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Abstract

We consider a quantum lattice system with infinite-dimensional on-site Hilbert space, very similar to the
Bose-Hubbard model. We investigate many-body localization in this model, induced by thermal fluctuations
rather than disorder in the Hamiltonian. We provide evidence that the Green-Kubo conductivity κ(β), defined
as the time-integrated current autocorrelation function, decays faster than any polynomial in the inverse
temperature β as β → 0. More precisely, we define approximations κτ (β) to κ(β) by integrating the current-
current autocorrelation function up to a large but finite time τ and we rigorously show that β−nκβ−m(β)
vanishes as β → 0, for any n,m ∈ N such that m− n is sufficiently large.
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1 Introduction

1.1 Localization and its characterization

The phenomenon of localization was introduced in the context of non-interacting electrons in random lattices in
[1]. It is now widely accepted that in such systems, a delocalization-localization (or metal-insulator) transition
occurs as the disorder strength is increased. This transition is often discussed by referring to the nature of
the one-particle wavefunctions that are exponentially localized in space in the insulator, but delocalized in the
metallic regime. The localized phase has been studied with mathematical rigor starting with [2], whereas for the
delocalized regime, this has not been successful up to now.

The natural question how interactions modify this transition has received renewed attention lately. Both
theoretical [3, 4] and numerical [5, 6] work suggests that the localization-delocalization transition persists, at
least for short range interactions. When talking about models with interaction, most authors choose a model
where the localization is manifest in the absence of interaction (whereas, in the original model of [1], it was a
highly nontrivial result). For example, a simple model from [5] is the random-field Ising chain

H =

LX

i=1

hiS
z
i + JSi · Si+1 (1.1)

where Si = (Sx
i , S

y
i , S

z
i ) are the Pauli-matrices at site i and hi are i.i.d. random variables with E(hi) = 0. We

think of many-body localization as the property that a local in space excess of energy does not spread into the
rest of the system. However, before formalizing this intuition, we give another possbile definition of many-body
localization, used e.g. by [5, 7], in the model defined by (1.1). Let Ψ label eigenfunctions of H, then ‘many-body
localization’ at infinite temperarure β = 0 (β is the inverse temperature) could be defined as the occurrence of
the inequality

lim
L!1

1

2L

X

Ψ

Eh(|hΨ, Sz
L/2Ψi|2) 6= Eh(|hSz

L/2iβ=0|2) = 0. (1.2)

where h·iβ on the right hand side refers to the thermal average and Eh(·) refers to disorder average. Of course, one
can also ask whether this inequality holds at β > 0, in which case the average over eigenfunctions 1

2L

P
Ψ on the

left-hand side should be restricted to those eigenfunctions with an energy density corresponding to the inverse
temperature β, and the right hand side does not automatically vanish. Depending on the disorder strength,
the validity of (1.2) can then depend on the temperature as well. The appeal of the inequality (1.2) is that
it violates the so-called Eigenstate Thermalization Hypothesis (ETH) which states that most eigenvectors of
the Hamiltonian define an ensemble that is equivalent to the standard (micro)-canonical ensemble; i.e. with the
notation as in (1.2), it states that, for for any δ > 0, the bound

∣∣hΨ, Sz
L/2Ψi − hSz

L/2iβ=0

∣∣  δ (1.3)

is satisfied for fraction of eigenfunctions Ψ that approaches 1 as L ! 1. Even though the ETH has not been
proven for any interesting non-integrable system (the difficulty of doing so is related to the difficulty of proving
delocalization), it has nevertheless been accepted by the theoretical physics community, starting with the works
[8, 9]. It is however important to point out that the ETH also fails for ballistic systems like the ideal crystal for
which there is surely no localization in the sense of non-spreading of energy excess.

There is at present no mathematical proof of many-body localization. Some progress was made for the (one-
particle) Anderson model on a Cayley tree in [10], which is often quoted as a toy model for many-body localization
and, recently, a proof via iterative perturbation theory for the model (1.1) was announced by [7].

As already indicated, we prefer a characterization that stresses the dynamics of energy fluctuations, and
therefore we consider the Green-Kubo formula for the heat conductivity

(β) = β2

Z 1

−1

dt lim
L!1

X

i

hjL/2(t)ji(0)iβ (1.4)

where ji(t) are local energy currents at site i. Many-body localization is then understood as the vanishing of
(β). The picture underlying such a definition is that (β) = 0 means that energy excitations do not spread
diffusively (or faster than diffusively) through the system. Let us bypass the question of the relation between
these two characterizations of many-body localization; in the few cases where there exists up to date a convincing
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argument for many-body localization, those arguments would imply (β) = 0, as well. In any case, it seems to
us that the characterization via the conductivity is clearly physically relevant.

In classical mechanics, one can consider models of the same flavour: One-particle localization occurs in a
chain of harmonic oscillators with random masses. Adding anharmoncity to this setup yields a model that is a
candidate for many-body localization, but the expectation seems to be that these models do not exhibit strict
many-body localization. However, the phenomenology can still manifest itself through the dependence of (β, g)
on the anharmonicity g. Form the works [11, 12, 13, 14], one conjectures that

lim
g!0

g−n(g, β) ! 0, for any n > 0 and β ⇠ 1. (1.5)

In other words, the conductivity has a non-perturbative origin for small g. Below, we refer to this scenario as
’asymptotic localization’.

1.2 Thermal disorder instead of static disorder

Whereas all the models hinted at above have disorder in the Hamiltonian, this paper is concerned with the question
whether one can in principle replace the disorder by thermal fluctuations, i.e. disorder due to the thermal Gibbs
state. As far as we see, this question does not have any one-particle analogue but it is natural in many-body
systems. Indeed, whereas disorder can model defects, it is also sometimes used as a model for slow degrees of
freedom that are, in principle, influenced by the rest of the system.

The fact that randomness in the strict sense of the word is not necessary for localization had up to now been
investigated by replacing the random field in the Hamiltonian by a quasi-random field, which is quite different
from what we do. In the one-particle setup, this led to the study of models like the Aubry-André model [15],
and recently it was argued [16] that also in the many-body setting, quasi-randomness suffices for many-body
localization. To explain our setup and question, we now introduce our model. We consider a variant of the
Bose-Hubbard model:

H =

LX

i=1

Nq
i + g(a⇤i ai+1 + aia

⇤
i+1), q > 2 (1.6)

where ai, a
⇤
i are annihilation/creation operators of a boson at site i and Ni = a⇤i ai. For q = 2, this model is exactly

the Bose-Hubbard model. In fact, the model we study is slightly more general than (1.6) to avoid conceptual
complications related to conserved quantities and nonequivalence of ensembles, see Section 2.2, however this is
not relevant for the discussion here. W.r.t. the thermal state at g = 0, the occupations Ni behave as i.i.d. random
variables whose distribution is given by

Prob(Ni = ⌘i) =
1

Z0(β)
e−βηq

i , withZ0(β) a normalizing constant (1.7)

We split our Hamiltonian as

H = H(0) +H(1), with H(0) =
X

x

Nq
x (1.8)

and we treat H(1) as a perturbation of H(0). Intuitively, a perturbative analysis is possible, if for a pair of
eigenstates ⌘, ⌘0 of H(0), we have the non-resonance condition

|h⌘,H(1)⌘0i| ⌧ |h⌘,H(0)⌘i − h⌘0, H(0)⌘0i| (1.9)

Since the distance between consecutive eigenvalues (level spacing) of the operator Nq
x grows roughly as Nq−1

x and
the matrix elements of H(1), locally at site x, grow as Nx (since they are quadratic in the field operators), the
condition (1.9) seems satisfied for most pairs ⌘, ⌘0 if q > 2, that is, with high probability w.r.t. the probability
measure (1.7) when β is sufficiently small. This is the basic intuition why this model should exhibit some
localization effect at high temperature1. However, because of the many-body setup, it is not straightforward
that the above claims make sense. In particular, it is certainly false that one could apply perturbation theory
directly to the eigenstates ⌘ of H(0). Indeed, since the number of eigenstates should be thought of as CL and
the range of energies has width CL, the level spacing (difference between nearest levels) vanishes fast as L ! 1.

1One should not confuse this with the situation at β = 1, where one expects a quantum phase transition between a conducting
superfluid phase and an insulating Mott phase. This has nothing to do with our results.
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Therefore, the locality of the operators is a crucial issue that should be used in making the above heuristics
precise. In practice, we do this by restricting the condition (1.9) to a small region: Instead of having resonant
and non-resonant configurations ⌘, we will now assign to any ⌘ ’resonance spots’, i.e. regions where the condition
(1.9) fails for at least one of the nearby configurations ⌘0. What exactly is a ‘nearby’ configuration, is determined
by the order of perturbation theory that we consider.

Up to now, the heuristic reasoning is in fact no different from the one that would develop for the disordered
Ising chain, except that we replaced the ’disorder distribution’ by ’distribution in the uncoupled Gibbs state’.
The difference kicks in when one realizes that the non-resonance condition is not static but it can change as the
dynamics changes the occupations ⌘. Therefore, it is not sufficient to argue that resonant spots are sparse, but
one should investigate the dynamics of these resonance spots and exclude that this dynamics induces a current.
The most intuitive part of this issue takes the form of a question in graph theory: The vertices of the graph
are the configurations ⌘ and the edges are pairs of configurations that satisfy some resonance condition. If the
connected components of this graph are small, i.e. they typically consist of a few configurations, then this hints
at localization. The main problem to be overcome in the present article is to show that, indeed, typical graphs
decompose into many small disconnected components. Our analysis is however only valid in the limit β ! 0, and
for this reason, we do not know yet, even at an heuristic level, whether our model exhibits many-body localization
in the strict sense, that is, whether the conductivitiy (β) = 0 for β < βc with βc > 0, or whether the localization
is only asymptotic as in (1.5), i.e.

lim
β!0

β−n(β) = 0, for any n > 0 (1.10)

In this paper, we give a strong indication why at least (1.10) should hold, even in higher dimensions d > 1,
see Theorem 2.1. This is done by approximating the current-current correlation function by truncation at times
that grow like an arbitrary polynomial in β−1 and proving (1.10) for these approximations.

Such a reasoning was developed earlier in [14] for disordered classical systems, and in [17], for classical systems
where the setup is analogous to the present paper, i.e. disorder is replaced by thermal fluctuations.

1.3 Outline of the paper

In Section 2, we introduce the model in precise terms and we state our results. Section 4 deals with the iterative
diagonalization of our Hamiltonian, excluding the resonant configurations (see explanation above). The sum of
all terms that were not treated by iterative diagonalization is called ’the resonant Hamiltonian’, indicated by
the symbol Z. Sections 5 and 6 contain the analysis of the resonant Hamiltoninian Z. As such, they are fully
independent of Section 4 and they form the main part of our work. In Section 7, we finally combine the results
of Section 4 with the analysis of Sections 5 and 6 to prove our results. In the appendix, we establish exponential
decay of correlations at small β for our model.

2 Model and result

2.1 Preliminaries

Let Λ ⇢ Z
d be a finite set. We define the Hilbert space

H := ⌦x2Λ`
2(N) ⇠ `2(NΛ), (2.1)

i.e. at each site there is an infinite-dimensional ’spin’-space. For an operator O acting on HΛ we denote by s(O)
(’support’ of O) the minimal set A such that O = OA ⌦ Λ\A for some OA acting on HA, and A0 the identity
on HA0 for any A0 ⇢ Λ. We do not distinguish between OA and O, and we will denote them by the same symbol.

Let a, a⇤ be the bosonic annihilation/creation operators on `2(N):

(af)(n) =
p
n+ 1f(n+ 1), (a⇤f)(n+ 1) =

p
n+ 1f(n), for n 2 N (2.2)

We write ax, a
⇤
x for the annihilation/creation operators acting on site x, and, as announced above, we do not

distinguish between ax and ax ⌦ Λ\{x}. We also define the number operators

Nx := a⇤xax (2.3)
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The vectors diagonalizing the operators Nx play a distinguished role in our analysis. For a finite set A, we define
the phase space ΩA := N

A with elements

⌘ = (⌘(x))x2A, ⌘(x) 2 N (2.4)

such that HA ⇠ `2(ΩA) and we often use ⌘ as a label for the function δη i.e. δη(⌘
0) = δη,η0 for ⌘0, ⌘ 2 ΩA.

2.2 Hamiltonian

We introduce the Hamiltonian of our model in finite volume Λ ⇢ Z
d and with free boundary conditions;

HΛ =
X

x2Λ

Nq
x + g1(ax + a⇤x)

2 +
X

x,x02Λ,x⇠x0

g2(a
⇤
xax0 + axa

⇤
x0) (2.5)

where Nx = a⇤xax, x ⇠ x0 means that x, x0 are nearest neighbours, and the exponent q > 2. The term g1(ax+a⇤x)
2

destroys the conservation of the total occupation number
P

x2Λ Nx. In the sequel, we will assume that g1, g2 ⇠ 1,
so that total energy is the only conserved quantity. Nonetheless, all our results remain valid when g1 or g2
vanish. The reason why we find it important to destroy the second conserved quantity is that similar models
with two conserved quantities typically exhibit non-equivalence of ensembles. As explained in [18], one expects
in a microcanonical ensemble equilibrium states where a macroscopic part of the particles (the total number of
particles would correspond to

P
x2Λ Nx in our model) is concentrated on a single lattice site. We want to stress

that this type of ’statistical localization’ has nothing in common with the localisation mechanism in the present
paper.

To avoid constants later on, we demand that |g1|, |g2|  1. By standard methods (e.g. Kato-Rellich), one
checks that HΛ generates a unitary group e−itHΛ and we write

O(t) = eitHΛOe−itHΛ , O 2 B(HΛ) (2.6)

In the formula above, we assumed the observables O to be bounded operators, but this will not always be the
case throughout the paper. Let DΛ := Dom(

P
x2Λ Nq

x), i.e. the domain of the unperturbed Hamiltonian. Then,
the Kato-Rellich theorem implies that DΛ = Dom(HΛ) and in particular e−itHΛDΛ = DΛ. Let now O be an
unbounded operator on HΛ for which DΛ is a core. For example, this could be any O that is a polynomial in
creation/annihilation operators with degree not bigger than 2q. Then O(t) as defined by (2.6) is also closable on
DΛ. This observation suffices to give a meaning to all time-evolved operators O(t) in the article, and to their
sums and integrals.

2.3 States

The thermal equilibrium state !β,Λ of the system at inverse temperature β and in finite volume Λ is defined as

!β,Λ(O) =
TrOe−βHΛ

Tr e−βHΛ
, O 2 B(HΛ) (2.7)

We are interested in the high-temperature regime, where the finite-volume states !β,Λ have a unique infinite-
volume limit (for, say, Λ % Z

d in the sense of Van Hove), independent of boundary conditions. Morally speaking,
this results belongs to standard knowledge, but, literally, it does not, because of the infinite one-site Hilbert
space. In principle, we deal with this issue in the appendix, but, since we in fact only need exponential decay
of correlations, uniformly in Λ, we will not explicitly address the construction of the infinite volume state. We
drop the volume Λ and inverse temperature β from the notation for the time being, writing simply !(·). It is
understood that sums over x, x0 are always restricted to the volume Λ.

2.4 Currents

We fix once and for all the vector e1 = (1, 0, . . . , 0) 2 Z
d and we study the current in this direction. First, we

decompose the Hamiltonian as

H =
X

x

Hx (2.8)
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where
Hx = Nq

x + g1(ax + a⇤x)
2 + 1

2

X

x0:x0⇠x

g2(a
⇤
xax0 + axa

⇤
x0) (2.9)

We define local current operators Jx by

Jx = i
X

x0:x0
1>x1

[Hx0 , Hx] (2.10)

Since the operators Hx act on at most 2d+1 sites, all x0 that contribute a nonzero term to the sum in (2.10) are
nearest neighbours of x. One way to convince oneself that this is a meaningful definition is to consider first the
total current through the (restriction of a) hyperplane Ha = {x 2 Λ : x1 = a} as the time-derivative of the total
energy to the left of this hyperplane, i.e.

JHa := i[H,H(L)] =
d

dt
H(L)(t)

∣∣
t=0

, with H(L) =
X

x:x1a

Hx (2.11)

Then it follows that
JHa =

X

x:x1=a

Jx (2.12)

Note that, by the time-invariance of the equilibrium state, !(O(t)) = !(O), we have

!(JHa
) = 0 (2.13)

2.5 Green-Kubo formula

To study the Green-Kubo formula, we introduce an empiric average of the local current over space and time:

Jτ =
1p
⌧ |Λ|

Z τ

0

dt
X

x

Jx(t) (2.14)

where the scaling anticipates a central limit theorem, relying on the fact that the equilibrium expectation of Jτ

vanishes:
!(Jτ ) = 0. (2.15)

This follows directly from (2.13) by using the decomposition
P

x =
P

a

P
x:x1=a. We introduce the finite-time

conductivity
τ (β) = β2 lim

Λ%Zd
!(J ⇤

τ Jτ ) (2.16)

A basic intuition in transport theory states that in systems with normal (diffusive) transport, the current-
current correlations decay in an integrable way, resulting in the convergence of the finite-time conductivity to the
conductivity  := limτ!1 τ with 0 <  < 1. At present, this has however not been proven in any interacting
Hamiltonian system. Instead, we study the behaviour of the approximants τ for arbitrarily large ⌧ (polynomial
in β−1) and we show that at all such times, the conductivity vanishes:

Theorem 2.1 (Conductivity in small β limit). There is a C > 0 such that for any 0 < n < m− C,

lim
β!0

β−nβ−m(β) = 0 (2.17)

As already explained in the introduction, we take this result as a strong indication that also

lim
β!0

β−n(β) = 0, for any n > 0 (2.18)

To make this precise, we should understand what type of processes dominate the dynamics after very long times,
i.e. superpolynomial in β−1. In [17], we argued for models of classical mechanics that in the case that the dynamics
becomes chaotic at such large times, the conjecture (2.18) is definitely true. This was done by introducing an
energy-conserving stochastic term in the dynamics of arbitrarily small strength and proving that the conductivity
(which in that case can be shown to be finite) has the same order of magnitude as the stochastic term. This is not
attempted in the present paper. On the other hand, without such a stochastic term, it remains an enormous task
to prove that the conductivity is even finite and nonzero, see for example [19] for an exposition of this problem.

An alternative way to view our results, is to compare them to Nekhoroshev estimates in classical systems.
Such estimates typically establish results very reminiscent of ours, but they are restricted to a finite number of
degrees of freedom. We refer to [17] for a more thorough discussion of this point and for relevant references.
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2.6 Splitting of the current

From a technical point of view, the key result in this paper is a splitting of the current JHa
into an oscillatory part

and a small part. To describe it, let us introduce a multi-dimensional strip (whose width is called 2r2) containing
the hyperplane Ha;

Sa,r2 = {x 2 Λ : |x1 − a| < r2} (2.19)

and we often drop the parameters by simply writing S = Sa,r2 .

Theorem 2.2 (Splitting of current). For any r > 0, and sufficiently small β, depending on r, the following holds
uniformly in the volume Λ and the choice of a: There are collections of operators (OA)A⇢Sa,r2

, (IA)A⇢Sa,r2+2
,

such that
JHa

=
X

A⇢Sa,r2

i[H,OA] +
X

A⇢Sa,r2+2

IA (2.20)

and

1. The operators OA and IA are supported in A, i.e. s(IA), s(OA) ⇢ A, and OA = IA = 0 whenever A is not
connected.

2. OA and IA have zero average: !(OA) = !(IA) = 0

3. They are bounded as

!(O⇤
AOA)  C(r)β−C+c(r)|A|, !(I⇤AIA)  C(r)β−C+cr+c(r)|A| (2.21)

Here, C, c denote constants with C < 1, c > 0 that depend only on the dimension d, and the exponent q. The
parameters C(r), c(r) can additionally depend on r.

The relevance of this theorem in establishing asymptotic energy localization is explained in more details below.

