
HAL Id: hal-01069637
https://hal.science/hal-01069637v1

Submitted on 16 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Tropical Two-Way Automata
Vincent Carnino, Sylvain Lombardy

To cite this version:
Vincent Carnino, Sylvain Lombardy. Tropical Two-Way Automata. 8th IFIP International Conference
on Theoretical Computer Science (TCS), Sep 2014, Rome, Italy. pp.195-206, �10.1007/978-3-662-
44602-7_16�. �hal-01069637�

https://hal.science/hal-01069637v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Tropical two-way automata

Vincent Carnino1 and Sylvain Lombardy2

1LIGM - Laboratoire d’informatique Gaspard-Monge, Université
Paris-Est Marne-la-Vallée, France ,
Vincent.Carnino@univ-mlv.fr

2LaBRI - Laboratoire Bordelais de Recherche en Informatique,
Institut Polytechnique de Bordeaux, France ,

Sylvain.Lombardy@labri.fr

Abstract

In this paper we study two-way min-plus automata. We prove that
two-way distance automata are equivalent to one-way distance automata.
In the second part of the paper we show that, with general min-plus semir-
ings, it is decidable whether every accepted word has a weight different
from −∞ and that, in contrast, it is undecidable whether there exists a
word accepted with a weight different from −∞.

1 Introduction

Min-plus automata have attracted much attention for three decades. N-min-plus
is one of the simplest extensions of the Boolean semiring and min-plus automata
are therefore a very natural extension of automata with various applications in
natural language processing or optimization. They are indeed very powerful
tools and take part in some very important results like star height.

We study here two-way min-plus automata. When the weights are non
negative, we extend the classical result [8, 7] that states that a two-way finite
automaton is equivalent to a one-way finite automaton.

In the second part, we show that in general some words may be accepted
in some two-way automata by a family of runs whose the infimum over weights
is −∞. In this case, the behaviour of the automata may be not rational. We
prove that the existence of such accepted words is decidable. In contrast, we
prove that given a Z-min-plus automaton, it is undecidable whether there exists
a word accepted with a finite weight.

1

2 Tropical Two-way Automata

2.1 Automata and Runs

An alphabet is a finite set of letters; for every alphabet A, we assume that there
exist two fresh symbols ` and a that are marks at the beginning and the end of
the tapes of automata. We denote A à the alphabet A∪ {`,a}. For every word
w in A, w à is the word in A à equal to ` w a.

Tropical automata are instances of automata weighted by a semiring. For
every additive submonoid K of R, we can define the min-plus semiring K =
(K ∪ {∞},min,+). For instance, from N, Z and R+, we can respectively define
the min-plus semirings N , Z and R+. Notice that in a K-automaton, only
weights in K appear (∞ is an algebraic way to specify the absence of transition).

In the sequel, we call distance automaton every min-plus automaton with non
negative weights. Hence, N -automata andR+-automata are distance automata.

In some applications, the semiring P = ([0; 1],max, ·) is used (the weight of a
path is in this case the product of the probabilities of the path and the weight of
a word is the weight of the run on this word with the highest probability). The
application x 7−→ − log x is actually an isomorphism from P onto R+. Every
result on distance automata is therefore valid for P-automata.

One-way and two-way K-automata share a part of their definition. A K-
automaton is a tuple A = (Q,A,E, I, T) where Q is a finite set of state, A is a
finite alphabet, and I and T are partial functions from Q to K. The support of
I, I, is the set of initial states of A, and the support of T , T , is the set of final
states of A.

The definition of transitions differ. In a two-way K-automaton, E is a partial
function from Q× (A à ×{−1,+1})×Q into K and the support of E, E, is the
set of transitions of A. Moreover, the intersection of E and Q×({`}×{−1}∪{a
} × {1})×Q must be empty.
Let t be a transition in E; if t = (p, a, d, q), we denote σ(t) = p, τ(t) = q,
λ(t) = a, δ(t) = d. On figures, the value of δ is represented by a left (-1)
or right (+1) arrow. For instance, if t = (p, a,−1, q) and Et = k, we draw

p
a,←|k−−−−−→ q.
In a one-way K-automaton, E is a partial function from Q×A×Q into K,

and the support of E, E, is the set of transitions of A.
Let t be a transition in E; if t = (p, a, q), we denote σ(t) = p, τ(t) = q, λ(t) = a.

