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Abstract
We study the dynamics of a Brownian particle in a strongly correlated
quenched random potential defined as a periodically extended (with period L)
finite trajectory of a fractional Brownian motion with arbitrary Hurst exponent

∈H (0, 1). While the periodicity ensures that the ultimate long time behavior
is diffusive, the generalized Sinai potential considered here leads to a strong
logarithmic confinement of particle trajectories at intermediate times. These
two competing trends lead to dynamical frustration and result in a rich sta-
tistical behavior of the diffusion coefficient DL: although one has the typical
value β∼ −D Lexp ( )L

Htyp , we show via an exact analytical approach that the
positive moments ( >k 0) scale like β〈 〉 ∼ − ′ +D c k Lexp [ ( ) ]L

k H H1 (1 ) , and the
negative ones as β〈 〉 ∼ ′−D a k Lexp ( ( ) )L

k H 2 , ′c and ′a being numerical con-
stants and β the inverse temperature. These results demonstrate that DL is
strongly non-self-averaging. We further show that the probability distribution
of DL has a log normal left tail and a highly singular, one sided log stable
right tail reminiscent of a Lifshitz singularity.
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Transport in random media is extensively studied due to its practical and fundamental
importance [1 3]. In many cases, the dynamics is modelled as a Langevin process, with a drift
generated by a quenched disordered potential. In theoretical analysis, the potential landscape
is taken to be either infinitely extended or periodic in space. Stochastic dynamics in a periodic
potential, both random and deterministic, is commonly encountered in many different con-
texts, including modulated structures [4], superionic conductors [5], colloids in light fields
[6, 7], diffusion on regular [8 11] and disordered [12 16] solid surfaces, molecular motors on
disordered tracks like DNA/RNA [17 19], and motion in a tilted potential due to a random
polymer [20].

Theoretical approaches often assume that the dynamics in a periodic potential reproduces
the behavior in an infinitely extended potential. This is implemented by setting the period in
the final result, e.g. for the velocity (if any) or the diffusion coefficient, to infinity [21, 22]. It
is crucial to investigate how far such an assumption holds. Especially in the context of
numerical simulations carried out for periodic systems, one may ask how reliably their results
may be extrapolated to infinite systems.

In this work, we address these fundamental questions for a Langevin dynamics x(t) in a
periodic, quenched random potential V x t( ( )) (with + =V x t L V x t( ( ) ) ( ( ))):

η ξ= − +x

t

V x

x
t

d

d

d ( )

d
( ), (1)

with η the friction coefficient, ξ t( ) a Gaussian white noise with zero mean and correlations
ξ ξ η δ′ = − ′t t T t t( ) ( ) 2 ( ), the overbar being an average over the noise, and the temperature T is
in units of the Boltzmann constant. We consider two cases:

• the ratchet case where V(x) is a fractional Brownian motion (fBm) in time ∈x L[0, ],
with =V (0) 0 and V(L) arbitrary. Thus, V(x) is a Gaussian process with zero mean,
〈 〉 =V x( ) 0, and variance

− = − ∈[ ]V x V y
V

l
x y x y L( ) ( ) ; , [0, ], (2)

H
H2 0

2

2
2

where ∈H (0, 1) is the Hurst exponent, V0 and l define respectively the typical amplitude
of V(x) and its scale of variation over x. In (2) the angular brackets denote averaging with
respect to V(x). Figure 1 (left) shows a realization of V(x), with a jump at x=L.
• the translationally invariant case, where V(x) is a stationary Gaussian process, which
at short length scales − ≪x y L| | has the variance (2), and satisfies =V V L(0) ( ), so that
all points are statistically equivalent. The particle in this case diffuses on a ring. A
realization of such a V(x) is shown in figure 1 (right).

The dynamics (1) involves a combination of two paradigmatic situations: random motion
in a periodic potential and the generalized Sinai dynamics in presence of a force

= −F x V x x( ) d ( ) d that is a time-independent stochastic variable with spatial correlations
(except for =H 1 2 when V (x) is the trajectory of a Brownian motion itself so that (1) is the
periodic Sinai model [23]). While the latter produces an archetypal subdiffusion with

Figure 1. Sketch of the potential V (x) for the ratchet (left) and the translationally
invariant case (right). Here, =H 1 3.
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logarithmically-confined trajectories, the periodicity of the random potential enforces a
long time diffusive behavior with a diffusion coefficient DL. Here, we show that the trade off
between these two competing trends results in a rich statistical behavior of DL. In particular,
DL is strongly non-self-averaging, with both negative and positive moments exhibiting an
anomalous dependence on the temperature, period L and the order of the moment, and being
supported by atypical realizations of V (x). For the ratchet case, we obtain exact analytical
results, relying on exact bounds, for both positive and negative moments of DL. We also
discuss the full form of the probability distribution of DL, and show that it is characterized by
a log normal left tail and a highly singular log stable right tail, reminiscent of a Lifshitz
singularity. We finally highlight the issue of sample to sample fluctuations of DL. From
standard scaling arguments and physical intuition, one expects that our exact results for the
ratchet case also hold for the translationally invariant situation, which is harder to analyze
analytically. This is confirmed below by thorough numerical simulations [24].