3 Overview of the method

Before embarking into the proof of our results, let us informally describe the main steps leading to them. Let us
first observe that Theorem 2.1 is readilly deduced from Theorem 2.2, as detailed in Section 7.5. Indeed, to start
with, the first sum in the right hand side of (2.20) just represents local energy oscillations; the contribution of
such an oscillation to the current (2.14) is given by

1p
⌧

Z τ

0

i[H,O](t)dt =
O(⌧)−O(0)p

⌧
! 0 as ⌧ ! 1.

Next, the terms in the second in sum in the right hand side of (2.20) possibly contribute to the conductivity, but
are very small in the Hilbert-Schmidt norm kIAkω := !(I⇤AIA)

1/2 based on the thermal state. In fact, they are
seen to decay as an arbitrary large power in β, if r is taken large enough, thanks to the presence of the term ‘cr’
in the exponent of the bound in (2.21). Fianally, the terms c(r)|A| in the exponents in (2.21) ensure that we can
perform sums over the connected sets A.

We can thus now focus on the derivation of Theorem 2.2. Let us start by explaining the origin of the oscillatory
term in (2.20). For the sake of the argument, let us consider a strongly localized solid. So we imagine that the
unitary change of basis U that diagonalizes H is written as U = e−K , where the anti-hermitian matrix K is a
sum of almost local terms (see Section 4.2 for a precise definition of what almost local means). The diagonalized
Hamiltonian ∆ then takes the form

∆ = U†HU =
X

x

∆x =
X

x

n
f1(Nx) + f2(Nx, Nx+1) + f3(Nx−1, Nx, Nx+1) + . . .

o
(3.1)

where the terms fk quickly decay to 0 as k ! 1 (we took d = 1 in this formula to simplify writings). We now
could say that H(L) defined in (2.11) was the naive left part of the total energy. We define

eH(L) = U∆(L)U † with ∆(L) =
X

x:x1a

∆x.
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But then, from (2.11), we find

JHa = i[H,H(L)] = i[H,H(L) − eH(L)] + i[H, eH(L)]. (3.2)

On the one hand, the locality properties of U allow to conclude that H(L)− eH(L) is localized near the hyperplane
Ha, so that the first term in this last equation may be identified with the first sum in the right hand side of
(2.20). On the other hand [H, eH(L)] would here vanish. In reality, we will however not be able to fully diagonalize
H, so that a “rest term”

P
A IA appears in (2.20). Technically, this step consisting in deriving Theorem 2.2

once the change of basis U and the opertaor ∆ are known, is performed in Sections 7.2-7.4. This leads to heavy
computations, as the operator ∆ that we manage to obtain is far less simple than (3.1); this issues from both
conceptual (resonances) and technical questions (high energies).

We now need to find a change of variable U that will remove as much oscillations as possible, and then analyze
the Hamiltonian in the new basis. The construction of the change of basis is performed in Section 4 (the notation
U does not appear yet in Proposition 4.3; it only shows up in Section 4.5 when we restrict our attention to
finite volumes). As already stressed in the introduction, the interaction between particles can be treated as a
perturbation at high temperature, thanks to the choice q > 2 in the Hamiltonian (1.6): resonances are only met
in some exceptional places in the solid (see figure 1). To make this a bit more transparent at this level of the
discussion, we can rewrite H given by (1.6) as

H = E0 + g̃V with E0 =
X

x

Nq
x , g̃ = β1−2/qg, V = β−1+2/q

X

x

(a⇤xax+1 + axa
⇤
x+1).

With these notations, both typical self-energy differences and terms in V are of order β−(1−1/q), so that g0 is
indeed a perturbative parameter. We will however not explicitly make use of these notations in the proofs.

x

Nx

Figure 1: Resonances in the first order in perturbation. For simplicity we assume d = 1. The interaction on
the left is typical at high temperature, and non-resonant, as the self-energy difference is much larger than the
interaction energy:

(
Nq

x + Nq
x+1

)
−
(
(Nx + 1)q + (Nx+1 − 1)q

)
>> g

p
Nx(Nx+1 − 1). The interaction on the

right is rare and resonant: the self-energy difference even vanishes in this case.

We construct U via an iterative KAM-like scheme, recently developed by Imbrie and Spencer [7] in the contex
of quenched disordered systems. Naively, the scheme works as follows. In a first step, we determine U so that
H 0 := U†HU takes the form H 0 = E0

0 + g̃2V 0, for some new self energy E0
0 = E0 + O(g̃2) and some new

perturbation V 0. For this, we write U = e−K and, assuming that K is a sum of local terms of order g̃, we expand
U†HU in powers of g̃:

U†HU = eK(E0 + g̃V )e−K = E0 +
(
g̃V + [K,E0]

)
+ O(g̃2). (3.3)

Writing V =
P

x Vx and K =
P

x Kx, we get rid of the first order in g̃ by setting

h⌘|Kx|⌘0i = g̃
h⌘|Vx|⌘0i

E0(⌘)− E0(⌘0)
) g̃V + [K,E0] = 0 (3.4)
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(h⌘|Kx|⌘0i = 0 if h⌘|Vx|⌘0i = 0 by definition). The fact that resonances are rare precisely means that for most
of the pairs of states ⌘ and ⌘0, the matrix element h⌘|Kx|⌘0i is well defined and of order g̃. Let us ignore
resonances for the moment. We would then conclude that the expansion (3.3) was justified. So, we would also
have determined a renormalized Hamiltonian H 0 with a perturbation of order g̃2. This strategy could then be

iterated, constructing a sequence of change of variables eK
(j)

, where K(j) is a sum of local terms of order g̃2
j−1

.
Doing so, we would readilly conclude that H is strongly localized in the sense of (3.1).

As an aside, let us observe that it is only possible to find K so that (3.4) holds if the pertubation V has
no diagonal element. This explains that in principle we need to renormalize the self-energy (E0

0 = E0 + O(g̃2)
as mentionned), in order to absorbe all the diagonal part of the new Hamiltonian. It is however not what we
do in practice, as we simply treat these extra diagonal elements as resonances. However, in order to investigate
possible true localization in translation-invariant models, there would be a deeper reason to take account of the
self-energy renormalization. Indeed, if this phenomenon is ignored, it is readilly seen that, for fixed β, resonances
would eventually become typical as one goes on in perturbation. Since, at higher orders, atoms may exchange
more than one quantum of energy, the interaction could now just swap the levels of any two near atoms (whereas
at the first order this was only possible if the energies were nearly the same as depicted on the right interaction
of figure 1). So all particles would be in resonance with their neighboors, allowing energy to travel into the solid.
On the other hand, such a drastic conclusion could not be reached if the renormalization of the self-energy was
taken into account. It has in fact been suggested in [?] that this effect could guarantee that resonances rarefy as
one moves to higher orders. To support this view, we indeed observe that the perturbative splitting of the levels
could and should be exploited to show localization in the one-body Anderson model when the disorder only takes
a finite numner of values, a model for which localization is clearly expected to hold.

Let us come back to the description of the scheme initiated in (3.3). It is clear that resonances, even if very
rare, cannot just be ignored as we pretended up to now. We just do as much as we can: the perturbation V
is splitted into a resonant and non-resonant term (see (4.30)), and (3.4) is only solved with V replaced by the

non-resonant part of V . While the change of variables eK
(j)

are now well defined and enjoy good decay properties,
this replacement comes with a price. A first, technical, consequence is that the speed of the iteration procedure
is much slowed down. Indeed, in this version of the scheme, we just let the resonant part as it is, so that at each
step, resonant terms of order g̃ are present in the perturbation. Though they do not create any trouble as such,
it is seen that, itarating the scheme once more, non-resonant terms are generated that would be too large for a
superexponential bound like g̃2

j−1

to survive. Instead, we can only obtain that K(j) is a sum of terms of order
g̃j (so we do not progress faster than in usual perturbation theory).

The true problem is however that, after a large but finite number of iterations, we are left with a Hamiltonian
containing still a perturbation of order g̃ (see the term G (r) in (4.31), and, later on, the resonant Hamiltonian Z
defined in (5.1)). The resonant Hamiltonian is well sparse, but not as much as needed to get our results: a look
at figure 1 shows indeed that the probability of two atoms to be resonant is at best bounded by β1/q. Before
indicating how we will get off the hook, let us stress here that the analysis of resonances reveals a fundamental
difference between quenched and thermal disorder.

To see this, let us for example consider the first order resonances in a quenched disorder spin chain, as studied
by [5] [7]. In this model, it is possible determine bonds on the lattice such that resonances can only occur on
these bonds. Moreover, if the disorder is strong enough, these potentially resonant bonds form small isolated
islands. In this case, it is then in fact possible to completely get rid of the resonant Hamiltonian at each step
of the procedure. Indeed, one can diagonalize the Hamiltonian “on the resonant islands”, meaning that we
conjugate it with a change of basis that affects only the terms in H that act inside the islands. This rotation is
non-perturbative, but does not entail any delocalization, as the resonant spots do not percolate. At the opposite,
in the translation invariant set-up, it is no longer possible to visualize resonances on the physical lattice. Instead,
we directly need to analyze a percolation problem in the full set of states (it should however be noticed that
the eigenstates of the resonant Hamiltonian could still be localized even in the presence of a giant percolation
cluster, but we are not aware of any convincing argument supporting this view). This is a rather delicate problem,
illustrated on figure 2.

We will not attend to diagonalize the resonant Hamiltonian. Instead, the total energy will be separated into
a left and right part, in a state dependent way, by a surface close to Ha that “slaloms” between the resonances
(see Section 6). We so will come into a situation described again by (3.2): the second term in the right hand side
of this equation will now be sparse enough current, while the first term still is just an oscillation.

To see how to define this surface, we need to analyze the motion of resonances (see Section 5). Let us first
restrict the Hamiltonian to a large but fixed volume V around a point on Ha (a volume that will not be sent to
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x

Nx

x

Nx

Figure 2: In translation invariant chains, resonances do travel into the system. If second neighboor hopping is
allowed (what anyway occurs in second order in perturbation), the time evolution of the state on the left under
the dynamics generated by the resonant Hamiltonian can have an overlap with the state on the right. We see
that the most right atom can enter in resonance with the other ones, though it was not initially so.

infinity). We show the following. Let us pick up a state ⌘ in V , and let us collect all the other states in V that
could have an overlap with the time evolution of ⌘ under the dynamics generated by the resonant Hamiltonian.
We show that for an overwhelming majority of states ⌘, there exists small isolated islands in V such that any of
the state that we have collected, only differ from ⌘ on these islands. The set of states for which this does not hold
is small enough to be neglected. On the one hand, we can convince ourselves of the validity of this statement by
looking at figure 1. To simplify, let us assume that resonances are first order, and only occur when two levels are
swapped as it is the case for the interaction on the right. Then on that example, it is seen that the only resonant
island is located on the sites 5,6,7, assuming that particles have been labeled from 1 to 8. On the other hand, a
look at figure 2 hints that this statement could be violated if V was sent to infinity for fixed β. Indeed, as the
volume gets larger and larger, configurations that are rare locally, eventually occur. It is thereofre concivable that
a big resonant spot starts invading the full space, connecting configurations that would have remained separted
if the perturbation was confined to the volume V .

So we have found a way to construct the surface close to Ha in the volume V , but this is not completely
satisfactory as we take the thermodynamic limit Λ ! 1 before sending β ! 0. Two issues are raised. First,
if the dimension is larger than one, we may take a volume V around each point in Ha and construct a piece of
surface in each of these volumes, but we then have to glue them together. Second, even in one dimension, where
the surface just reduces to a single point, we must analyze what extra-current is produced if the Hamiltonian is
now defined on the full space. Let us bypass here the first question, that leads to intricate constructions (see
Section 6), as the second one appears to us as more fundamental. We actually observe that the set of states for
which an extra current is produced when reintroducing the interaction at the border is extremely small. Indeed,
a non zero current could only be created if a small energy change at the border, induced by the perturbation,
could completely modify the island picture up to the center of V . However, in most cases, the configuration of
the islands is far less fragile: a very atypical configuration would be required for a single change at the border to
propagate in the bulk of V (too few atoms appear on figure 1 to see this neatly, but one can be readily become
convinced by adding a few sites). We thus see that the current is indeed very sparse.

This summarizes most of the conceptual points addressed in this article.

4 Perturbative diagonalization of H

In this section, we introduce the formalism of interaction potentials and we implement an iterative diagonalization
scheme, acting on interaction potentials.

4.1 Energy cutoff

In our analysis, we find it convenient to introduce a high-energy cutoff, even though, in principle, the main
reasoning of the paper is the more applicable, the higher the energy. Given a number M > 0 and an operator O
with finite range s(O), we set

PM (O) :=

✓
⌦

x2s(O)
χ(Nx  M)

◆
O

✓
⌦

x2s(O)
χ(Nx  M)

◆
(4.1)
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and, analogously, we define P>M (O) by replacing Nx  M by Nx > M . Note that in general, O 6= P>M (O) +
PM (O). The cutoff will be chosen, at the end of the analysis, to be M = β−(1+γc)/q, for some small γc > 0

4.2 Interaction potentials

The Hamiltonian H is strictly local, i.e. it is a sum of terms that act on at most two lattice sites. When performing
an iterative diagonalization, this will no longer be true and hence we first introduce a weaker notion of locality
by introducing interaction potentials.

Definition 4.1. An interaction potential A is a map from finite, connected sets A ⇢ Z
d to bounded operators

A (A) on HA. A Hamiltonian in finite volume V associated to a potential A is defined by

XV (A ) =
X

A connected:A⇢V

A (A) (4.2)

For simplicity, we henceforth assume that, for any interaction potential A , A (A) = 0 if A is not connected and
we omit the restriction to connected A from sums like (4.2).

In the literature, one almost always uses the notation HV (A ) but we have chosen XV (A ) to avoid confusion
with the Hamiltonian HΛ defined in (2.5). Obviously, the denomination ’Hamiltonian’ is a misnomer in case the
operators A (A) are not Hermitian. For a potential A , we define the cutoff potential

(PM (A )) (A) := PM (A (A)) (4.3)

and analogously for P>M (A ). An important example of a potential is the potential E specifying our model
Hamiltonian itself, with an energy cutoff. It is defined by

E (A) :=

(
PM (Hx) if A = {x0 2 Λ : |x0 − x|  1} for some x

0 otherwise
(4.4)

We also define the potential of the free Hamiltonian

E0({x}) = PM (Nq
x), and E0(A) = 0, whenever |A| > 1. (4.5)

so that indeed
XΛ(E ) =

X

x2Λ

PM (Hx), XΛ(E0) =
X

x2Λ

PM (Nq
x). (4.6)

Note however that other choices are possible for E ; different potentials can define the same Hamiltonian.

4.2.1 Norms

Note that interaction potentials form a linear space under the addition (A + A 0)(A) := A (A) + A 0(A). We
introduce a family of suitable norms on interaction potentials, based on the following weighted operator norms:
For an operator O on HA, we define an associated operator Ŏ on HA by

h⌘, Ŏ⌘0i := |h⌘,O⌘0i|, ⌘, ⌘0 2 ΩA (4.7)

such that, in particular, kOk  kŎk where k · k is the standard operator norm. Further, for  > 1, we set

kOkκ := sup
w2R

A
+

κ−1w(x)κ

kwN Ŏw−Nk, with wN =
Y

x2A

w(x)Nx (4.8)

For  = 1, we define simply kOk1 := kOk and we note that

kOkκ0  kOkκ, for 1  0   (4.9)

Note that these definitions are independent of A provided s(O) ⇢ A. For  > 1, the k · kκ-norm penalizes
off-diagonal elements in the number basis. The corresponding class of norms on interaction potentials is

9A 9κ1,κ2
:= sup

x2Zd

X

A:A3x


|A|
1 kA (A)kκ2

, 9A 9κ := 9A 9κ,κ (4.10)

There is no compelling reason to consider 1 = 2, but we often do so for reasons of simplicity.
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4.3 Operations on interaction potentials

Given two interaction potentials A ,B we define a new potential

[A ,B](A) :=
X

A1,A2:A1[A2=A

[A (A1),B(A2)] (4.11)

and we note that every term in the sum on the right hand side vanishes unless A1 \ A2 6= ;. In particular, if
A ,B assign zero to every non-connected set A, then so does [A ,B]. The motivation for this definition is of
course that, for any volume V

XV ([A ,B]) = [XV (A ), XV (B)] (4.12)

Often, we prefer to use the notation

adA (B) = −adB(A ) = [A ,B] (4.13)

If one imagines that iXV (A ) is an anti-Hermitian operator and hence that it generates a time evolution, then one
might ask how this time-evolution affects a potential B. To address such questions, we define (for the moment
as a formal series)

eadA (B) :=
X

n≥0

1

n!
adnA (B) (4.14)

Provided this series converges (in one of the norms 9 · 9κ), we can conclude that

XV (e
iadA (B)) = eiXV (A )XV (B)e−iXV (A ) (4.15)

In particular, for any time t, we can consider the time-evolution

Bt := eitadA (B) (4.16)

The intuition that Bt is still a bonafide interaction potential, though with range growing with t, is captured by the
so-called Lieb-Robinson bounds that have received a lot of attention lately [20]. In some sense, we rederive such
bounds in the following lemma (in particular 3)), which helps us to handle multiple commutators of potentials.
We do not require Hermiticity, but we are restricted to small potentials, corresponding to small time t in the
setup above.

Lemma 4.1. Let 1 > 0
1 ≥ 1 and , 2 ≥ 1, let A ,B be interaction potentials and let O1, O2 be bounded

operators. In all inequalities below, both sides can be infinite.

1.
kO1O2kκ  kO1kκkO2kκ (4.17)

2.
9adA (B)9κ0

1,κ2
 4(log(1/

0
1))

−1 9 A 9κ1,κ2
9B9κ1,κ2

(4.18)

3. If 4(log(1/
0
1))

−1 9 A 9κ1,κ2
< 1, then, for any bounded sequence |g(k)|  1, k 2 N

9
X

k≥0

g(k)

k!
adkA (B)9κ0

1,κ2
 1

1− 4(log(1/0
1))

−1 9 A 9κ1,κ2

9 B9κ1,κ2 (4.19)

In particular, by choosing g(k) = 1, the potential on the left hand side equals eadA (B).

Proof. Point 1) is trivial. To address points 2), 3), we introduce some more structure. Let us first define, for a
function F ≥ 0 on finite subsets of Zd, the norm on potentials

9A 9F := sup
x

X

A:A3x

F (A)kA (A)k (4.20)

The following class of functions F will be of relevance:

Fm,κ(A) := |A|−m|A|, m ≥ 0. (4.21)

We establish
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Lemma 4.2. For any m ≥ 0,

9adA (B)9Fm+1,κ
 4 9 A 9F0,κ

9B9Fm,κ
(4.22)

Proof.

9adA (B)9Fm+1,κ
 sup

x

X

A1:A13x

X

x02A1

X

A2:A23x0

Fm+1,κ(A1 [A2) (k[A (A1),B(A2)]k+ k[A (A2),B(A1)]k)

(4.23)

To deal with the first term and second term, we dominate, respectively,

Fm+1,κ(A1 [A2) F0,κ(A1)Fm,κ(A2)|A1|−1 (4.24)

Fm+1,κ(A1 [A2) Fm,κ(A1)F0,κ(A2)|A1|−1 (4.25)

and k[A (A),B(A0)]k  2kA (A)kkB(A0)k. The claim follows.

In the same spirit, we now estimate, for 1  0 < ,

9
X

k≥0

g(k)

k!
adkA (B)9F0,κ0 

X

k≥0

sup
x

X

A3x

1

k!
(
0


)|A|F0,κ(A)k(adkA (B))(A)k


X

k≥0

sup
x

X

A3x

(log(/0)|A|)−kF0,κ(A)k(adkA (B))(A)k


X

k≥0

(log(/0))−k 9 adkA (B)9Fk,κ


X

k≥0

(log(/0))−k4k 9 A 9k
F0,κ

9B9F0,κ

 (1− 4(log(/0))−1 9 A 9F0,κ)
−1 9 B9F0,κ (4.26)

where the second inequality follows from

sup
a>0

ake−a  k!, k 2 N (4.27)

and the fourth inequality follows by k applications of Lemma 4.2.
This means that we have obtained items 2), 3) for 2 = 1 because k · kF0,κ = k · kκ,1. More precisely, for 2),

take m = 0 in (4.22) and use that

9adA (B)9κ0,1  (log(/0))−1 9 adA (B)9F1,κ , for 1  0 < . (4.28)

By inspection of the above estimates we see that the reasoning applies just as well with 2 > 1, so that 2), 3) are
proven.

