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Abstract

Proper Orthogonal Decomposition and Stochastic Estimation are combined to shed some light

on the link between organized flow structures and noise generation by turbulent flows. Proper

Orthogonal Decomposition (POD) is firstly used to extract selected flow events. Based on the

knowledge of these structures, the Quadratic Stochastic Estimation of the acoustic pressure field

is secondly performed. Both procedures are successively applied to two- and three-dimensional

numerical databases of a flow over a cavity. It is demonstrated that POD can extract selected

aerodynamic events which can be associated with selected frequencies in the acoustic spectra.

Reconstructed acoustic fields also indicate the aerodynamic events which are responsible of the

main energy of the noise emission. Such mathematical tools offer new perspectives in analysing

flow structures involved in sound generation by turbulent flows and in the experimental design

of a flow control strategy.

Keywords: turbulent flow, Proper Orthogonal Decomposition, Stochastic Estimation,

1. Introduction

Nowadays, in the transport industry, the reduction of noise and the enhancement of sound

comfort have become a commercial and economic stake of foreground. One of the major is-

sue in such industrial applications concerns the question of noise generated by turbulent flows.

The great challenge consists in relating the acoustic pressure in the farfield to its corresponding

signature in the aerodynamic nearfield.

Lighthill[1] was the first to propose a reformulation of the governing equations of fluid dy-

namics into a wave propagation equation. This reformulation called Lighthill’s analogy[1] allows
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a description of the sound field generated by turbulent flows. For this purpose, the nearfield so-

lution is calculated with a first simulation of the unsteady fluid flow to compute the source term

used for the evaluation of the wave equation. The definition of this source term has to be prop-

erly specified to enhance the reliability of such hybrid approaches. Even if many researchers

proposed improved formulations for this source term, some controversies related to the physical

meaning of an aeroacoustic source have been noted in the literature [2, 3, 4, 5, 6, 7]. It thus ap-

pears that such hybrid approaches can only be justified under certain idealized flow conditions.

Moreover, the noise source modelling is directly related to the understanding of the turbulent

flow which still remains an open issue. Such difficulty is also present when dealing with Direct

Noise Computations (DNC) where both the turbulent flow and the radiated acoustic field are

computed in the same run. In such numerical simulations, isolating the flow structures which

are responsible of the noise emission remains a great challenge, since it is still unclear how indi-

vidual flow structures contribute to the noise generation process. In turbulent flows, many flow

structures of different scales coexist and interact, and they are embedded within a randomly dis-

tributed field. Since an universal and unique definition of a flow structure does not exist, the

flow structure extraction still remains a difficult task. Consequently, there is still a need for the

development of post-processing tools aiming at accessing the aerodynamic events which govern

noise production in turbulent flows.

Previous experimental studies have been devoted to the characterization of the correlations

which exist between the radiated acoustic and aerodynamic fields [8, 9, 10, 11]. These works

based on the causality approach have improved our knowledge of the noise source mechanisms

in turbulent flows[10, 11]. They also underlined the difficulty in identifying and isolating the

flow structures which are involved in the noise generation by turbulent flows. Recent numerical

aeroacoustic analyses [12, 13] confirmed the previous experimental investigations by correlating

the aerodynamic and acoustic fields.

Recently, based on experimental measurements in a flow over a cylinder, Henning et al. [14]

proposed to apply the Proper Orthogonal Decomposition (POD) technique in order to identify

the POD eigenfunctions which are mainly involved in the sound generation process. In a similar

way, Druault et al.[15] proposed to combine POD and Quadratic Stochastic Estimation (QSE)

methods to determine the aerodynamic events which contribute to the far field noise, in a forced

two-dimensional compressible plane mixing layer flow. They proposed to separate the flow
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structures into three parts: large scale structures, small scale ones and background fluctuations.

Each of this flow contribution was used as conditional event to QSE estimate the corresponding

acoustic pressure spectrum. A direct investigation of the acoustic field as a function of different

flow event was then possible. Following these premilinary developments, new applications of

these mathematical post-processing tools (POD and QSE) are investigated in this paper. We

focus on a three dimensional DNC solver allowing the direct evaluation of the sound occurring

in the well-documented cavity flow. Based on DNC simulation databases, POD and QSE are

implemented to analyze the relevant flow structures which are best correlated to the acoustic

pressure field in a statistical sense. The objective of the application of the QSE procedure is not

to access the individual aeroacoustic sources generated by the cavity turbulent flow. The purpose

of the work rather consists in linking the statistical organized structures defined thanks to the

POD partitioning, to the frequency peaks of the acoustic spectrum.

Cavity flow which occurs in many practical automotive and aerospace applications, has been

studied in numerous investigations in the past (see for instance review articles [16, 17, 18, 19,

20]). Recall briefly that the noise spectrum of cavity flow comprises broadband components, due

to the turbulence in the shear layer and tonal components due to the periodical vortex shedding

from the cavity leading edge which gives rise to intense self-sustained oscillations. These oscil-

lations arise from a feedback loop consisting in the following chain of events. The growth and

convection of instability waves in the shear layer induce large-amplitude pressure disturbances

as the large scale coherent structures impinge the downstream corner of the cavity. The upstream

influence of the generated pressure fluctuations provides further excitation of the instabilities in

the shear layer, especially in its most receptive region near the upstream edge. A stable phase

criterion is then installed between the downstream and the upstream edges of the cavity. Existing

2-D and 3-D DNC databases for low Reynolds-number flow over rectangular cavities [21, 22]

are used to link selected flow structure events and acoustic pressure fields.

