
HAL Id: hal-01069574
https://hal.science/hal-01069574

Submitted on 29 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Turbulent boundary layer noise : direct radiation at
Mach number 0.5

Xavier Gloerfelt, Julien Berland

To cite this version:
Xavier Gloerfelt, Julien Berland. Turbulent boundary layer noise : direct radiation at Mach number
0.5. Journal of Fluid Mechanics, 2013, 723, pp.318-351. �10.1017/jfm.2013.134�. �hal-01069574�

https://hal.science/hal-01069574
https://hal.archives-ouvertes.fr


Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech

researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/8636

To cite this version :

Xavier GLOERFELT, Julien BERLAND - Turbulent boundary layer noise : direct radiation at Mach
number 0.5 - Journal of Fluid Mechanics - Vol. 723, p.318-351 - 2013

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

http://sam.ensam.eu
http://hdl.handle.net/10985/8636
mailto:archiveouverte@ensam.eu


Under consideration for publication in J. Fluid Mech. 1

Turbulent boundary layer noise: direct

radiation at Mach number 0.5
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1DynFluid Laboratory, Arts et Metiers ParisTech, 151 bd de l’Hopital, 75013 Paris, France

(Received ?? and in revised form ??)

Boundary layers constitute a fundamental source of aerodynamic noise. A turbulent

boundary layer over a plane wall can provide an indirect contribution to the noise by ex-

citing the structure, and a direct noise contribution. The latter part can play a significant

role even if its intensity is very low, explaining why it is hardly measured unambiguously.

In the present study, the aerodynamic noise generated by a spatially developing turbulent

boundary layer is computed directly by solving the compressible Navier-Stokes equations.

This numerical experiment aims at giving some insight into the noise radiation character-

istics. The acoustic wavefronts have a large wavelength and are oriented in the direction

opposite to the flow. Their amplitude is only 0.7% of the aerodynamic pressure for a

flat-plate flow at Mach 0.5. The particular directivity is mainly explained by convec-

tion effects by the mean flow, giving an indication about the compactness of the sources.

These vortical events correspond to low-frequencies, and have thus a large life time. They

cannot be directly associated with the main structures populating the boundary layer

such as hairpin or horseshoe vortices. The analysis of the wall pressure can provide a pic-

ture of the flow in the frequency-wavenumber space. The main features of wall pressure

beneath a turbulent boundary layer as described in the literature are well reproduced.

The acoustic domain, corresponding to supersonic wavenumbers, is detectable but can
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hardly be separated from the convective ridge at this relatively high speed. This is also

due to the low frequencies of sound emission as noted previously.

Key Words: aeroacoustics; wall turbulence

1. Introduction

1.1. Flow noise

Aerodynamic noise from a turbulent boundary layer (TBL), also known as flow noise, is

a fundamental topic in flow-induced noise. Its contribution to internal noise in terrestrial

or aeronautic vehicles is increasing. With the recent progresses in reducing the other

sources, such as road or motor noises for a car, or jet and fan noises for a plane, cabin

noise due to the TBL has indeed become a matter of concern for manufacturers, in order

to improve the comfort of passengers during cruising trip. Sound waves transmitted inside

the interior of the vehicle come from two contributions: the direct transfer of the acoustic

radiation, i.e. the self-noise generated by wall turbulence, and the indirect transfer by

the wall pressure fluctuations which can excite the vibrational modes of the structure.

The first one has a low efficiency but a transfer function close to one, whereas the second

is more energetic but the transfer function becomes very weak at high wavenumbers,

so that the direct contribution is not necessarily negligible with respect to the indirect

vibroacoustic contribution. A quantitative evaluation of the contribution of the acoustic

part to the internal noise is however still lacking.

Our knowledge of the noise directly radiated by a TBL relies almost exclusively on

the acoustic analogy of Lighthill (1952) (see the reviews by Blake (1986a) and Dowling

(1992)). A major contribution is given by Powell (1960), who showed that the surface



Turbulent boundary layer noise: direct radiation at Mach number 0.5 3

integrals of the formulation of Curle (1955) yield essentially quadripolar sources when

an infinite plane is present. The principal implication of his so-called reflection theorem

is that TBL noise sources are rather inefficient. The acoustic intensity follows a U8 law

as free turbulence whereas a compact rigid surface would yield a U6 law. This ineffi-

ciency is thus particularly severe for low-speed flows. The tangential wall shear stresses

are reinforced by the reflection, and can then constitute the principal sources, even if

viscous motions are poor radiators notably at high Reynolds numbers (Haj-Hariri &

Akylas (1985)). The weak levels of direct acoustic emissions also explain why few exper-

iments are available so far, and can hardly provide clarifications on TBL sources. The

first attempt consisted in placing hydrophones inside the TBL developing on the walls

of a water tunnel (Skudrzyk & Haddle (1960)). The interpretation of the experimental

results is however ill-posed because the transducers always introduce averaging effects,

and a clear separation between pseudo-sound and radiated sound is impractical without

an a priori knowledge about the turbulence inducing the pseudo-sound. Even if some ten-

dencies are depicted such as the increased noise due to surface roughness, a quantitative

measurement is also marred by the noisy environment, such as the machinery. Buoyant

bodies were designed to cope with that (Haddle & Skudrzyk (1969); Sevik (1986)). The

evaluation of flow noise from boundary layers of buoyancy-propelled vehicles is however

hindered by other sources that can be more efficient, such as flow separations, or transi-

tion to turbulence. Measurements by Haddle & Skudrzyk (1969) seem to be dominated

by radiations from the aft section, whereas experiments of Sevik (1986) are presumably

contaminated by an exterior source since the results for smooth and rough walls yield the

same estimate. Barker (1973) has measured the noise emissions from an open cylinder

rotating in water, its generatrix in the form of a single-coil helix. A significant fraction

of the sound was generated by the interaction of turbulence with the edge of the helix,
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so that the sound from the TBL can be masked by this source. To provide a convincing

separation between sound and pseudo-sound, Greshilov & Mironov (1983) removed the

sensors from the working section of the hydrodynamic duct into an expanded diffuser. It

is then necessary to separate the wall turbulence self-noise from the acoustic resonance

modes of the diffuser, and the evaluation of the strength of the radiated noise is not far

from ambiguity. A scatter of more than 40 dB between the different studies was noted.

Several theoretical studies have been carried out with the aim of predicting some fea-

tures of the pressure field radiated by a plane TBL. Lighthill’s theory and its extensions

(Lighthill (1952); Curle (1955)) have then been extensively used in the study of the noise

generated by TBL. Landahl (1975) for instance developed a two-scale model for the tur-

bulent velocity and pressure fields in order to estimate the noise radiated by a the flow

over a solid surface. Tam (1975) calculated the intensity, the directivity and the spec-

trum of the sound field produced by a TBL based on an empirical model for the pressure

cross-correlation function. In a similar manner, the noise generated by specific features

of the TBL has been investigated. In particular, Lauchle (1980) considered sound wave

production during the boundary-layer transition. In an attempt to shed a new light on

sound sources of TBL, Hardin (1991) analysed the noise generated by various vortical

phenomena such as the formation of horseshoe vortices and the emergence of viscous

sublayer bursts. The works reported above use an empirical expression or an assumed

shape for the Fourier transform of the pressure cross-correlation function. To cope with

the uncertainties associated with the choice of a cross-correlation model, the analogy

of Lighthill (1952) has also been applied to aerodynamic data issued from numerical

simulations. Hu et al. (2002, 2003, 2006a) focused on noise generated by turbulent chan-

nel flows. They applied Lighthill’s acoustic analogy to incompressible Direct Numerical

Simulation (DNS) data in order to obtain an expression for the power spectrum of the
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far-field pressure fluctuations. Wang et al. (1996) evaluated the far-field sound of an

unstable wavepacket over a solid surface, the features of the transition being provided

by solving the incompressible Navier-Stokes equations. Yang & Wang (2009) have re-

cently applied the same numerical strategy, based on an incompressible DNS followed

by an acoustic analogy, to investigate how the aerodynamic noise is enhanced by surface

roughness (Howe (1991)).

1.2. Wall pressure

Since the pressure is a non-localised variable, the wall pressure provides a fingerprint of

the TBL structures. When the wall surface is locally plane, the temporal and spatial

characteristics of the wall pressure can be expressed in terms of wavenumber-frequency

spectrum Φpp(k, ω). The shape of this spectrum is illustrated schematically in figure 1

for a fixed frequency ω satisfying ωδ/U∞ ≫ 1, where U∞ is the freestream velocity and

δ the boundary layer thickness. The strongest fluctuations occur at wavenumbers within

the convective ridge centered on k1 = ω/Uc, k3 = 0, where Uc is a turbulent eddy con-

vection velocity. However the strongest coupling of wall motions and the flow is usually

attributed to smaller wavenumbers, the subconvective region. The spectral levels are 30

to 60 dB below that of the convective peak. The region |k| < κ0, where κ0 = ω/c0 is the

acoustic wavenumber, is called the acoustic domain, and is more particularly the subject

of the present study. The pressure fluctuations beneath a TBL have been the subject of

numerous experimental and theoretical studies by Willmarth & Woolridge (1962), Bull

(1967), Blake (1970), Wills (1970), Schewe (1983), Farabee & Casarella (1991), Panton &

Robert (1994), Gravante et al. (1998), Arguillat et al. (2010), Ehrenfried & Koop (2008)

among others (see the reviews by Willmarth (1975), or Blake (1986a)). With the develop-

ment of supercomputers, the numerical simulation constitutes a new efficient approach.