Definition 1. Let w = w1 . . . wn be a word of A∗, we set w0 = ` and wn+1 = a.
A configuration of A on w is a pair (t, i) where i is in [0;n + 1] and t is a
transition of A with λ(t) = wi. A computation (or run) ρ of A on w is a finite
sequence of configurations ((t1, i1), . . . , (tk, ik)) such that :

• i1 = 1, ik = n, δ(t1) = δ(tk) = 1, σ(t1) is in I and τ(tk) is in T ;

• for every j in [0; k − 1], σ(tj+1) = τ(tj) and ij+1 = ij + δ(tj).

2

p q r

b,→| 0

a,→| 0

a,→| 0

⊣,←| 0
b,←| 0

a,←| 1

b,→| 0
⊢,→| 0

Figure 1: The two-way N -automaton A1.

⊢ a b a a b a ⊣

p, 1 q, 2

r, 1r, 0

q, 1 p, 2 p, 3 q, 4 p, 5 p, 6 q, 7

r, 6r, 5

q, 6 p, 7

→ |0
← |0

← |1
→ |0

→ |0 → |0 → |0 → |0 → |0 → |0
← |0

← |1
→ |0

→ |0

Figure 2: A run of A1 over the word abaaba.

Example 1. Let A1 be the two-way N -automaton of Figure 1. The automaton
checks by a left-right reading the parity of the length of each subsequence of
repetitions of ′a′s; if it is odd, a right-left reading computes the length of the
block; otherwise the automaton goes to the next block of ′a′s.

A run of the N -automaton A1 over the word abaaba is represented on Fig-
ure 2. The weight of this run is equal to 2, since there are two odd subsequences
of ′a′s in the string, and each id of length 1.

The weight of such a computation, denoted by |ρ|, is I(σ(t1))+
∑k

j=1E(tj)+
T (τ(tk)). The weight of w in A, denoted by 〈|A|, w〉, is the infimum of the
weights of all the runs with label w in A. Notice that there may be an infinite
number of computations with the same label w; in this case the infimum may
not belong to K; actually, K can always be embedded into the semiring (R ∪
{−∞,∞},min,+) (with −∞ +∞ = ∞) where the infimum of every family is
always defined.

2.2 δ-normalization

Definition 2. Let A be a two-way K-automaton.
If, for each state p of A, every outgoing transition from p has the same direction,

3

then A is δ-local.
If A is δ-local and, for each state p of A, every transition arriving at p has the
same direction, then A is δ-normalized.

If A is a δ-local automaton, for every state p in Q, we set δO(p) = δ(t), where
t is any transition outgoing from p; if it is normalized, we also set δI(p) = δ(t),
where t is any transition incoming to p.

The following proposition is proved in [2].

Proposition 1. For every two-way K-automaton, there exists an equivalent
δ-local two-way K-automaton.

To make a two-way automaton A δ-local, a covering of A is built: every
state p with outgoing transitions with different directions is split into two states
p+ and p− that have the same incoming transitions as p, transitions outgoing
from p+ (resp. p−) are the transitions outgoing from p with direction +1 (resp.
−1).

The dual construction consists in splitting the states to separate incoming
transitions with different directions. Applied to a δ-local two-way automaton,
it results in a δ-normalized automaton.

Example 2. Figure 3 shows the conversion of a two-way automaton into a
δ-local automaton, and then into a δ-normalized automaton.

p

a,→| −1

a,←| 1

p+

p
−

a,→| −1

a,←| 1

a,→| −1
a,←| 1

p+,+

p+,−
p
−,+

p
−,−

a,→| −1

a,←| 1

a,→| −1

a,→| −1

a,←| 1

a,←| 1

a,→| −1

a,←| 1

Figure 3: The two steps of the δ-normalization.

Example 3. The automaton A1 of Figure 1 is not δ-normalized: in states q
and r, there are outgoing transitions with direction −1 and others with direction
+1. The automaton A′1 of Figure 4 is a δ-normalized equivalent automaton.