4.4 Perturbative diagonalization

Let us define the cut-off phase-space, for finite A ⇢ Z
d

Ω
(M)
A = {0, 1, 2, . . .M}A, with M as in Section 4.1

Slightly abusing notation, we denote its elements by ⌘, ⌘0 and we recall that they index eigenvectors of the free
Hamiltonian

P
x2A Nq

x , with eigenvalues

EA(⌘) =
X

x2A

h⌘,Nq
x⌘i =

X

x2A

⌘qx (4.29)
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Moreover, we will decompose interaction potentials in resonant and non-resonant parts. For this purpose, we fix
some small resonance threshold 0 < δ < 1 (that will be related to the cutoff M in Section 5) and we define

ResA :=
{
(⌘, ⌘0) 2 Ω

(M)
A ⇥ Ω

(M)
A : |EA(⌘)− EA(⌘

0)|  δ−1M
 
,

NResA :=
{
(⌘, ⌘0) 2 Ω

(M)
A ⇥ Ω

(M)
A : |EA(⌘)− EA(⌘

0)| > δ−1M
 
.

and the linear maps on interaction potentials

(PRes(A ))(A) :=
X

(η,η0)2ResA

PηA (A)Pη0 , PNRes(A )(A) :=
X

(η,η0)2NResA

PηA (A)Pη0 (4.30)

where Pη 2 B(HA) is the one-dimensional orthogonal projection on the space spanned by the vector ⌘, i.e., by
δη(·), see Section 2.1. The following proposition is inspired by [7]:

Proposition 4.3 (Perturbative diagonalization). For any r = 0, 1, 2, . . . and sufficiently small δ > 0, depending
on r, we find interaction potentials F (r),G (r),K (r) such that

eadK (r) . . . eadK (2) eadK (1) (E ) = E0 + F
(r) + G

(r) (4.31)

(where the left hand side is understood to be E for r = 0), and the following properties hold with

⌫ =
1

4(2d+ 3)
, e(r) = (2r − 1)/3, (4.32)

1. All potentials have the M -cutoff;

PM (F (r)) = F
(r), PM (G (r)) = G

(r), PM (K (r)) = K
(r) (4.33)

2. The F (r)-potential is small and nonresonant

9F
(r)9δ−ν  C(r)Mδe(r), PNres(F

(r)) = F
(r). (4.34)

3. The G (r)-potential is ‘not too big’ and resonant

9G
(r)9δ−ν  C(r)δe(0)M, PRes(G

(r)) = G
(r) (4.35)

4. The K (r)-potential is small;
9K

(r+1)9δ−ν  C(r)δe(r)+1 (4.36)

Before giving the proof, we slightly reformulate this theorem to put it in the form in which it will be used.
To that order, let us define two additional operations on interaction potentials: First the operation A 7! D(A )
that selects only the diagonal terms

(D(A ))(A) :=
X

η2ΩA

PηA (A)Pη (4.37)

and A 7! Rn(A ) for some n > 0, the restriction to terms of range not larger than n on the lattice and in the
number-operator basis

Rn(A )(A) := χ(|A|  n)
X

η,η02ΩA

χ(|⌘ − ⌘0|  n)PηA (A)Pη0 (4.38)

where |⌘|2 :=
P

x2A |⌘(x)|2. Now we define a new decomposition of potentials:

eadK (r) . . . eadK (2) eadK (1) (E ) =
⇣
DRr(E0 + G

(r)))
⌘
+
⇣
(1−D)Rr(G

(r)))
⌘
+
⇣
F

(r) + (1−Rr)(G
(r))

⌘

=: D
(r) + Ĝ

(r) + F̂
(r) (4.39)

This is indeed a decomposition since Rr(E0) = E0 and D(E0) = E0. Then
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Corollary 4.4.
9F̂

(r)9δ−ν/2  C(r)M(δe(0)+(νr)/2 + δe(r)), (4.40)

Proof. By Proposition 4.3 2), F (r) satisfies this estimate and we only need to check (1 − Rr)(G
(r)). We note

that, in general, for n ≥ 1,

k(1−Rn)(A )(A)kκ0  χ(|A| > n) kA (A)kκ0 + χ(|A|  n)k
X

η,η0

χ(|⌘ − ⌘0| > n)PηA (A)Pη0kκ0 , (4.41)

To analyze the last term, we introduce, for σ 2 {1,−1}A,

Oσ :=
X

η,η0

χ(|⌘ − ⌘0| > n)
( Y

x2A

χ(sgn(⌘(x)− ⌘0(x)) = σ(x))
)
PηA (A)Pη0 (4.42)

where we use the signum function sgn(a) := a/|a| for a 2 R0 and sgn(0) = 1. Note that

X

η,η0

χ(|⌘ − ⌘0| > n)PηA (A)Pη0 =
X

σ2{1,−1}A

Oσ.

The advantage of the operators Oσ is that we can explicitly perform the supremum over w 2 R
A
+ in (4.8) to

obtain, for  ≥ 0 > 1,

kOσkκ0 = k
X

η,η0

(0)|η−η0|1PηŎσPη0k (4.43)


(

max
f2RA:|f |≥n

(0/)|f |1
)
k
X

η,η0

|η−η0|1PηŎσPη0k = (0/)nkOσkκ (4.44)

where we put |g|1 :=
P

x |g(x)| for functions g 2 R
A and we recall the notation |g|2 =

P
x |g(x)|2 so that |g|  |g|1,

which we used in the last equality for g = f . Hence the last term on the right hand side of (4.41) is bounded by

2n(0/)nkA (A)kκ, for  > 0. (4.45)

because the number of σ’s is no larger than 2n. Therefore, (4.41) yields

9(1−Rn)(A )9κ0  (1 + 2n)(0/)n 9 A 9κ (4.46)

We apply this with A = G (r), n = r, and  = (0)2 = δ−ν and we use the bound of Proposition 4.3 3).

Proof of Proposition 4.3. Our proof is by induction, but of a slightly different statement than that given in the
proposition; namely we replace the norm k·kδ−ν by k·k(1+2−r)δ−ν such that at each induction step, we can reduce
the decay parameter in the norm. This is necessary in view point 3) of Lemma 4.1, i.e. the necessity of −0 > 0.
Throughout the proof, we denote the potential on the right hand side of (4.31) by H (r).

To save some writing in the formulas, we abbreviate

k · km(r) = k · k(1+2−r)δ−ν (4.47)

For r = 0, we set
G

(0) := PRes(E − E0), F
(0) := PNRes(E − E0), K

(0) := 0 (4.48)

We choose e(0) and ⌫ such that
9(E − E0)9m(0)  Cδe(0)M (4.49)

To satisfy this, note that 9(E − E0)9κ  CM2d+6, hence we need the condition

δ−ν(2d+6)  δe(0) ) ⌫(2d+ 6) + e(0) < 0 (4.50)

Then the bounds are satisfied because PNRes,PRes are contractions. This establishes the induction hypothesis
for r = 0.
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We now assume that the result holds for a given r ≥ 0 and we show it for r+1. We consider a transformation

H
(r+1) := eadK (r+1) (H (r))

such that, to lowest order in K (r+1), the nonresonant potential F (r) is eliminated.

[K (r+1),E0] = −F
(r). (4.51)

A possible choice is

h⌘,K (r+1)(A)⌘0i :=
h⌘,F (r)(A)⌘0i
EA(⌘)− EA(⌘0)

(4.52)

where the right hand side is defined to be 0 whenever EA(⌘) = EA(⌘
0). It follows2 that for any  > 0

kK (r+1)(A)kκ  δ

M
kF (r)(A)kκ (4.53)

hence in particular

9K
(r+1)9m(r) 

δ

M
9 F

(r) 9m(r) . (4.54)

Now we calculate

H
(r+1) = E0 +

X

k≥1

1

k!
adk

K (r+1)(E0) + eadK (r+1) (G (r)) +
X

k≥0

1

k!
adk

K (r+1)(F
(r))

= E0 + eadK (r+1) (G (r)) +
X

k≥0

(k + 1)

(k + 2)!
adk+1

K (r+1)(F
(r))

where we used (4.51) to get the last line. We define

G
(r+1/2) := eadK (r+1) (G (r)),

F
(r+1/2) :=

X

k≥0

(k + 1)

(k + 2)!
adk+1

K (r+1)(F
(r))

G
(r+1) := PRes

⇣
G

(r+1/2) + F
(r+1/2)

⌘

F
(r+1) := PNRes

⇣
G

(r+1/2) + F
(r+1/2)

⌘

so that indeed H (r+1) = E0 + F (r+1) + G (r+1). It remains to verify the bounds. Let us first consider F (r+1):
Note that

F
(r+1/2) =

X

k≥0

g(k)

k!
adk

K (r+1)(adK (r+1)(F (r)))

for a bounded sequence |g(k)|  1. Therefore, by Lemma 4.1 2), 3),

9PNres(F
(r+1/2))9m(r+1)  9F

(r+1/2)9m(r+1)

 (1− C(r) 9 K
(r+1)9m(r+1/2))

−1 9 adK (r+1)F
(r)9m(r+1/2)

 C(r)

1− C(r) 9 K (r+1)9m(r)

9 K
(r+1) 9m(r) 9F

(r)9m(r) (4.55)

where we also used 9 · 9κ0  9 · 9κ for 1  0  .

2Here (and only here) we exploit the fact that the weighted norm k · kκ was defined in Section 4.2.1 by replacing an operator O

by Ŏ
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Next, we estimate the contribution to F (r+1) from PNResG
(r+1/2). Proceeding as above, we get, for some

sequence |g(k)|  1,

9PNResG
(r+1/2)9m(r+1) 

X

k≥1

1

k!
9 adk

K (r+1)(G
(r))9m(r+1)


X

k≥0

g(k)

k!
9 adk

K (r+1)(adK (r+1)(G (r)))9m(r+1)

 C(r)

1− C(r) 9 K (r+1)9m(r)

9 K
(r+1) 9m(r) 9G

(r)9m(r) (4.56)

The first inequality follows because the induction hypothesis PNRes(G
(r)) = 0 allows to drop the k = 0 term. By

the induction hypothesis and (4.54), we have 9K (r+1)9m(r)  C(r)δe(r)+1 and therefore the denominators in
the above formulae are of order 1 since

1 + e(r) > 0. (4.57)

Adding the two contributions (4.55) and (4.56), we get

9 F
(r+1)9m(r+1)  C(r)

⇣
δ2e(r)+1 + δe(0)+e(r)+1

⌘

and hence the bound on F (r+1) holds because

e(r + 1)  min(2e(r) + 1, e(r) + e(0) + 1) (4.58)

The bound on the potential G (r+1) is derived in by analogous (though simpler) reasoning.

4.5 Transformations and spatial truncations

Proposition 4.3 is set in the language of transformed potentials. We investigate the question how accurately such
transformations can be restricted to small volumes.

First, if two potentials A ,K are finite in one of the 9 · 9κ1,κ2 -norms, then the equality

e−adK eadK (A ) = A (4.59)

holds (in a weaker norm). This can be checked explicitly by manipulating the defining series (4.14). Let us
abbreviate

K(A ) = K(r)(A ) := e−ad
K (1) e−ad

K (2) . . . e−ad
K (r) (A ). (4.60)

with K (j) as given in Proposition 4.3. Then, by (4.59), we can invert the operator K:

K−1(A ) = (K(r))−1(A ) = eadK (r) . . . eadK (2) eadK (1) (A ). (4.61)

By repeated application of Lemma 4.1 3) and Proposition 4.3 4), one shows that

9K(A )9κ1

2 ,κ2
 C(r) 9 A 9κ1,κ2

, 9K−1(A )9κ1

2 ,κ2
 C(r) 9 A 9κ1,κ2

. (4.62)

for 1, 2  δ−ν and δ small enough, depending on r. For a finite set D, we define

UD := eXD(K (r)) . . . eXD(K (2))eXD(K (1)) (4.63)

Note that UD is unitary since XD(K (j)) are anti-Hermitian matrices, as one checks by inspecting the definitions
of K (j) and F (j). By repeated application of (4.15) we derive

XD(K(A )) = UDXD(A )U⇤
D (4.64)

In what follows, we will interpret an operator O as a potential AO such that

AO(A) =

(
O A = AO

0 A 6= AO

(4.65)
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for some connected set AO such that s(O) ⇢ AO. If AO ⇢ D, the identity (4.64) reads

XD(K(O)) = UDOU⇤
D (4.66)

where, as announced, K(O) = K(AO) on the left hand side. From now on, we write O for AO without further
comment. To quantify the dependence on the set D in the above formula, it is helpful to define first the restriction
of a potential to some volume: Let

ID(A )(A) := χ(A \D 6= ;)A (A). (4.67)

then we have, for AO ⇢ D ⇢ V
XV (K(O)) = XV (IDcK(O)) + UDOU⇤

D (4.68)

The upcoming Lemma 4.5 provides some bounds. In what follows, we will stop keeping track of the precise value
of exponents like ⌫. We will also set 2 = 1 in the norm k · kκ1,κ2

for simplicity, because, once F̂ , Ĝ have been
defined, the parameter 2 plays no role anymore.

Lemma 4.5. Let dist(Dc, AO) > c|AO| for some c > 0, then

9IDcK(O)9δ−c0 ,1  C(r)δc
00 dist(Dc,AO)kOk (4.69)

for some c0, c00 > 0.

Proof. Trivially, for any c1 > 0
9O9δ−c1 ,1  δ−c1|AO|kOk (4.70)

and hence, by (4.62), for c1 > 0 small enough,

9K(O)9 δ−c1
2 ,1

 C(r)δ−c1|AO|kOk. (4.71)

Furthermore, if (K(O))(A) 6= 0, then AO ⇢ A and hence, if (IDcK(O))(A) 6= 0, then |A| ≥ dist(Dc, AO) + |AO|.
Therefore

9IDcK(O)9δ−c0 ,1  δc2(dist(D
c,AO)+|AO|)

X

A

δ−(c0+c2)|A|k(IDcK(O))(A)k (4.72)

 δc2(dist(D
c,AO)+|AO|) 9 K(O)9δ−(c0+c2),1 (4.73)

 C(r)δc2(dist(D
c,AO)+|AO|)δ−(1+c3)(c

0+c2)|AO|kOk. (4.74)

 C(r)δc2dist(D
c,AO)δ−((1+c3)c

0+c3c2)|AO|kOk. (4.75)

The second inequality follows from 9IDc(A )9κ1,κ2  9A 9κ1,κ2 and the third inequality follows from (4.71),

for δ small enough such that δ−(c0+c2)  (1/2)δ−(1+c3)(c
0+c2). The claim now follows from (4.75) by using

dist(Dc, AO) > c|AO| and choosing c0, c3 small enough such that

c00 := c2 − (1/c)((1 + c3)c
0 + c3c2) > 0. (4.76)

Obviously, changing the volume D far away from AO leads to small changes in UDOU⇤
D, as we show next. We

denote the symmetric difference of sets by D∆D0 := (D [D0) \ (D \D0).

Lemma 4.6. If dist(D∆D0, AO) ≥ c|AO| for some c > 0, then

kUDOU⇤
D − UD0OU⇤

D0k  C(r)δc
0 dist(D∆D0,AO)kOk. (4.77)

for some c0 > 0.
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Proof. Note that this lemma is not restricted to the case AO ⇢ (D \ D0). Let us however first treat this case.
Then (4.68), applied to both D and D0, yields for large enough V ,

UDOU⇤
D − UD0OU⇤

D0 = XV (I(D0)cK(O))−XV (IDcK(O)) =
X

A⇢V :A\(D∆D0) 6=;

&(A)⇥ (K(O))(A) (4.78)

where &(A) = ±1. The operator norm of the left-most expression is trivially bounded by

9I(D∆D0)K(O)9κ,1, for any  > 1, (4.79)

and hence the claim follows by Lemma 4.5 with (D∆D0) in the role of Dc.
Next, we consider the case where G := AO \ (D \ D0) is not empty. Note that G \ (D [ D0) = ; since
(D∆D0) \AO = ;. Set

D̃ := D [G, D̃0 := D0 [G.

and define modified potentials K̃ (j) by

K̃
(j)(A) :=

(
K (j)(A) A ⇢ (D [D0)

0 A 6⇢ (D [D0)
(4.80)

and let ŨA (for a set A) by the modified version of UA obtained by replacing K (j) by K̃ (j). Then it is clear
that

ŨD̃ = UD, ŨD̃0 = UD0 (4.81)

such that in particular
UDOU⇤

D − UD0OU⇤
D0 = ŨD̃OŨ⇤

D̃
− ŨD̃0OŨ⇤

D̃0 . (4.82)

For the second expression, the above proof still applies since AO ⇢ D̃ \ D̃0 and hence we conclude that its norm
is bounded by

C(r)δc
0 dist(D̃∆D̃0,AO)kOk (4.83)

Since however D̃∆D̃0 = D∆D0, we have obtained the claim of the lemma.

5 Analysis of the resonant Hamiltonian: Invariant subspaces

We define the resonant Hamiltonian

Z = Z(r) := XS(D
(r)) +XS(Ĝ

(r)) (5.1)

where D (r), Ĝ (r) were defined preceding Corollary 4.4. Note that the potential Ĝ (r) depends on the resonance
threshold δ that we choose as

δ = M−γ1 , for some 0 < γ1 < q − 2 (5.2)

The main point of the analysis below is to show that the non-diagonal terms in the Hamiltonian Z are sparse,
and therefore, transport induced by this Hamiltonian is small. This goal will be achieved in Proposition 6.2 and
one can consider the Sections 5 and 6 as the proof of this result.

5.1 Setup and definition

In the present section 5, our analysis will depend on a volume V ⇢ Λ that should be thought of as being much
smaller than Λ. Even though this is not necessary for most of the statements below, we will always assume that
|V |  (2r)2d, as will anyhow be done in Section 6. We mostly drop the dependence on r, for example writing

Z = Z(r), but we write C(r), c(r) for constants C(r) < 1, c(r) > 0 that can depend on r. Recall that Ω
(M)
V is the

phase space in V with a cutoff at M . In what follows we often abbreviate ΩV = Ω
(M)
V because the high-energy

cutoff is always in place.
To write the Hamiltonian Z in a more explicit way, we introduce
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Definition 5.1 (Moves). For a volume V ⇢ S and r 2 N, we set

P(V ) := {⇢ 2 Z
V : 1  |⇢|  r, |s(⇢)|  r}

where s(⇢) = {x : ⇢(x) 6= 0}. We also define the ‘dependence set’ of a move

S(⇢) :=
[

A⇢S

|A|r,s(ρ)⇢A

A (5.3)

such that, in particular, diam(S(⇢))  2r.

To recast the Hamiltonian Z in terms of ‘moves’, we first introduce the ‘move’-operators

Wρ :=
X

A⇢S

X

η2ΩS

PηĜ
(r)(A)Pη+ρ (5.4)

Remark by W: I omitted the sentence here since it was more confusing than clarifying EOR They
satisfy

1. the high-energy cutoff PM (Wρ) = Wρ

2. the locality property s(Wρ) ⇢ S(⇢) (In particular, the sum over A in (5.4) can be restricted to S(⇢)).

3. the bound kWρk  C(r)MC .

4. a resonance condition: h⌘,Wρ⌘
0i = 0 unless |ES(ρ)(⌘)− ES(ρ)(⌘

0)|  M1+γ1 .