The wall-pressure field generated by incompressible direct numerical simulations (DNS)
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Figure 1. Wavenumber-frequency spectrum Φpp(k, ω) for a frequency ωδ∗/U∞=500,

where M∞=0.1 and δ=2 cm. The model of Chase (1987) is used for illustration:

Φpp(k, ω) =
ρ20u
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0

)

. We set CM=0.1553, CT=0.0047, b=0.75,

h=3, c1=2/3, c2=0.005, c3=1/6, and ǫ=0.2.

and large-eddy simulations (LES) of channel flow has been investigated in the past by

Kim (1989), Choi & Moin (1990), Chang et al. (1999), Viazzo et al. (2001), or Hu et al.

(2006b). Furthermore, simplified semi-empirical models of wall-pressure fluctuations have

been proposed. The most popular are the model of Corcos (1963) and the model of Chase

(1980, 1987). Blake (1986a), Bull (1996), Graham (1997), or Hwang et al. (2009) propose

comparisons between the different semi-empirical models.

Since the low wavenumber region is of particular interest for the possible coincidence

with the stuctural modes, numerous authors have investigated the shape of the spectrum

in the low wavenumber limit, notably for the supersonic wavenumbers (k < κ0). A good
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discussion of this problem is provided by Ffowcs Williams (1965, 1982). The Kraichnan-

Phillips theorem (Howe (1992)), named after the studies of Kraichnan (1956) and Phillips

(1956), states that Φpp(k, ω) must tend toward zero as k2 for an incompressible flow

(Bull (1996)). The experimental verification of this theoretical point is difficult because

vanishing wavenumber are not resolved (one of the most resolved experiment in the low

frequencies has been conducted by Farabee & Casarella (1991)). However, numerical

simulations for low-Reynolds-number channel flows seem to yield a non-vanishing limit

as k → 0 (Hu et al. (2002, 2003)). Furthermore, a theoretical evaluation of the acoustic

magnitude is difficult due to the singularity at the acoustic-wavenumber κ0, arising from

the expression of the Green function in the frequency-wavenumber space for a half-

plane, G(x2|y2,k, ω) = −ie−γx2/γ where γ(k) = sgn(κ0)|κ2
0 − k2|1/2 for k < κ0, and

γ(k) = i|κ2
0 − k2|1/2 for k > κ0. A comprehensive discussion of the behavior of the

spectrum near the acoustic-wavenumber singularity is provided by Howe (1991). Three

main phenomena can remove the singularity:

• the finite size of the domain (theoretical works suppose an infinite plane). This point

is first studied by Bergeron (1974) or Ffowcs Williams (1982);

• the viscous effect (see the elegant model of Howe (1979b,a)). Howe (1979b) suggests

that the viscous terms have only a dissipative role. The numerical studies of Wang et al.

(1996), Shariff & Wang (2005), or Hu et al. (2002) indicate that the dipole wall shear-

stress can be a true source of sound for low Mach numbers;

• the curvature of the surface (Meecham (1965); Howe (1991)). Meecham (1965) has

shown that a local surface curvature can result in a dipole sound.

The main contribution seems to be due to the finite size effect, but this is still an open

question.
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1.3. Scope of the study

In spite of the numerous works already achieved in the field of TBL noise, a clear iden-

tification of sound sources remains elusive. An investigation approach relying on Direct

Noise Calculation (DNC) might therefore be valuable. Such simulations indeed aim at

obtaining both aerodynamic and acoustic fields within a same run. The method is partic-

ularly reliable since the compressible Navier-Stokes equations are directly solved and no

additional modeling of the acoustic sources is required. Performing DNC however remains

a challenging issue: the full range of length and amplitude scales associated with aerody-

namic and acoustic fluctuations needs to be resolved and silent non-reflecting boundary

conditions must be implemented, as briefly described in section II. These requirements

are especially difficult to meet for turbulent boundary layers. Validations of the flowfield

against published results are proposed in section III. The features of the acoustic field

obtained by the Direct Noise Computation are discussed in section IV. The wall pressure,

which is often directly related to the noise emissions, is analysed in the last section.

2. Numerical methods and flow parameters

2.1. Governing equations

The full three-dimensional compressible Navier-Stokes equations are solved in a conser-

vative form in a Cartesian coordinate frame :

∂ρ

∂t
+

∂(ρuj)

∂xj
= 0

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
+

∂p

∂xi
− ∂τij

∂xj
= 0 (2.1)

∂(ρE)

∂t
+

∂((ρE + p)uj)

∂xj
− ∂(τijui)

∂xj
+

∂qj
∂xj

= 0

where ρ, p, ui are the density, pressure, and velocity components in the i-th coordinate
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direction (i= 1, 2, 3). For an ideal gas, the total energy per mass unit E is defined as :

E = p/[(γ − 1)ρ] + u2
i /2, and p = rρT,

where T is the temperature, r the gas constant, and γ the ratio of specific heats. The

viscous stress tensor τij is modeled as a Newtonian fluid, τij = 2µSij + λSkkδij with

λ = −2µ/3 according to Stokes’ hypothesis. Sij = (ui,j + uj,i)/2 is the rate of strain

tensor. The dynamic molecular viscosity µ is approximated with Sutherland’s law:

µ(T ) = µ0

(

T

T0

)
3
2 T0 + 110.4

T + 110.4

with T0=273.15 K and µ0=1.711×105 kg.m−1.s−1. The heat flux component qj models

thermal conduction in the j-direction with Fourier’s law qj = −(µcp/Pr)(∂T/∂xj), where

Pr=0.72 is the Prandtl number, and cp is the specific heat at constant pressure.

2.2. Space and time discretizations

The convective terms of (2.1) are integrated in time using an explicit low-storage six-

step Runge-Kutta scheme optimised in the wavenumber space by Bogey & Bailly (2004).

Because of their slower time evolution, the viscous terms are only integrated in the last

substep. The gradients are solved on a rectangular slowly nonuniform grid by using

finite-differences on an eleven-point stencil optimised by Bogey & Bailly (2004) for the

convective fluxes, and standard fourth-order finite differences for the viscous and heat

fluxes. The non-uniformity in the mesh sizes is taken into account by a suitable 1-D

coordinate transform. At the last substep, a selective filtering on an eleven-point sten-

cil (Bogey & Bailly (2004)) is incorporated in each direction to eliminate grid-to-grid

unresolved oscillations. It is applied with an amplitude of 0.2.

On the wall boundary, the no-slip conditions ui = 0 are imposed, with ∂p/∂n = 0

for the Eulerian part, where n is the direction normal to the solid surface. The finite-

difference stencil for the convective terms is progressively reduced down to the second
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order. At the wall, the temperature is calculated with the adiabatic condition, so that the

density can be deduced using ideal gas law. The viscous stress terms are evaluated from

the interior points by using fourth-order backward differences. At the upstream and upper

boundaries of the computational domain, the radiation boundary conditions of Tam &

Dong (1996), using a far-field solution of the sound waves, are applied. A large sponge

zone (Bogey & Bailly (2002); Gloerfelt & Lafon (2008)) is furthermore added at the

downstream end of the domain so that unhindered passage of aerodynamic perturbations

is possible without the generation of spurious acoustic waves. A three-dimensional planar

domain is considered with periodic boundary conditions in the spanwise direction.

2.3. Simulation parameters

The spatial development of a three-dimensional turbulent boundary layer is calculated

by means of compressible Large Eddy Simulation (LES). The LES strategy, combining a

finite-difference scheme with good spectral properties with the use of a selective filtering

without an additional eddy-viscosity model, bears some similarities with some new trends

of the LES approach. The explicit filtering provides a smooth defiltering by removing the

fluctuations at wavenumbers greater than the finite-difference scheme resolvability. As

demonstrated by Mathew et al. (2003), the effect of the Approximate Deconvolution

Model (ADM) is globally similar to the convolution with an explicit filter. Moreover, the

selective filtering induces a regularization similar to that used in the ADM procedure,

even if the coefficient is taken constant. Since it does not affect the resolved scales,

the exact value of the coefficient is not crucial (see Bogey & Bailly (2006)). Another

advantage is the versatility of this LES strategy, since no additional effort is required,

whereas more elaborate models can induce 20% to one order of additional cost.

A sketch of the computational domain and of the coordinate system is provided in

figure 2: x1 is the streamwise direction and the flow goes from left to right; the wall is
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Figure 2. Sketch of the computational domain and of the coordinate system (figure not to scale).