The dynamics (1) in an infinite system for arbitrary H, where >H 1 2 ( <H 1 2) implies
positively (negatively) correlated increments and superdiffusive (subdiffusive) V (x), respec-
tively, was discussed in [25] where it was shown that 〈 〉 ∼→∞ x t tlim ( ) ln ( )t

H2 2 (see also [26]).
In contrast, in a periodic system, the long time motion is diffusive for any given realization of
the potential V (x), so that we have the diffusion coefficient ≡ →∞D x t tlim ( ) (2 )L t

2 , with DL

given by [27 31] (see also [7, 8, 12, 32])
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where β is the inverse temperature, and η=D T(0) . Clearly, DL is a random variable that
fluctuates between realizations of V (x), and has support on D[0, ](0) . The inverse of DL may
be regarded as a product of partition functions in potentials V (x) and −V x( ), respectively.
The Brownian version of this quantity finds applications in disordered systems and has been
extensively studied, while our results for ≠H 1 2 apply to more general situations (note that
the marginal case H = 0, when V (X) is log-correlated, was studied in [33]). The expression in
equation (3) also describes the ground state energy in a toy model of localization, and its
average value was studied in [34] for =H 1 2.

Turning to the discussion of the behavior of DL, we first reduce the number of para-
meters. In the following, we measure L in units of l [see equation (2)], absorb V0 into β, and
measure DL in units of D(0), so that DL has support on [0, 1]5. Now, the typical behavior of DL

is easy to estimate as τ∝D LL
typ 2

typ, where the dimensionless L sets the scale of an inho-
mogeneous region, and τtyp defines the typical (dimensionless) time a particle spends in this
region. The random potential V (x) being a fBm, the typical height of the potential barrier over
a length L scales like LH, for both the ratchet and the translationally invariant case. Assuming
Arrhenius type activation, one expects τ ∼ βe L

typ
H
, which implies

β∼ −( )D L Lexp . (4)L
Htyp 2

The average behavior of DL is a much more delicate question because, as can be seen from
equation (3), computing the statistics of DL is a highly non-trivial task that involves the study
of an exponential functional of fBm, for which standard methods like the Feynman Kac
formula are of little use for ≠H 1 2.

Let us first summarize our main analytical results obtained for the ratchet case: We find
that the average of the logarithm of DL is given, to leading order in L, by

5 l V, 0 and D(0) may be made explicit in the final result by the replacements →L L l , β β→ V0 and →D D D(0).
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β∝ −D m Lln 2 , (5)L
H

with = 〈 〉∈m V smax ( )s [0,1] . The result in equation (5) is consistent with the logarithmic
growth of the disorder averaged mean square displacement in an infinite system:

〈 〉 ∼→∞ x t tlim ( ) ln ( )t
H2 2 , and the argument leading to equation (4). Further on, we obtain

sharp bounds for the positive moments >k( 0) of the random variable DL:

⩽ ⩽A L D B L( ) ( ), (6)k L
k

k

where, in the limit → ∞L , the bounds satisfy
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with constants c and C, < ⩽ < ∞c C0 , being independent of L, k and β. Both bounds
exhibit the same dependence on βL k, , , from which we infer that the exact asymptotic result
has the same functional form. Finally, for the negative moments of DL, we find

⎛
⎝⎜

⎞
⎠⎟

β∼−D
a k L

exp
4

, (8)L
k

H2 2 2 2

where a is a constant (independent of L k, and β). Our exact results, equations (6) and (8),
thus show that the positive and negative moments are dominated by atypical realizations of
V (x), in contrast to 〈 〉Dln L , see equation (5).

We now turn to a derivation of our results. Using equation (3), the logarithm of DL can be
formally written as = + ++ −D J L J L Lln ln ( ) ln ( ) 2 lnL , where ±J L( ) are stationary cur-
rents through a finite sample of length L with potentials ±V x( ) [26]:

∫ β= ±±
−J L x V x( ) [ d exp [ ( )]]

L

0
1. Statistical properties of these currents for the Sinai pro-

blem ( =H 1 2) are known [35 40]. Using the results of [41], and noting that with
〈 〉 =V x( ) 0, +J L( ) and −J L( ) have equal moments, we have for arbitrary H and to leading
order in L, β〈 〉 = 〈 〉 ∝ −+ −J L J L m Lln ( ) ln ( ) H , which yields equation (5).