2.3 The Slice Automaton

The slice automaton is a one-way automaton that (non-deterministicly) emu-
lates the runs of a two-way automaton. On a given run, for each position of
the input, the slice of the run is the vector made of the states visited at this
position. Every state of the slice automaton is such a vector and there is a

4

p

q
−

q+

r
−

r+

b,→| 0
a,→| 0

a,→| 0

a,→| 0

⊣,←| 0
b,←| 0

⊣,←| 0
b,←| 0

a,←| 1

a,←| 1

b,→| 0
⊢,→| 0

b,→| 0
⊢,→| 0

Figure 4: The δ-normalized two-way N -automaton A′1.

transition between two states if the corresponding slices can successively appear
in a run of the two-way automaton.

We give here the formal definition of the slices. A more complete description
of the slice automaton is given in [2].

Definition 3. Let A = (Q,A,E, I, T) be a two-way K-automaton and let w =
w1 . . . wk be a word. Let ρ = ((p0, i0), . . . (tn, in)) be a run over w, and j in
[1; k + 1]. Let h be the subsequence of all pairs (pk, ik) such that (ik, ik+1) =
(j, j + 1) or (ik−1, ik) = (j, j − 1). The j-th slice of ρ is the vector s(j) of states
obtained by the projection of the first component of each pair of h.
The signature S(ρ) of ρ is the sequence of its slices.

The slices we define here are not exactly the crossing sequences defined in [8].

Example 4. The vector

[
q
r
p

]
is the second (and the seventh) slice of the run

of Figure 2. The signature of this run is:(
p
r
q
,
q
r
p
, p, q, p,

p
r
q
,
q
r
p

)
. (1)

Let A = (Q,A,E, I, T) be a δ-local two-way K-automaton. In order to
define a one-way K-automaton from slices we consider the set X of subvectors
of slices, that are vectors in Q∗ with an odd length; let Y be the vectors in Q∗

with an even length.
We define inductively two partial functions θ : X × A × X → K and η :

5

Y ×A× Y → K by:

η(ε, a, ε) = 0K,

∀p, q ∈ Q, δO(p) = 1⇒ ∀u, v ∈ Y, θ(pu, a, qv) = E(p, a, 1, q) + η(u, a, v),

η(u, a, pqv) = E(p, a, 1, q) + η(u, a, v),

δO(p) = −1⇒ ∀u, v ∈ X, θ(pqu, a, v) = E(p, a,−1, q) + θ(u, a, v),

η(qu, a, pv) = E(p, a,−1, q) + θ(u, a, yv).

(2)

Since A is δ-local, if θ is defined on a triple (u, a, v), it is uniquely defined.
For every vector pu in X, pu is initial if p is in I and (ε,`, u) is in η; in this

case, we set I(pu) = I(p) + η(ε,`, u). Likewise, every vector up in X is final if
p is in T and (u,a, ε) is in η; in this case, we set T (up) = η(u,a, ε) + T (p).

Definition 4. With the above notations, the slice automaton of the two-way
K-automaton A = (Q,A,E, I, T) is the infinite one-way K-automaton C =
(X,A, θ, I, T).

3 Two-way Distance Automata

In two-way automata, in the same computation, there may be two steps where
the automaton is in the same state and reads the same letter of the input. In
this case we say that the computation contains an unmoving circuit.

Definition 5. Let ρ = ((t1, i1), . . . , (tk, ik)) be a run. If there exists m,n in
[1, k], with m < n such that im = in and σ(tm) = σ(tn), then we say that
((tm, im), . . . , (tn−1, in−1)) is an unmoving circuit of ρ. If ρ does not contain
any unmoving circuit, it is reduced.

If a run contains unmoving circuits, they can all be removed with a finite
number of iterations since the removing of such a circuit leads to a shorter run.

Proposition 1. If a two-way K-automaton admits a run ρ which is not reduced,
it admits a reduced run with the same label.

Proposition 2. Let A be a two-way distance automaton on an alphabet A. For
each w in A∗, 〈|A|, w〉 is the weight of a reduced run of w.

Proof. By contradiction, let us suppose that, for a word w, there is no reduced
run in A labeled by w with a minimal weight. Then let ρ = ((t1, i1), . . . , (tl, il))
be one of the shortest non reduced run labeled by w with a minimal weight.
Since it is not reduced, then there exist j and k, with j < k, such that ij = ik and
σ(tj) = σ(tk). Then there exists a run ρ′ = ((t1, i1), . . . , (tj−1, ij−1), (tk, ik), . . . , (tl, il))
labeled by w with |ρ′| ≤ |ρ| which is a contradiction.