A small step lying in the spanwise direction is introduced downstream of the inlet boundary

condition in order to ignite the transition to turbulence of the boundary layer flow.

M∞ p∞ (Pa) T∞ (K) ν∞ (m2/s) δ0 (m) Re0θ

coarse grid 0.5 101 300 298.15 1.5 × 10−5 2.5× 10−4 300

fine grid 0.5 101 300 298.15 1.5 × 10−5 3.18× 10−4 480

Table 1. Flow configurations for the LES of a three-dimensional spatially developing

turbulent boundary layer.

located in the plane x2 = 0. Two simulations are conducted (hereafter referred to as

coarse- and fine-grid LES) to check the sensitivity of the results on the spatial resolution.

2.3.1. Inflow condition: triggering transition

At the upstream frontier of the computational domain the boundary layer is assumed

to be laminar. A third-order polynomial fit to the Blasius velocity profile is enforced at

this location with an initial boundary layer thickness δ0. The free-stream Mach number

is taken to be M∞ = 0.5. The pressure and density are set initially to uniform values p∞

and ρ∞ = p∞/(rT∞). The initial Reynolds number Re0θ based on the local momentum

thickness θ of the laminar boundary layer are given in table 1 for the two simulations.

Turbulence seeding is achieved by introducing a small step slightly downstream of the

inlet boundary condition. The step lies in the spanwise direction and is located between

x1/δ0 = 11 and x2/δ0 = 15, and 0 6 x2/δ0 6 0.14 for the coarse-grid LES, and between
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∆x+
1 ∆x+

2 ∆x+
3 ∆tU∞/δ0 Nx1

Nx2
Nx3

Lx1
/δ†0 Lx2

/δ0 Lx3
/δ0 uτ (m/s)

coarse grid 58 3 17.5 0.011 760 200 101 300 57 14 7.5

fine grid 37 0.98 14.7 0.0032 1372 300 131 287 400 12.2 7.38

Table 2. Grid parameters for the LES of a three-dimensional spatially developing turbulent

boundary layer († without the sponge zone).

x1/δ0 = 5.7 and x2/δ0 = 9, and 0 6 x2/δ0 6 0.26 for the fine-grid LES. This step has

a large width-to-height aspect ratio and is hence expected to have few impact on the

global mean flow while providing a discontinuity igniting the transition to turbulence.

As explained in previous papers by Berland & Gloerfelt (2008) and Gloerfelt & Berland

(2009), controlled laminar breakdown is not considered in the present study since the

enforcement of aerodynamic perturbations at the inflow boundary, without generating

spurious sound waves, remains a difficult task. The small step will induce some spurious

noise, since a rough wall is known to generate higher noise levels than a smooth wall

(Howe (1991)). Nevertheless, the trick used to ignite transition toward a fully turbulent

state has the great advantage to be steady, and has been seen to produce considerably

less spurious noise than other inflow conditions based on the introduction of unsteady

perturbations (Gloerfelt & Le Garrec (2008); Berland & Gloerfelt (2008)), which is a

crucial point to capture the direct radiation from the boundary layer turbulence.

2.3.2. Grid design

The mesh size is taken to be uniform in the spanwise direction. In a similar manner,

the mesh in the streamwise direction is uniform but grid stretching, with a rate of 2%, is

used in the sponge zone over the last 100 points. In the wall normal coordinate, the grid

size is stretched using a geometric progression of 2% and 2.5% for the coarse- and fine-

grid LES respectively. The resolution and domain size for each computation are given
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in table 2. The friction velocity uτ is calculated when the flow is fully turbulent. This

reference velocity allows in particular to express simulation parameters in wall units,

e.g. ū+ = ū/uτ or x+
i = uτxi/ν. The values obtained by using the value at the middle

of the computational domain are given in table 2. The total number of grid points is

approximately 15 million for the coarse- and 54 million for the fine-grid LES. For this

latter simulation, the transient stabilisation of the computation lasted 400 000 iterations

and the statistics have been evaluated for the 600 000 following iterations. The overall

cost of such a simulation is more than 5000 hours on a NEC-SX8 supercomputer.

3. Characteristics of the turbulent boundary layer

3.1. Mean flow

The mean flow provided by the present LES calculations is compared to reference data

of Jimenez et al. (2010) obtained at Reθ = 1551. The profile in the wall-normal direction

of the mean streamwise velocity, u+
1 = u1/uτ , is presented in wall units in figure 3(a). In

the viscous sublayer, the two LES predict fairly well the linear law. In the overlap region

(30 < y+ < 200), the DNS data of Jimenez et al. (2010), the log law and the present

profiles perfectly collapse. Further away from the wall, for y+ > 200, the classical wake

defect is visible. A slight underprediction of the friction is noticeable on the coarse grid,

which is often observed with LES-like resolution (Garnier et al. (2009)). The fine grid

allows the prediction of the friction in very good agreement with the DNS. The evolutions

of the shape factor along the streamwise direction are plotted in figure 3(b). They are

compared to a momentum integral estimate (reported in Lund et al. (1998)) based on

Coles’ law. A fairly good agreement is observed for the decrease of the shape factor.

Figure 4 shows the vertical variations of the turbulent intensities near the end of the

computational domain. Comparisons of these distributions with those of DNS references
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Figure 3. (a) Profiles of the mean longitudinal velocity in wall coordinates for the fine-grid

LES at x1/δref=41.5 (Reθ=1551) ( ), and for coarse-grid LES at x1/δref=62.3 (Reθ=1550)

( ), compared with DNS of Jimenez et al. (2010) at Reθ=1551 (◦). (b) Evolution of the

shape factor H : ( ) coarse-grid LES; ( ) fine-grid LES; (+++) momentum integral

estimate from Lund et al. (1998).

Spalart (1988) and Jimenez et al. (2010) indicate fairly good agreement for the fine

meshgrid, whereas the levels are underestimated in the middle of the TBL with the

coarse meshgrid. The tendency to underpredict the u2rms
and u3rms

is also common with

LES resolution. The main features of a low-Reynolds-number turbulent boundary layer

are satisfactorily reproduced for a range of Reynolds numbers based on the momentum

thickness between 800 and 2400 on the fine grid.

3.2. Instantaneous flow field

Figure 5 shows instantaneous views of the norm of the vorticity for the fine-grid case. The

onset of realistic turbulence is seen to occur between 5 and 10δref, where δref=1.13 mm is

the boundary layer thickness at the middle of the computational domain. At this location,

the displacement thickness is δ∗ref = 0.197 mm. δref and δ∗ref are used as reference length

scales throughout the paper. The total length of the domain in the longitudinal direction,

required to resolve low wavenumbers, can be appreciated from figure 5. Furthermore, the
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Figure 4. Turbulent intensities: u1rms/uτ ( present LES; ◦ Spalart; ◦ Jimenez), u2rms/uτ

( present LES; + Spalart; + Jimenez), u3rms/uτ ( present LES; � Spalart;

� Jimenez). (a) coarse-grid LES results at x1/δref=79.1, and (b) fine-grid LES results at

x1/δref=73.

characteristics of the flow structures are similar with previous DNS results by Spalart

(1988), or with experimental smoke pictures of Head & Bandyopadhyay (1981).

4. Direct acoustic radiation

The acoustic pressure is obtained directly from DNC. In this section, the features of

noise radiation outside the TBL, namely its frequency content, its directivity and the

noise levels are analysed. The analysis is conducted for the fine-grid LES since similar

conclusions are obtained with the coarser grid.

4.1. Frequency content

Overviews of the radiated field are given in figure 6, where the pressure fluctuation

p′ is plotted as a colormap. Acoustic wavefronts observed in the near-field are mainly

oriented in the direction opposite to the flow, and have relatively large wavelengthes.

Two instants are shown to get insight into the time variation of the acoustic field (see

also the supplementary movie 1).

The time evolution of the pressure perturbation measured in the near-field is plotted
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Figure 5. Instantaneous snapshots of the norm of the vorticity: (a) sideview in the median plane

x3 = 0 (the longitudinal length has been divided in two parts); (b) topview at x2 = 0.054δref ;

(c) 3 crossviews at x1/δref=19.8, 59.7, 72.9.

in figure 7 as a function of the non dimensional time tU∞/δ∗ref. The peak amplitude of the

signal is about 5 Pa at a distance x2/δ
∗
ref ≃ 10. Low-frequency events are noticeable, for

instance with an approximate duration TU∞/δ∗ref=100, marked by arrows in figure 7. The

corresponding frequency ωδ∗ref/U∞ ≃ 0.06 corresponds to the peak of the premultiplied

spectra in figure 8(a). By plotting the spectrum in this way, the visual area under the

curve in this semilogarithmic plot is proportional to the value of p2. The spectra are

evaluated with Welch method for 19 500 samples recorded every 30∆t, giving a sampling
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Figure 6. Instantaneous snapshots of the pressure fluctuations p′ in the median plane (levels

±5 Pa) at two instants for the fine-grid LES: tU∞/δ∗ref=380.7 (top), and 1142.1 (bottom).

frequency of 5.77× 106 Hz. The signal is splitted in 10 segments with 50% overlap, and

a Hann window is applied to each segment. The broadband spectra in figure 8(b) show

a good collapse at the different streamwise locations. Distinct high-frequency peaks are

visible with Strouhal numbers 0.6, 1.24 (first harmonic) and 1.8 (second harmonic). It

will be shown that these high-frequency components originate mainly from the small step

used at the inlet to ignite turbulent transition.