This is easily checked relying on the locality and bounds on Ĝ (r), and (5.2). We can now recast the Hamiltonian
Z as

Z = XS(D) +XS(Ĝ ) = XS(D) +
X

ρ2P(S)

Wρ (5.5)

Moreover, we recall that D(A) = 0 unless |A|  r.
In the remaining part of this section, we will not need the strip S, nor the Hamiltonian Z. Instead, we focus

on the (joint) structure of the operators Wρ with ⇢ 2 P(V ). Whenever confusion is excluded, we drop V from our
notation.

Definition 5.2 (Partition). Let ⌘, ⌘0 2 ΩV . Define

⌘⇠
ρ
⌘0 ,

(
⌘0 − ⌘ 2 {−⇢, ⇢} and |EV (⌘)− EV (⌘

0)|  M1+γ1
)

(5.6)

and
⌘⇠ ⌘0 ,

(
⌘⇠

ρ
⌘0 for some ⇢ 2 P

)
(5.7)

Note that the relation ⇠ is an adjacency relation, hence it induces a partition of ΩV Remark by W: into

connected components EOR . We call this partition F = F (V ) and its elements are denoted by µ, µ0, . . . 2 F .
We write

P(µ) = P(V )(µ) := {⇢ 2 P | 9⌘, ⌘0 2 µ : ⌘⇠
ρ
⌘0} (5.8)

and, for A ⇢ V ,

PA(µ) = P(V )
A (µ) := {⇢ 2 P(µ) : s(⇢) ⇢ A}. (5.9)

and we also write PA(⌘) = PA(µ(⌘)) where µ(⌘) is the unique µ 2 F such that ⌘ 2 µ.

From Definition 5.2, it is immediate that

[Pµ,Wρ] = 0, with Pµ =
X

η2µ

Pη and ⇢ 2 P(V ), µ 2 F (V )

and, since D(A) is diagonal in the ⌘-basis, also [D(A), Pµ] = 0. Note also that for ⇢ 2 P(V ), Remark by W: it
is not guaranteed that s(Wρ) ⇢ V EOR because s(⇢) ⇢ V does not imply S(⇢) ⇢ V .
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5.2 Structure of the partition F
The main virtue of this construction is that the partition F is rather fine, as we state now

Proposition 5.1. Assume that 0 < γ1 < q − 2 in the resonance condition (5.2). Then, for any γ2 > 0, there is
C0(r) < 1 such that, for any r,

max
µ2F

max
η,η02µ

|⌘ − ⌘0|  C0(r)M
γ2 (5.10)

Remark by W: Recall that we have assumed |V |  (2r)2d. Therefore, there is no explicit dependence
on V in the bound on the right hand side. EOR

We define the scalar product

h⌘, ⌘0i =
X

x2V

⌘(x)⌘0(x), ⌘, ⌘0 2 N
V (5.11)

corresponding to the norm |⌘|2 =
P

x2V |⌘(x)|2. In what follows, x always ranges over V and we drop this from
the notation. Let us consider a sequence (⌘n)n≥1 ⇢ ΩV such that, for every n ≥ 1, we can write

⌘n+1 = ⌘n + ⇢n with ⇢n 2 P = P(V ), (5.12)

and, ∣∣EV

(
⌘n+1

)
− EV

(
⌘n
)∣∣  M1+γ1 . (5.13)

It is clear from the definition of the partition F that, if two configurations ⌘, ⌘0 belong to the same partitioning
set µ, then there must be a sequence as above, with ⌘1 = ⌘, ⌘l = ⌘0, for some l 2 N. We will now show in a series
of lemma’s that for any γ2 > 0 there is a C0(r) < 1 such that, for any such sequence (in particular, for any l),

∣∣⌘l − ⌘1
∣∣  C0(r)M

γ2 (5.14)

which implies the proposition.
To make the reasoning more transparent, we perform a change of variables; define ✓n 2 (R+)

V by

✓n(x) = (
⌘n(x)

M
)q−1 for x 2 V, n ≥ 1. (5.15)

Lemma 5.2. Let 0 < γ3 < min(1, (q − 2)− γ1), then, for M large enough,
∣∣h✓n, ⇢ni

∣∣  M−γ3 . (5.16)

Proof. Let us write for simplicity ⌘ = ⌘n and ⌘0 = ⌘n+1. First, by the fundamental theorem of calculus,

q
∣∣X

x

⇢(x)⌘(x)q−1
∣∣ 

∣∣q
X

x

⇢(x)⌘(x)q−1 − (EV (⌘
0)− EV (⌘))

∣∣ +
∣∣EV (⌘

0)− EV (⌘)
∣∣

 C(r)
(
1 +

X

x

⌘(x)q−2
)
+

∣∣EV (⌘
0)− EV (⌘)

∣∣

 C(r)Mq−2 + M1+γ1 . (5.17)

Dividing by Mq−1 yields the claim.

Henceforth, we assume that M is chosen large enough so that Lemma 5.2 holds.

We will now define regions Z(m) in R
|V |
+ (think: the space containing ✓n) such that for all h 2 Z(m), the

condition
∣∣hh, ⇢i

∣∣  M−γ3 is ‘nearly satisfied’ for m linearly independent ’moves’ ⇢1, . . . , ⇢m, but far from
satisfied for any move ⇢ that is not contained in Span{⇢1, . . . , ⇢m}. The construction depends on a parameter
L > 2 that will be chosen to be large enough later on. Note that in the case q = 2 the geometric picture
Remark by W: I replace ✓ with h to avoid later on some very microscopic clash between ✓ as a
general variable and ✓ = ✓k as used in the lemmas. I have no strong opinion EOR Remark by W:

I lost the remark about the case q = 2. As is stood, it did not really make sense (eg Proposition
5.1 is empty), but of course it might still be helpful. EOR

Definition 5.3. Let Z(m) ⇢ R
|V |
+ with 1  m  |V | be the set consisting of those h for which there is a linearly

independent collection {⇢1, . . . , ⇢m} ⇢ P such that
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1. |hh, ⇢ji|  Lm−1M−γ3 for j = 1, . . . ,m.

2. |hh, ⇢i| > LmM−γ3 for any ⇢ 2 P \ span{⇢1, . . . , ⇢m}

For m = 0, we let Z(0) ⇢ R
|V |
+ be the set of h such that |hh, ⇢i| > M−γ3 for any ⇢ 2 P (recall that |⇢| ≥ 1).

Note that (R+)
V = [|V |

j=0Z(j) but the regions Z(m) are in general not disjoint. In what follows we say that

h 2 Z(m) by virtue of ⇢1, . . . , ⇢m if {⇢1, . . . , ⇢m} ⇢ P is one of the linearly independent collections for which the
above conditions 1 and 2 hold.

If h 2 Z(m) by virtue of ⇢1, . . . , ⇢m, then we easily deduce from condition 1) above, that

|PSpan{ρ1,...,ρm}h|  C(⇢1, . . . , ⇢m)Lm−1M−γ3 .

with PV the orthogonal projection on the vector space V. Since |P|  C(r), we can bound C(⇢1, . . . , ⇢m)  C(r)
on the right hand side. This observation will be used in the following form: There is a C1(r) < 1 such that for
any u 2 span{⇢1, . . . , ⇢m} with |u| = 1 and h 2 Z(m) by virtue of ⇢1, . . . , ⇢m,

|hh, ui|  C1(r)L
m−1M−γ3 , (5.18)

We also introduce the closed set Gρ1,...,ρm ⇢ R
|V ‘| consisting of h such that, for all x 2 V

h(x) = ⌫(x)v(x), with ⌫(x) ≥ 0, v 2 Span{⇢1, . . . , ⇢m}. (5.19)

Lemma 5.3. Let us abbreviate (only in this lemma) R = {⇢1, . . . , ⇢m}, then

inf
h2GR,|h|=1

sup
u2SpanR,|u|=1

|hh, ui| ≥ c(R) ≥ c(r) (5.20)

Proof. Assume there is no such c(R). Since the intersection of GR with the unit sphere is compact, it follows
that there is a h 2 GR, |h| = 1 such that h ? SpanR. However, this is false because

hh, vi =
X

x

⌫(x)(v(x))2 > 0 (5.21)

where ⌫, v are related to h as in the definition of GR, in particular v 2 SpanR. Finally, c(R) ≥ c(r) follows
because the number of possible collections R is C(r).

Lemma 5.4. Let (✓n)n≥1 be the sequence defined in (5.15). We fix k, k0 2 N with k < k0 and we abbreviate
✓ = ✓k and ✓0 = ✓k0 . Assume that ✓ 2 Z(m) for some 1  m  |V | by virtue of ⇢1, . . . , ⇢m. If

|✓n − ✓|  L

2r
Lm−1M−γ3 for every n with k  n  k0, (5.22)

then
✓0 − ✓ 2 Gρ1,...,ρm

Proof. By (5.22), for every ⇢ 2 P \ span{⇢1, . . . , ⇢m},

|h✓n, ⇢i| ≥ |h✓, ⇢i| − |h✓n − ✓, ⇢i| > LmM−γ3 − |⇢|
2r

LmM−γ3 ≥ M−γ3 , (5.23)

because |⇢|  r and L ≥ 2. It follows therefore that condition (5.16) does not hold for ⇢, hence

⌘n+1 = ⌘n + ⇢n with ⇢n 2 P \ Span{⇢1, . . . , ⇢m}.

and, since this holds for any n with k  n  k0, we have

⌘0 = ⌘ + v for some v 2 span{⇢1, . . . , ⇢m}.

Since the function t 7! tq−1 is non-decreasing for t ≥ 0, this implies that for each x

(⌘0(x))q−1 = (⌘(x))q−1 + ⌫(x)v(x) for some ⌫(x) > 0

which proves the claim because ✓(x) = (⌘(x)/M)q−1, ✓0(x) = (⌘0(x)/M)q−1
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Lemma 5.5. Let ✓, ✓0 be as in Lemma 5.4 and assume that all conditions of Lemma 5.4 hold. If additionally

|✓0 − ✓| ≥ L

4r
Lm−1M−γ3 ,

then ✓0 2 Z(s) for some s < m.

Proof. The inequalities in (5.23) already show that, for L large enough,

|h✓0, ⇢i| > Lm−1M−γ3 for any ⇢ 2 P \ span{⇢1, . . . , ⇢m}. (5.24)

So to conclude, by (5.18), it is enough to find u 2 span{⇢1, . . . , ⇢m}, |u| = 1 for which (5.18) is violated (with
h = ✓0). Using (5.18) for ✓, we have

|h✓0, ui| ≥ |h✓0 − ✓, ui| − |h✓, ui| ≥ |h✓0 − ✓, ui| − C(r)Lm−1M−γ3

and hence, by choosing L large, it suffices to find u such that, for some c(r) > 0,

|h✓0 − ✓, ui| ≥ c(r) |✓0 − ✓|, (5.25)

which follows from Lemma 5.3 because ✓0 − ✓ 2 Gρ1,...,ρm . by Lemma 5.4.

We are now ready to conclude the

5.2.1 Proof of Proposition 5.1

We show that, for L sufficiently large,

|✓l − ✓1|  L|V |

2r
M−γ3 , for any l 2 N (5.26)

which implies (5.14) if we take γ2 > (q − 1)γ3 (and hence it ends the proof). Indeed, since γ3 can be taken
arbitrarily small, so can γ2.

Note first that
|✓n+1 − ✓n|  C(r). (5.27)

If ✓1 2 Z(0), then ✓j = ✓1 for every j ≥ 1, and the claim follows. Next, assume that ✓1 2 Z(m1) for some
m1 2 {1, . . . , |V |}. Set n1 := 1. Because of (5.27), there is an n2 such that the assumptions of Lemma 5.4 and
Lemma 5.5 hold with k = n1, k

0 = n2. Then Lemma 5.5 implies that ✓n2 2 Z(m2) with m2  m1 − 1 and

|✓n1 − ✓n2 |  (1/2r)Lm1−1M−γ3 .

We repeat the reasoning starting now from ✓n2
, i.e. we find a n3 > n2 such that the assumptions of Lemma’s 5.4

and 5.5 hold with k = n2, k
0 = n3. We repeat this procedure until we get ms = 0, which occurs for s  m1  |V |

Colleting all the bounds we get

|✓ns − ✓1| 
sX

j=1

|✓nj+1 − ✓nj | 
|V |X

m=1

Lm−1

2r
M−γ3  L|V |

2r
M−γ3 . (5.28)

and, since ✓n = ✓ns
for any n ≥ ns, this proves (5.26).

5.2.2 Sparseness of resonances

Whereas in the previous section we dealt with the overall structure of the partitions F defined by the resonances,
most configurations ⌘ have no resonance at all, i.e. µ(⌘) = {⌘} (as long as the volume V does not grow with M ,
of course). This captures the main intuition of our proof. It suffices to pick a single ‘move’ ⇢ since |P, the total
number of moves in V with |V | = C(r), is C(r) anyhow. Remark by W: added explanation EOR

Lemma 5.6. Fix ⇢ 2 P(S). For any γ1 satisfying 0 < γ1 < q − 2, there is a γ4 ≥ 0 such that

1

M |s(ρ)|

X

η2Ω
(M)

s(ρ)

χ(|Es(ρ)(⌘ + ⇢)− Es(ρ)(⌘)|  M1+γ1)  C(r)M−γ4|s(ρ)| (5.29)
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Note that M |s(ρ)| = |Ω(M)
s(ρ) | so this estimate indeed means that the resonance condition is satisfied only for a

small fraction of configurations. The proof of Lemma 5.6 is a straightforward calculation; by Lemma 5.2, it boils
down to showing that, for any γ3 > 0, there is a γ4 > 0 such that

Z

[0,1]s(ρ)
d✓

( Y

x2s(ρ)

✓(x)
)− q−2

q−1 χ(|h⇢, ✓i|  M−γ3)  C(r)M−γ4|s(ρ)|. (5.30)

and (5.30) follows from a Hölder inequality. The Jacobian (·)−
q−2
q−1 originates in the ⌘ ! ✓ change of variables.

5.3 Locality of the partition F
The aim of this section is to control the set of moves P(V )

A (⌘) locally in A ⇢ V , i.e. without knowing the

configuration ⌘ outside of A. As such, this is impossible because P(V )
A (⌘) is determined globally in V (Remark

by W: refer to introduction for illustration EOR ). However, we can still achieve this control if we impose
a condition on the boundary of the set A, roughly saying that no element of P(V )(⌘) is supported there. This
is the content of Lemma 5.7. Such locality statements become powerful when combined with an argument that
tells us that it is easy to find regions A such that this condition on the boundary holds.

To state a convenient boundary condition, we introduce an set P 0
A(⌘) that is bigger than P(V )

A (⌘) but easier
to control. Let

P 0
A(⌘) :=

[

η0:|η−η0|C0(r)Mγ2

{⇢ : s(⇢) ⇢ A and 9⌘00 : ⌘0 ⇠
ρ
⌘00} (5.31)

with C0(r) as in Proposition 5.1 and for some γ2 > 0 that will later, in the proof of Lemma 5.8, be chosen small
enough. Proposition 5.1 immediately yields

P(V )
A (µ) ⇢ P 0

A(⌘), for any ⌘ 2 µ, µ 2 F (V ) and any V ⊃ A with |V |  (2r)2d. (5.32)

Note that P 0
A(⌘) is defined locally, which is the reason that it will be indeed easy to control.

We introduce the boundary set
@kA := {x 2 A, dist(x,Ac)  k}. (5.33)

and we consider two volumes V, V 0 with |V |, |V 0|  (2r)2d.

Lemma 5.7. Assume A ⇢ V \ V 0. Let ⌘ 2 ΩV , ⌘
0 2 ΩV 0 be such that ⌘A = ⌘0A and

P 0
∂2rA(⌘) = ; (5.34)

Then,

P(V )
A (⌘) = P(V 0)

A (⌘0). (5.35)

Proof. From (5.34) and (5.32), we get

P(V )
∂2rA

(⌘) = ;, P(V 0)
∂2rA

(⌘0) = ;. (5.36)

Call Ã := A \ @rA, then for any ⇢ 2 P(V )
A (⌘), we have either s(⇢) ⇢ Ã or s(⇢) ⇢ Ãc. This follows because

P(V )
∂2rA

(⌘) = ; and |s(⇢)|  r.

Let ⇢ 2 P(V )
A (⌘). As already used below Proposition 5.1, this is equivalent to the existence of a sequence

⇢1, . . . , ⇢n with ⇢n = ⇢ such that

⌘j ⇠ρj ⌘j+1, for j = 1, . . . , n and ⌘j+1 = ⌘j + ⇢j , ⌘0 = ⌘ (5.37)

where moreover it holds (without further assumptions) that ⇢j 2 P(V )
A (⌘).

We observe that we can in fact always find a sequence as above such that s(⇢j) ⇢ Ã. Indeed, the validity of
the relation

⌘j ⇠ρj ⌘j+1 (5.38)
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depends on the values of ⌘j in the region s(⇢j) only, therefore the presence of a ⇢j0 , j
0 < j in the sequence with

s(⇢j0) ⇢ Ãc (which influences the configurations ⌘j in Ãc only) does not influence the validity of (5.38). Hence,

one can omit all ⇢j with s(⇢j) ⇢ Ãc and obtain a (shorter) sequence that still satisfies (5.37). We assume hence

that the sequence ⇢1, . . . , ⇢n was chosen such that s(⇢j) ⇢ Ã . For such a sequence we check that

⌘0j ⇠ρj ⌘0j+1, for j = 1, . . . , n and ⌘0j+1 = ⌘0j + ⇢j , ⌘0 = ⌘0 (5.39)

Indeed, since the validity of ⌘00 ⇠ρ1
⌘01 depends on the configurations ⌘00 in s(⇢1) ⇢ Ã only, and since ⌘0|Ã = ⌘00|Ã

(because Ã ⇢ A) and ⌘0 ⇠ρ1 ⌘1, we see that ⌘00 ⇠ρ1 ⌘01 holds and moreover ⌘1|Ã = ⌘01|Ã. We can iterate this
argument to obtain (5.39) together with ⌘j |Ã = ⌘0j |Ã for j = 1, . . . , n. Hence we have proven in particular

⇢ 2 P(V 0)
A (⌘0), hence P(V 0)

A (⌘0) ⇢ P(V 0)
A (⌘0). The opposite inclusion follows analogously.

5.4 Smallness of P(µ)

We express the idea that for most configurations ⌘, the collection of sets s(⇢), ⇢ 2 P(V )(⌘) looks like a sparse
collection of isolated islands in V . To be closer to the application that we have in mind, we however formulate this
for the collection of sets S(⇢) \ V, ⇢ 2 P(V )(⌘). Since we need to count configurations ⌘, it is useful to introduce

the counting probability measure P
(M) on Ω

(M)
V . We abbreviate P = P

(M). The following definition depends on
a constant c1 that will be chosen to be small enough in Lemma 6.1 below.

Definition 5.4 (Good partitioning sets). A µ 2 F (V ) is ’good’ if the collection of subsets of V

{S(⇢) \ V : ⇢ 2 P 0
V (⌘) for some ⌘ 2 µ} (5.40)

can be covered by c1r sets such that each of those sets has diameter r. We let F (V )
g ⇢ F (V ) be the collection of

good µ.

By Proposition 5.1, we now deduce that configurations ⌘ such that µ(⌘) is not ‘good’, have small probability.