The paper is organized as follows. In Section 2, the post-processing tools (POD and QSE pro-

cedures) including the coupling of both procedures are briefly recalled. In section 3, the Navier

Stokes solver and the flow configuration are presented. Section 4 shows a coupled POD-QSE

aeroacoustic analysis of a 2-D cavity flow database. Finally, section 5 deals with an application

to a 3-D cavity flow database.
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2. Mathematical tools

Before describing the Proper Orthogonal Decomposition and Quadratic Stochastic Estima-

tion procedures, the following notations are introduced: ui and p correspond to the ith fluctuating

velocity component and to the fluctuating pressure field respectively. These fluctuating variables

are directly deduced from the classical Reynolds decomposition.

2.1. Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition is a well-known technique for determining an optimal

basis for the reconstruction of a data set. This technique has been used in the past in numerous

fields of application. For instance, in fluid mechanics, Lumley [23] suggested to use POD for ex-

tracting coherent structures from turbulent flows. He then proposed to define a coherent structure

as the one having the largest mean square projection on the velocity field. They are consequently

the solutions of the following Fredholm integral eigenvalue problem [24]:

Nc∑
j=1

∫
D

Ri j(x, x′) φ(n)
j (x′) dx′ = λ(n) φ(n)

i (x), (1)

where Nc is the total number of velocity components taken into account, x denotes the spatial

coordinates and D is the spatial domain under consideration. Ri j(x, x′) corresponds the time-

averaged two-point spatial correlation tensor. In this flow decomposition, φ(n)
j is the nth POD

eigenmode associated with the jth velocity component and λ(n) is the corresponding POD eigen-

value. Sirovich [25] proposed an equivalent approach called snapshot POD for the cases where

the kernel Ri j(x, x′) corresponds to a high-dimensional tensor. In this approach, the temporal

POD modes a(n) are computed from the spatial-averaged fluctuating velocity correlation tensor,

and each instantaneous velocity component is expressed as follows:

ui(x, t) =

Nmod∑
n=1

a(n)(t)φ(n)
i (x), (2)

where t is the time variable, φ(n)
j corresponds to the POD coefficient projected onto the a(n) POD

mode and Nmod is the total number of POD modes. These POD modes are orthonormal, i.e.〈
φ(n)

j φ
(m)
j

〉
= λ(n)δnm, with δnm the Kronecker symbol and 〈 〉 indicates a spatial average. The

coefficients are uncorrelated, i.e. a(n)(t)a(m)(t) = δnm, the overbar indicating a time average.
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2.2. Stochastic Estimation

From a global point of view, the stochatic estimation is the approximation (or estimation) of

a random variable in terms of some other random variables which are known. Numerous ap-

plications of such procedures have been performed in many disciplines. For instance, in fluid

mechanics, the stochatic estimation has been introduced by Adrian [26] in order to provide a

conditional estimate of the large-scale structures present in turbulent flows. In this context, the

estimation uses a specified conditional event about the flow at one or more locations together with

its statistical properties to estimate the information at surrounding locations [27, 28, 29, 30]. A

lot of previous applications have shown the efficiency of the linear version (Linear Stochastic Es-

timation, LSE) to detect and extract the large scale coherent structures of turbulent flows [29, 31].

However, the linear approximation seems unlikely to be able to describe a strongly non-linear

phenomenon, especially when dealing with two different flow variables (velocity and pressure

for instance) [15, 27, 30, 32]. In the latter case, the extension to the second order of the stochastic

estimation is generally retained. Note that we have previously observed that for a highly coher-

ent 2-D cavity flow such as the one studied in the section 4, the LSE and QSE estimations of

the acoustic pressure field from the knowledge of the aerodynamic flow can provide quite simi-

lar results [33]. We only observed some differences on the acoustic pressure levels which were

slightly attenuated when using LSE procedure. Based on this work and on the literature results,

the Quadratic Stochastic Estimation (QSE) is subsequently used in the present work.

Mathematically, based on the knowledge of instantaneous velocity field u at selected flow

sensors, referenced with ref subscripts, the QSE estimation of the acoustic pressure p̂ at location

x′ is given by:

p̂(x′) = A j(x′, xre f )u j(xre f ) + B jk(x′, x1re f , x2re f )u j(x1re f )uk(x2re f ) (3)

using the notation of repeated indices and u j, uk denote the jth and kth velocity components re-

spectively. Note also that an implicit summation is used when spatial variables (xre f , x1re f , x2re f )

is repeated. The time-independent coefficients A j, B jk are computed by minimizing the quadratic

error ε =
〈
|p̂ − p|2

〉
at the estimation points. We obtain:

∂ε

∂A j(xre f )
=

∂ε

∂B jk(xre f )
= 0

Writing a Taylor series expansion for the estimated pressure:

p̂(x′) = A j(x′, xre f )u j(xre f ) + B jk(x′, x1re f , x2re f )u j(x1re f )uk(x2re f ) + ...
5



this yields the following system of equations:〈
u j(x3re f )uk(xre f )

〉
Ak(x′, xre f )+ (4)〈

u j(x3re f )uk(x1re f )ul(x2re f )
〉

Bkl(x′,x1re f , x2re f ) =
〈
u j(x3re f )p(x′)

〉
(5)〈

u j(x4re f )uk(x3re f )ul(xre f )
〉

Al(x′, xre f )+ (6)〈
u j(x4re f )uk(x3re f )ul(x1re f )um(x2re f )

〉
Blm(x′,x1re f , x2re f ) =

〈
u j(x4re f )uk(x3re f )p(x′)

〉
(7)

(8)

which requires the knowledge of the two-point second- and third-order spatial pressure/velocity

correlation tensor. The system can be symbolically written in the matrix form, [Q]c = f, where

[Q] is the matrix of auto-correlations, c represents the unknown coefficients A j and B jk, and the

right-hand side f contains the two-point spatial pressure-velocity correlation between x′ and xre f

respectively. Details of the QSE implementation can be found in Murray and Ukeiley [30, 34].

