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Primal-mixed formulations for reaction-diffusion
systems on deforming domains

Ricardo Ruiz-Baier

Institute of Earth Sciences, Géopolis UNIL-Mouline, University of Lausanne, CH-1015 Lausanne, Switzerland

Abstract

We propose a finite element formulation for a coupled elasticity-reaction-diffusion system written in
a fully Lagrangian form and governing the spatio-temporal interaction of species inside an elastic, or
hyper-elastic body. A primal weak formulation is the baseline model for the reaction diffusion system
written in the deformed domain, and a finite element method with piecewise linear approximations
is employed for its spatial discretization. On the other hand, the strain is introduced as mixed
variable in the equations of elastodynamics, which in turn acts as coupling field needed to update
the diffusion tensor of the modified reaction-diffusion system written in a deformed domain. The
discrete mechanical problem yields a mixed finite element scheme based on row-wise Raviart-Thomas
elements for stresses, Brezzi-Douglas-Marini elements for displacements, and piecewise constant
pressure approximations. The application of the present framework in the study of several coupled
biological systems on deforming geometries in two and three spatial dimensions is discussed, and
some illustrative examples are provided and extensively analyzed.

Key words: Mixed finite elements, reaction-diffusion systems, excitable media, moving domains,
linear and nonlinear elasticity, single cell mechanics, active strain.

2000 MSC: 65M60, 35K57, 35Q74.

1. Introduction

Scope. We focus our attention in the numerical approximation of the chemical interaction between
species concentrations and the response of the deformable medium where they react. Such a general
framework is relevant to a wide range of applications going from molecular to macroscopic biological
systems, and including for instance, chemotaxis [52], organogenesis [41], bone remodelling [50, 61],
swelling of porous materials [38], cardiac electromechanics [31], tumor growth [10], force generation
in skeletal muscle [15], wound healing [8], collagen network generation [34], tissue engineering [40],
and many others.

The spatio-temporal dynamics ofN species can be represented by a reaction-diffusion system ofN
equations, and the motion of the elastic (or hyper-elastic) medium in its general form, can be typically
set in the framework of continuum mechanics, and thus governed by the equations of elastodynamics.
Much of the classical work in this particular field focuses in specific instances (such as radial growth
or uniaxial contraction in simple domains) where it is possible to characterize the body motion
without resolving the underlying solid mechanics and yielding reaction terms written directly in
terms of growth rate (see e.g. [14] and the references therein). Nevertheless here we are interested in
problems where the type of movement is not known a priori and therefore both the deformation and
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the deformation gradients are needed to describe the kinematics of the system: roughly speaking, the
displacements/deformations are employed to update the position of the domain, and their gradients
appear explicitly in the diffusive terms and are required in the formulation of reaction-diffusion
systems written in a deformed medium.

Our primary goal is to introduce, implement, and apply a primal-mixed finite element formulation
for the discretization of the coupled problem, where by primal-mixed we mean that the elasticity
equations are set in a mixed form (that is, the associated formulation possesses a saddle-point
structure involving additional unknowns) whereas the weak formulation of the reaction-diffusion
sub-problem is written in terms of the primal variables only. From a discretization viewpoint, the
clear advantages of a mixed formulation are that certain quantities of interest (such as strains or
deformation gradients, which are needed in particular in the coupling strategy) can be immediately
available with no need of further numerical differentiation, and that there exists more flexibility in
the choice of finite element spaces. Moreover, mixed finite elements are the natural candidates for
the discretization of the equations of incompressible elasticity, since the formal difficulties associated
to infinite Lamé coefficients are absent. On the other hand, we are not particularly interested in
recovering the species concentration fluxes and therefore we concentrate on primal formulations for
the reaction diffusion systems written in the deformed domain.

Related work. Traveling wave solutions for somewhat similar systems have been studied in [27].
A mechano-chemical cell aggregation model was developed in [57] under the assumption of infini-
tesimal strains of the medium, that allows to establish an equivalence relation between the reference
and deformed domains, and that circumvents the difficulties associated to unknown body motion or
nonlinear inter-configuration mappings. We also mention the finite element formulation for organo-
genesis based on a creeping flow description of the cartilage material presented in [42], and the
discontinuous Galerkin approximation on moving grids and associated integration factor methods
introduced in [62, 12] to simulate limb pattern formation. Instead of using continuum-mechanics-
based formulations, the elastodynamics can be alternatively represented with discrete models (as
the mass-lattice model advanced in [58]). Models of cardiac electromechanics exhibit a remarkably
similar structure, and several different formulations and solution techniques have been introduced
in e.g. [13, 23, 31, 47]. Other related contributions include Eulerian formulations for wound healing
[8], spherical tumor expansion [10], level-set and remeshed particle methods for surface and volume
deformation [5, 33, 54], and many other approaches for different variants of growth in living tissues
(see for instance, the recent review [32]). Nevertheless, none of these studies addresses primal-mixed
methods in the spirit of the present basic idea.