By Lemma 2 to simulate a two-way distance automaton by a one-way au-
tomaton, we only need to simulate reduced runs.

6

Actually, if a run of a two-way automaton contains an unmoving circuit,
the signature of this run contains a vector where two entries with an index
with the same parity are equals. In [2], we prove that the restriction of the
slice automaton of A to states labelled by vectors that do not contain this
kind of entry results in a finite one-way automaton where every computation
corresponds to a reduced computation of A with the same weight and that every
reduced computation of A has a representative in this finite one-way automaton.

p q+

p
r+
q+

p
r
−

q+

q+
r
−

p

q
−

r
−

p

b | 0

a | 0

a | 0

b | 0

a | 1

a | 1

a | 1

a | 1
a | 1

b | 0

Figure 5: A one-way N -automaton equivalent to A1.

Example 5. From the δ-normalization of A1, we can build an equivalent one-
way N -automaton.

Finally, by Lemma 2,

Proposition 2. Every two-way distance automaton is equivalent to a one-way
distance automaton.

4 Two-way Min-plus Automata

In this part, we study two-way automata on min-plus semirings based on non
postive submonoids of R. In this case, a word may label an infinite number of
paths with an increasingly smaller weight.

We say that a two-way min-plus automaton is valid if the weight of every
accepted word is finite. We address the problem of deciding whether a two-way
min-plus automaton is valid.

Example 6. Let A2 be the two-way Z-automaton of Figure 6 (left). Every
time this automaton reads a word from left to right it computes the difference
between the number of ’b’s and the number of ’a’s. Since for each accepted word,
there can be an unbounded number of left-right reading, if there are more ’a’s
than ’b’s, the weight of runs is not lowerly bounded. Thus, the behaviour of this
automaton is only defined for words where the number of ’a’s is at most equal

7

p q

a,→ | − 1

b,→ |1
a,← |0
b,← |0

⊣,← |0

⊢,→ |0

i

sp

q

a,→ | − 1

b,→ |1

a,→ | − 1

b,→ |1

a,← |0
b,← |0

a,← |0
b,← |0

⊣,← |0

⊣,← |0

⊢,→ |0

⊢,→ |0

Figure 6: The two-way Z-automata A2 and A′2.

to the number of ’b’s.
The automaton A′2 of Figure 6 (right) is the δ-normalization of A2.

This example shows the following fact.

Proposition 3. There exist two-way min-plus automata such that the language
of words accepted with a finite weight is not rational (or regular).

Theorem 1. It is decidable whether a two-way min-plus automaton is valid.

To prove this theorem, we need to consider another restriction of the slice
automaton. Unlike the case of distance automata where we want that unmoving
circuits do not appear at all, we want here to detect when unmoving circuits
appear, but we want to deal with a finite automaton. So, we allow that each
unmoving circuit appears at most once.

To this purpose, we consider the slices that belong to W =
⋃

kWk with Wk

defined for all k in N as follows :

Wk = {v ∈ Q2k+1|∀p ∈ Q,∀s ∈ [0; 1], |{i | vi = p and i mod 2 = s}| 6 2}.
(3)

We consider the restriction of the slice automaton to W .

Proposition 4. Let A be a two-way K-automaton and let C be the restriction of
the slice automaton of A to W . If A accepts a run that contains an unmoving
circuit with a negative weight, then there exists a run in A that contains an
unmoving circuit with a negative weight and that is mapped into C.

Proof. Assume that there exist runs of A that contain at least one unmoving
circuit with a negative weight. We chose ρ among these runs with a minimal
number of transitions. Let q be the end of the unmoving circuit with negative

8

weight and let q1 and q2 be the both occurences of q. If ρ is not mapped into C,
there exists a state p that appears (at least) three times in a slice v1 of ρ (let p1,
p2 and p3 be these three occurences); p is the end of two consecutive unmoving
circuits.
Different cases occur. If one of the two consecutive unmoving circuits has a
negative weight, the other one can be removed to simplify the run. (This case
may occur if p = q.)
Likewise, if one of the two consecutive unmoving circuits does not intersect the
unmoving circuit with negative weight, it can be removed.
The only case that remains is when the run ρ can be decomposed as:

→ i
w1|k1−−−−−→ p1

w2|k2−−−−−→ q1
w3|k3−−−−−→ p2

w4|k4−−−−−→ q2
w5|k5−−−−−→ p3

w6|k6−−−−−→ t→ . (4)

In this case we have k3 + k4 < 0 and the shorter run

→ i
w1|k1−−−−−→ p1 = p2

w4|k4−−−−−→ q2 = q1
w3|k3−−−−−→ p2 = p3

w6|k6−−−−−→ t→ (5)

contains an unmoving circuit with a negative weight.