Note that in our study, since cavity flows at low Reynolds numbers are very coherent, the

correlation matrix [Q] is close to singular. That is why a Tikhonov’s regularization[35] is im-

plemented to improve the quality of the QSE estimation. By noting ‖[Q]c − f‖ the norm of the

residue, ‖[L](c−c0)‖ the contrainst with a linear operator [L], and λ the regularization parameter,

the method consists in solving the least-square problem c = min(‖[Q]c − f‖ + λ2‖[L](c − c0)‖).

If the singular value decomposition of [Q] is [Q] = [U][S][Vt], then the least square solution is:

c =

N∑
j=1

ut
jf
σ j

v j (9)

where u1,..., uN and v1,..., vN are the column vectors of the matrix [U] and [V] respectively. [S]

is the diagonal matrix of the singular values σ j of [Q]. The initial matrix problem is ill-posed if

one or several singular values are close to zero. The principle of Tikhonov’s regularization is to

filter their contribution with a filter f j so that:

f j =
σ2

j

σ2
j + λ2

c =

N∑
j=1

f j

ut
jf
σ j

v j

where λ is the regularization parameter evaluated thanks to the L-curve method [35].

2.3. Coupling of QSE with POD

Based on the POD flow decomposition, it is possible to mathematically extract some flow

structure events by projecting the instantaneous velocity field onto selected POD eigenmodes.
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Such velocity field associated with these selected POD modes can then be used as conditional

event for the QSE estimation of the far-field acoustic pressure. The purpose of this work consists

in analysing the QSE reconstructed acoustic pressure from the knowledge of different flow events

deduced from the POD decomposition.

From a mathematical point of view, suppose that the conditional event corresponds to the

instantaneous velocity field projected onto n2 − n1 + 1 modes that is

ui
n2
n1

(xre f , t) =

n2∑
n=n1

a(n)(t)φ(n)
i (xre f ). (10)

where xre f are selected locations inside a specific domain, hereafter referred to as the POD

zone. Based on the knowledge of the components ui
n2
n1 , QSE is implemented to estimate the

instantaneous far-field acoustic pressure, as follows:

p̂(x′, t) = A j(x′, xre f )u j
n2
n1

(xre f , t) + B jk(x′, x1re f , x2re f )u j
n2
n1

(x1re f , t)uk
n2
n1

(x2re f , t) (11)

where x′ belongs to a specific domain in the far-field acoustic zone (called the QSE zone). Note

that, with such conditional event, the coefficients A j and B jk are still computed from the two-

point second- and third-order spatial pressure/velocity correlation tensor but using as reference

velocity, only the velocity fields projected onto n2 − n1 + 1 modes at some reference points.

Since a preliminary knowledge of the complete flow is available, it is then possible to ac-

curately quantify the influence of the conditional events related to the POD decomposition on

the reconstructed acoustic pressure field. Note that the QSE coefficients act as a transfer matrix

between the acoustic and aerodynamic fields, so that it is not necessary to take into account the

retarded time in the pressure/velocity correlations, as demonstrated for instance in the appendix.

It is thus not possible to relate directly a particular acoustic wavefront with an event in the source

field at a given time, which is beyond the scope of this work. The analysis is rather statistical,

as could be done with a DNC simulations. The proposed post-processing method will be useful

to determine the candidate flow structures which are best correlated to the frequency peaks ob-

served in the acoustic spectra. The reflected acoustic pulse in the appendix also serves to show

that the method is applicable to transient problems, whereas the flow is quasi-periodic or cycling

in time in the cavity flow cases.
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3. Numerical method and flow configurations

3.1. Navier-Stokes solver

The governing compressible Navier-Stokes equations in conservative form are discretized

spatially by Dispersion Relation Preserving (DRP) finite-difference schemes on eleven-point

stencils and advanced in time using a six-substep low-storage Runge-Kutta algorithm [36]. A

selective filtering on an eleven-point stencil is applied to remove unphysical grid-to-grid oscilla-

tions. The wall conditions are adiabatic and non slipping, with zero pressure gradient. Radiation

conditions of Tam and Dong [37] are used at free boundaries, together with a sponge zone for

the exit of vortices at the outlet. Details on the numerical method are provided in previous papers

[22, 38].

Throughout the paper, nondimensionalized results are presented using the depth D of the

cavity as a length scale, U∞ as a velocity scale, D/U∞ as a time scale, and ρ∞U2
∞ as a pressure

scale.

3.2. Flow configuration

The Direct Noise Computation solver, briefly described above, has been used to study sub-

sonic flow over two- and three-dimensional cavities. Aeroacoustic analyses are successively

applied to these 2-D and 3-D databases, in sections 4 and 5 respectively.

Concerning the 2-D test case, we retain a low Reynolds number cavity flow which roughly

corresponds to the case previously investigated by Rowley et al. [39] The computational domain

for the rectangular cavity with a length to depth ratio of 2 (L/D = 2), allows the laminar boundary

layer to develop on the flat plate ahead of the cavity. The free stream Mach number is M∞ =

0.6 and L/δθ = 56.8 where δθ is the momentum thickness at the upstream edge of the cavity.

The Reynolds number based on the depth D is 1500. The computational grid is a non-uniform

Cartesian mesh of 132 × 118 points inside the cavity and 351 × 213 points on and above the

plane of cavity opening. The time step imposed by the Courant-Friedrichs-Lewy criterion is

1.87 × 10−3. This 2-D database [21] has previously been used to develop reliable compressible

POD/Galerkin low-dimensional models [40], and serves now to perform a coupled POD-QSE

aeroacoustic analysis.