In order to characterise more distinctly the features of the acoustic field at the dif-

ferent frequencies, the pressure in the median plane x3=0 was stored (10 000 samples

every 30∆t), and band-pass filtered. Three particular reduced frequencies are selected,

namely a low-frequency ωδ∗ref/U∞=0.033, a medium frequency ωδ∗ref/U∞=0.20, and a
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Figure 7. Time evolution of the pressure fluctuations as a function of non dimensional time

tU∞/δ∗ref at (x1, x2, x3) = (46.4δref, 9.6δref, 0). The time origin corresponds to the end of the

transient period, where statistics begin to be computed. The full length of the signal used for

spectral analysis is shown.
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Figure 8. Premultiplied spectra f φ(f) (a), and normalized power spectral density

φ̃(ω) = φ(ω)U∞/(ρ2u4
τM

2δ∗3) (b) in the acoustic field at x2/δref = 9.6, and for various stream-

wise locations: x1/δref = 6.6 (▽), 19.8 (◦), 33.1 (∗), 46.4 (+), 59.7 (△), 72.9 (�). On the left,

the vertical solid line marks the peak ωδ∗ref/U∞=0.06. On the right, the dashed line indicates

ωδ∗ref/U∞=0.033, the dash-dotted ωδ∗ref/U∞=0.20, and the two dotted lines at ωδ∗ref/U∞=0.52

and 0.99 define the high-frequency band, used in the Fourier analysis of §4.2.

high-frequency band, located around the first high-frequency peak. They are indicated

by vertical lines in the spectra of figure 8(b). A forward-backward filtering (Gustafsson

(1996)) is applied using second-order band-pass Butterworth filters. Colormaps of the

filtered pressure are shown in figure 9 (see also supplementary movies 2-4). The resulting

pressure field for the lowest frequency includes few wavelengthes, so that it is difficult to

identify precisely the source locations. It is however clear in figure 9(a) that the source

neither originates from the step or the outlet boundary. The plot for the intermediate
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frequency in figure 9(b) also indicates significant time-to-time variations. The wavelength

c0/f=10.8δref now allows the identification of several sources, clearly originating from the

TBL. The pressure field represents then an interference pattern. All the low-frequency

components are characterised by a marked directivity in the direction opposite to the

flow, to be discussed in the next section.

Finally, the pressure fields in figure 9(c), band-pass filtered around the first high-

frequency peak, which was attributed to the diffraction by the small step near the inlet,

are a superposition of circular wavefronts emanating from the step and high-frequency

waves oriented in the direction opposite to the flow all along the TBL. The pressure

levels for this frequency band are much higher near the step, confirming that the high-

frequency peaks are indeed associated with diffracted waves from the step. The directivity

of this unwanted source is fortunately also preferentially in the upstream direction, so

that that most of the noise from the supplementary source escapes through the inlet

boundary. It is associated with a Kelvin-Helmholtz-like instability, since the wall-normal

velocity profiles exhibit an inflectional point just after the step. For instance, in figure 10,

the mean streamwise velocity u/U∞ is reported for various streamwise positions after the

step. A composite profile is fitted by combining a Blasius profile and a hyperbolic-tangent

profile:

ū = uBL ×W (η) with
uBL

U∞

=















η(2− 2η2 + η3) if η < 1

1 if η > 1

,

W (η) = 1
2

{

1 + tanh
[

a(η−b)
(1−2b)η+b

]

/ tanh(a)
}

(4.1)

where η = y/δ1, and the parameters are δ1 ≃ 4×10−4 m, a=3.3, b=0.25δ1. A local viscous

linear stability analysis is conducted for the composite profile. Details of the numerical

method are specified in Robinet et al. (2001). The frequency of the most unstable wave

is ωδ∗ref/U∞=0.603 in very good agreement with the value ωδ∗ref/U∞ ≃0.6 deduced from
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Figure 9. Band-pass filtered pressure in the median plane at tU∞/δ∗ref=380.7: (a) around

ωδ∗ref/U∞=0.033 (range ±0.5 Pa), (b) around ωδ∗ref/U∞=0.20 (range ±0.25 Pa), and (c) for

the frequency band ωδ∗ref/U∞ ∈ [0.52; 0.99] (range ±1 Pa).

DNC spectra of figure 8. The trick used to ignite the turbulent inflow will thus pollute

all the high-frequency part of the spectra. This spurious source however does not affect
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Figure 10. Profiles in the wall-normal direction of the mean streamwise velocity u/U∞ as a

function of y/δ1 (δ1 = δ0+ step height), for successive streamwise locations just downstream

the small step: x/δ1= 7.28 (◦), 7.65 (�), 8.02 (△), 8.40 (×), 8.77 (⋄), 9.14 (*). The composite

profile (4.1) is superimposed ( ).

the low-frequency range of interest, and appears to be a better compromise than having

used synthetic turbulence or recycling methods.

4.2. Directivity of noise radiation

The particular directivity in the direction opposite to the main stream, observed at all

frequencies, can mainly be explained by propagation effects. In the present study, noise

radiation is dominated by low frequencies. The case of a point source at the highest low

frequency selected in the Fourier analysis, ωδ∗ref/U∞=0.2, is investigated in the appendix

A. The main propagation effect is the convection due to the high-speed stream at M=0.5.

The Doppler effect for a compact source decreases the wavelength upstream of the source,

and conversely increases it downstream. This is accompanied by a rise of pressure lev-

els upstream. The wavefront have consequently a very large apparent wavelength and

low levels downstream of the source, explaining essentially the observed directivity. The

concentration of sound power in a lobe oriented in the upstream direction, in agreement

with the theory of compact sources, can help to conclude that the source inside the TBL

are compact, and thus correspond to localised turbulent event. The convection effect is
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Figure 11. Pressure field obtained by placing three horizontal longitudinal quadrupoles inside

a turbulent boundary-layer velocity profile. The source frequency is ωδ∗ref/U∞=0.2, their height

is 0.016δref .

reinforced for higher-order multipolar sources. For instance for horizontal dipole or lon-

gitudinal quadripole, expected to be the dominant sources in a Lighthill-Powell analogy

(Gloerfelt (2010)), the reflections at the wall and the multipolar nature yield intense

beam in the upstream direction (see figure 26(b) and (e) in appendix A). The more com-

plicated pressure pattern observed in figure 6 is a result of the superposition of several

sources for a continuum of low frequencies, and with important time-to-time variations.

For instance in figure 11, placing three compact longitudinal quadripoles close to the wall

inside a mean turbulent velocity profile for the reduced frequency ωδ∗ref/U∞=0.2 yields

an interference pattern bearing strong similarities with the TBL sources filtered at this

frequency in figure 9(b).

4.3. Amplitude of sound radiation

At low Mach numbers, several authors give a simple relation between the acoustic domain

of the wavenumber-frequency spectrum Φpp(k1, k3, ω) and the frequency spectrum of the

radiated sound (Blake (1986b); Dowling (1992); Howe (1998)). For instance Howe (1998,

p. 211-212) relates the wavenumber-frequency spectrum of the pressure radiated in the

far-field Φr and the acoustic domain of the wall pressure Φw for k < κ0 using the
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stationary phase assumption:

Φr(x, ω) =
2Aκ2

0 cos
2 θ

|x|2 Φw(κ0x/|x|, ω) (4.2)

where A represents the area of the wetted surface, and θ = cos−1(x2/|x|). Dowling

(1992, p. 461) gives two empirical expressions for the wall-pressure spectrum in the

acoustic domain. The first one is deduced from the modified Chase (1987) model, which

is derived from considerations about the Lighthill theory:

Φw(0, ω) ≃ 9.1× 10−4 ρ
2
∞u4

τM
2δ∗

3

U∞

(

ωδ∗

U∞

)−1

(4.3)

The other expression is provided by Sevik (1986), who fitted experimental points on a

buoyant body for a frequency range 3 < ωδ∗/U∞ < 30:

Φw(0, ω) = 5.6
ρ2∞u4

τM
2δ∗

3

U∞

(

ωδ∗

U∞

)−4.5

(4.4)

The results obtained with equations (4.3), and (4.4), inserted in (4.2), taking θ = 0 and

A = 74.28δref × 3.45δref, are superimposed on the acoustic spectrum from the LES in

figure 12. The results for the Sevik formula are generally considered to be a higher bound

for the quadrupole noise from a turbulent boundary layer. The acoustic results that he

used are indeed presumably contamined by a source of exterior noise since the results

for smooth and rough surface are identical (which is contradictory). Moreover, the range

of validity is rather for high frequencies ωδ∗/U∞ > 1, and low Mach numbers. We can

indeed see that that the sound levels are greatly overestimated, even if the exponent for

the frequency dependence seems roughly correct in the intermediate range. The levels

predicted by the modeling of the acoustic domain used in Chase’s model are in better

agreement, but the frequency dependence is less favorable. Note also that the location

of the receiver point is not in the very far field as assumed in the stationary phase

approximation. The reliability of the various models remains controversial even after
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Figure 12. Comparisons of power spectral density of the pressure perturbations in the acoustic

field with theoretical models: ( ) Fine-grid LES at x1/δref = 46.4 and x2/δref = 9.6, (

) Chase’s model Eq.(4.3), ( ) Sevik’s model Eq.(4.4).

several decades of investigation. The results from a DNC solver can thus help to revisit

these models.