Lemma 5.8.
P(µ 62 F (V )

g )  C(r)M−cr (5.41)

Proof. Define, analogously to P 0
A(⌘),

P 00
A(⌘) :=

[

η0:|η−η0|2C0(r)Mγ2

{⇢ : s(⇢) ⇢ A, 9⌘00 : ⌘0 ⇠
ρ
⌘00} (5.42)

Then, by Proposition 5.1, [

η02µ(η)

P 0
A(⌘

0) ⇢ P 00
A(⌘), for any A ⇢ V . (5.43)

First, note for any given ⇢ 2 P(V ),

P(⇢ 2 P 00
V (⌘))  C(2C0(r)M

γ2)|s(ρ)| P(|Es(ρ)(⌘ + ⇢)− Es(ρ)(⌘)|  M1+γ1) (5.44)

The second factor on the right hand side can be bounded by C(r)M−c|s(ρ)|, as follows from Lemma 5.6. Then,
choosing γ2 small enough, we get

P(⇢ 2 P 00
V (⌘))  C(r)M−c (5.45)

If the collection (5.40) cannot be covered by n sets with diameter r, then, for any ⌘ 2 µ, there are at least m = cn
moves ⇢1, . . . , ⇢m 2 P 00

V (⌘) with mutually disjoint supports, i.e. s(⇢i) \ s(⇢j) = ; for any ⇢i 6= ⇢j . We will now
prove that

P
(
⇢1, . . . , ⇢m 2 P 00

V (⌘)
)
=

mY

i=1

P(⇢i 2 P 00(⌘))  C(r)M−cm (5.46)

First, because of the locality of the definition of P 00
V (⌘) and the fact that P is a product measure, the events

⇢i 2 P 00
V (⌘), ⇢j 2 P 00

V (⌘), for s(⇢i) \ s(⇢j) = ; (5.47)

are P-independent. This is the equality in (5.46). The inequality follows directly from (5.45). The claim (5.41)
now follows from (5.46) by noting that
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1. for any ⌘ such that µ(⌘) 62 F (V )
g , ⇢1, . . . , ⇢m 2 P 00

V (⌘) must hold for some collection ⇢1, . . . , ⇢m with mutually
disjoint supports and m = cr.

2. the number of collections of ⇢’s with disjoint supports is C(r) since the cardinality of the set P = P(V ) is
bounded by C(r).

6 Analysis of the resonant Hamiltonian: Left-Right splitting

As announced, we split the Hamiltonian Z into a left and a right part, ZL and ZR, such that these parts have a
sparse commutator. The main result is in Proposition 6.2.

6.1 Preliminary definitions

Recall the (restricted) hyperplane Ha = {x : x1 = a} and the strip

S = Sa,r2 = {x 2 Λ, |x1 − a| < r2}. (6.1)

For convenience we gather y = (x2, x3, . . . , xd) 2 Z
d−1. Sums over y are understood to range over the set

{y : (a, y) 2 Λ}, and we define the regions (B̃y will be used only in Section 7)

By := {x : |x− (a, y)|  2r2} \ Sa,r2 .

B̃y := {x : |x− (a, y)|  (2r)2d} \ Sa,r2 (6.2)

We also abbreviate P(y) = P(By) and F (y) = F (By).
First, we define a procedure that assigns to any µ 2 F (y) a decomposition of By into a left and right region

L(µ) and R(µ):

Definition 6.1 (Left-right decomposition). Fix y and µ 2 F (y). Let K
(y)
1 ,K

(y)
2 , . . . be the connected components

of the collection
{(S(⇢) \By) : ⇢ 2 P(y)(µ)}, (6.3)

i.e.
[jK

(y)
j = [ρ2P(y)(µ)(S(⇢) \By), and j 6= j0 ) K

(y)
j \K

(y)
j0 = ; (6.4)

Then, the left, resp. right region is

L(µ) := {x 2 By : x1  a}
[

j:Kj\{x1a}6=;

K
(y)
j , R(µ) := By \ L(µ) (6.5)

Note that, if P(y)(µ) = ;, then L(µ) = {x 2 By : x1  a}, i.e. the left-right splitting is the most obvious
one. The intuition is that for ‘good’ µ, the L(µ) deviates from {x 2 By : x1  a} only in a few places, and in
particular, L(µ) can be determined locally. This is established in the following lemma. The reader might find it
helpful to consult Figure 3, even though the latter is not meant to illustrate the full generality of Lemma 6.1

Lemma 6.1. Let r be large enough and the constant c1 in Definition 5.4 small enough. Fix y, y0. Let the triple
{F0, F1, F2} form a partition of By [By0 such that

dist(F1, F2) ≥ r2/4, and By \ F2 = By0 \ F2 =: F01 (6.6)

and hence F01 = F0 [ F1 ⇢ (By \ By0). Choose µ 2 F (y), µ0 2 F (y0) such that at least one of them is good, i.e.

µ 2 F (y)
g or µ0 2 F (y0)

g and such that

⌘F01
= ⌘0F01

for some ⌘ 2 µ, ⌘0 2 µ0 (6.7)

Then,

P(y)
F1

(µ) = P(y0)
F1

(µ0) (6.8)

and
L(µ) \ F1 = L(µ0) \ F1 (6.9)
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Proof. For concreteness, let us assume that µ is good. From straightforward geometric considerations, using that
µ is good, that dist(F1, F2) ≥ r2/4 and that r is chosen large enough and c1 small enough, we can construct a
partition (F̃0, F̃1, F̃2) of By [By0 such that

1.
F̃0 ⇢ F0, F1 ⇢ F̃1, F2 ⇢ F̃2 (6.10)

2.
F̃0 \ S(⇢) = ; for any ⇢ 2 [

η2µ
P 0
By

(⌘). (6.11)

3.
dist(F̃1, F̃2) > 2r. (6.12)

We put
F̃01 := By \ F̃2 = By0 \ F̃2 (6.13)

(and hence F̃01 = F̃0[F̃1). From 1) we get F̃01 ⇢ F01 and from 3), we get @2rF̃01 ⇢ F̃0 = F̃0\By00 with y00 = y, y0.
Therefore, 2) implies

P 0
∂2rF̃01

(⌘) = ; for any ⌘ 2 µ (6.14)

Take now ⌘, ⌘0 as in (6.7), i.e. in particular ⌘F̃01
= ⌘0

F̃01
. For these ⌘, ⌘0, we can apply Lemma 5.7 with V =

By, V
0 = By0 , A = F̃01 to conclude that

P(y)

F̃01
(µ) = P(y0)

F̃01
(µ0) (6.15)

We now show (6.9). Let us consider the connected components K
(y)
j ,K

(y0)
i from Definition (6.1) for y, y0, respect-

ively. From (6.11) we get (by (5.32)) that

S(⇢) \ F̃0 = ;, for any ⇢ 2 P(y)(µ). (6.16)

Hence, F̃0 does not intersect any of the components K
(y)
j and therefore any one of them is either contained in

F̃1 or in F̃2. This need not be true for the components K
(y0)
i , but nevertheless, we can still deduce that no K

(y0)
i

can intersect both F̃1 and F̃2. Indeed, if a given K
(y0)
i would intersect F̃1 and F̃2, than, since diam(S(⇢))  2r

for any ⇢ and dist(F̃1, F̃2) > 2r, we conclude that there must be a ⇢ 2 Py0

(µ0) with S(⇢) 2 F̃01. However, this is

in contradicition with (6.15-6.16). Now we conclude by (6.15) that the connected components K
(y)
j contained in

F̃01 coincide with the connected components K
(y0)
i contained in F̃01 (and moreover, these components are in fact

contained in F̃1). This implies (6.9).

6.2 Definition of Left-right splitting

For notational reasons, we associate, in an arbitrary way, to any subset A ⇢ S with |A|  r a unique coordinate
y = y(A) 2 Z

d−1 such that
y(A) 2 proj2,...,d−1A (6.17)

where we used the coordinate projections: if x = (xI , xIc) with I a subset of {1, . . . , d}, then projIx = xI .
The definition of the left-right splitting is

ZL,y :=
X

µ2F(y)

Pµ

0
BBB@

X

A ⇢ S : y(A) = y
A ⇢ L(µ)

D(A) +
X

ρ 2 P(S) : y(s(ρ)) = y
s(ρ) ⇢ L(µ)

Wρ

1
CCCA (6.18)

ZR,y :=
X

µ2F(y)

Pµ

0
BBB@

X

A ⇢ S : y(A) = y
A 6⇢ L(µ)

D(A) +
X

ρ 2 P(S) : y(s(ρ)) = y
s(ρ) 6⇢ L(µ)

Wρ

1
CCCA (6.19)
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It immediately follows that

ZL,y + ZR,y =
X

A:y(A)=y

D(A) +
X

ρ2P(y):y(s(ρ))=y

Wρ (6.20)

Since the region By is ’broader’ than the strip S, any ⇢ 2 P(S) satisfies ⇢ 2 P(y(s(ρ))) and hence ⇢ appears exactly
once in the sum on the right hand side. Therefore, we have indeed defined a splitting of Z:

Z =
X

y2Zd−1:(a,y)2Λ

Zy, Zy := ZL,y + ZR,y (6.21)

We will now describe the good properties of this splitting. To translate the sparseness of a collection of config-
urations ⌘ into a bound on operators, we introduce the normalized trace of operators O that are restricted to
low-energy, i.e. PM (O) = O, by

tr
(M)
A (O) :=

TrA(O)

TrA( M )
, whenever s(O) ⇢ A (6.22)

where we used M = ⌦x2Aχ(Nx  M). We note that the right-hand side does not depend on the set A, provided
that s(O) ⇢ A and so we can write tr(M)(O) without ambiguity. For example, we will use the projections onto
good configurations:

P
F

(y)
g

=
X

µ2F(y)

Pµ, P̄
F

(y)
g

= − P
F

(y)
g

(6.23)

acting on HBy , then, with the normalized trace, we can restate (5.41) as

tr(M)(P̄
F

(y)
g

) = P(µ(⌘) 62 F (y))  C(r)M−cr (6.24)

We will also need the associated Hilbert-schmidt norm

kOk2tr(M) := tr(M)(O⇤O) (6.25)

FIGURE

Figure 3: Spatial structure of the sets F0, F1, F2 as used in Case C of the proof of Proposition 6.2. The shaded
area is the set F̃0 = F̃0 \By = F̃0 \By0 . The small spirals indicate the sets S(⇢) with ⇢ 2 P 0(⌘) or ⇢ 2 P 0(⌘0).

Proposition 6.2. Let ZL,y, ZR,y be as described above. If r is chosen large enough, the following properties hold:

1. The supports satisfy s(ZL,y), s(ZR,y) ⇢ By and the operators are bounded as

kZL,yk  C(r)MC , kZR,yk  C(r)MC (6.26)

2. The ’left’ and ’right’ operators commute up to a sparse term:

k[ZL,y, ZR,y0 ]ktr(M)  C(r)MC−cr (6.27)
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3. The ’left’ part does not go too far to the right: for any operator OR such that proj1(s(OR)) > a+ r2/2,

k[ZL,y, OR]ktr(M)  C(r)MC−crkORk (6.28)

Analogously, for any OL such that proj1(s(OL)) < a− r2/2,

k[ZR,y, OL]ktr(M)  C(r)MC−crkOLk (6.29)

Proof of Propostion 6.2. Let us start with some easy remarks.

a) If µ 2 F (y), µ0 2 F (y0), then [Pµ, Pµ0 ] = 0 because both projections are diagonal in the same basis. For the
same reason [Pµ,D(A)] = 0.

b) For ⇢ such that s(⇢) ⇢ By, [Pµ,Wρ] = 0 for any µ 2 F (y), by the definition of F (y), i.e. Definition 5.2.

c) If s(⇢) \ S(⇢0) = ; and s(⇢0) \ S(⇢) = ;, then [Wρ,Wρ0 ] = 0.

The bounds in 1) follow trivially from the bounds following Definition 5.1. We now prove point 2).
To estimate the commutator [ZL,y, ZR,y0 ], we first consider the term

[
X

µ2F(y)

Pµ

X

ρ 2 P(y) : y(s(ρ)) = y
s(ρ) ⇢ Ly(µ)

Wρ,
X

µ02F(y0)

Pµ0

X

ρ0 2 P(y0) : y(s(ρ0)) = y0

s(ρ0) 6⇢ Ly0 (µ0)

Wρ0 ] (6.30)

where we added primes to the variables in the second term of the commutator for clarity. We consider four cases:

Case A: y = y0

If µ 6= µ0, then (6.30) vanishes by b) above and PµPµ0 = Pµδµ,µ0 . To see that

[PµWρ, PµWρ0 ] = 0, if s(⇢) ⇢ L(µ), s(⇢0) 6⇢ L(µ) (6.31)

we use that, by the definition of the Left-Right decomposition, S(⇢) \ S(⇢0) = ; and therefore [Wρ,Wρ0 ] = 0, by
c) above.

Case B: 3r < |y − y0|  2r2 − r

We have that s(⇢) ⇢ By0 and s(⇢0) ⇢ By. Therefore, by a), b) above, all commutators involving a projection Pµ

vanish, just as in case A, and hence it suffices to consider the commutator

[Wρ,Wρ0 ] (6.32)

Because |y − y0| > 3r, this trivially vanishes by c) above.

Case C: 0 < |y − y0|  3r

By the same reasoning as in Case B, it suffices to consider the commutator (6.32). Define

F0 := {x 2 By [By0 : r2/4 < |y(x)− y + y0

2
|  r2/2}, (6.33)

F1 := {x 2 By [By0 : |y(x)− y + y0

2
|  r2/4}, (6.34)

F2 := (By [By0) \ (F0 [ F1) (6.35)

If either µ or µ0 is good, then the conditions of Lemma 6.1 are satisfied. Moreover, S(⇢), S(⇢0) ⇢ F1. If
S(⇢) \ S(⇢0) = ;, then there is nothing to prove because (6.32) vanishing trivially. If S(⇢) \ S(⇢0) 6= ;, then
Lemma 6.1 tells us that either both S(⇢), S(⇢0) are included in the ’left’ L-set, or both are not included in the
L-set. Therefore, their commutator does not appear in (6.30).
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So we conclude that the only non-vanishing contribution to (6.30) originates from pairs (µ, µ0) such that none
of them is good. We recast the sum over such pairs, for fixed ⇢, ⇢0, as

X

µ2F(y)\F
(y)
g

X

µ02F(y0)\F
(y0)
g

[PµWρ, Pµ0Wρ0 ] = [P̄
F

(y)
g

Wρ, P̄F
(y0)
g

Wρ0 ] (6.36)

with the projections P̄
F

(y)
g

as in (6.23). Then we bound

k[P̄
F

(y)
g

Wρ, P̄F
(y0)
g

Wρ0 ]ktr(M)  2kWρ0kkWρkkP̄F
(y0)
g

k tr(M)(P̄
F

(y)
g

) (6.37)

The norms on the RHS are estimated as kWρk  C(r)MC by the properties stated following Definition 5.1,
kP̄

F
(y0)
g

k  1 using that P̄
F

(y0)
g

is a projection, and the trace is bounded by C(r)M−cr, see (6.24). Finally the

sum over pairs ⇢, ⇢0 is bounded by C(r), the number of terms in the sum.

Case D: 2r2 − r  |y − y0|  2r2

In this case there is no reason for [Wρ, Pµ0 ] to be small since it can happen that s(⇢) 6⇢ By0 . Instead we recast
(6.30) as X

ρ,ρ0:y(s(ρ))=y,y(s(ρ0))=y0

[PF(y)(ρ!L)Wρ, P̄F(y0)(ρ0!L)Wρ0 ] (6.38)

with
PF(y)(ρ!L) :=

X

µ2F(y):s(ρ)⇢L(µ)

Pµ, P̄F(y)(ρ!L) := − PF(y)(ρ!L) (6.39)

Since S(⇢)\S(⇢0) = ;, (6.38) is rewritten as a sum over Wρ[PF(y)(ρ!L),Wρ0 ]+ [Wρ, PF(y0)(ρ0!R)]Wρ0 . Let us look
more generally at an expression of the form

[PF(y)(ρ!L), O], dist(s(O), s(⇢)) ≥ r2/2 (6.40)

Then we claim
[PF(y)(ρ!L), PF

(y)
g

OP
F

(y)
g

] = 0. (6.41)

To check this, we first write

P
F

(y)
g

OP
F

(y)
g

=
X

η,η0:µ(η),µ(η0)2F
(y)
g

PηOPη0 , (6.42)

and, using the formula

PF(y)(ρ!L)Pη = PηPF(y)(ρ!L) = χ
(
µ(⌘) 2 F (y) : s(⇢) ⇢ L(µ)

)
Pη, (6.43)

we note that any nonzero contribution to (6.41) has to come from pairs (⌘, ⌘0) in (6.42) such that

1. ⌘s(O)c = ⌘0s(O)c .

2. µ(⌘), µ0(⌘0) are good.

3. s(⇢) ⇢ L(µ(⌘)), s(⇢) 6⇢ L(µ(⌘0)) or vice versa (see (6.43)).

Since dist(s(O), s(⇢)) > r2/2, we can construct a partition {F0, F1, F2} as in Lemma 6.1 (applied with y0 = y)
such that S(⇢) \By ⇢ F1 and s(O) ⇢ F2. Then Lemma 6.1 implies that there are no pairs that can contribute
to the commutator in (6.41) and hence (6.41) holds. Therefore,

[PF(y)(ρ!L), O] = [PF(y)(ρ!L), P̄F
(y)
g

OP
F

(y)
g

+ P
F

(y)
g

OP̄
F

(y)
g

+ P̄
F

(y)
g

OP̄
F

(y)
g

] (6.44)

and proceeding as in (6.37), this is bounded by kOkM−cr. Plugging in O = Wρ, we obtain again the bound
C(r)M−cr.

Case E: |y − y0| > 2r2
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In this case, the commutator vanishes obviously since the two terms act on disjoint regions.

Finally, if we consider instead of the commutator (6.30), one of the terms containing D(A), then we can repeat
the above reasoning (though with many simplifications) and obtain the same result. This proves point 2).

And now to point 3): The estimates (6.28) and (6.29) are of course analogous and we consider only the
former. Again we first consider only the terms Wρ in ZL,y. Let us first assume that proj1(s(⇢)) ≥ a+ r2/8. Since
s(⇢) ⇢ L(µ), this means that the left L(µ) set extends far to the right, and hence, if c1 in Definition 5.4 is small
enough, this implies that µ cannot be good. Just as in the estimates above, non-good µ give a contribution that
is sufficiently small in k · ktr(M) (see (6.37)) and hence we can disregard them. Then, we are left with ⇢ such that
proj1(s(⇢)) < a+ r2/8. In that case [Wρ, OR] = 0 because of disjoint supports and we simply have to estimate

[PF(y)(ρ!L), OR], dist(s(⇢), s(OR)) ≥ 3r2/8 (6.45)

The same expression was considered in (6.40) in Case D above, except that there we had the distance r2/4
instead of 3r2/8. However, we easily see that the reasoning applies with 3r2/8 as well, provided that r is large
enough.

The terms originating from D(A) are treated analogously.

7 Proof of Theorems 2.2 and 2.1

The crux of the proof of Theorem 2.2 is a left-right splitting of the Hamiltonian in the strip S. This will be achieved
below following Proposition 7.1 which itself relies heavily on Proposition 6.2. This left-right decomposition will
allow us to study the local currents as sums of operators with small variance. We do this in Section 7.3. The
proof of Theorem 2.1 is then a simple consequence, and it is given in the final Section 7.5.