Concerning the 3-D test case, a low Reynolds number configuration is chosen to achieve a

well-resolved 3-D Large Eddy Simulation (LES) at a reasonable computational cost. Briefly, the
8
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Figure 1: (a) Visualization of the aerodynamic and acoustic domains retained for the computation of the POD modes

(POD zone), and for the estimation of the radiated acoustic field (QSE zone). The isocontours for the non dimensionalized

pressure are -0.02, -0.016, -0.012, -0.008, -0.004 (dashed lines) and 0.004, 0.008, 0.012, 0.016, 0.02 (solid lines), and

10 isocontours between ±1 are plotted for the non dimensionalized streamwise velocity in the POD zone; (b) Non

dimensionalized fluctuating pressure map from the DNC solver (with the same isocontours as (a)).

length-to-depth ratio is 1 with ReD = 27 372. The finite spanwise extent of the cavity W is such

that L/W = 1.28. The free stream Mach number is M∞ = 0.6. A non-uniform Cartesian mesh

of 41 × 33 × 41 points inside the cavity and of 121 × 132 × 71 outside is used. More details and

analyses related to this 3-D numerical database can be found in Gloerfelt et al [21, 40, 41].

4. Application to the flow over a 2-D cavity

The first step consists in extracting from the whole available computational domain an aero-

dynamic zone called POD zone, and an acoustic region called QSE zone, from which mathe-

matical post-processing tools are implemented. Figure 1(a) presents the choices for the limits of

the POD and QSE zones. The instantaneous streamwise velocity component is depicted in the

POD zone, whereas the instantaneous acoustic pressure is plotted in the QSE zone. The complete

computational domain is shown in figure 1(b) for comparison. Note that we voluntarily retain

a large POD zone in order to investigate the influence of the aerodynamic event location on the

QSE acoustic farfield.

Once the cavity oscillations are assumed to be self-sustained (after 100 000 iterations), 37
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Figure 2: POD eigenvalues λ(n)/λ(1) as function of the mode number n: (◦−◦) 37 snapshot basis; (44) 74 snapshot basis.

instantaneous velocity fields are stored in the POD zone, every 40 iterations of the DNC compu-

tation. This velocity database, corresponding to one period of oscillation, is then used as input

data for the POD application. The POD energy convergence is plotted in figure 2. It is compared

with the eigenvalues obtained for a 74-snapshot basis (2 periods). Although the logarithmic

scale shows a slightly lower decay when more snapshots are included in the decomposition, the

differences are not significant. The first four POD modes indeed contain 99.55% of the total

fluctuating kinetic energy, whereas the first 8 modes represent 99.99%. When comparing POD

modes and coefficients computed from the whole available variables (velocity and pressure) [40]

and current ones (velocity only), we observe very close results, as seen in Table 1. This is directly

related to the high correlation level which exists between velocity and pressure variables in 2-D

cavity flows.

An illustration of the POD decomposition is given in figure 3 where the vorticity modes,

reconstructed from velocity eigenfunctions are plotted for modes 1 to 6. The instantaneous vor-

ticity resulting from the projection onto POD modes 1 and 2 shows that the first two POD modes

capture well the large-scale flow dynamics.

As a first test, instantaneous velocity fields projected successively onto each of the 6 first POD

modes are used as conditional events for the QSE estimation of the acoustic pressure. Figure

4 displays the resulting fluctuating pressure fields together with the instantaneous streamwise

10



mode # 1 2 3 4 5 6 7 8 9 10

new POD

(velocities)
47.72 46.57 2.70 2.57 0.20 0.19 0.02 0.02 0.004 0.004

POD[40]

(velocities+

pressure)

47.87 46.93 2.45 2.33 0.18 0.17 0.02 0.02 0.004 0.004

Table 1: Energy of the 10 first POD modes expressed as a percentage of the total fluctuating energy for the

37 snapshot bases.

velocity components. It is observed that the pressure fields reconstructed from velocity POD

mode 1 and 2 respectively have a similar energy level and frequency. This is also true for other

pairs of modes. A phase shift of π/2 is visible between two modes in a pair, and has been

shown to be a consequence of a translation symmetry [24], characteristic of flows with convective

structures. The frequency doubling between two successive pairs is also visible for the acoustic

waves.

Figure 5 displays the reconstructed fluctuating pressure field along a vertical line. The levels

of the acoustic pressure deduced from the POD modes 1-2 are 5 times higher that the pressure

fields obtained from POD modes 3-4, and 25 times higher than the ones deduced from modes

5-6 (see figure 4).

When comparing these results to those obtained by Gloerfelt [40] who performed a POD

flow decomposition based on the whole available field including both velocity and thermody-

namic variables, very similar results are obtained. The projection of the acoustic pressure onto a

particular POD mode is quite identical to the QSE estimation of the acoustic pressure from the

knowledge of the velocity field projected onto this particular mode. Such observation confirms

the link existing between Stochastic Estimation and Extended Proper Orthogonal Decomposi-

tion.