The proof of the result in equation (6) is based on a Theorem due to Monrad and Rootzén
[42] on the probability that a fBm V (x), with =V (0) 0, remains within a strip of width ϵ for
the time ∈x L[0, ]. Defining ≡ ⩾ ⩾M V xmax | ( )|L x L0 , the Monrad Rootzén theorem, in our
notation, states that ϵ⩽P M( )L satisfies

ϵ ϵ ϵ− ⩽ ⩽ ⩽ −− −( ) ( )( )CL P M cLexp exp , (9)H L H
1 1

for ϵ< ⩽ L0 H , c and C being L-independent constants [see equation (6)].
Consider the lower bound in equation (6). Suppose we average the positive definite

quantity Dk
L by considering instead of the entire set Ω of all possible paths V (x) only a subset

Ω Ω′ ⊂ of paths such that ϵ⩽ML . This gives the lower bound ϵ〈 〉 ⩾ 〈 〉 ⩽Ω Ω′D D P M( )L
k

L
k

L .
However, for paths in Ω′, we have β βϵ− ⩽V x V yexp ( [ ( ) ( )]) exp (2 ), and hence,

∫ ∫ ⩾β βϵ− − −( e ) e
L x

L

L y

L
V x V y

0

d

0

d [ ( ) ( )] 1 2 . Therefore, we obtain ϵ〈 〉 ⩾ ⩽Ω
βϵ−D P Me ( )L

k k
L

2 .
Making the inequality more stringent by choosing the lower bound in equation (9), we get
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ϵ⩾ −
Ω

βϵ− −( )D CLe exp , (10)L
k k

H
2 1

which holds for any ϵ with ϵ< ⩽ L0 H .
The function on the right-hand side (rhs) of equation (10) is a non-monotonic function of

ϵ, attaining its maximum at ϵ ϵ β= = +CL k H( 2 )H H
opt

(1 ). Clearly, the best lower bound
corresponds to the choice ϵ ϵ= opt, leading to the lower bound in equation (6). Note that to

satisfy the conditions of validity of the Monrad Rootzén theorem, we require that ϵ ⩽ LH
opt ,

that is, β ⩾k L C H2 , which is easily realized for sufficiently large L. The derivation of the
lower bound is an example of the Lifshitz optimal fluctuation method [43], which has been
used to bound the survival probability of particles diffusing in the presence of randomly
scattered immobile traps (see, e.g., [44]).

We now discuss the derivation of the upper bound. To this end, we discretize x, and write
the rhs of equation (3) as

∫ ∫ ∑∼β β−

=

−x

L

y

L

d d
e e . (11)

L L
V x V y

i j

N
V j V i

0 0

[ ( ) ( )]

, 1

[ ( ) ( )]

Given that the fBm starts at =V (0) 0, at least one term in the double sum on the rhs takes the
value βMexp ( )L , corresponding to the point x = 0 and the point where V x| ( ) | attains its
maximal value ML. Now, as all the other terms are positive, we have the bound

β⩾−D Mexp ( )L L
1 , and, thus,

∫β ϵ ϵ⩽ = ⩽β βϵ−
∞

−( )D k P Me d e . (12)L
k k M

L
k

0

L

The integral in the rhs is dominated, for large L, by the small ϵ region, where we can thus use
the upper bound in (9). Performing the remaining integral over ϵ by the saddle-point method
and omitting the pre-exponential terms lead to the upper bound in equation (6). The result in
(6) has several striking features. Namely, the function

μ β = −k L D( , , ) ln , (13)L
k

(as compared to its typical counterpart given by equation (4) as μ β β∼k L k L( , , ) H
typ ), (a)

grows sub-linearly with k (multifractality), (b) is a non-analytic, sublinear function of β,
which implies a rather unusual sub-Arrhenius dependence of the positive moments on the
temperature, and (c) exhibits a slower anomalous growth with L as ∼ +L

H
H1 . This means that the

disorder-averaged DL is generically larger than the one expected on the basis of typical
realizations of the disorder. In turn, this implies that the behavior of the positive moments of
DL is supported by atypical realizations of disorder, reminiscent of the so-called Lifshitz
singularities, as discussed above. In conclusion, one cannot infer the dynamical behavior in an
infinite system from the positive moments of DL. This is surprising at first glance, as 〈 〉x t( )2 is
linearly proportional to 〈 〉DL , and shows that the limits → ∞t and → ∞L do not commute
in this system.