5. Analysis of wall-pressure fluctuations

Most of the models of flow noise rely on expressions of the wall pressure frequency-

wavenumber spectrum. The investigations mainly concentrated either on flows at very

low Mach numbers M≪ 1 as in underwater applications, or in the context of ground

vehicles. In the present study, a compressible turbulent boundary layer at M=0.5 is

tackled, which can be relevant for cabin noise, generated at the fuselage of an airplane.

The analysis of wall pressure fluctuations aims at characterizing the turbulent motions

responsible for the noise emissions.

An analysis in the wavenumber-frequency domain yields a direct link between the

acoustic radiation and the source fluctuations having supersonic wavenumber compo-

nents, in the absence of any scatterer. It is therefore crucial to take care of the spectral
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resolution, especially in the low wavenumber region. This is indeed strenuous to measure

the low wavenumbers in the acoustic region, either because of the finite extent of the

model or of the microphone array, or because of the contamination by the background

noise of the wind tunnel facility. The question whether the spot possibly visible in the

acoustic region, is coming from the boundary layer self-noise or the environment noise is

still open. Two experimental works report a spot in the acoustic domain. Arguillat et al.

(2010) (see also Arguillat (2006)) used 63 remote microphone probes along the diameter

of a disk. The transducers line is turned, allowing to scan with discrete values a com-

plete disk. They studied low-speed boundary layers typical of automotive applications.

The wavenumber-frequency spectrum at 1000 Hz for a flat plate turbulent boundary

layer at U∞=40 m/s and δ∗=10.5 mm is consistent with the Corcos model concerning

the convective ridge. The presence of an acoustic domain with a magnitude of 5% of the

aerodynamic field is observable. Ehrenfried & Koop (2008) studied a high-speed flat plate

boundary layer (M=0.83, δ∗≈4 mm). They obtained wavenumber-frequency spectra from

a 48-sensor array with a beamforming method. The resolution is increased by the em-

bedded DAMAS2 deconvolution algorithm. Beside the convective ridge, they identified a

local maxima in the ellipse representing the acoustic domain. The origin of the acoustic

peaks in both experiments is still a subject of controversy. For example, the proximity

of the trailing egde of the flat plate in the experiment of Ehrenfried & Koop (2008) can

generate a scattered acoustic field, which is much more efficient than the direct boundary

layer noise, and the confined character in the experiment of Arguillat et al. (2010) can

induce resonance modes.

5.1. Method for computing the spectra and resolution characteristics

When the wall is plane and the boundary layer is growing slowly, the pressure fluctu-

ations can be considered statistically stationary in time and homogeneous in x1- and
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x3-directions. The space-time correlation function defined as:

Rpp = 〈p(x, t)p(x + ξ, t+ τ)〉

where 〈 〉 indicates an ensemble average, depends only on the spatial separations ξ =

(ξ1, 0, ξ3) and on the time delay τ , and is therefore denoted Rpp(ξ1, ξ3, τ). In experiments,

the frequency spectra are generally obtained directly by Fourier transform of the signal

at one point, but the wavenumber-frequency spectra are deduced from multipoint space-

time correlations, by using microphone arrays as in Panton & Robert (1994), Arguillat

et al. (2010), or Ehrenfried & Koop (2008) for instance. When a numerical database is

used, as in Kim (1989), Choi & Moin (1990), Chang et al. (1999), Viazzo et al. (2001), or

Hu et al. (2006b), the wavenumber-frequency spectra are rather preferentially calculated

by a three-dimensional Fourier transform p̂:

p̂(k1m , k3q , fs) =

1

Nt

Nt−1
∑

r=0

{

1

Nx3

Nx3
−1

∑

p=0

[

1

Nx1

Nx1
−1

∑

l=0

p(x1l , x3p , tr)e
−ik1mx1l

]

e−ik3qx3p

}

ei2π
rs
Nt (5.1)

with k1m = m∆k1, k3q = q∆k3 for the point corresponding to the three integers (m, q, s).

The wavenumber-frequency spectrum is then defined by:

Φpp(k1m , k3q , fs) = E
{

lim
Lx1

,Lx3
,Lt→∞

1

Lx1
Lx3

Lt

p̂ p̂∗

2π∆k1∆k3∆f

}

(5.2)

with Lx1
= Nx1

∆x1, Lx3
= Nx3

∆x3, Lt = Nt∆t, ∆k1 = 2π/Lx1
, ∆k3 = 2π/Lx3

,

and ∆f = 1/Lt. The asterisk denotes the complex conjugate. To improve the statistical

properties of the expectation operator E , the spectrum is obtained by the average over

Nseg time segments with 50% overlap. Before a Fourier transform is taken of each segment,

the mean value is subtracted and a Hann window is applied; therefore a factor of 8/3

has to be applied to compensate for the Hann window. The same windowing is applied

in the streamwise direction which is not homogeneous. The one-dimensional spectra are
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obtained by integrating the 3-D spectrum. For instance, the one-sided (ω > 0) point

spectrum is:

φ(ω) =
1

π

∫ ∞

−∞

∫ ∞

−∞

Φpp(k1, k3, f) dk1dk3 (5.3)

Note that the 1/2π factor in (5.3) results from the use of the frequency f rather than

the angular frequency ω = 2πf in the expression (5.2) of the 3-D spectrum. Moreover, a

subsequent factor 2, is used for the single-point spectrum for comparison with the one-

sided version generally used in experiments. The mean square of the pressure fluctuations

is then calculated by:

p2 =

∫ ∞

0

φ(ω) dω (5.4)

Once the statistical steady state is reached, the wall pressure is stored during 585 000

iterations every 30 time steps of the Navier-Stokes solver (∆tuτ/δref ≃ 1.1× 10−3). The

total time of storage corresponds to Ltuτ/δref = 22.08, or LtU∞/δ∗ref = 2968. The 19 500

samples are divided in Nseg=11 overlapping segments, each containing 3250 samples. The

frequency resolution is ∆ω = 1.71uτ/δref = 0.013U∞/δ∗ref, and the maximum frequency

is ωmax = 5549uτ/δref = 41U∞/δ∗ref. The frequency cut-off due to the spatial resolution is

however far lower. By estimating roughly that the spatial scheme is able to resolve spatial

structures discretised by four points (Bogey & Bailly (2004)), the wavenumber cut-off

is kcut-off = 2π/4∆x = 23.6/δref = 4.1/δ∗ref. Using the Taylor hypothesis with Uc=0.6,

we estimate a cut-off frequency ωcut-off = 335uτ/δref = 2.5U∞/δ∗ref. The wavenumber

resolution is ∆k1 = 2π/Lx1
= 0.085/δref = 0.015/δ∗ref in the streamwise direction and

covers a range 0 6 k1δref 6 94.6 (0 6 k1δ
∗
ref 6 16.5). In the spanwise direction, ∆k3 =

2π/Lx3
= 1.82/δref = 0.32/δ∗ref, and 0 6 k3δref 6 236.6 (0 6 k3δ

∗
ref 6 41.4).
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5.2. Frequency power spectrum and mean square pressure

The single-point spectra for successive longitudinal locations are depicted in figure 13

with different scalings. Numerous authors (Blake (1986a); Farabee & Casarella (1991);

Goody (2004); Hu et al. (2006b)) have attempted to find an universal scaling for wall

pressure frequency spectra, but the choice is not unique. When the inner variables are

used, as in figure 13(a), the high-frequency part of the spectra are seen to collapse to

some degree. The different spectra superimpose well with experiments in the intermediate

range 0.1 6 ων/u2
τ 6 0.6. For very high frequencies a decay law with ω−5 is expected.