An investigation of the influence of the location of the aerodynamic conditional event on

the acoustic farfield estimation is now performed. We only show results for POD mode 3-4

since these high-order modes are more sensitive to the choice of the reference points. Four

11



(a) (b)

(c) (d)

(e) (f)

Figure 3: Instantantaneous vorticity field in the POD zone projected onto the first (a), second (b), third (c), fourth (d),

fifth (e), and sixth (f) POD modes. The nondimensionalized vorticity ωxyD/U∞ is plotted between -0.25 and 0.25 for

(a)(b), -0.5 and 0.5 for (c)(d), -1 and 1 for (e)(f) (black: positive values; white: negative values).

points located near each of the cavity corners are successively retained as reference locations to

extract velocity temporal signals for the QSE implementation. Figures 6 and 7 show the QSE

reconstruction of the acoustic pressure from the different reference velocity fields projected onto

POD modes 3-4. The resulting QSE acoustic fields are different depending on the location of

the conditional event. When using only one velocity temporal signal stored in the upper-right

corner of the cavity, the QSE pressure field is similar to the QSE pressure field deduced from

four velocity temporal signals (see figure 7) and also from the original pressure field. Since the

POD procedure is a global technique taking into account the whole information available in the

POD zone, we may assume that each localized aerodynamic event has a signature in the whole

POD basis. The fact that the QSE acoustic field using a conditional aerodynamic event in the

upper-right corner is quite similar to the DNC reference underlines that the POD basis is able

to include localized informations. This result may be interesting for determining an optimal

location of sensors for cavity flow control strategies [20].

5. Application to the flow over a 3-D cavity

A 3-D application is now performed from a previous available database [40]. A sketch of the

computational domain is given in figure 8. The limits of the POD zone are superimposed on a
12
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Figure 4: Instantaneous fluctuating pressure field reconstructed with QSE procedure using as conditional flow event the

velocity field projected onto: (a) POD mode 1, (b) POD mode 2, (c) POD mode 3, (d) POD mode 4, (e) POD mode 5,

(f) POD mode 6. Same isocontours as figure 1 for (a) and (b). The levels are divided by a factor 5 for (c) and (d), and by

a factor 25 for (e) and (f).
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Figure 5: Fluctuating pressure along the line x/D=0.088: ( ) DNC reference; (-o-o-) QSE from POD mode 1;

(-*-*-) QSE from POD mode 2; ( ) QSE from POD mode 3; ( ) QSE from POD mode 4.

vorticity view in the midplane on the right. The temporal evolution of the acoustic pressure is

presented in figure 9, and exhibits a regular pattern with a five-cycle repetition. 328 instantaneous

velocity snapshots extracted in the 3-D POD zone are used to compute POD modes. These

snapshots are stored every 20 time steps of the DNC, and correspond to five successive cycles of

five oscillations.

A snapshot POD decomposition is then performed from this database leading to 328 POD

eigenfunctions. The corresponding POD energy convergence, plotted in figure 10, shows a flatter

shape than in the 2-D case. Considerations about convergence of the basis for this case are dis-

cussed in [40]. The shape of selected modes are depicted in figure 11 by evaluating the vorticity

from the velocity POD modes. Then, using different values for the (n1, n2) numbers, as defined in

Eq.(10), the QSE procedure is implemented to access the acoustic pressure field. Knowing that

the implementation of the QSE procedure needs to compute the two-point second- and third-order

spatial pressure-velocity correlation tensor, the storage requirements may rapidly become pro-

hibitive. That is why the number of reference velocity signals used as reference in the QSE im-

plementation has to be minimized. The influence of the number of reference signals on the recon-

structed pressure field has been investigated in a previous work [33]. It was shown that 9 selected

reference velocity signals are enough to reconstruct correctly the far-field pressure field. This

is explained by the nature of our methodology where the reconstruction is greatly conditioned

by the POD flow decomposition which is computed from all available velocity informations.

The locations of the 9 reference points are (x/D; y/D; z/D)=(0.27;−0.05; 0), (0.27; 0.03; 0),

(0.27; 0.16; 0), (0.6;−0.05; 0), (0.6; 0.03; 0), (0.6; 0.16; 0), (0.89;−0.05; 0), (0.89; 0.03; 0), (0.89; 0.16; 0).
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Figure 6: Fluctuating pressure field estimated with the QSE procedure using different reference points (black asterisks)

for the velocity projected onto the third and fourth POD modes: (a) velocity reference at the upper-right corner of the

cavity (x/D=1.89; y/D=0.01), (b) velocity reference at the upper-left corner of the cavity (x/D=0.34; y/D=0.01), (c)

velocity reference at the lower-left corner of the cavity (x/D=0.34; y/D=-0.72), (d) velocity reference at the four corners

of the cavity (1.89; 0.01), (0.34; 0.01), (1.89; -0.72), (0.34; -0.72). The pressure isocontours are -0.004, -0.0032, -0.0024,

-0.0016, -0.0008 (dashed lines) and 0.0008, 0.0016, 0.0024, 0.0032, 0.004 (solid lines).
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Figure 7: Fluctuating estimated QSE pressure from POD modes 3 & 4 along the line x/D=0.088 for different reference

points: ( ) 4 points located at (1.89; 0.01), (0.34; 0.01), (1.89; -0.72), (0.34; -0.72); (-o-o-) 1 point at (1.89; 0.01);

(-*-*-) 1 point at (0.34; 0.01); ( ) 1 point at (0.34; -0.72).
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Figure 8: (a) Sketch of the 3-D computational domain. (b) Instantaneous vorticity field in the median plane and 2-D view

of the selected POD zone, which spans the transverse width of the domain.
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Figure 9: Instantaneous traces of the pressure fluctuations in the acoustic field at (−1.16D, 3D, 0).
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Figure 10: POD eigenvalues λ(n)/λ(1) as function of the mode number n.

A first application is presented using as conditional event instantaneous velocity field pro-

jected onto the first 50 POD modes (n1=1, n2=50 in Eq.(10)) among the 328 available ones.