7.1 States and Hilbert-Schmidt norms

We recall/introduce the states

!β,Λ(O) :=
Tr e−βHΛO

Tr e−βHΛ
, !β,Λ,0(O) :=

Tr e−βH
(0)
Λ O

Tr e−βH
(0)
Λ

, O 2 B(HΛ) (7.1)

In what follows, we suppress the dependence on β,Λ since all of our estimates will be uniform in Λ and in β

whenever β is small enough, hence we simply write !(·),!0(·). We define the associated Hilbert-Schmidt norms

kOkω := !(O⇤O)1/2, kOkω0
:= !0(O

⇤O)1/2, (7.2)

completely analogous to the the norm (6.25) that was the Hilbert-Schmidt norm associated to the state tr(M)(·).
We denote the covariance of observables by

!(O1;O2) := !(O1O2)− !(O1)!(O2) = !((O1 − !(O1))(O2 − !(O2))) (7.3)

7.2 Decomposition of the Hamiltonian in a strip

First we split the Hamiltonian H = HΛ as

H = H
(L)
Sc

+H
(R)
Sc

+HS (7.4)

where
H

(L)
Sc

=
X

x:x1a−r2

Hx, H
(R)
Sc

=
X

x:x1≥a+r2

Hx (7.5)

and
HS =

X

x:a−r2<x1<a+r2

Hx (7.6)

From the technical point of view, the main step in our analysis is the splitting of the Hamiltonian HS as a
sum of three terms. It is accomplished in the next proposition, which relies crucially on Proposition 4.3 and
Proposition 6.2. Recall the regions B̃y introduced in (6.2).
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Proposition 7.1 (Splitting of Hamiltonian). Let M = β−(1+c(r))/q. For sufficiently large r 2 N, there is a
decomposition

HS =
X

x2S

(1− PM )Hx +XS(A ) +
X

y2Zd−1: (a,y)2Λ

Z̃y (7.7)

such that

1. The potentail A consists only of low-energy terms, PM (A ) = A and

9A 9Cβ−c,1  C(r)β−C+cr (7.8)

2. The operators Z̃y can be split as

Z̃y = Z̃L,y + Z̃R,y (7.9)

such that
s(Z̃L,y) ⇢ B̃y, PM (Z̃L,y) = Z̃L,y, kZ̃L,yk  C(r)β−C , (7.10)

idem for Z̃R,y, and

k[Z̃L,y, Z̃R,y0 ]kω0
 C(r)βcr−C (7.11)

Furthermore, the left/right part is supported on the left/right side of the strip S in the following sense:

k[Z̃L,y, OR]kω0
 C(r)βcr−CkORk (7.12)

k[Z̃R,y, OL]kω0
 C(r)βcr−CkOLk (7.13)

for any operators OR, OL satisfying |s(OR)|, |s(OL)|  C and

a+ (3/4)r2 < proj1(s(OR)) < a+ r2, a− (3/4)r2 > proj1(s(OL)) > a− r2 (7.14)

Proof. We recall the operator Zy = ZL,y + ZR,y as defined in (6.21) and we also use the notation Zy to denote
the potential AZy

defined by

AZy
(A) :=

(
Zy A = By for some y

0 otherwise
(7.15)

We claim that
HS =

X

x2S

(1− PM )Hx +XS

(
K(F̂ )) +

X

y

XS

(
K(Zy)

)
(7.16)

where (also below) sums over y are understood to range over the set {y 2 Z
d−1 : (a, y) 2 Λ}. By the decomposition

in (4.39) and the relation KK−1 = 1 from Section 4.5,

HS −
X

x2S

(1− PM )(Hx) = XS(E ) = XS(K(F̂ + Ĝ + D)) (7.17)

Furthermore,

XS

(
K(Ĝ + D)

)
= USXS(Ĝ + D)U⇤

S = USZU⇤
S =

X

y

USZyU
⇤
S =

X

y

XS

(
K(Zy)

)
(7.18)

The first equality is (4.64), the second is the definition of Z (see (5.1)), the third is Z =
P

y Zy (see (6.21)) and
the fourth is (4.66) with O = Zy. Hence, (7.16) follows by the equality of the first and last expression in (7.18)
combined with (7.17).

We now split, according to (4.68),

HS(K(ZL,y)) = UB̃y
ZL,yU

⇤
B̃y

+HS(IB̃c
y
K(ZL,y)) (7.19)

with IBc for a set B the restriction of potentials introduced in Section 4.5. Since dist(B̃c
y, s(ZL,y)) ≥ c|s(ZL,y)|,

we get from (4.69) that

9IB̃c
y
K(ZL,y)9Mc,1  C(r)M−cr2+C (7.20)
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This estimate was in fact the reason to choose (2r)2d as the radius of the new ball. Finally we put

A := K(F̂ ) +
X

y

IB̃c
y
K(ZL,y) +

X

y

IB̃c
y
K(ZR,y) (7.21)

and by the bounds (4.69) and (4.62), we then get the claimed bound on A . From the above, it is already clear
that we have chosen to define, with V = UB̃y

,

Z̃L,y = V ZL,yV
⇤, Z̃L,y = V ZL,yV

⇤ (7.22)

which implies by the unitarity of V ,

k[Z̃L,y, Z̃R,y0 ]ktr(M) = k[ZL,y, ZR,y0 ]ktr(M) (7.23)

We can bound this by Proposition 6.2 2) and we thus obtain the bound (7.11), but in the norm k · ktr(M) rather
than kω0 . In Lemma 7.2 below, we explain how to relate these norms.

Then, we also have to control the commutators of Z̃L,y with OR. Let us set

W := UB0
y
, with B0

y = B̃y \ {x : dist(x, s(OR))  r}. (7.24)

and calculate

[Z̃L,y, OR] = V [ZL,y, V
⇤ORV ]V ⇤

= V [ZL,y,W
⇤ORW ]V ⇤ + V [ZL,y, (V

⇤ORV −W ⇤ORW )]V ⇤ (7.25)

By Lemma 4.6, we get
kV ⇤ORV −W ⇤ORWk  C(r)M−crkORk (7.26)

By the properties of s(OR) and B0
y, the operator W ⇤ORW is supported to the right of a+ r2 − r−C, and hence

Proposition 6.2 3) gives, for large enough r,

k[ZL,y,W
⇤ORW ]ktr(M)  C(r)MC−crkW ⇤ORWk. (7.27)

Combining (7.25), (7.26) and (7.27) and using the unitarity of V,W , we get

k[Z̃L,y, OR]ktr(M)  C(r)MC−crkORk (7.28)

and analogously for [Z̃R,y, OL].
It remains to argue that the bounds on O0 in k · ktr(M) can be converted to bounds in the norm k · kω0 .

Lemma 7.2. For any operator O with PM (O) = O and M = β−(1+γc)/q, with γc > 0,

kOkω0
 (Cβ−γc/q)|s(O)|kOktr(M) , (7.29)

Proof. Since the density matrices of the state !0 and tr(M) are both product and diagonal in the same basis, this
boils down to the estimate

M(
X

η≥0

e−βηq

)−1  CMβ1/q  Cβ−γc/q. (7.30)

Hence, to get the bounds (7.11, 7.12, 7.13) from the corresponding bounds with k · ktrM and Lemma 7.2,
we have to choose the exponent γc/q such that cr − (γc/q)r

2d > c0r (for some c0 > 0 depending on c). This is
achieved by decreasing the cut-off exponent γc = γc(r) sufficiently fast as r grows.

Finally, we define a left-right decomposition of the full strip Hamiltonian

HS = H̃
(L)
S

+ H̃
(R)
S

(7.31)
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Since only the splitting of the Z̃y-terms in the Hamiltonian matters in the end, we can simply assign all other
terms to, say, the right part, and define by setting simply

H̃
(L)
S

:=
X

y2Zd−1,(a,y)2Λ

Z̃L,y, H̃
(R)
S

= HS − H̃
(L)
S

(7.32)

The tildes in this expression serve to distinguish this splitting from the ’naive’ left-right decomposition HS =

H
(L)
S

+H
(R)
S

with

H
(L)
S

:=
X

x:a−r2<x1a

Hx, H
(R)
S

:=
X

x:a<x1<r2+a

Hx (7.33)

corresponding to the ’naive’ left-right decomposition of the total Hamiltonian H = H(L) +H(R)

H(L) = H
(L)
S

+H
(L)
Sc

, H(R) = H
(R)
S

+H
(R)
Sc

(7.34)

which was already introduced in Section 2.4 to define the current.

7.3 Decomposition of the current

Our goal is to estimate
J = JH = i[H,H(L)] (7.35)

where H = H(L) + H(R) by using the left-right decomposition of the Hamiltonian constructed in Section 7.2.
Namely, we set

H̃(L) = H̃
(L)
S

+H
(L)
Sc

, H̃(R) = H̃
(R)
S

+H
(R)
Sc

(7.36)

such that
H = H̃(L) + H̃(R). (7.37)

Hence by splitting

H(L) = ÕS + H̃(L), ÕS := (H
(L)
S

− H̃
(L)
S

) (7.38)

we get

−iJ = −iJ (1) − iJ (2) := [H, ÕS] + [H, H̃(L)] (7.39)

= [H, ÕS] + [H̃(R), H̃(L)] (7.40)

= [H, ÕS] + [H
(R)
Sc

, H̃
(L)
S

] + [H̃
(R)
S

, H̃
(L)
S

] + [H̃
(R)
S

, H
(L)
Sc

] (7.41)

For future use, note that !(J) = !(J (1)) = 0 by stationarity, and therefore also !(J (2)) = 0. We recognize the
expression for J in Theorem 2.2 since the commutators on the right-hand side are sums of local operators. For
further discussion, let us make this explicit by defining

V
(R,j)
A :=

8
>>>>>>>><
>>>>>>>>:

(1− PM )(Hx) if A = {x0 : |x0 − x|  1} j = 1

A (A) j = 2

Z̃R,y if A = B̃y j = 3

PM (Hx) if A = {x0 : |x0 − x|  1} with x1 − a = r2 or r2 + 1 j = 4

(1− PM )(Hx) if A = {x0 : |x0 − x|  1} with x1 − a = r2 or r2 + 1 j = 5

for some x, y and V
(R,j)
A = 0 in all other cases. Similarly,

V
(L,j)
A :=

8
>><
>>:

Z̃L,y if A = B̃y j = 3

PM (Hx) if A = {x0 : |x0 − x|  1} with −(x1 − a) = r2 or r2 + 1 j = 4

(1− PM )(Hx) if A = {x0 : |x0 − x|  1} with −(x1 − a) = r2 or r2 + 1 j = 5
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for some x, y and V
(L,j)
A = 0 in all other cases. The assymetry between R and L in these formulas is due to the

arbitrary choice, made following (7.31), to assign all nonessential terms to the R part. Next, we set

−iĨ
(j,j0)
A,A0 := [V

(R,j)
A , V

(L,j0)
A0 ] (7.42)

such that, from the decomposition of Proposition 7.1 and the definition of J (2) above, we indeed have

J (2) =
X

A,A0:A\A0 6=;

X

j,j0=1,...,5

Ĩ
(j,j0)
A,A0 (7.43)

The tilde on Ĩ
(j,j0)
A,A0 is to distinguish it from the centered operators I

(j,j0)
A,A0 := Ĩ

(j,j0)
A,A0 − !(I

(j,j0)
A,A0 ) that will be used

later.
Next, we have to establish the desired properties of these local terms.

7.4 Classification of current operators and proof of Theorem 2.2

We classify the ‘current’ operators Ĩ
(j,j0)
A,A0 introduced above.

Lemma 7.3. For any j, j0 and A,A0, the operator Ĩ
(j,j0)
A,A0 can be written as

Ĩ
(j,j0)
A,A0 =

CX

i=1

K
(j,j0,i)
A,A0 (7.44)

where each of the operators K
(j,j0,i)
A,A0 is of the K-type introduced in Section A.1 (Appendix), such that, for any of

these operators K = K
(j,j0,i)
A,A0 , we have s(K) ⇢ A [A0 and

w(K)  C(r)β−C+cr+c(r)|A[A0|. (7.45)

with w(K) as defined in (A.7) (Appendix). Similarly, for any pair of the operators Ĩ
(j,j0)
A,A0 , Ĩ

(j00,j000)
A00,A000 (not necessarily

distinct) with (A [A0) \ (A00 [A000) 6= ;, the product

(Ĩ
(j,j0)
A,A0 )

⇤Ĩ
(j00,j000)
A00,A000 (7.46)

is a sum of C operators of the K-type satisfying s(K) ⇢ A [A0 [A00 [A000 and

w(K)  C(r)β−C+cr+c(r)|A[A0[A00[A000|. (7.47)

Before proceeding with the proof, let us try to clarify the meaning of this lemma. Let us choose one term

Ĩ = Ĩ
(j,j0)
A,A0 contributing to J (2). Then, the bounds (7.46) and (7.45) tell us that, for some operators K1, . . . ,KC

!(Ĩ⇤Ĩ) = !(K1) + . . .+ !(KC)  w(K1) + . . .+ w(KC)  C(r)β−C+cr+c(r)|A[A0| (7.48)

where the first inequality follows from Theorem A.1. Hence, Ĩ is small in the k · kω norm. This fact is of course a
crucial ingredient of the intuition that correlations of the current are small in the thermal state. Furthermore, the
lemma stresses the fact that these operators Ki are of the K-type and this takes most of the effort in the proof.
This is important because operators of K-type are the operators for which we can prove spatial decorrelation
estimates and estimate the k · kω. The philosophy of estimating kKkω in Theorem A.1 consists in essence in
relating kKkω to kKkω0

.
Then, let us give the main (quite simple intuition) why kĨkω0

= !0(Ĩ
⇤Ĩ) is small, taking for granted that this

can then be translated to the k · kω norm. Recall that Ĩ is a commutator of the form Ĩ = [V R, V L] for some
operators V R, V L. The most simple-minded bound is (by Cauchy-Schwarz)

|!0([V
R, V L])|  |!0(V

RV L)|+ |!0(V
LV R)|  2kV Rkω0

kV Lkω0
, (7.49)
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hence it suffices to show that at least one of the V -operators is small in the k · kω0 and the other not too big. Of
course, if also suffices if this is true in the k · k-norm since

kV kω0
 kV k. (7.50)

Let us now apply this to the problem at hand. The operators V L,j , V R,j are small in k·kω0 in the cases j = 1, 2, 5,
and not too big in all other cases j = 3, 4, meaning that the norm is bounded by C(r)MC . Hence any commutator
involving j = 1, 2, 5 is obviously small. That leaves the commutators [V L,3, V R,3], [V L,3, V R,4] and [V L,4, V R,3].
Those commutators cannot be controlled by the simple bound (7.49). Instead, the first of these commutators is
small by the bound (7.11) in Proposition 7.1 (This was the main result achieved in the previous sections) and the
second and third are small because of (7.12) and (7.13) in Proposition 7.1. The reason that these bounds apply
is that V R,4 is situated ‘far to the right’ and V L,4 ‘far to the left’, because they are terms of the Hamiltonian
that are situated at the boundary of the strip S.

Proof. We consider the cases for j, j0 separately and we give the proof of (7.44),(7.45) for some exemplary cases,
the others being simplifications of the former. The bounds on (7.46) are then also obtained analogously and
therefore we skip them entirely.

The case j = 3, j0 = 3. This is the most intuitive case. The bound (7.11) in Proposition 7.1 gives immediately,

with O := Ĩ
(3,3)
A,A0

kOkω0
 C(r)βcr−C , P2M (O) = O (7.51)

and hence O is of K-type, and the bound on w(K) follows since |A [A0| = C(r).

In what follows, we let hx stand for one of the following three operators ax, a
⇤
x, N

q
x .

The case j = 3, j0 = 4. Here, Ĩ
(3,4)
A,A0 is a sum of terms of the form

[ZR,y, Ex1
]⌦ Ex2

, Exi
= PM (hxi

), x1 2 A, x2 62 A0. (7.52)

Since x1 is necessarily on the left boundary of the strip Sa, the bound (7.12) in Proposition 7.1 yields

kOkω0
 C(r)β−C+cr, with O := [ZR,y, Ex1

] (7.53)

Then, O0 = O ⌦ Ex2 is of K-type. By the Cauchy-Schwarz inequality

kO1O2k2ω0
= !0(O1O2O

⇤
2O

⇤
1)  kO1kω0

kO2O
⇤
2O

⇤
1kω0

 kO1kω0
kO2k2kO1k (7.54)

applied to O1 = O0, O2 = Ex2
, we then get the desired bound on w(K), because |A [A0| = C(r).

The case j = 2, j0 = 5. Then O := V (R,2) = A2(A) satisfies PM (O) = O and V (L,5) is (a sum of) operators of
the form (1−PM )(hx) or (1−PM )(hx1

hx2
) for some x, x1, x2. Let us first do the simpler case (1−PM )(hx).

If x 62 s(O) then the commutator vanishes so we assume x 2 s(O). We split

(1− PM )(hx) = P>2M (hx) + Ex, P2M (Ex) = (Ex), kExk  MC (7.55)

Obviously, OP>2M (B) = P>2M (B)O = 0 for any B so it suffices to consider the Ex-term. We set

O0 := [O,Ex], P2M (O0) = O0, (7.56)

such that K := O0 is of K-type, and we estimate, using the information on O from Theorem 7.1 1),

kO0k  2kExkkOk  C(r)β−C+cr+c|A| (7.57)

Since kO0kω0
 kO0k and |A [A0| ≥ c|A|, the desired estimate (7.45) holds.

Next, let us consider the case (1− PM )(hx1hx2) and we again consider x1, x2 2 s(O). We can split

(1− PM )(hx1
hx2

) = (1− PM )(hx1
)(1− PM )(hx2

) (7.58)

+ (1− PM )(hx1
)PM (hx2

) (7.59)

+ PM (hx1
)(1− PM )(hx2

) (7.60)

36



and then
(1− PM )(hxi

) = P>2M (hxi
) + Exi

(7.61)

with Exi
the same properties as in (7.55). Terms with P>2M (hxi

) vanish again such that all non-vanishing terms
consist of operators invariant under P2M whose norm is estimated as in (7.57), so also in this case we get
operators of K-type with the desired estimate on w(K).

In the case where x1 2 s(O), x2 62 s(O), we define O0 := [O,Ex1 ]. We split hx2 = P>M (hx2)+(1−P>M )(hx2).
Taking the first term, we obtain the operator

O0 ⌦ P>M (hx2) (7.62)

which is of K-type, and the desired bound on w(K) follows by the bounds on O0 above. For the second term, we
now set Ex2

:= (1− P>M )(hx2
) and we have again P2M (Ex2

) = Ex2
so that we obtain terms of the type

O00 = O0 ⌦ Ex2
, P2M (O00) = O00 (7.63)

which is of K-type, and the bound on w(K) follows by kO00kω0  kO00k  kO0kkEx2k  β−C+cr+c|A| and, again
|A [A0| ≥ c|A|.
As already indicated above, the other cases follow analogously.

Analogously to Lemma 7.3, we have to check

Lemma 7.4. The operators ÕS introduced in Section 7.3 can be written as

ÕS =
X

A⇢S

ÕA, ÕA =

CX

i=1

Ki
A (7.64)

where each of the operators Ki
A is of the K-type introduced in Section A.1 (Appendix) such that, for any K = Ki

A,
we have s(K) ⇢ A and

w(K)  C(r)β−C+c(r)|s(K)| (7.65)

Similarly, for any pair of the operators ÕA, ÕA0 (not necessarily distinct) with A\A0 6= ;, the product ÕAÕ
⇤
A0 is

a sum of C operators of K-type satisfying (7.65).

This is proven using the same ideas as in Lemma 7.3, though there are much less terms to consider. Therefore,
we skip the proof.

Proof of Theorem 2.2. We put

ĨA =
X

A1,A2:A1[A2

Ĩ
(j,j0)
A1,A2

(7.66)

and from Lemma 7.3 and Theorem A.1 1), and noting that the number of terms in the above sum is bounded by
C |A|, we get that (for A \A0 6= ;)

!(ĨA)  C(r)β−C+cr+c(r)|A| (7.67)

!(Ĩ⇤AĨA0)  C(r)β−C+cr+c(r)|A[A0| (7.68)

We now put IA := ĨA − !(ĨA). Since !(J (2)) = 0, we get that

J (2) =
X

A

ĨA ) J (2) =
X

A

IA (7.69)

Moreover, (7.67), (7.68) are still valid for IA, IA0 replacing ĨA, ĨA0 . Hence we have shown that the operators IA
have all properties claimed in Theorem 2.2

Analogously, from Lemma 7.4 and Theorem A.1 1), we get (for A \A0 6= ;)

!(ÕA)  C(r)β−C+c(r)|A| (7.70)

!(Õ⇤
AÕA0)  C(r)β−C+c(r)|A[A0| (7.71)
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we put OA := ÕA − !(ÕA), then we have

[H,
X

A

ÕA] = [H,
X

A

OA] (7.72)

and the bounds (7.70), (7.71) are still valid for OA, OA0 replacing ÕA, ÕA0 .

