i, j,m, n). If the first case is not

satisfied, we consider the second case that the smallest cell

v∗ is not inside others and there exists a intersection point

xij ∈ X that is inside cell vt for all 0 ≤ t ≤ k and t 6= i, j.

We then conclude that û = {v̂0, v̂1, . . . , v̂k} is a k-simplex.

i

j

m

n

i

j

m

n

Fig. 3: One of the intersection points of cell i and cell j is

inside the other cells.

In Figure 3, an intersection point of cell i and cell j is inside

other cells m and n. This point is marked as a red point in

Figure 3. So, we conclude that (i, j,m, n) is a 3-simplex. If

both first case and second case are not satisfied, we conclude

that û = {v̂0, v̂1, . . . , v̂k} is not a k-simplex. The smallest cell

v∗ is not inside others and no intersection point xij ∈ X is

inside cell vt for any 0 ≤ t ≤ k and t 6= i, j. So there must

exist i∗, j∗ and m∗ such that xi∗ and xj∗ are not inside the

cell m∗. So (i∗, j∗,m∗) isn’t a 2-simplex then it can not be

part of a k-simplex with k ≥ 2.
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Fig. 4: No intersection point of cell i and cell j is inside the

other cells.

In Figure 4, we can not find a pair of cells that one of their

intersection points is inside all the other cells. In addition,

both intersection points of cell i and cell j are not inside cell

m. So the three cells i, j and m do not compose a 2-simplex.

Then, four cells i, j,m and n do not compose a 3-simplex.

The algorithm to verify a candidate if it’s a k-simplex, where

k ≥ 2, is given here:

Algorithm 2 Verification a candidate of k-simplex

Require: û = {v̂0, v̂1, . . . , v̂k} a candidate;

1: v∗ ← the smallest cell of {v̂0, v̂1, . . . , v̂k};
2: if cell v∗ is inside cell v̂i for all v̂i 6= v∗ then

3: return true;

4: end if

5: X = ∅;
6: for i = 0→ k do

7: for j = i+ 1→ k + 1 do

8: {xij , xji} = intersection points of cells i, j;

9: add {xij , xji} into X;

10: end for

11: end for

12: if there exists xij inside cell v̂t for all t 6= j, j then

13: return true;

14: else

15: return false;

16: end if

The construction of the Čech complex can be summarized

as in the Algorithm 3:

Algorithm 3 Construction of the Čech complex

Require: S0 and S1;

1: k = 2;

2: while (1) do

3: Sk = ∅; {collection of k-simplices}
4: for each v̂0 ∈ S0 do

5: S∗ ← a set of candidate {v̂0, v̂1, . . . , v̂k} of v̂0;

6: for each û = {v̂0, v̂1, . . . , v̂k} ∈ S∗ do

7: if verification(û) = true then

8: add û into Sk;

9: end if

10: end for

11: end for

12: if Sk 6= ∅ then

13: k = k + 1;

14: else

15: break;

16: end if

17: end while

18: return sequence of Sk for all k ≥ 2;



III. COMPLEXITY

At the beginning of these algorithms, the initial Čech

complex is constructed. The construction of Čech complex is

a verification if a group of cells has a non-empty intersection.

The 0-simplices are obviously a collection of vertices. Com-

puting 1-simplices is the search for neighbors of each cell.

Its complexity is C2
N , where N is the number of cells. To

compute 2-simplices, for each cell we take two of its neighbors

and verify if this cell and the two neighbors have a non-empty

intersection. Let n be the average number of neighbors of each

cell, the complexity to compute 2-simplices for each cell is C2
n

on average. The complexity of the 2-simplices computation

for all cells is NC2
n. Similarly, to compute the k-simplices

for each cell, we take k of its neighbors and verify if this

cell and the neighbors have a non-empty intersection. The

complexity of k-simplices computation of one cell is Ck
n and

for all cells is NCk
N . The complexity to construct the initial

Čech complex is: CP(initial Čech) = C2
N + N

∑dmax

k=2 C
k
n,

where dmax is the highest dimension of the Čech complex. The

complexity to construct the Čech complex up to dimension 2

is O(N2 + Nn2). The sum
∑dmax

k=2 C
k
n can be approximated

by 2n if dmax is high enough. The complexity to construct the

Čech complex up to highest dimension is O(N2 +N2n).

IV. EXPERIMENT

We have done a demonstration experiment. We deployed the

cells following a Poisson point process with the density one

on the square 6 × 6. The cells have radius which vary from

0.5 to 1. The Figure 5 shows the cells with the corresponding

Čech complex.

In this figure, the darker color indicates the higher dimen-

sion simplex, the lighter color indicates the lower dimension

simplex. In this figure, there is one coverage hole indicated

by the white space surrounded by colored simplices.

Fig. 5: Random cells and their Čech complex.

V. CONCLUSION

In this paper, we propose an algorithm which constructs

the Čech complex specified to analyze the coverage structure

of wireless networks. The cells of this network can have

different sizes. The complexity to build this Čech complex

is polynomial.
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