Note that these first 50 modes contain 92.8% of the total fluctuating kinetic energy (see figure

10). The resulting reconstructed acoustic field is compared in figure 12 with the original acous-

tic field obtained from the raw DNC database. The time history of the fluctuating pressure at a

sensor located in the far-field is also represented in figure 13. A fair quantitative agreement with

the DNC signal is observed, and confirms that a small number of POD modes is sufficient to

reconstruct the acoustic field with the QSE. This justifies the great development of reduced order

model based on POD/Galerkin procedure to study the dynamics of a flow over a cavity [40].

The influence of the flow structures involved in the noise emission in a statistical sense is

17



Figure 11: 2-D views of the instantantaneous vorticity field in the POD zone projected onto a single POD mode (specified

inside each subplot), in the median plane. The nondimensionalized vorticityωxyD/U∞ is plotted between -1 and 1 (black:

positive values; white: negative values).
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Figure 12: Instantaneous fluctuating pressure field at two instants: top row, tU∞/D=130; bottom row, tU∞/D=143. The

positive isocontour levels (solid lines) are 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.011,

0.012, 0.013, 0.014, 0.015, 0.035, 0.055, 0.075, 0.095. The negative levels (dashed lines) have the same absolute values

with opposite signs. (a)(c) reconstructed using the velocity field projected onto the first 50 POD modes as conditional

event; (b)(d) DNC reference.
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Figure 13: Time evolution of the instantaneous pressure field at the location (x/D, y/D, z/D) = (−0.97, 1.65, 0) The

original pressure signal from DNC ( ) is superimposed on the reconstructed pressure field (-o-o-) using the

velocity field projected onto the first 50 POD modes as conditional event.

now examined. The QSE is implemented to reconstruct the acoustic pressure from the knowl-

edge of selected flow events deduced from the POD flow partitioning. Figure 14 represents four

instantaneous pressure fields, reconstructed with the QSE procedure using as conditional events

velocity field projected onto i) first 2 POD modes, ii) modes 3 and 4, iii) modes 5 and 6 and

iv) modes n1 = 7 to n2 = 50. The corresponding time evolution of the reconstructed acoustic

pressure obtained at a fixed location is given in figure 15. Figure 16 represents the corresponding

power spectral densities for each reconstructed pressure field.

When using the 50 first POD modes as conditional event, the spectral content of the recon-

structed pressure field is almost identical to the reference one. The two main frequency peaks are

recovered, as well as the two following ones. Small discrepancies are visible at the highest fre-

quencies due to the truncation of the original basis. The spectrum of the pressure reconstructed

from the velocity field projected onto the first two POD modes exhibits the first two main peaks.

The principal peak is associated with Kelvin-Helmholtz rolls clearly identified in figure 11 for

modes 1-2. These large scales are mainly responsible of the noise emission. The correspond-

ing Strouhal number S t2 = f2U∞/L=0.80 is close to that of mode II deduced from the classical

Rossiter formula [16], S tII= f L/U∞=(n − α)/(1/κ + M∞)=0.74, with the values n=2, α=0.25,

κ=0.57, and M∞=0.6. A similar analysis for n=1 would indicate that the first low-frequency

peak at S t1=0.32 is Rossiter’s mode I (S tI=0.31). The time history presented in figures 9 or 15(a)
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Figure 14: Instantaneous fluctuating pressure field reconstructed using the QSE procedure with different conditional flow

events at tU∞/D=130, using 9 reference points: (a) velocity field projected onto the first two POD modes (b) velocity

field projected onto the POD modes 3 and 4. (c) velocity field projected onto the POD modes 5 and 6. (d) velocity field

projected onto the POD modes 7 to 50. Pressure isocontours are the same as those in figure 12.
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Figure 15: Time evolution of the instantaneous pressure field at the location (x/D, y/D, z/D) = (−0.97, 1.65, 0) using the

QSE procedure with different conditional flow events. See caption of figure 14 for details on the different cases: DNC (

); QSE (-o-o-).
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Figure 16: Power spectral densities of the fluctuating pressure at the location (x/D, y/D, z/D) = (−0.97, 1.65, 0) The orig-

inal pressure signal from DNC ( ) is superimposed on the reconstructed pressure field using the QSE procedure

with different conditional flow events ( ).
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suggests rather a regular low-frequency modulation with a period T0 = 1/ f0 = 5 T2 = 5/ f2. A

previous analysis of the vorticity field [40, 41] showed that the impingement height, i.e. the verti-

cal location of the vortex centroid relative to the downstream corner position, is modulated. This

corresponded to more or less severe clippings of the incoming vortex, resulting in a more or less

intense acoustic pulse. The spectrum of the acoustic pressure estimated from modes 3-4 in figure

16 also exhibits this low-frequency peak f1 = 2 f0, but the corresponding time history in figure

15(b) reveals separated acoustic pulses emitted at the frequency f1. The vorticity field projected

onto modes 3-4 in figure 11 are essentially characterized by elongated streamwise structures

spanning the whole shear flow. A similar signature is visible for numerous higher-order modes,

but with increasing frequency (modes 7, 14, 16 for example). The spectrum for modes 5-6 is

10 dB lower, so that these modes do not contribute significantly to the noise radiation. An in-

teresting feature is that this is the sole spectrum with a zero-frequency component. This pair of

modes thus includes mainly the trace of the distorsion mode. In [40], the effect of including the

mean in the POD decomposition was shown to provide a more stable Galerkin ansatz. Mode 0

then represents the distorsion mode whose time evolution (figure 28 of [40]) is very similar to

that of modes 5-6 in figure 15(c). Lastly, when the mean is substracted in [40], the time variation

of the mean flow is represented by higher-order modes as in the present analysis. When dealing

with the background flow (POD modes 7-50) as conditional event, the resulted pressure spectrum

has a signature in the whole frequency domain. This last remark and the fact that the peak at f1

is present in the spectra for modes 1-2 and 3-4 illustrates a POD property which relies on the

non-localness character of the POD basis [15]. Modes 7-50 are associated with a flatter spectrum

comprising both higher-frequency components, and broadband noise from the weakly coherent

smaller turbulent scales.