In the automaton C, every run that meets a state in W \ V does contain an
unmoving circuit. The problem is to detect whether such an unmoving circuit
has a negative weight. The solution consists in comparing the weight of this
run with the weight of the run without the unmoving circuit. To this purpose,
we define an automaton which is a kind of square of the automaton C (cf. [1]):
it compares paths of C that differ by unmoving circuits.

We consider first the set X = {(x, y, z) ∈ (Q∗)3 | xz, xyz ∈W}. An element
(x, y, z) in X is special if y1 = z1. From the function θ, we define the (partial)
function θ̃ : X ×A×X −→ K as

θ̃((x, y, z), a, (t, u, v)) = θ(xyz, a, tuv)− θ(xz, a, tv), (6)

for every triple ((x, y, z), a, (t, u, v)) that fulfils one of the three following condi-
tions:

(x, a, t), (y, a, u) and (z, a, v) ∈ θ;
(xy1, a, t), (y

−1
1 yz1, a, u) and (z−11 z, a, v) ∈ θ, y1 = z1 and δI(y1) = −1;

(x, a, tu1), (y, a, u−11 uv1) and (z, a, v−11 v) ∈ θ, u1 = v1 and δI(u1) = 1.

(7)

Let X0 = {(x, y, z) ∈ X | y = 1}. We define on X the relation (x, y, z) ≡
(x′, y′, z′) if and only if y = y′ = 1 and xz = x′z′. In the quotient X̃ of X by
≡, every element which is not in X0 is the only element of its class, while the
quotient of X0 is isomorphic to W . Moreover, this equivalence is compliant with
the definition of θ̃. Let P = (X̃, A, θ̃, J, U) be a one-way automaton defined as
follows. The transition function is θ̃; every transition that corresponds to one of
the two last lines of (7) is called a special transition. We set J(x, y, z) = θ(0,`
, xyz)− θ(0,`, xz) if x is non empty or if x is empty and y1 = z1 (special initial

9

w ∈ W w′
∈ W

w7

w6

w5

w4

w3

w2

w1

w′

7

w′

6

w′

5

w′

4

w′

3

w′

2

w′

1x

y

z

t

u

v

(xy1, a, t), (y1
−1yz1, a, u)

and (z1
−1z, a, v) ∈ θ, y1 = z1
and δI(y1) = −1

w ∈ W w′
∈ W

w7

w6

w5

w4

w3

w2

w1

w′

7

w′

6

w′

5

w′

4

w′

3

w′

2

w′

1

x

y

z

t

u

v

(x, a, tu1), (y, a, u1
−1uv1)

and (z, a, v1
−1v) ∈ θ, u1 = v1

and δI(u1) = 1

Figure 7: A valid run over the word w = w1 . . . wk.

state). Likewise, U(x, y, z) = θ(xyz,a, 0) − θ(xz,a, 0) if z is non empty or if z
is empty and x1 = y1 (special final state).

Every computation in the automaton P that meets one (and only one) special
transition (or special initial or final state) corresponds to two computations in
the slice automaton. Each state of the first computation is obtained from every
state (x, y, z) of the computation in P by concatenating x, y and z, while each
state of the second computation is given by the concatenation of x and z. This
two computations correspond to two runs in A, one with an unmoving circuit,
the second one where the unmoving circuit has been removed.

Example 7. From the automaton A′2 of Figure 6 (right), we can build the au-
tomaton P2 of Figure 8. The states in X0 are labelled by one vector, and the
other ones by three vectors. The special transitions and special initial states
are red (there is no special final state). Each run in this automaton that con-
tains a special transition (or initial state) corresponds two runs in A′2, one with
an unmoving circuit, the other one without this circuit. Such a pair of paths
in A′2 may correspond to several paths in P2, depending where the path with

the unmoving circuit is cut. For instance, consider the path
(
i,
s
i ,

)
a,−1−−−−→(

,
i
q , i

)
a,−1−−−−→

(
,
p
q , i

)
; it corresponds to the path of Figure 9 and to the

cut between the two red states. The weight of the path with the unmoving circuit
is −4, without the unmoving circuit, it is −2; the difference is −2 which is equal
to the weight of the path in P2.