7.5 Proof of Theorem 2.1

At this point, we reinstate the dependence on the hyperplane position a, writing J
(j)
Ha

. Let us now define

J (j)
τ =

1p
⌧ |Λ|

Z τ

0

dt
X

a

J
(j)
Ha

(t) (7.73)

and recall from (7.39) that Jτ = J (1)
τ + J (2)

τ . By Cauchy-Schwarz,

!(JτJτ )  2
X

j=1,2

!(J (j)
τ J (j)

τ ) (7.74)

And hence we can estimate j = 1, 2 separately.

7.5.1 The current J (1)
τ

For j = 1, we use, with OSa = ÕSa − !(ÕSa),

J (1)
τ =

1p
⌧ |Λ|

X

a

(OSa(t)−OSa(0)) (7.75)

and hence, by using again Cauchy-Schwarz and the invariance of ! under the dynamics,

!(J (1)
τ J (1)

τ )  4

⌧ |Λ|
X

a,a0

!(OSaOSa0 )

=
4

⌧ |Λ|
X

a,a0

!(ÕSa ; ÕSa0 )

=
4

⌧ |Λ|
X

a,a0,A,A0

!(ÕA,a; ÕA0,a0)χ(A ⇢ Sa,r2)χ(A
0 ⇢ Sa0,r2). (7.76)

Using Theorem A.1 2), Lemma 7.4, and particular the fact that all our estimates are uniform in the hyperplane
position a, we see that !(ÕA,a; ÕA0,a0) decays exponentially in dist(A,A0). and we bound (7.76) by β−C/⌧ .

7.5.2 The current J (2)
τ

For j = 2, we proceed somewhat differently; by Cauchy-Schwarz,

!(J (2)
τ J (2)

τ ) =
1

|Λ|
X

a,a0

Z τ

0

dt

Z τ

0

dt0!(J
(2)
Ha

(t)J
(2)
Ha0

(t0))  ⌧

|Λ|
X

a,a0

!(J
(2)
Ha

(t)J
(2)
Ha0

(t)) (7.77)

By time-translation invariance we can drop t in the argument. Since !(J
(2)
Ha

) = 0, the last expression equals a
connected correlation function

⌧

|Λ|
X

a,a0

!(J
(2)
Ha

; J
(2)
Ha0

) =
⌧

|Λ|
X

a,a0

X

A,A0

!(ĨA,a; ĨA0,a0)χ(A ⇢ Sa,r2+2)χ(A
0 ⇢ Sa0,r2+2) (7.78)

Using Theorem A.1 2), Lemmas 7.3, and particular the fact that all our estimates are uniform in the hyperplace
position a, we see that !(ĨA,a; ĨA0,a0) decays exponentially in dist(A,A0), and in particular, we bound (7.77) by

⌧β−C+cr (7.79)
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7.5.3 Bound on τ (β)

Combining the conclusions from Sections 7.5.1 and 7.5.2

τ (β) = β2!(JτJτ )  2β2
X

j=1,2

!(J (j)
τ J (j)

τ )  β−C

⌧
+ ⌧β−C+cr (7.80)

Taking now ⌧ = β−m, we get Theorem 2.1.

A Appendix: Decay of correlations

In this section, we prove some clustering properties of the high-temperature states in our model. Recall the states
!β,Λ(·) and !β,Λ,0(·) defined in (7.1). In what follows, we again suppress the dependence on β,Λ since all of our
estimates will be uniform in Λ and in β whenever β is small enough, hence we simply write !(·),!0(·).

A.1 Result

Recall the projection operators PM and P>M acting on potentials and operators. Throughout this section, we
set

M = β−(1+γc)/q, for some 0 < γc < q/(q − 1)− 1 (A.1)

We specify two classes of observables. The first class consists of low-energy operators O, satisfying

O = P2M (O), and |s(O)| < 1 (A.2)

The second class of observables is defined starting from monomials Y in creation/annihilation operators

Y = a]xm
. . . a]x2

a]x1
, (A.3)

for some x1, x2, . . . , xm 2 Z
d, m 2 N and a]x either a⇤x or ax. Moreover, we assume the polynomial to be

normal-ordered, i.e. all ax appear to the right of a⇤x. We let deg(Y ) := m, i.e. the degree of Y and, for any
x 2 s(Y ) = {x1, . . . , xm}, we define degx(Y ) as the number of j 2 {1, . . . ,m} such that xj = x. Then

X

x2s(Y )

degx(Y ) = deg(Y ). (A.4)

Given a low-energy observable O and a monomial Y as above, with s(O) \ s(Y ) = ;, we consider

K = O ⌦ P>M (Y ) (A.5)

allowing that O = or Y = , corresponding to s(O) = ; and deg(Y ) = 0. We will refer to operators of the
form (A.5) ’observables of K-type’. This class of operators is chosen so that it matches our needs as closely as
possible, but it is of course in no sense the minimal one for which a result like the upcoming theorem can be
proven.

Theorem A.1 (Correlation decay at high temperature). Assume that q > 1 and fix a parameter ↵ such that
0 < 2↵ < 1− 1/q. Let us abbreviate, for monomials Y as above,

v(Y ) := β−deg(Y )/2 (e−β−γc/2

)|s(Y )|
Y

x2s(Y )

degx(Y )! (A.6)

provided that Y 6= and v(Y ) = 1 if Y = . There is a βc > 0 such that for β < βc, the following hold, for all
observables K,K 0 of K-type with O, Y as in (A.5),

1)
|!(K)|  C |s(O)|+deg(Y )kOk!0

v(Y ) =: w(K) (A.7)

2)

|!(K;K 0)|  w(K)w(K 0)
X

x2s(K),x02s(K0)

β↵|x−x0|, for s(K) \ s(K 0) = ; (A.8)
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The constant C in (A.7) depends only on ↵, γc, the exponent q and the spatial dimension d.

From the estimate in (A.8) and inspecting the range of values for ↵, we could guess the behaviour of the
correlation length as a function of q,β

⇠corr. /
q

(q − 1)
| lnβ|−1, for small β. (A.9)

We see that ⇠corr. diverges as q ! 1. This is consistent with the fact that for q = 1, the system is harmonic and
the correlation length is seen to be independent of β. In contrast, as the above formula shows, for q > 1, our
upper bound for the correlation length decreases with decreasing β.

There is an extensive literature on exponential decay of correlations at high temperature, i.e. results like
Theorem A.1. However, we did not find any existing result that fits our needs. This is due to 1) the fact that our
one-site space is unbounded and 2) the necessity to have bounds in terms of the Hilbert-Schmidt norm (or some
other norm that can capture the sparseness) of the observables, as we have on the right hand side of the inequality
(A.7) and hence the right hand side of (A.8). The work [21] addresses the first point, in that it treats unbounded
spin systems, and [22] gets close to addressing the second point, but we have not found any combination of these
results. In classical spin systems, the approach to decay of correlations via the logarithmic Sobolev inequality or
Poincare inequality provides just the type of bounds we need, see e.g. [23], but, as far as we know, this approach
has not been fully adapted to the quantum case yet.

Therefore, we set up a cluster expansion to prove Theorem A.1, following to some extent [24]. This is organized
as follows. In Section A.2, we give the general setup which is not specific to our model and which contains some
basic results and philosophy from cluster expanions. In Section A.3, we prove bounds on so-called polymer
weights needed to carry through the cluster expansion. It is this part where we deal with the unboundedness
of the on-site Hilbert space, and, more generally, where we need the observables to be of K-type. In the short
Section A.3.1, we combine the bounds of Section A.3 with the machinery of Section A.2 to give the proof of
Theorem A.1. We should stress that the material in Sections A.2 and A.3.1 is completely standard, therefore we
present proofs in those sections in a compact way.

A.2 Polymer representations and cluster expansion

To decompose the Hamiltonian, we will use ’plaquettes’ B. Each plaquette is defined to consist of a finite set
s(B) ⇢ Z

d and, for each x 2 s(B), a pair of variables (σx,+,σx,−) 2 N⇥ N. To such a plaquette B, we associate
the operator

VB =
Y

x2s(B)

(a⇤x)
σx,+(ax)

σx,− (A.10)

Moreover, we restrict ourselves to the case where, s(B) = {x} or s(B) = {x, x0} for some x, x0 with |x− x0| = 1,
and X

x2s(B)

(σx,+ + σx,−)  2.

If needed, we indicate that σx,± are associated to a plaquette by writing σx,±(B).
Then, our Hamiltonian can be written as

HΛ = H
(0)
Λ +

X

B:s(B)⇢Λ

g(B)VB (A.11)

where the sum is over plaquettes B, and g(B) is a coupling constant satisfying |g(B)|  1. We consider finite
collections Γ of pairs (B, ⌧) with ⌧ 2 [0,β] and we write them as ordered sequences

Γ = ((B1, ⌧1), . . . , (Bn, ⌧n)), with n = |Γ| (A.12)

such that (⌧1, . . . , ⌧n) is in the simplex

∆n(β) = {0  ⌧1  ⌧2 . . .  ⌧n  β} (A.13)

The ambiguity in (A.12) that occurs when ⌧j = ⌧j+1 will be irrelevant as we will mostly integrate ⌧1, . . . , ⌧n with
the Lesbegue measure. For convenience, we also define the collection of plaquettes appearing in (A.12);

B(Γ) := {Bj : j = 1, . . . , n}, (A.14)
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and nB the multiplicity with which a plaquette B appears, such that
X

B2B(Γ)

nB = n (A.15)

A.2.1 Polymer representation of the partition function

For a sequence Γ as in (A.12), we set, for Γ 6= ;,

R(Γ) := VBn(⌧n) . . . VB2(⌧2)VB1(⌧1), with VB(⌧) = eτH
(0)
Λ VBe

−τH
(0)
Λ (A.16)

and R(;) := . Then we can represent the partition function

ZΛ = ZΛ(β) = Tr e−βHΛ (A.17)

as a series;
ZΛ

ZΛ,0
=

Z
dΓ!0(R(Γ)), (A.18)

where we used the shorthand Z
dΓ . . . =

X

n≥0

X

B1,...,Bn

s(Bj)⇢Λ

Z

∆n(β)

d⌧1 . . . d⌧n . . . (A.19)

and it is understood that for n = 0, the sums/integrals are absent. For example, the right hand side of (A.18)
starts with the term !0(R(;)) = !0( ) = 1. Formally, the identity (A.18) follows readily by the Duhamel
expansion. To establish this rigorously, one first checks that the series on the right hand side is absolutely
convergent, uniformly for g(B) 2 {z 2 C : |z|  1}. This is not explicitly proven here but one can easily deduce
it from the bounds derived in Section A.3. Therefore, the right hand side of (A.18) is the Taylor series of an
analytic function in g(B). By explicit calculation, one checks that it coincides with the Taylor series of the left
hand side.

For two finite sets S, S0 ⇢ Z
d, we define the adjacency relation

S ⇠ S0 , S \ S0 6= ; (A.20)

and we call a collection S of sets S connected if the collection is connected by the adjacency relation ⇠. A
connected collection will below also be called a cluster. We say that Γ is connected iff. the collection S(Γ) :=
{s(B) : B 2 B(Γ)} is connected. If Γ is not connected, then we can decompose S(Γ) in a unique way into
maximally connected components, and this induces a decomposition Γ1, . . . ,Γm, such that

Γ = Γ1 [ . . . [ Γm, (A.21)

We then obtain the factorization

!0(R(Γ)) =

mY

j=1

!0(R(Γj)) (A.22)

because !0 is a product state, i.e. !0(O1O2) = !0(O1)!0(O2) whenever s(O1)\s(O2) = ;. It is now advantageous
to reorganize the expansion (A.18) by collecting the contributions of connected Γ corresponding to the same
domain s(Γ) := [B2B(Γ)s(B).

To that end, we define, for a finite, nonempty S,

%(S) :=

Z

s(Γ)=S
Γ connected

dΓ!0(R(Γ)) (A.23)

Let us denote by BΛ the set of all finite collections S of sets S ⇢ Λ and we call such a collection S 2 BΛ admissible
iff., for any two different S, S0 2 S, S ⌧ S0. Then our polymer representation for the partition function reads

ZΛ

ZΛ,0
=

X

S2BΛ
S admissible

Y

S2S

%(S) (A.24)

where the term with S = ; is defined to be 1. To check (A.24), one relies on (A.22) and a similar factorization
property for the sums/integrals abbreviated by

R
dΓ.
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A.2.2 Abstract cluster expansion

In this section, it is convenient to take an abstract point of view. Consider complex weights $(S) 2 C for finite
sets S ⇢ Z

d. Define
ΥΛ :=

X

S2BΛ
S admissible

Y

S2S

$(S) (A.25)

For a collection S, we introduce ‘truncated weights’

$T (S) =
X

G2Gc(S)

(−1)|E (G )|
Y

{S,S0}2E (G )

1[S⇠S0]

Y

S002S

$(S00) (A.26)

where the sum runs over Gc(S), the set of connected graphs with vertex set S, E (G ) is the edge set of the graph
G (there are no self-edges), and the first product runs over the edge set E (G ). Note that if S is not a cluster,
then $T (S) = 0.

Next, we state the basic result of cluster expansions, cfr. (eq. 4) in [25].

Theorem A.2. Assume there is a > 0 such that, for any x,
X

S⇢Λ:S⇠{x}

ea|S||$(S)|  a. (A.27)

Then ΥΛ 6= 0,

logΥΛ =
X

S2BΛ

$T (S), (A.28)

and, for any x, X

S2BΛ:S⇠{x}

∣∣$T (S)
∣∣  a (A.29)

where the condition S ⇠ S0 means that there is a S 2 S such that S ⇠ S0.

In what follows, we use the notation %T (·), defined from weights %(·), as in the abstract case above.

A.2.3 Expansion for observables and correlations

We have already defined the notion of connectedness for sequences Γ as connectedness for the collection S(Γ).
Given a nonempty set A, we say that Γ is A-connected if the collection S(Γ) [j {Aj} is connected, with Aj the
connected components of A.

Consider an operator K with |s(K)| < 1. For a finite set S ⇢ s(K)c, we define formally (because we do not
address here the convergence of the series on the right hand side)

%K(S) :=

Z

Γ s(K)-connected
s(Γ)\s(K)c=S

dΓ!0(R(Γ)K) (A.30)

The contribution to the right hand side from Γ = ; is !0(K) whenever s(K) is connected, and 0 whenever s(K)
is not connected. Note that for S = ;, the constraint in (A.30) reads simply s(Γ) ⇢ s(K) whenever s(K) is
connected, and then %K(;) does in general not vanish, whereas %K(;) = 0 whenever s(K) is not connected. Note
also that, if %K(S) 6= 0 and S 6= ;, then S has distance 1 to any of the connected components of s(K). Let us for
the time being, until the end of Section A.2.3, assume that s(K), s(K 0) are connected. By mimicking the steps
leading to (A.24), we then obtain the following polymer representation for !(K)

!(K) =
Z0

Z

X

S0⇢Λ

%K(S0)
X

S2BΛ\(S0[s(K))

S admissible

Y

S2S

%(S) (A.31)

=
Z0

Z

X

S0⇢Λ

%K(S0)
X

S2BΛ
S admissible

Y

S2S

%(S)χ(S ⌧ (S0 [ s(K))) (A.32)
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Let us now assume that the criterion (A.27) of Theorem A.2 is satisfied for some a, then we can apply Theorem
A.2 both to the quotient of partition functions in (A.24) and to each term in the S0-sum in (A.32) to obtain

log
Z

Z0
=

X

S2BΛ

%T (S) (A.33)

log
X

S2BΛ
S admissible

Y

S2S

%(S)χ(S ⌧ (S0 [ s(K))) =
X

S2BΛ

χ[S ⌧ (S0 [ s(K))]%T (S) (A.34)

Therefore, we can write.

!(K) =
X

S0

%K(S0) e
−

P

S2BΛ

%T (S)

e

P

S2BΛ

χ[S⌧(S0[s(K))]%T (S)

=
X

S

%K(S) e−f(S[s(K)) (A.35)

where it is understood (also below) that S, S0 range over subsets of Λ and we used the shorthand (up to now
only with m = 1)

f(A1, A2, . . . , Am) :=
X

S2BΛ

χ(S ⇠ A1,S ⇠ A2, . . . ,S ⇠ Am)%T (S) (A.36)

Take now K,K 0 such that dist(s(K), s(K 0)) > 1 and both s(K), s(K 0) are connected. Then s(KK 0) =
s(K) [ s(K 0) is not connected. Mimicking again all the above steps, and using the definition of %KK0(·), we can
then derive

!(KK 0) =
X

S,S0

(S[s(K))⌧(S0[s(K0))

%K(S)%K(S0) e−f(S[S0[s(KK0)) +
X

S

%KK0(S) e−f(S[s(KK0)) (A.37)

such that, after some algebra involving in particular the identity

f(A1 [A2) = f(A1) + f(A2)− f(A1, A2) (A.38)

we obtain

!(K;K 0) =
X

S,S0

%K(S)%K0(S0)e−f(S[S0[s(KK0))
⇣
ef(S[s(K),S0[s(K0)) − 1

⌘

−
X

S,S0

(S[s(K))⇠(S0[s(K0))

%K(S)%K0(S0) e−f(S[S0[s(KK0))

+
X

S

%KK0(S) e−f(S[s(KK0)) (A.39)

where we used the shorthand !(K;K 0) = !(KK 0)−!(K)!(K 0). This formula can be used to exhibit some decay
of the correlation !(K;K 0) in dist(s(K), s(K 0)), as we explain now.

Lemma A.3. Assume that the criterion (A.27) is satisfied for the weights %✓(S) := ✓−|S|%(S) for some a > 0
and 0 < ✓ < 1. Then

|f(A)|  a✓|A|, |f(A,A0)|  a
X

x2A,x02A0

✓|x−x0| (A.40)

Let K,K 0 be observables such that s(K), s(K 0) is connected, but dist(s(K), s(K 0)) > 1. For an observable K̃, let
#c(K̃) be the number of connected components of the set s(K̃) and let

b✓̃(K̃) := |%K̃(;)|+
X

S:S 6=;

✓̃−(|S|+#c(K̃)) |S||%K̃(S)|, 0 < ✓̃ < 1. (A.41)
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Then

|!(K)|  ✓
−|s(K)|
1 bθ1(K). (A.42)

|!(K;K 0)|  C(1 + a)✓
−|s(K)|−|s(K0)|
1 (bθθ1(K)bθθ1(K

0) + bθθ1(KK 0))
X

x2s(K),x02s(K0)

✓|x−x0|. (A.43)

with ✓1 = e−2aθ and with the constant C independent of ✓, a.

Proof. Note first, by inspection of (A.26), that

%Tθ (S) = ✓−
P

S2S |S|%T (S). (A.44)

Therefore the estimate

X

S

χ(S ⇠ {x},S ⇠ {x0})|%T (S)|  ✓|x−x0|
X

S

χ(S ⇠ {x})|%Tθ (S)|  a✓|x−x0|. (A.45)

follows from the simple observation infS:S⇠{x},S⇠{x0} ✓
P

S2S |S|  ✓|x−x0| and Theorem A.2 applied with $ = %θ.
Summing over x 2 A, x0 2 A0, this yields the second claim in (A.40), whereas the first one follows more directly
from Theorem A.2.