This law is satisfied by the model of Goody (2004) which has been plotted with the black

dashed line. The semi-empirical model of Goody (2004) is an extension of the Chase-

Howe model (Chase (1987); Howe (1998)). To take account of the Reynolds number

dependence, Goody proposed the following semi-empirical formula :

φ(ω)U∞

τ2wδ
=

C2(ωδ/U∞)2

[(ωδ/U∞)0.75 + C1]
3.7
+
[

C3R
−0.57
T (ωδ/U∞)

]7

where C1 = 0.5, C2 = 3 and C3 = 1.1 are empirical constants, RT = (δ/U∞/(ν/u2
τ )) is

the ratio of the outer to inner boundary layer time scale, which represents the effect of

the Reynolds number, since RT ∝ uτδ/ν. The model has been plotted for RT = 20, which

would correspond to Reθ=1500. The experimental spectra from the works of Gravante

et al. (1998), Schewe (1983), and Farabee & Casarella (1991) are in fair agreement with

the model of Goody for ων/u2
τ > 0.01. For very high frequencies, the spectra from the

LES fall off too fast, and do not follow the ω−5 decay law. In fact, the vertical thick

dashed line indicates the frequency cut-off of the simulation as defined in the previous

section, and thus explain the discrepancies for ων/u2
τ > 0.67. The good collapse of the

different spectra in the high-frequency range with inner scaling is directly related to the

fact that the smaller scales develop near the wall. The use of outer variables in the other
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figures allows a good collapse at middle frequencies. No significant difference is noted

between figure 13(b) and (c), where δ or δ∗ are used as length scales, and U∞ or uτ as

velocity scales, suggesting that the good collapse in the intermediate range is rather linked

to the length scale, which characterizes the size of the turbulent structures associated

with those frequencies. The ω−1 law followed by a ω−7/3 law invoked by some authors

are hardly distinguishable in the present case since the Reynolds number is low, which is

also the case in all the numerical databases analysed by Kim (1989), Choi & Moin (1990),

Chang et al. (1999), Viazzo et al. (2001), or Hu et al. (2006b). The trends of the spectra

with increasing Reynolds numbers are indicated by an arrow in figure 13(b)(c)(d), and

conform with the observations of Gravante et al. (1998) or the model ofGoody (2004).

It is also noted that the levels and the maximum of the spectra are in fair agreement

with the model and other published measurements. The theoretical ω2 law at very low

frequencies, only verified in the experiments of Farabee & Casarella (1991) (figure 13(c)),

is not visible in the present spectra. Recent experiments by Beresh et al. (2011) also do

not support the ω2 dependence. We may not explore a sufficiently low frequency range.

The use of the dynamic pressure Q∞ = 1
2ρ∞U2

∞ rather than the wall shear stress τw as a

pressure scale in the last plot of figure 13(d) has been suggested by Farabee & Casarella

(1991) to collapse the spectra at the very low frequencies. A rather good superposition

is observed, with the exception of the spectra at the lowest Reynolds number Reθ=848.

We can argue that this corresponds to a location where the flow is still transitional just

after the small step used to ignite the turbulent motions.

The mean square pressure is evaluated by using (5.4). We find prms/τw ≃ 2.4 by using

a median value for the wall shear stress. This result is in fair agreement with the value of

2.35 reported in the DNS of Spalart (1988), or 2.5 in the experiments of Schewe (1983)

for similar Reynods number (Reθ ≃ 1400, Reτ ≃ 500). The model proposed by Viazzo
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Figure 13. Frequency power spectra of wall pressure for successive streamwise absissae:

x1/δ
∗
ref=75.9 (Reθ=848); x1/δ

∗
ref=151.8 (Reθ=1180); x1/δ

∗
ref=227.8 (Reθ=1491);

x1/δ
∗
ref=303.7 (Reθ=1781); x1/δ

∗
ref=379.6 (Reθ=2058); x1/δ

∗
ref=455.6

(Reθ=2328). (a) Scaling by inner variables: τw as pressure scale and ν/u2
τ as timescale. Ex-

perimental spectra are superimposed: ++ Gravante et al. (1998) (Reθ=2953); ** Farabee

& Casarella (1991) (Reθ=2945); oo Schewe (1983) (d=2 mm, Reθ=1400); ooSchewe (1983)

(d=4 mm, Reθ=1400). The semi-empirical model of Goody (2004) for RT=20 is plotted with a

black dashed line, and the vertical dashed line indicates the frequency cut-off of the LES. (b)

Scaling by outer variables: τw as pressure scale and δ∗ref/U∞ as timescale. The arrow show the

increasing longitudinal locations. : Goody’s model (RT=20). (c) Scaling by outer vari-

ables: τw as pressure scale and δref/uτ as timescale. The measurements of Farabee & Casarella

(1991) for U∞=15 m/s are superimposed (•••), along with Goody’s model for RT=47.11 (

). (d) Scaling by outer variables: the dynamic pressure Q∞ = 1
2
ρ∞U2

∞ as pressure scale and

δref/U∞ as timescale. : Goody’s model (RT=20).
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et al. (2001), which take into account the theoretical contributions of each frequency

ranges (low, medium, high), is also used for comparison:

p2rms/τ
2
w = 3 + 2 ln(Reτ/250)

where the mean value along the computational domain is used for Reτ (≃ 560), which

yields 2.15. A still lower value of 1.9 is given in the simulations of incompressible channel

flow at Reτ ≃ 400 by Kim (1989) (DNS) and at Reτ ≃ 640 by Viazzo et al. (2001) (LES).

This decrease of pressure fluctuations seems therefore rather related to the confined

geometry than to the grid resolution. It must be noted that the too rapid decay at high

frequencies in the present simulation is not penalizing for the subsequent analysis since

the good estimation of the mean square pressure indicates that the energetic contribution

of the high-frequency region is small. For instance, the mean-square pressure predicted

by the Goody model values above the cutt-off frequency represents 6% of prms over the

whole frequency range.

5.3. Broad-band correlations

In the present study, the space-time correlation function Rpp(ξ1, ξ3, τ) is obtained by

an inverse Fourier transform of the wavenumber-frequency spectral densities (Wiener-

Khintchine theorem). This is an efficient way to compute the correlation from the Fourier

transforms of the different signals when a large number of points is involved, by taking

advantage of the FFT algorithm. The current grid at the wall is indeed n1 = 1120×n3 =

131 points. The first 100 points in the vicinity of the small step at the upstream end, and

150 points at the downstream end, where grid stretching is used, have been discarded.

The reduced grid (x1, x3) is thus regular.

Figure 14(a) shows a map of the spatial correlation Rpp(ξ1, ξ3, 0) at zero time delay.

The resulting pattern indicates that at small spacings the wall pressure field appears
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Figure 14. Contours of constant space correlation, Rpp(ξ1, ξ3, 0) of the wall pressure field (a).

10 positive isocontours (solid lines): 0.01, 0.02, 0.05, and 0.1 to 0.9 every 0.1; and 3 negative

isocontours (dashed lines): -0.01, -0.02, -0.05. Space correlations of the wall pressure Rpp(ξ1, 0, 0)

along the streamwise direction (b), and Rpp(0, ξ3, 0) along the spanwise direction (c).

nearly isotropic. The isocorrelation curves are elongated in the spanwise direction, in

good agreement with similar maps provided by Bull (1967). Spatial correlations in the

lateral and longitudinal directions are depicted in figure 14. The rapid coherence loss in

the longitudinal direction is clearly visible in figure 14(b). The curve becomes and remains

negative for spatial separation slightly greater than ξ1/δ
∗
ref=1. The same behavior was

observed by Bull (1967) but the negative part began at ξ1/δ
∗
ref=3.9. The scale in the

transverse direction indicated by figure 14(c) exceeds that in the streamwise direction,

and is in fairly good agreement with the measurements of Willmarth & Woolridge (1962)

and Bull (1967). The lateral correlation remains positive.

A way to evaluate the convection speed is to follow the maxima of the longitudinal

space-time correlation for different fixed space increments ξ1 as a function of the time
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delay, as illustrated in figure 15. An envelop curve is drawn tangent to the peaks of Rpp,

defining a function ξ1 = f(τ). The average broadband convection velocity is then defined

as:

Ūc(ξ1) =
ξ1
τ

and is plotted with the circles in figure 16(a). The average velocity varies from 0.6U∞ for

zero separation to 0.84U∞ for large separations. Willmarth & Woolridge (1962) indicate

values of 0.53 at small ξ1 and 0.83 at large ξ1, and Bull (1967) reported values of 0.53

and 0.825 respectively. An instantaneous broadband convection velocity may be defined

as:

Uc(ξ1) =
dξ1
dτ

The derivative is evaluated by the slope of the curve corresponding to minimum decay

rate of the space-time correlation, plotted in figure 16(b). The instantaneous velocity

Uc is reported in figure 16(a) (dashed line). The increase with streamwise separation is

in excellent agreement with the measurements of Willmarth & Woolridge (1962), Bull

(1967), or Blake (1970). The instantaneous convection velocity approaches 0.85U∞. This

reflects the decay of slower small-scale pressure sources, and the gradual predominance

of higher-speed sources for large distances.