The behavior of the negative moments 〈 〉−DL
k with =k 1, 2 ,... is determined by

essentially the same approach as above. Note that both the lower and the upper bound on −DL
k

are made tighter for a given realization of V (x) by using β∼−D k Sexp ( )L
k , where S is the

span of V (x) (the difference between the maximum and minimum) on the interval L[0, ].
Therefore, in contrast to the positive moments, the negative moments are supported by
realizations of V (x) with a large span. Using the result that for large S,

= ∼ −P M S S aL( ) exp ( )L
H2 2 , with a a constant, integration of equation (12) gives the result

announced in equation (8), which displays a super-Arrhenius dependence on the temperature,
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a superlinear dependence on k, and a strong dependence on L. A similar result was obtained
earlier in [45]. We note that, as for the positive moments, one cannot deduce the behavior in
an infinite system from that of negative moments of DL in a periodic system, as the latter is
supported by atypical realizations of V (x) that have anomalously large span scaling as

∼S L H2 , while the typical behavior is ∼S LH
typ .

Based on our results for the moments, we now obtain the probability distribution P D( )L .
As already explained, the behavior of the negative moments is supported by anomalously
stretched trajectories of V (x) for which the value of DL is small. One may thus expect in view
of the form of the moments in equation (8) that for small DL, P D( )L is log-normal:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟β β

∼ −( ) ( )
P D

a L D

D

a L

1
exp

ln
. (14)L H

L

L

H

2

2 2 2

To analyze the behavior of P D( )L for DL close to 1, we recall the formal definition of the one-
sided Lévy distribution ν z( ), ⩽ < ∞z0 , of order ν (see, e.g., [46]):

∫ =ν
∞

− − ν
z zd e ( ) e . (15)pz p

0

The asymptotic behavior of ν z( ) is well-known [46], and, in particular, one has
 ∼ −ν

σ τ−z z b z( ) exp ( ) for →z 0, where b is a computable constant,
σ ν ν= − −(2 ) (2(1 )), and τ ν ν= −(1 ). It is important to note that this precise
asymptotic form is responsible for the stretched-exponential behavior in equation (15),
which is immediately verified by substituting the form in equation (15), and performing the
integration by the saddle-point method. Moreover, one realizes by making in equation (15) a
change of the integration variable β=z D Lln (1 )L

H , choosing ν = + H1 (1 ), and setting
β=p k LH that equation (15) becomes identical to the result in equation (6), up to numerical

factors. It follows that for DL close to 1 (i.e., z close to 0), the distribution function behaves as

⎡⎣ ⎤⎦
β

β∼
+

−( )( )P D
L D

D L
1

ln . (16)L H
L H

L
H1

1

1

Using the asymptotic ν given above, we get that P D( )L is highly singular near the right
edge, β∼ − −P D b L D( ) exp [ (1 ) ]L

H
L

H1 1 , similar to the Lifshitz singularity.

Figure 2. (a) − 〈 〉D Lln [ ]L
2 versus L for three values of H corresponding to diffusive,

subdiffusive, and superdiffusive V (x). The inset shows −〈 〉D Lln [ ]L
2 as a function of

L for three values of H, see equation (5). (b) μ βk L( , , ) in equation (13) as a function of
k for L = 512 and three values of H. In all cases, the symbols denote simulation results
for the translationally invariant V (x), while the slopes of the solid lines correspond to
the results derived for the ratchet case.
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We now consider the translationally invariant case. Here, we expect our above analysis,
in particular, result (6) to hold, up to possible numerical factors. To demonstrate this, we now
present results of extensive numerical simulations: figure 2 for − 〈 〉D Lln ( )L

2 ,
−〈 〉D Lln ( )L

2 , and μ βk L( , , ), and figure 3(a) for P D(ln )L indeed show a very good
agreement that supports our expectations.

To close, we ask: if we have two different realizations of V (x), and correspondingly, two
different values, DL and ′D L, of the diffusion coefficient, how likely are these values equal?

We introduce a random variable  ≡ ∈+ ′ , [0, 1]D

D D
L

L L
, and analyze its distribution

P ( ) via numerical simulations. Clearly,  = 1 2 maximizing P ( ) implies that the two
values of DL are most likely very close to one another. Variables such as  play a key role in
various scale-independent hypothesis testing procedures, in classical problems in statistics, in
signal processing (see, e.g., [47]), and in the analysis of chaotic scattering in few-channel
systems [48]. Such variables are used to characterize the effective width of narrow dis-
tributions possessing moments of arbitrary order [49, 50].

In figure 3(b), we present numerical results for P ( ) for different values of L and
=H 1 3, for the translationally invariant case. We observe an interesting phenomenon of a

change in the form of the distribution as L is increased. For relatively small L, the distribution
is bell-shaped and centered at  = 1 2. However, on increasing L, P ( ) broadens, becomes
almost flat at a certain critical L (whose value depends on H), and then changes its shape so
that  = 1 2 minimizes the distribution. This implies that for sufficiently large L, two values
of the diffusion coefficients obtained for two different realizations of V (x) are most likely
very different, and the event = ′D DL L is the least probable. Note that a similar dependence in
the distribution of the prefactor in the Sinai law on the strength of disorder was recently
observed in [51].
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