With the estimates (A.40) in hand, the proof of (A.43) is a lengthy but straightforward calculation starting
from (A.39). The stated bound is proven for the three terms on the right hand side of (A.39). Let us do the first
term which is the most complicated one. Using the bounds |ez − 1|  |z|e|z| for z 2 C, and the bounds in (A.40),
we get

∣∣∣
X

S,S0

%K(S)%K(S0)e−f(S[S0[s(KK0))
⇣
ef(S[s(K),S0[s(K0)) − 1

⌘ ∣∣∣

 a
X

S,S0

|%K(S)||%K(S0)| e2aθ(|S|+|S0|+|s(K)|+|s(K0)|) ⇥

⇣ X

x2S,x02S0

+
X

x2S,x02s(K0)

+
X

x2s(K),x02S0

+
X

x2s(K),x02s(K0)

⌘⇣
✓|x−x0|

⌘
(A.46)

We again split this into four terms corrsponding to the four sums in the last expression. The fourth sum gives,
upon summing S, S0

ae2aθ(s(K)+s(K0)bθ1(K)bθ1(K
0)

X

x2s(K),x02s(K0)

✓|x−x0|. (A.47)

The third sum gives, upon summing S,

ae2aθ(s(K)+s(K0))bθ1(K)
X

S0

X

x2s(K),x02S0

✓|x−x0||%K(S0)| ✓(|S0|+1)(✓✓1)
−(|S0|+1) (A.48)

 ae2aθ(s(K)+s(K0))bθ1(K)bθ1θ(K
0)

X

x2s(K)

✓dist(x,s(K
0)) (A.49)

where we used the triangle inequality |S0| + 1 + |x − x0| ≥ dist(x, s(K 0)) to get the last inequality. The first
and second sums in (A.46) are similar. Hence, since bθ0(K)  bθ00(K) for ✓0 ≥ ✓00, we have obtained the desired
bound on (A.46), namely (A.43). In the two remaining terms of (A.39), we always estimate ef(A) by eaθ|A|. The
smallness comes then from the constraint on S, S0. The bound on (A.42) is obtained analogously, but simpler.

A.3 Bounds on polymer weights

The following lemma contains estimates on the weights %, from which Theorem A.1 will easily follow. Throughout
this section, we assume that β is taken small enough and we not repeat this at every step.
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Lemma A.4. Fix a parameter ↵ = ↵(q) satisfying 0 < 2↵ < 1−1/q. Recall the weights %(S), %K(S) from Section
A.2 and let S ⇢ Z

d be finite. Then

1.
|%(S)|  (Cβ)α|S| (A.50)

2. Consider an observable K = O ⌦ P≥M (Y ) ‘of K-type’, as defined in Section A.1. Then,

|%K(S)|  w(K)⇥
(
(Cβ)α(|S|+#c(K)) S 6= ;
1 S = ; , (A.51)

with w(K) as defined in Theorem A.1 and #c(K) the number of connected components of s(K).

uniformly in Λ, provided that S, s(K) ⇢ Λ.

Note that replacing (Cβ) by β in the above lemma yields an equivalent claim upon adjusting ↵. The same
will be true often in the proof, below in Section A.3.2, but we prefer to keep the constants to avoid repeated
readjusting of exponents. However, we do need to readjust constants, in particular the constant in the definition
of w(K). Before giving the lengthy proof of Lemma A.4, let us first use it to give the

A.3.1 Proof of Theorem A.1

We give the proof in the case where the sets s(K), s(K 0) are connected (because Lemma A.3 is restricted to this
case). The general case follows by the same reasoning.

Step 1 For any ↵0 satisfying 0 < 2↵0 < 1− 1/q, the criterion (A.27) is satisfied for the weights %θ(S) := ✓−|S|%(S)
with a = 1 and ✓ = βα0

. To see this, we combine Lemma A.4 1) for some ↵00 > ↵0 with the geometrical fact
X

S:S3x

χ(S connected)c|S|  1, for small enough c (A.52)

Step 2 For any ↵0 satisfying 0 < 2↵0 < 1− 1/q and observable K of K-type, we establish

bθ(K)  w(K), with ✓ = βα0

. (A.53)

This is a straightforward consequence of Lemma A.4 2) for some ↵00 > ↵0, using again the geometrical fact (A.52)
(and keeping in mind that dist(S, s(K)) = 1 whenever %K(S) 6= 0 and S 6= ;).

Step 3 The two claims of Theorem A.1 follow by the results (A.42) and (A.43) of Lemma A.3, using Steps 1 and
2 above with ↵0 > ↵ and noting that, for ✓ = βα, the quantity ✓1 = e−2aθ in Lemma A.3 can made arbitrarily
close to 1 by taking β large enough, and that w(KK 0) = w(K)w(K 0) whenever s(K) \ s(K 0) = ;.

A.3.2 Proof of Lemma A.4

Let us first fix some additional notation. For a given Γ, we set

σx(B) := σx,+(B) + σx,−(B), n(x) :=
X

Bj :s(Bj)3x

σx(Bj),

and
N (Γ) :=

Y

x2s(Γ)

nx! (A.54)

We introduce a ’cut-off state’
!0,2M (O) := !0(P2M (O)) (A.55)

The following lemma is a purely combinatorial bound. Recall the quantity

v(Y ) = β−deg(Y )/2 (e−β−γc/2

)|s(Y )|
Y

x2s(Y )

degx(Y )! (A.56)

for a monomial Y (introduced in Theorem A.1).
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Lemma A.5. Fix a parameter  such that 1 >  > 1/q. Then, for any Γ and monomial Y ,

1.

|!0(R(Γ)|  N (Γ)1/2
Y

x2s(Γ)

Cn(x)β−n(x)κ/2 (A.57)

2.

|!0,2M (R(Γ)R⇤(Γ)|  N (Γ)
Y

x2s(Γ)

Cn(x)β−n(x)κ (A.58)

3.

|!0(R(Γ)P≥M (Y )|  N (Γ)1/2Cdeg(Y )v(Y )
Y

x2s(Γ)

Cn(x)β−n(x)κ/2 (A.59)

Proof. Consider a sequence ⌘0, ⌘1, . . . , ⌘n in Ωs(Γ) with n = |Γ|. We note, by inserting decompositions of identity
and using cyclity of the trace, that

|!0(R(Γ))| 
X

η0,η1,...,ηn−1

ηn=η0

e
Pn

j=1 τj(E(ηj)−E(ηj−1))
nY

j=1

|h⌘j , VBj⌘j−1i| (A.60)

Since 0  ⌧1  . . .  ⌧n  β, we can bound the exponent as

nX

j=1

⌧j(E(⌘j)− E(⌘j−1) =

Z β

0

d⌧ ⌧
@e

@⌧
=

Z β

0

d⌧
@(⌧e)

@⌧
−
Z β

0

d⌧ e

 βe(β)− β inf
τ
e(⌧) = βE(⌘n)−min

j
βE(⌘j) = βE(⌘0)−min

j
βE(⌘j)

 β
X

x

(
E(⌘0(x))−min

j
E(⌘j(x))

)

 β
X

x

(
E(⌘0(x))− E(⌘0(x)− n(x)/2)

)
(A.61)

where we let the function e(⌧) on [0,β] be the linear interpolation of ⌧j 7! E(⌘j) with e(0) = E(⌘0) and we
adopted the convention that E(⇠) = ⇠q for ⇠ > 0 and E(⇠) = 0 for ⇠  0. The last inequality follows by using
that n(x) is the number of field ax/a

⇤
x operators appearing on site x, and ⌘0(x) = ⌘n(x). Combining (A.60) and

(A.61), using the basic bound |h⌘(x), a⇤x(⌘(x)− 1)i| 
p
⌘(x) and abbreviating

Z0(β) =
X

ξ2N

e−βE(ξ), (A.62)

we get

|!0(R(Γ)| 
X

η02Ωs(Γ)

!0(Pη0
)
Y

x2s(Γ)

b⌘0(x) + n(x)/2c!
⌘0(x)!

eβ(E(η0(x))−E(η0(x)−n(x)/2)) (A.63)


Y

x2s(Γ)

X

η(x)

b⌘(x) + n(x)/2c!
(⌘(x))!

⇥ e−βE(η(x)−n(x)/2)

Z0(β)
(A.64)

For any 0  z  1, we can use the bound m!
p!(m−p)!  z−p(1− z)−(m−p) to get

1Q
xbnx/2c!

|!0(R(Γ)| 
Y

x2s(Γ)

X

η(x)

(1− z)−n(x)/2z−η(x) ⇥ e−βE(η(x)−n(x)/2)

Z0(β)
(A.65)
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Similarly (take z = 1/2), we have Y

x2s(Γ)

Cnxbnx/2c! ≥ N (Γ)1/2 (A.66)

Let us now choose z = e−βκ

. For sufficiently small β, we can then estimate

(1− z)−n  2nβ−nκ (A.67)

and we obtain

N (Γ)−1/2|!0(R(Γ)| 
Y

x2s(Γ)

X

η(x)

Cn(x)β−n(x)κ ⇥ e−βE(η(x)−n(x)/2)+βκη(x)

Z0(β)
(A.68)

Since  ≥ 1/q, we can bound
X

η(x)

e−βE(η(x)−n(x)/2)+βκη(x)

Z0(β)
 Cn(x) (A.69)

by using the explicit form of E(·). Hence

N (Γ)−1/2|!0(R(Γ)| 
Y

x

Cn(x)β−n(x)κ/2 (A.70)

The claim of 1) now follows since n(x) ≥ 1 for any x 2 s(Γ).

To get 3), we first restrict ourselves to the case s(Y ) ⇢ s(Γ). We view for notational convenience the ax/a
⇤
x-

operators in Y = a]xm
. . . a]x2

a]x1
as additional plaquettes Bi=1,...,m with s(Bi) = {xi}, σxi,+/− = 1/0 if a]xi

= a⇤xi

and σxi,+/− = 0/1 if a]xi
= axi

. We define the ordered sequence

Γ0 =
(
(B1, ⌧1), . . . , (Bm, ⌧m), (Bm+1, ⌧m+1), . . . (Bm+n, ⌧m+n)

)
(A.71)

where ⌧1,...,m = 0 and (Bm+1, ⌧m+1), . . . (Bm+n, ⌧m+n) are the (ordered) elements of Γ with renamed indices.
Now we apply the same reasoning as in the proof of 1) to get the analogue of (A.68), which now reads

N (Γ0)−1/2|!0(R(Γ)P≥M (Y ))| 
Y

x2s(Γ)

Cn0(x)β−n0(x)
X

⌘(x)≥0 for x 62s(Y )

⌘(x)≥M for x2s(Y )

e−βE(⌘(x)−n0(x)/2)+βκ⌘(x)

Z0(β)
(A.72)

with n0(x) corresponding to Γ0. For x 62 s(Y ), we bound the the sum over ⌘(x) by Cn0(x), as in 1), and, for
x 2 s(Y ), we bound it as

X

⌘(x)≥M

e−βE(⌘(x)−n0(x)/2)+βκ⌘(x)

Z0(β)
 Cn0(x)e−β−γc/2

(A.73)

Hence, altogether, we bound (A.72) as

|!0(R(Γ)P≥M (Y ))|  N (Γ0)1/2(e−β−γc/2

)|s(Y )|
Y

x2s(Γ)

Cn0(x)β−n0(x) (A.74)

Since n0(x) = n(x) + degx(Y ), we can bound

N (Γ0)  N (Γ)2deg(Y )
Y

x2s(Y )

degx(Y )! (A.75)

and we get the claim of point 3) for the restricted case s(Y ) ⇢ s(Γ). In the general case, we split Y = Y1Y2 such
that s(Y1) ⇢ s(Γ), s(Y2) \ s(Γ) = ;, and we use the fact that !0 is a product state:

!0(R(Γ)P≥M (Y )) = !0(R(Γ)P≥M (Y1))!0(P≥M (Y2)) (A.76)
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For the first factor we use the bound above (for the restricted case). For the second factor, we show, by ana-
logous but simpler reasoning, that it is bounded by v(Y2). Since v(Y ) = v(Y1)v(Y2), this proves the full claim of 3).

For 2), we mimick the derivation of (A.63) to arrive at

|!0,2M (R(Γ)R⇤(Γ)| 
Y

x2s(Γ)

X

η(x)2M

e−βE(η(x))

Z0(β)

(⌘(x) + n(x))!

(⌘(x))!
e2β(E(η(x))−E(η0(x)−n(x))) (A.77)

The main difference with the argument in 1) is that every perturbation term appears twice now (therefore we
have now n(x) instead of n(x)/2 in the argument of the factorial) and that we had to apply the bounds of (A.61)
twice. Proceeding as in (A.64) and (A.68), we bound (A.77) by

Y

x2s(Γ)

X

η(x)2M

e−βE(η(x))

Z0(β)
Cn(x)β−n(x)κ1eβ

κ1η(x)e2β(E(η(x))−E(η(x)−n(x))) (A.78)

for any 0 < 1 < 1. To deal with the right-most exponential, we note that

sup
0<2β<1

sup
0ξ̃ξ2M

e2β(ξ
q−ξ̃q)(2β)κ2(ξ−ξ̃)  C(2) < 1, (A.79)

for any 2 > 0. Indeed, for 0 < 2β < 1, the function ⇠ 7! f(⇠) = e2βξ
q

(2β)κ2ξ is decreasing on the interval

[0, (κ2| ln 2β|
2qβ )

1
q−1 ] and, since M = β−(1+γc)/q with 0 < γc < q/(q − 1) − 1, we see that 2M lies in this interval.

We use (A.79) with ⇠ = ⌘(x), ⇠̃ = ⌘(x)− n(x) to obtain, for 1 − 1/q ≥ 0,

N (Γ)−1|!0,2M (R(Γ)R⇤(Γ)| 
Y

x2s(Γ)

X

η(x)2M

e−βE(η(x))+βκ1η(x)

Z0(β)
Cn(x)β−n(x)κ1β−2κ2n(x) (A.80)


Y

x2s(Γ)

Cn(x)β−n(x)(κ1+2κ2) (A.81)

where the last inequality uses the explicit form of E(⌘(x)) to perform the sums over ⌘(x). The claim of 2)
follows by choosing 1,2 such that 1 + 22 = , taking advantage of the fact that 2 can be chosen arbitrarily
small.

To perform the sum/integral over the sequences Γ, we will need to exploit the smallness of the Lesbegue mass
over the simplex ∆m(β) for large m

Lemma A.6. For any 0 < 1/2

Z

s(Γ)=S

dΓ (cβ)−κ0 P
x nxN (Γ)1/2  (Cβ)|S|(1/2−κ0) (A.82)

Proof. We first establish, for any Γ,

( Y

x2s(Γ)

p
nx!

)
 C

P
x nx

( Y

B2B(Γ)

nB !
)

(A.83)

In the remainder of the proof, it is understood (unless mentioned otherwise) that x ranges over s(Γ) and B over
B(Γ). To prove (A.83), note that

nx =
X

B:s(B)3x

σx(B)nB (A.84)

where the maximal number of nonzero terms on the right hand side is C = C(d), hence

nx!  Cnx

Y

B:s(B)3x

(σx(B)nB)! (A.85)
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and
Y

x

nx!  C
P

x nx
( Y

B:|s(B)|=1

σx(B)nB)!
)( Y

B:|s(B)|=2

nB !
)2

(A.86)

 C
P

x nx2
P

B:|s(B)|=1 2nB
(Y

B

nB !
)2

(A.87)

where the first inequality follows because σx(B)  1 whenever |s(B)| = 2 and because every factor with |s(B)| = 2
appears twice in the product in (A.85). The second inequality follows from σx(B)  2. Observing that (for now,
we use only the first inequality) X

x

nx ≥
X

B

nB ≥ (1/2)
X

x

nx, (A.88)

we get (A.83) from (A.87).
Since N (Γ) does not depend on the ⌧ -variables, we can perform all d⌧ -integrals on the LHS of (A.82). This

gives the products of the Lesbegue measure of the simplices;

Y

B

βnB

nB !
(A.89)

Using this bound, the definition of N (Γ), (A.83) and (A.88), we bound the LHS of (A.82) by

X

B: [
B2B

s(B)=S

X

nB≥1:B2B

nB≥|S|/2

(Cβ)(1−2κ0)nB , with nB :=
X

B2B

nB (A.90)

where the sum is now over collections B of plaquettes. Using that the number of terms in the leftmost sum is
bounded by C |S|, the claim follows by straightforward combinatorics.

Proof of Lemma A.4. To prove 1), we write for any 1 >  > 1/q,

|%(S)| 
Z

s(Γ)=S
Γ connected

dΓ |!0(R(Γ))| (A.91)


Z

s(Γ)=S

dΓ |!0(R(Γ))| (A.92)


Z

s(Γ)=S

dΓN (Γ)1/2
Y

x

Cn(x)β−n(x)κ/2 (A.93)

β|S|(1/2−κ/2)C |S| (A.94)

where the third inequality follows from Lemma A.5 1) and the fourth from Lemma A.6 with 0 = /2. The claim
follows by setting  = 1− 2↵.

Next, we prove 2): For any set S and plaquette B, we can consider the reduced plaquette BS with s(BS) :=
s(B) \ S and σx,±(BS) := σx,±(B) whenever x 2 s(BS). Then given a collection Γ, we define the collection ΓS

ΓS := {(BS , ⌧) : (B, ⌧) 2 Γ and s(BS) 6= ;} (A.95)

Note that
s(Γ) = s(ΓS) [ s(ΓSc), s(ΓS) \ s(ΓSc) = ;. (A.96)

and, for x 2 S, n(x) as defined from ΓS equals n(x) as defined from Γ. In particular, we have

N (ΓS)N (ΓSc) = N (Γ). (A.97)
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We apply this below with S = s(O), s(O)c. We have

!0(R(Γ)K) = !0(R(Γs(O))O)!0(R(Γs(O)c)P≥M (Y )) (A.98)

= !0(P2M (R(Γs(O)))P2M (O)) ⇥ !0(R(Γs(O)c)P≥M (Y )) (A.99)

where the second equality follows because P2M (O) = O and the density matrix of !0 is diagonal in the Nx-basis.
Using Cauchy-Schwartz, positivity of the projector ⌦x2Aχ(Nx  2M) for any A, and (P2M (O))⇤ = P2M (O⇤),
the first factor can be bounded as

|!0(P2M (R(Γs(O)))P2M (O))|2  !0(P2M (O⇤)P2M (O)) ⇥ !0(P2M (R(Γs(O)))P2M (R⇤(Γs(O)))) (A.100)

 !0,2M (O⇤O) ⇥ !0,2M (R(Γs(O))R
⇤(Γs(O))) (A.101)

We recall the definition of %K(S) in (A.30) and we abbreviate

Z

K

dΓ . . . :=

Z

Γ s(K)-connected
s(Γ)\s(K)c=S

dΓ . . . (A.102)

We estimate, for any 1 >  > 1/q,

|%K(S)| 
Z

K

dΓ |!0(R(Γ)K)| (A.103)

 |!0,2M (O⇤O)|1/2
Z

K

dΓ |!0,2M (R(Γs(O))R
⇤(Γs(O)))|1/2 |!0(R(Γs(O)c)P≥M (Y ))| (A.104)

 |!0,2M (O⇤O)|1/2Cdeg(Y )v(Y )

Z

K

dΓ|N (Γs(O))N (Γs(Oc))|1/2
Y

x2s(Γ)

(cβ)−κn(x)/2 (A.105)

The first inequality follows from (A.99) and (A.101) and the second from Lemma A.5 2), 3), using (A.96). Let
us now first take S 6= ;. Starting from (A.97), we rewrite and bound the dΓ-integral in (A.105) as (recall that
#c(K) is the number of connected components of s(K)),

Z

K

dΓN (Γ)1/2
Y

x2s(Γ)

(cβ)−κn(x)/2 (A.106)


X

S0:S0\s(K)c=S

|S0\s(K)|≥#c(K)

Z

s(Γ)=S0

dΓN (Γ)1/2
Y

x2s(Γ)

(cβ)−κn(x)/2 (A.107)


X

S0:S0\s(K)c=S

|S0\s(K)|≥#c(K)

(Cβ)α|S
0|  C |s(K)|(Cβ)α(|S|+#c(K)) (A.108)

where we used Lemma A.6 with 0 = /2 and we set  = 1 − 2↵. Plugging this into (A.105) and recalling the
definition of w(K) yields the desired claim. For S = ;, the above proof still applies if we drop the constraint
|S0 \ s(K)| ≥ #c(K) in the last lines. Then the resulting bound on the right hand side of (A.108) is simply
C |s(K)|, and we can again conclude by plugging into (A.105).
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[24] K. Netočný and F. Redig, “Large deviations for quantum spin systems,” Journal of Statistical Physics,
vol. 117, p. 521, 2004.

[25] D. Ueltschi, “Cluster expansions and correlation functions,” Moscow Mathematical Journal, vol. 4, pp. 511–
522, 2004.

52