Proposition 5. Let A be a two-way min-plus automaton and let P be the
automaton built above. If A accepts a run that contains an unmoving circuit
with a negative weight, then there is a run in P that meets one special transition
(or special initial/final state) with a negative weight.

10

i

a, b

p
s
i

i,
s
i , i,

q
i ,

,
i
s , i

,
i
q , i

,
p
q , i

i
s
i

i
q
i

p
q
i

,
p
s ,

p
s
i

p,
s
p ,

s
i

a,−1

b, 1

a,−1

b, 1

a,−1

b, 1
a,−1

b, 1

a,−1

b, 1

a,−1

b, 1

a, 0
b, 0

a, 0
b, 0

a, 0
b, 0

a, 0
b, 0

a,−1

b, 1
a,−1

b, 1

Figure 8: The one-way automaton P2.

⊢ a a ⊣

i i p

qqs

i i

i

i

→ | − 1 → | − 1
← |0

← |0← |0
→ |0

→ | − 1 → | − 1

Figure 9: A path in the automaton A2 with a negative unmoving circuit.

This property can be checked on the automaton P in polynomial time (see
for instance [5]), and this implies Theorem 1.

If the two-way automaton is not valid, it could be interesting to compute
an effective description of the language on which the behaviour is defined. By
Proposition 3 this language must be non rational; worst, it is undecidable to
know whether it is empty.

Theorem 2. Let A be a two-way Z-automaton. It is undecidable whether there
exists a word w accepted by A with a finite weight.

Proof. In [4], it is prove that it is undecidable, given a one-way Z-automaton
B = (Q,A,E, I, T), to know whether there exists a word w whose weight in
B is non negative. Let r be an element which is not in Q and let A = (Q ∪
{r}, A, F, I, T) be the two-way Z-automaton defined as follow:

F ={p a,→|k−−−−−→ q | p a|k−−−→ q ∈ E}

={p a,←|k−−−−−→ r | p ∈ T , T (p) = k}

={r `,→|k−−−−−→ p | p ∈ I, I(p) = k}

={r a,←|0−−−−−→ r | a ∈ A}

(8)

11

For every word w in A, every computation on w is any sequence of computations
on w in B. Therefore, the weight of a word w in A is defined if and only if it
has no computation with a negative weight in B, that is if its weight in B is non
negative.

5 Conclusion

The problem tackled in this paper raises a more general problem on two-way
automata. Actually, since the number of computations for a given input can be
infinite, a proper definition of the behaviour of a weighted automaton must be
forged. It meets some works on the behaviour of one-way weighted automata
with ε-transitions (cf. [3, 6]).

The last part of the paper also introduces some open questions. Despite
the fact that the emptiness of the domain of a tropical two-way automaton is
undecidable, is it possible to give a usable characterization of this domain ?

References

[1] Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques
Sakarovitch. Squaring transducers: an efficient procedure for deciding func-
tionality and sequentiality. Theor. Comput. Sci., 292(1):45–63, 2003.

[2] Vincent Carnino and Sylvain Lombardy. On determinism and unambiguity
of weighted two-way automata. In AFL’14, 2014. Accepted.

[3] Zoltán Ésik and Werner Kuich. Finite automata, 2009. in M. Droste et al.,
editors, Handbook of Weighted Automata, Springer, pages 69–104.

[4] Daniel Krob. The equality problem for rational series with multiplicities in
the tropical semiring is undecidable. Internat. J. Algebra Comput., 4(3):405–
425, 1994.

[5] Sylvain Lombardy and Jean Mairesse. Series which are both max-plus and
min-plus rational are unambiguous. RAIRO - Theor. Inf. and Appl., 40(1):1–
14, 2006.

[6] Sylvain Lombardy and Jacques Sakarovitch. The validity of weighted au-
tomata. Internat. J. Algebra Comput., 23:863–913, 2013.

[7] M. O. Rabin and D. Scott. Finite automata and their decision problems.
IBM J. Res. Dev., 3(2):114–125, 1959.

[8] J. C. Shepherdson. The reduction of two-way automata to one-way au-
tomata. IBM J. Res. Dev., 3(2):198–200, 1959.

12