5.4. Wall pressure coherence

The coherence is evaluated for our LES database by first evaluating the cross-spectra

by a two-dimensional spatial inverse transform of the wavenumber-frequency spectra. A

cross-spectrum is obtained for each frequency, and is a complex function composed of a

co-spectrum and a quad-spectrum:

Spp(ξ1, ξ3, ω) = C(ξ1, ξ3, ω)− iQ(ξ1, ξ3, ω)
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Figure 15. Peaks of the longitudinal space-time correlation for increasing space increments

ξ1/des=1.9 as a function of the nondimensionalised time increment τU∞/δ∗. The grey bullets

show the maximum location.
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Figure 16. Broad-band convection velocities. (a) Average Ūc (ooo) and instantaneous Uc

( ) convection velocities as a function the longitudinal separaction distance. The solid

line is a curve fitting of the average velocity. (b) Contour map of the longitudinal space-time

correlation of the wall pressure Rpp(ξ1, 0, τ ). Contour levels are -0.01, -0.1 to 0.9 with intervals

0.1.

A phase angle can be introduced as α(ξ1, ξ3, ω) = tan−1(Q(ξ1, ξ3, ω)/C(ξ1, ξ3, ω)), and

is plotted in figure 17(a). The broadband analysis of the previous section has provided

a mean value of the convection properties across the entire boundary layer. Since the
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convection velocity will depend on the size of the turbulent structures and on their vertical

position inside the boundary layer, it is expected bo be frequency-dependent. Bull (1967)

and Blake (1970) suggest to use narrow-band correlations, that is by performing the

analysis for a given narrow frequency band. This allows to estimate an effective velocity

for eddies of various scales, and thus to estimate their average life-times. In the same

way, cross-spectra yield a phase speed Ucp = ωξ1/α, depending on the frequency. It is

depicted in figure 17(b) and 18(a), and can be compared to the narrow-band correlations

measured by Blake (1970). A comparison with the experiments of Farabee & Casarella

(1991), and Leclercq & Bohineust (2002) is proposed in figure 18(a). The phase velocities

are seen to increase rapidly from zero as the frequency is increased and then reach a

plateau. For large separations, the increase is abrupt and an asymptote around 0.75U∞

is reached. The value of this limit is also in fair agreement with the measurements of Bull

(1967) and Blake (1970). For the smallest separation plotted, a phase velocities of 0.55 is

noted indicating that the less correlated structures, probably small scales, are convected

more slowly. This is coherent with the picture of smaller scales closer to the wall. Similar

results are also reported in the analysis of the LES of incompressible channel flow by

Viazzo et al. (2001). These authors reported a peak value around ωδ∗/U∞ ≈0.3, which

is also detectable in the present study, and is also in qualitative agreement with the

experiments of Blake (1970).

The coherence Γ is defined as |Spp(ξ1, ξ3, ω)|/|Spp(0, 0, ω)|. The longitudinal and trans-

verse coherences are represented in figure 19 versus the phase angle. A good collapse is

observed at high frequencies for the different separations ξi. Since the work of Corcos

(1963), the coherence has frequently been assumed to be a decreasing function of a

Strouhal number, based on the separation ξi, the pulsation ω, and a characteristic veloc-

ity. Corcos has taken exponentials in the x1- and x3-directions, and modeled the loss of
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Figure 17. (a) Phase angle α(ξ1, 0, ω) as a function of the nondimensional frequency for suc-

cessive streamwise separations ξ1/δ
∗
ref=0.38 (o), 1.14 (�), 1.90 (△), 2.66 (×), 3.42 (⋄), 4.18 (*),

4.93 (▽), 5.69 (+), 6.45 (o). (b) Phase velocities Ucp versus frequency for the same streamwise

separations.

coherence by the product:

Spp(ξ, ω) = φ(ω) e
−

ω|ξ1|
α1Uc e

−
ω|ξ3|
α3Uc eiωξ1/Uc (5.5)

Exponential curves exp(−ω|ξi|/(αiUcp)) fit well the high-frequency coherence loss. The

small scales responsible for the high-frequency content are indeed rapidly destroyed as

they are convected. The values 1/α1=0.12 and 1/α3=0.72 deduced from figure 19 are in

very good agreement with the values 0.11 and 0.714 obtained by Corcos (1963) from mis-

cellaneous experimental databases, or 0.116 and 0.7 reported by Blake (1970). However,

as noted by several authors, such as Bull (1967), Farabee & Casarella (1991), or Leclercq

& Bohineust (2002), the coherence does not tend to unity as the frequency tends to zero

as observed in figure 18(b), where the data of Leclercq & Bohineust (2002) have been

added. This behavior is related to the limitation in eddy size imposed by the boundary

layer thickness, and the alteration of large strutures by the TBL shear.
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Figure 18. (a) Phase velocities versus frequency compared to the experimental results of

Farabee & Casarella (1991) at Reθ=2945 (△), and Leclercq & Bohineust (2002) at Reθ=7467 (o).

(b) Coherence versus nondimensional frequency for successive streamwise separations compared

to measurements by Leclercq & Bohineust (2002) (o). The successive streamwise separations

are given in figure 19 for the LES simulation. They are ξ1/δ=0.10, 0.24, 0.42, 0.9, and 1.63 in

Leclercq and Bohineust’s experiment, and 0.216 ξ1/δ 65 in Farabee and Casarella’s experiment.
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Figure 19. Coherence Γ as a function of the phase angle: (a) for successive streamwise sep-

arations ξ1/δ
∗
ref=1.90 (�), 3.42 (△), 4.94 (×), 6.45 (⋄), 7.97 (*), 9.49 (▽), 11.01 (+); (b) for

successive spanwise separations ξ3/δ
∗
ref=0.15 (o), 0.76 (�), 1.37 (△), 1.97 (×), 2.58 (⋄), 3.19 (*),

3.80 (▽), 4.40 (+). An exponential fit exp(−ω|ξi|/(αiUcp)) ( ) is superimposed in the ξ1-

(α1 = 1/0.12) or ξ3-direction (α3 = 1/0.72).

5.5. Wavenumber-frequency spectra

The wavenumber-frequency spectrum is obtained by three-dimensional fast Fourier trans-

form as explained in §5.1. The map of a slice of the three-dimensional spectrum for k3 = 0
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Figure 20. Map of the frequency wavenumber spectrum Φpp(k1, 0, f) of the wall pressure fluc-

tuations in dB (ref 1 Pa2 m/Hz) with levels between -16 and -6 dB. The thick dashed line

represents the relation kc = ω/Uc with Uc = 0.6U∞. The dash-dotted lines denotes the con-

vected acoustic wavenumber κ0 = ω/(U∞ ± c∞). Closeview on the right; the dashed line now

represents the relation kc = ω/Uc with Uc = 0.8U∞.

in figure 20 presents a principal peak that characterizes the convected nature of the wall-

pressure field. The mean convection velocity is retrieved (black dashed line in figure 20).

As already observed by Wills (1970), Panton & Robert (1994), or Hu et al. (2002), the

convection ridge is asymmetric, with a tendency to broaden at higher frequencies. This

broadening for increasing streamwise wavenumbers after the location of the convective

peak is clearly noted in the individual spectra of figure 21, and is induced by the reduc-

tion of the correlation lengths at high frequencies. The asymmetry also indicates more

energy in the forward moving waves. An acoustic activity can be noted near the loca-

tion of the acoustic wavenumbers κ0 = ω/(U∞ + c∞). The fine peak is more intense at

high frequencies ωδ∗/U∞ > 1. A more smeared peak for negative streamwise wavenum-

bers κ0 = ω/(c∞ − U∞) is detectable, and corresponds to waves propagating towards

the upstream direction. The closeview in the right of figure 20 shows that the acoustic
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waves in the direction opposite to the flow have a greater level at low frequenices, so

they correspond to the main noise radiation identified by direct inspection. The acoustic

peaks are clearly seen in the cuts at fixed frequencies in figure 21. A broadband hump is

apparent for negative streamwise wavenumbers, which is more sharp at the low frequen-

cies of interest, e.g. ωδ∗ref/U∞=0.25. The wavenumber-frequency spectrum in the k1-k3

plane is represented in figure 22(a) for ωδ∗/U∞=0.32, and clearly shows the convective

ridge. Some noise is visible on the contours because of the reduced spanwise extent in the

simulation and the limited time duration but its shape is satisfactory and exhibits the

well-known convective crest. In this representation, the range of supersonic wavenumber

k =
√

k21 + k23 < ω/c∞ defines the acoustic domain, bounded by the circle k = κ0. When

a mean flow, defined by a Mach number M, is present, the supersonic wavenumbers

correspond to (κ0 − k1M)2 − (k21 + k23) > 0. Noting β =
√
1−M2 the Prandtl-Glauert

parameter, the acoustic domain is represented in the wavenumber space by the interior

of the ellipse:
(

k1 + κ0M/β2
)2

(κ0/β2)
2 +

k23

(κ0/β)
2 = 1 (5.6)

with center at (−κ0M/β2, 0), major radius κ0/β
2, and minor radius κ0/β. As seen in

figure 22(a), this ellipse is already merged with the convective crest at ωδ∗ref/U∞=0.32

