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PROOF OF WIENER-LIKE LINEAR REGRESSION OF ISOTROPIC COMPLEX SYMMETRIC ALPHA-STABLE RANDOM VARIABLES

).

, this property is shown paramount in building efficient filters for separating SαS processes. Such processes exhibit very large dynamic ranges while being locally stationary, and have been shown appropriate for audio modeling.

Proposition 1 (Wiener-like linear regression of isotropic complex SαS random variables). Let α ∈]0, 2]. Let s 1 and s 2 be two independent isotropic complex SαS random variables of scale parameters σ 1 and σ 2 , respectively. Let x = s 1 + s 2 . Then the conditional expectation of s 1 given x is expressed as follows:

E[s 1 |x] = σ α 1 σ α 1 + σ α 2 x. (1) 
Proof. Let s r 1 = Re(s 1 ),

s i 1 = Im(s 1 ), s r 2 = Re(s 2 ), s i 2 = Im(s 2 ), x r = Re(x)
, and x i = Im(x), where Re(.) and Im(.) denote the real and imaginary parts of complex numbers, respectively. For j ∈ {1, 2}, the characteristic function of the isotropic complex SαS random variable

s j is φ sj (θ r x , θ i x ) = e -σ α j (|θ r x | 2 +|θ i x | 2 ) α 2 [2]
. Therefore the characteristic function of the random vector (s r 1 , x r , x i ) ∈ R 3 is

φ (s r 1 ,x r ,x i ) (θ r 1 , θ r x , θ i x ) = E[e i(θ r 1 s r 1 +θ r x x r +θ i x x i ) ] = E[e i(θ r 1 s r 1 +θ r x (s r 1 +s r 2 )+θ i x (s i 1 +s i 2 )) ] = E[e i((θ r 1 +θ r x )s r 1 +θ i x s i 1 ) ]E[e i(θ r x s r 2 +θ i x s i 2 ) ] = φ s1 (θ r 1 + θ r x , θ i x ) φ s2 (θ r x , θ i x ) = e -σ α 1 (|θ r 1 +θ r x | 2 +|θ i x | 2 ) α 2 +σ α 2 (|θ r x | 2 +|θ i x | 2 ) α 2
.

Using [2, eq. (5.1.7) p. 226], the conditional characteristic function of s r 1 given x r and x i ∈ R is expressed as

φ (s r 1 |x r ,x i ) (θ r 1 ) = R 2 φ (s r 1 ,x r ,x i ) (θ r 1 , θ r x , θ i x )e -i(θ r x x r +θ i x x i ) dθ r x dθ i x R 2 φ (s r 1 ,x r ,x i ) (0, θ r x , θ i x )e -i(θ r x x r +θ i x x i ) dθ r x dθ i x = R 2 e -σ α 1 (|θ r 1 +θ r x | 2 +|θ i x | 2 ) α 2 +σ α 2 (|θ r x | 2 +|θ i x | 2 ) α 2 e -i(θ r x x r +θ i x x i ) dθ r x dθ i x R 2 e -(σ α 1 +σ α 2 )(θ r x | 2 +|θ i x | 2 ) α 2 e -i(θ r x x r +θ i x x i ) dθ r x dθ i x . (2) 
We know that

E[s r 1 |x r , x i ] is defined if and only if φ (s r 1 |x r ,x i ) (θ r 1
) is differentiable at θ r 1 = 0, and that in that case

dφ (s r 1 |x r ,x i ) dθ r 1 (0) = iE[s r 1 |x r , x i ].
Firstly, it is easy to prove that the first order derivative of φ (s r 1 |x r ,x i ) is well-defined and has the following expression:

dφ (s r 1 |x r ,x i ) dθ r 1 (θ r 1 ) = R 2 -ασ α 1 (θ r 1 +θ r x )(|θ r 1 +θ r x | 2 +|θ i x | 2 ) ( α 2 -1) e -σ α 1 (|θ r 1 +θ r x | 2 +|θ i x | 2 ) α 2 +σ α 2 (|θ r x | 2 +|θ i x | 2 ) α 2 e -i(θ r x x r +θ i x x i ) dθ r x dθ i x R 2 e -(σ α 1 +σ α 2 )(θ r x | 2 +|θ i x | 2 ) α 2 e -i(θ r x x r +θ i x x i ) dθ r x dθ i x . (3) 
Indeed, differentiating under the sign in the numerator of the last member of ( 2) is allowed, because the term following the sign in the numerator of (3) can be upper bounded by an integrable function independently of θ r 1 ∈ R:

-ασ α 1 (θ r 1 + θ r x )(|θ r 1 + θ r x | 2 + |θ i x | 2 ) ( α 2 -1) e -σ α 1 (|θ r 1 +θ r x | 2 +|θ i x | 2 ) α 2 +σ α 2 (|θ r x | 2 +|θ i x | 2 ) α 2 e -i(θ r x x r +θ i x x i ) ≤ ασ α 1 (|θ r 1 + θ r x | 2 + |θ i x | 2 ) α-1 2 e -σ α 1 (|θ r 1 +θ r x | 2 +|θ i x | 2 ) α 2 +σ α 2 (|θ r x | 2 +|θ i x | 2 ) α 2 ≤ g(|θ r 1 + θ r x | 2 + |θ i x | 2 ) h(θ r x , θ i x ) ≤ g ∞ h(θ r x , θ i x ),
where the nonnegative functions g ∈ L ∞ (R) and h ∈ L 1 (R2 ) are defined according to the value of α:

• if 1 ≤ α ≤ 2, g(t) = ασ α 1 |t| α-1 2 e -σ α 1 |t| α 2 and h(θ r x , θ i x ) = e -σ α 2 (|θ r x | 2 +|θ i x | 2 ) α 2 ; • if 0 < α < 1, g(t) = ασ α 1 e -σ α 1 |t| α 2 and h(θ r x , θ i x ) = e -σ α 2 (|θ r x | 2 +|θ i x | 2 ) α 2 |θ i x | 1-α .
Then applying equation (3) to θ r 1 = 0 yields

dφ (s r 1 |x r ,x i ) dθ r 1 (0) = R 2 -ασ α 1 θ r x (|θ r x | 2 + |θ i x | 2 ) ( α 2 -1) e -(σ α 1 +σ α 2 )(|θ r x | 2 +|θ i x | 2 ) α 2 e -i(θ r x x r +θ i x x i ) dθ r x dθ i x R 2 e -(σ α 1 +σ α 2 )(θ r x | 2 +|θ i x | 2 ) α 2 e -i(θ r x x r +θ i x x i ) dθ r x dθ i x = σ α 1 σ α 1 +σ α 2 R 2 de -(σ α 1 +σ α 2 )(|θ r x | 2 +|θ i x | 2 ) α 2 dθ r x e -i(θ r x x r +θ i x x i ) dθ r x dθ i x R 2 e -(σ α 1 +σ α 2 )(θ r x | 2 +|θ i x | 2 ) α 2 e -i(θ r x x r +θ i x x i ) dθ r x dθ i x = - σ α 1 σ α 1 +σ α 2 R 2 e -(σ α 1 +σ α 2 )(|θ r x | 2 +|θ i x | 2 ) α 2 de -i(θ r x x r +θ i x x i ) dθ r x dθ r x dθ i x R 2 e -(σ α 1 +σ α 2 )(θ r x | 2 +|θ i x | 2 ) α 2 e -i(θ r x x r +θ i x x i ) dθ r x dθ i x = i σ α 1 σ α 1 +σ α 2 x r .
This proves that E[s r 1 |x r , x i ] = 

σ α 1 σ α 1 +σ α 2 x

 12 r . In exactly the same way, it is proved that E[s i 1 |x r , x i ] =

x i , which finally proves equation[START_REF] Liutkus | Generalized Wiener filtering with fractional power spectrograms[END_REF].