6. Conclusion

A statistical aeroacoustic analysis has been performed allowing the investigation of the large

scale flow structures which are mainly correlated to the frequency peaks observed in the acoustic

spectra in the far field. In this statistical sense, QSE coupled to POD mathematical tools have

been implemented to analyze the correlation which exists between selected flow structures and

the far-field acoustic pressure in a turbulent flow. The cavity flows used as test-cases are however

very coherent with almost periodic or cycling oscillations, but the present methodology remains
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pertinent for more chaotic flows to link the frequency peaks in the acoustic spectrum to the events

deduced from a flow partitioning, such as Fourier or POD decomposition.

Two applications have been performed for two- and three-dimensional flows over a cavity. The

2-D case indicates that POD modes can extract relevant velocity information which can be asso-

ciated with selected frequencies of the far-field acoustic pressure. The results have also shown

the possibility to isolate the aerodynamic events which contribute mainly to the noise emission.

Based on the 3-D results, we confirm that a POD-QSE application is particularly well-suited for

cavity flows, due to its efficiency in extracting coherent flow structures and their correspond-

ing signature in the far acoustic field. Indeed, the main frequency observed in the far acoustic

pressure spectrum can be correlated to aerodynamic events thanks to the POD partitioning. The

coupled POD-QSE analysis also shows that the coexistence of two main frequencies is rather

due to a modulation of the vortex-corner interaction than due to the genuine coexistence of two

sizes of the Kelvin-Helmholtz rolls, as would be deduced from Rossiter’s interpretation. It has

been also demonstrated how the flow structures corresponding to high-order POD modes can

be related to the distortion mode playing a determinant role in the self-sustaining process, by

allowing from-time-to-time energy exchange with the mean flow.

Furthermore, the influence of the location of the reference points used as conditional event

has been investigated. It is observed in the 2-D case that the proper choice of the point where

the velocity signals are stored can provide a QSE reconstruction almost identical as the DNS

reference pressure. This result underlines that even if POD procedure is a global technique,

the POD basis can exhibit localized aerodynamic informations. Some experimental applications

for determining the optimal locations of sensors in cavity for control flow strategies are then

conceivable.

Appendix A. Test problem

Appendix A.1. Reflection of a pressure pulse

The reflection of a pressure pulse is a typical wave propagation problem [42]. The applica-

tion of the POD/QSE methodology on this test case is useful to show that the method can treat

acoustic waves without taking into account a retarded time in the correlations. Furthermore,

it is an initial boundary value problem (IBVP), demonstrating that the present methodology is

applicable to non-periodic transient flows.
25



A two-dimensional acoustic pulse placed in air at rest is reflected on a plane wall. The initial

pressure disturbance has a Gaussian spatial distribution :

p′(x, y, t = 0) = ε × exp
[
−

ln 2
b2

(
(x − x0)2 + (y − y0)2

)]
where b = 5 is the Gaussian half-width, and ε = 10−3 is the amplitude. The variables are

nondimensionalized by a length scale ∆, a velocity scale c∞, a time scale ∆/c∞, a density scale

ρ∞, and a pressure scale ρ∞c2
∞, where c∞ and ρ∞ denote the ambient sound speed and density

respectively. The pulse is centered at (x0=0, y0=25) in a square domain defined by [−100 ; 100]×

[0 ; 200]. The 2-D Euler equations are solved on a uniform 201 × 201 Cartesian meshgrid with

∆x = ∆y = 1. The analytical solution of this IBVP is given in [42].

Appendix A.2. Application of stochastic estimation

The CAA (Computational AeroAcoustics) simulation is performed over a non-dimensional time

t = 100 with a total of 160 time steps. Snapshots are saved every five simulation time steps

for the 32 snapshot basis (or every time steps for the 160 snapshot basis). First, based on the

knowledge of the 32 snapshot basis of the velocity field available in the whole domain ( LSE

zone), the linear stochastic estimation (LSE) procedure is used to reconstruct the acoustic pres-

sure field. Both velocity components are used to form the pressure-velocity correlation, using a

finite number of velocity reference points. Figure A.17 shows the contours of the pressure dis-

turbance reconstructed with 36 reference points (located at [-70 -40 -10 20 50 80]×[-70 -40 -10

20 50 80]) from the 32 snapshot basis. The LSE pressure is almost undistinguishable from the

CAA solution. The L2-norm of the error ||p′LS E − p′CAA||, averaged over the whole computational

domain, is presented in figure A.19(a) as a function of the non-dimensional time. It is compared

with the reconstruction using 25 reference points ([-80 -40 0 40 80]×[-80 -40 0 40 80]) and

using 9 reference points ([-40 0 40]×[-40 0 40]). The error between the CAA solution and the

analytical solution is also plotted. We can see that the reconstruction error is reduced by using

more reference points. However, the level of the error is always roughly two orders of magnitude

greater than that of the CAA solution. This can be related to the errors generated when trying to

inverse the correlation matrix to obtain the LSE coefficients. The information can be redundant,

so that the problem is ill-conditionned. The use of the quadratic relationship (QSE) does not im-

prove the results, as seen in A.19(a) for the 25-reference-point case. Furthermore, the stochastic

estimation of the pulse from the 160-snapshot basis lead also to the same errors.
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Figure A.17: Pressure disturbance contours for the two-dimensional reflected pulse case: 2 contours at 10−2 and 5×10−2

Reconstructed field using LSE with 36 reference points and 32 snapshots ( ) superimposed onto the CAA

solution ( ) for successive nondimensional times (a) t=25, (b) t=50, (c) t=75, (d) t=100.
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Figure A.18: POD eigenvalues λ(n)/λ(1) as function of the mode number n: (◦−◦) 160 snapshot basis; (44) 32 snapshot

basis. The vertical lines denote the limit for 10 modes ( ), 20 modes ( ), and 80 modes ( ).