(slightly greater than the end of the low-frequency bump, ωδ∗ref/U∞=0.2). The map in

figure 22(b) at ωδ∗ref/U∞=1.69 is representative of the high-frequency acoustic activity

noted in figure 20. Small peaks are visible near the upper limit of the acoustic domain

in figure 21 for ωδ∗ref/U∞=1.69 and 2.54. Since the ellipse bounding the acoustic domain

is now almost separated from the convective ridge, it is possible to discern the peaks

in the acoustic domain in figure 22(b). This frequency is however well above the range

of interest, and pertains to the low-level high-frequency emissions. Due to the relatively

high speed of the flow, and the large-wavelength acoustic waves, figure 22(a) is more
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Figure 21. Wavenumber frequency spectra in dB (ref 1 Pa2 m/Hz) for different fixed nondimen-

sional frequency ωδ∗/U∞: 0.25 ( △), 0.85 ( o), 1.69 ( �), 2.54 ( ▽). At the

frequency ωδ∗/U∞=0.85, the solid vertical line indicates the convective wavenumber kc = ω/Uc,

and the dashed vertical line indicates the convected acoustic wavenumber.
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Figure 22. Contour plots of the frequency wavenumber spectrum Φpp(k1, k3, ω) of the wall

pressure fluctuations with a logarithmic colorscale: (a) ωδ∗/U∞=0.32; (b) ωδ∗/U∞=1.69. The

ellipse indicates the boundary of the acoustic domain defined by (5.6).

representative, and indicates that the acoustic domain is merged within the aerodynamic

peak in this representation. The acoustic contribution is nonetheless identifiable in k1-ω

slices.



Turbulent boundary layer noise: direct radiation at Mach number 0.5 41

6. Conclusions

We have computed directly the noise radiated from a turbulent boundary layer, by per-

forming a compressible large eddy simulation with a very long domain in the streamwise

direction and non reflecting boundary conditions. A small step is used to reach a turbu-

lent state, and is seen to generate spurious high-frequency diffracted waves. The direct

computation however provides a picture of the acoustic wavefronts radiated outside the

boundary layer. The main finding is that the wavelengths are large, so that the classical

assumption that the acoustic waves are related to the most important dynamical struc-

tures, such as the hairpin-like vortices, does not hold. in the direction opposite to the

flow, due to the important Doppler effect at M=0.5, which is still reinforced for horizontal

longitudinal quadrupolar sources. The significant increase of emissions in the upstream

direction is also an indication that the sources are compact, and thus correspond to local-

ized vortical events. Large-scale organisations in a turbulent boundary layer is an active

field of research, such as packets of hairpin (Adrian et al. (2000)), fusion of packets in the

spanwise direction (Tomkins & Adrian (2003)), or long meandering structures (Hutchins

et al. (2011)). The characterisation of vortical events such as the breakdown of these

large-scale structures deserves a further study.

The wall pressure beneath the turbulent boundary layer has been studied since it the

basis of the great majority of semi-empirical models, used as input for structural analysis.

The main features such as spatio-temporal correlation, point spectra, or coherence are

in good agreement with previous experimental or numerical databases. In particular, the

frequency-wavenumber representation allow a separation between the non-radiating and

the radiating components, having supersonic wavenumber and thus a phase speed greater

than the sound speed. Peaks near the location of the slender cone bounding the acoustic

domain are detectable. Unfortunately, due to a combination of the low-frequency range of
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acoustic emission, and the high speed of the flow, the acoustic domain is hardly separated

from the convective ridge for the frequencies of interest. The acoustic efficiency is very

low (less that 1% of the aerodynamic pressure in our configuration) explaining that it is

rapidly merged in the tail of the aerodynamic crest.

The very low efficiency for a flat plate also explains why few experiments are available,

and hardly give an indication on the direct acoustic contribution. Of course, thanks to

the present numerical approach, we have only obtained results for one particular config-

uration, and it would be interesting to apply direct noise computations to investigate the

effect of the Mach number or of the Reynolds number on the radiated noise. It can also

help to identify the vortical events which are the sources of boundary layer noise.

This work was granted access to the HPC resources of IDRIS and CCRT under the

allocation 2009-1736 made by GENCI (Grand Equipement National de Calcul Intensif).

The authors would like to thank Professor Jean-Christophe Robinet for providing the

local stability code.

Appendix A. Sources under a boundary layer flow

The directivity and sound power radiated by a simple source under a boundary layer

have been studied by Suzuki & Lele (2003) or Smith & Morfey (2006). In the same

manner, a two-dimensional version of the direct solver, presented in §2, is used to char-

acterise the propagation effects for the frequencies of interest. Case D of Suzuki & Lele

(2003) is first reproduced to give confidence into the numerical procedure. A Gaussian

monopolar source with an amplitude of 1 Pa is embedded in a laminar boundary layer

flow with a freestream Mach number M∞=0.3. The ratio between the acoustic wave-

length and the boundary layer thickness is λ/δ=1/1.66. The vertical source position is

0.016λ, yielding a Reynolds number Reδ = 3710. A 602×522 Cartesian grid is used with
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Figure 23. Pressure isocontours for case D of Suzuki & Lele (2003) study. The range of

contour levels is -0.11 to 0.11 Pa with intervals of 2.75× 10−2.

∆x1 = 3.75 × 10−5 m and ∆x2min
= 10−6 m. The mesh is stretched in the vertical

direction with a rate of 2.5% for the 130 first grid points and is then regular. Instanta-

neous pressure isocontours depicted in figure 23 are in good agreement with the results of

Suzuki & Lele (2003). In particular, for this relatively high-frequency case, the refracted

waves yields a shadow zone upstream of the source, and channeled waves are visible

downstream of the source.

Simulations are now conducted by taking exactly the mean flow of the fine-grid LES

at M∞=0.5 with a turbulent mean velocity profile. Two frequencies, already used in the

Fourier analysis, namely ωδ∗ref/U∞=0.033, and 0.20, are tested. The corresponding ratios

λ/δref are 66.3 and 10.8 respectively. The 201×201 Cartesian meshgrid has the same

mesh sizes as those of the LES study, i.e. ∆x1 = 3.75× 10−4 m and ∆x2min
= 10−5 m.

The simulations are stopped before the development of flow instabilities. Fluctuating

pressure contours for the two frequencies representative of the direct noise generated by

a TBL are plotted in figure 24. No channeled waves are present, and the refraction effect,

totally negligible at the lowest frequency, remains weak for the highest tested frequency.

The influence of the mean flow profile and of the source height on the refraction effect
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Figure 24. Monopolar sources in a turbulent boundary layer flow. The source frequencies are

ωδ∗ref/U∞=0.033 (a), and 0.20 (b). The height of the source is set at 0.09δref. Pressure contour

levels are between -0.005 and 0.005 with intervals 0.00125 (a), and between -0.11 and 0.11 with

intervals 0.0275 (b).
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Figure 25. Monopolar sources at ωδ∗ref/U∞=0.20: (a) the mean velocity profile corresponds to

a laminar flow and the height is 0.09δref as in figure 24(c); (b) the mean profile is turbulent as

in figure 24(c) and the source is moved away from the wall at 0.37δref. Contour levels are the

same as figure 24(c).

are next investigated in figure 25. When the turbulent profile is replaced by a Blasius

profile, the shadow zone is more extended (compare figure 24(b) and 25(a)). Figure 25(b)

indicates that the refraction is weakened by moving the source away from the wall. It is

thus concluded that the refraction and channeling are negligible in the analysis of the

sound directivity in the present turbulent flow configuration.

Propagation effects for higher-order sources are then illustrated in figure 26. Dipoles

are obtained by taking two identical sources in opposite phase separated by a small dis-

tance λ/20. When the two sources are aligned in the vertical direction in figure 26(a),

the resulting pressure wavefronts are less directional. On the contrary, for an horizontal

dipole, i.e. two opposite sources on an horizontal line, the Doppler effect is strength-
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ened, leading to a lobe oriented in the direction opposite to the flow in figure 26(b).

Same conclusions arise for a longitudinal quadrupole, i.e. two opposite dipoles on a line.

The directivity is more omnidirectional in figure 26(d), than in figure 26(e), where the

emission in the upstream direction is increased and low power levels are observed in

the downstream part. The convection effect are also important for the case of a lateral

quadrupole in figure 26(c), but the overall levels are decreased, because of cancellations

arising from the wall reflections. In the analogy of Powell (1960), the normal pressure or

shear stress dipoles degenerate into quadrupole, thus reducing their efficiency. Similarly,

lateral Tij,i6=j and vertical longitudinal T22 quadrupoles degenerate into octopoles. The

dominant sources are thus expected to be the tangential shear stress (horizontal dipole,

as in figure 26(b)), and horizontal longitudinal quadrupole (as in figure 26(e)), because

these sources are doubled by the reflection. This hierarchy is well retrieved when we

applied the Powell analogy with the LES data in Gloerfelt (2010).
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