Appendix A.3. Coupling of POD/LSE methods

The POD modes are calculated for the 32- and 160-snapshot bases. The eigenvalue spectra

are plotted in figure A.18. This initial value problem yields a flat spectrum; no mode pairs are for

instance visible on the linear scale. The 10 first modes represent 84.6% of the fluctuating energy,

the 20 first modes represent 99.89%, and the 80 first modes approach 100%. The reconstructions

with 20, or 80 modes from the 160-snapshot basis lead similar results as taking the whole basis.

However, significant errors are noticed when using only 10 modes, since the energy truncature is

now significant, as seen in figures A.19(b) and A.20.
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[21] X. Gloerfelt, C. Bogey, C. Bailly, D. Juvé, Aerodynamic noise induced by laminar and turbulent boundary layers

over rectangular cavities, in: AIAA Paper 2002-2476, 2002.

[22] X. Gloerfelt, C. Bogey, C. Bailly, Numerical evidence of mode switching in the flow-induced oscillations by a

cavity, Int. J. Aeroacoustics 2 (2) (2003) 99–124.

[23] J. Lumley, The structure of inhomogeneous turbulent flows, in: Yaglom, Tatarsky (Eds.), Atm. Turb. and Radio

wave Prop., 1967, pp. 166–178.

[24] P. Holmes, J. Lumley, G. Berkooz, Turbulence, coherent structures, dynamical systems and symmetry., Cambridge

monograph on mechanics eds., 1996.

[25] L. Sirovich, Turbulence and the dynamics of coherent structures. part i: Coherent structures, Q. Appl. Math XLV

30



(1987) 561–571.

[26] R. Adrian, On the role of conditional averages in turbulence theory, in: J. Zakin, P. G. Patterson, Science Press

(Eds.), 4th Biennial Symposium on Turbulence in Liquids, 1977, pp. 322–332.

[27] A. Naguib, C. Wark, O. Juckenhofel, Stochastic estimation and flow sources associated with surface pressure events

in a turbulent boundary layer, Phys. Fluids 13 (9) (2001) 2611–2626.

[28] P. Druault, P. Guibert, Use of turbulent flow statistical properties for correcting erroneous velocity vectors in piv,

C.R. Mecanique 332 (9) (2004) 731–736.

[29] P. Druault, J. Delville, J. Bonnet, Experimental 3d analysis of the large scale behaviour of a plane turbulent mixing

layer, Flow Turb. Comb. 74 (2) (2005) 207–233.

[30] N. Murray, L. Ukeiley, Modified quadratic stochastic estimation f resonating subsonic cavity flow, J. Turbulence

8 (53) (2007) 1–23.

[31] R. Adrian, B. Jones, M. Chung, Y. Hassan, C. Nithianandan, A. Tung, Approximation of turbulent conditional

averages by stochastic estimation, Phys. Fluids 1 (6) (1989) 992–998.

[32] C. Picard, J. Delville, Pressure velocity coupling in a subsonic round jet, Int. J. Heat Fluid Flow 21 (3) (2000)

359–364.

[33] P. Druault, X. Gloerfelt, T. Mervant, Aeroacoustic analysis of cavity flows using quadratic stochastic estimation

coupled with proper orthogonal decomposition, in: AIAA Paper 2009-3358, 2009.

[34] N. Murray, L. Ukeiley, Estimation of the flow field from surface pressure measurements in an open cavity, AIAA

J. 41 (5) (2003) 969–972.

[35] C. Hansen, Regularization tools, a Matlab package for analysis and solution of discrete ill-posed problems,

http://www.imm.dtu.dk/pch, Version 3.0 (2001).

[36] C. Bogey, C. Bailly, A family of low dispersive and low dissipative explicit schemes for noise computation, J.

Comp. Physics 194 (2004) 194–214.

[37] C. Tam, Z. Dong, Radiation and outflow boundary conditions for direct computation of acoustic and flow distur-

bances in a nonuniform mean flow, J. Comp. Acoustics 4 (2) (1996) 175–201.

[38] X. Gloerfelt, Large-eddy simulation of a high reynolds number flow over a cavity including radiated noise, in:

AIAA Paper 2004-2863, 2004.

[39] C. Rowley, T. Colonius, A. Basu, On self-sustained oscillations in two-dimensional compressible flow over rectan-

gular cavities, J. Fluid Mech. 455 (2002) 315–346.

[40] X. Gloerfelt, Compressible proper orthogonal decomposition/Galerkin reduced-order model of self-sustained os-

cillations in a cavity, Phys. Fluids 20 (115105).

[41] X. Gloerfelt, C. Bogey, C. Bailly, Numerical investigation of the coexistence of multiple tones in flow-induced

cavity noise, in: AIAA Paper 2003-3234, 2003.

[42] J. Hardin, J. Ristorcelli, C. Tam (Eds.), Workshop on benchmark problems in computational aeroacoustics,

ICASE/LaRC NASA CP-3300, 1995.

31