Specific aims of this paper include:

• To introduce a mixed-primal formulation for a coupled Lagrangian elastodynamics – reaction
– diffusion system where the mixed problem associated to the elasticity equations is written
in terms of strains and deformations, and where the strain conveniently enters in the primal
formulation of the reaction-diffusion system

• to develop a robust mixed finite element method suitable for the numerical study of a large
class of coupled reaction-diffusion systems in elastic and hyperelastic domains

• to present separate formulations for linear and nonlinear mechanics

• to model the influence of reacting species into body deformation employing either a forcing
term depending on the species concentration gradient, or an active strain decomposition.

Natural applications for the proposed framework are cardiac chemo- and electro-mechanical prob-
lems, however the present method is general enough to accommodate the study of many other related
systems in biology and engineering.
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Outline. We have arranged the contents of this paper in the following manner. Section 2 presents
the derivation of the reaction-diffusion-elasticity equations, where the mechanics of the medium is
specified in two cases: a linear and a nonlinear hyperelastic material law. We recall some properties
of the split systems and we introduce two primal-mixed weak formulations associated to the original
coupled problem. In Section 3 we formulate the spatio-temporal discrete set of equations to be
solved, its linearization via a Newton method, and we specify the choice of time advancing strategy
and finite element spaces. Some numerical examples are given in Section 4, including accuracy
asessment and several applications related to cardiac chemo-mechanics. We close with some remarks
and perspectives collected in Section 5.

2. Reaction-diffusion equations on a deformable domain

2.1. Kinematics, motion and deformation

Let Ω0 ⊂ Rd, d ∈ {2, 3} denote an elastic body with polyhedral boundary ∂Ω0, regarded in
its undeformed reference configuration, and denote by ν the outward unit normal vector on ∂Ω0.

We assume a splitting of the boundary ∂Ω0 = ΓD
0 ∪ ΓN

0 into parts ΓD
0 and ΓN

0 where boundary
loads and boundary tractions are imposed, respectively. A material point in Ω0 is denoted by x,
whereas u : Ω0 → Rd denotes the deformation field that provides its position xt within the body
Ωt in the current configuration, and v̂ = ∂tû|x is the (referential) velocity. The tensor F := ∇u
is the gradient (applied with respect to the fixed material coordinates) of the deformation map,
and E(u) = 1

2 [FtF− I], ε(u) := 1
2 [F + Ft] denote the Green-Lagrange and the infinitesimal strain

tensors, respectively. The symbols ∇t,div t will stand for the gradient and divergence operators
taken with respect to the spatial coordinates xt. As usual, I is the d × d identity tensor, and we
recall that gradient operators in the actual and undeformed configurations are connected by the
relation ∇t(·) = F−t∇(·).

In general, we will be mostly interested in the case where the material is (fully) incompressible,
represented by the constraint

J(u) := det F = 1,

(or equivalently divt v̂ = 0) which is enforced by the use of a Lagrange multiplier p, interpreted as
the hydrostatic pressure field; and where the material exhibits an hyperelastic mechanical response.
Under the assumption of small strains, the incompressibility condition boils down to

tr ε(u) = divu = 0.

We concentrate the presentation for two particular cases: a linear Saint Venant-Kirchhoff and a
nonlinear Neo-Hookean material, whose behavior can be completely described by the strain (or free
energy density) functions

Ψ
(
F(u)

)
=
λ

2
[tr ε(u)]2 + µε(u) : ε(u),

and Ψ
(
F(u)

)
= λ tr E +

µ

2
(J(u)− 1)2,

respectively (see e.g. [6]), where λ, µ stand for the Lamé moduli in the context of the linear material,
and (clearly making abuse of notation) also for the shear and bulk moduli in the Neo-Hookean case,
respectively. The hydrostatic pressure and the first Piola-Kirchhoff stress tensor read respectively
in each case

p

λ
= P(u) =

{
divu,

J(u)− 1,
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and σ(u, p) =
∂Ψ

∂F
=

{
2µε+ pI,

2µF + pJ(u)F−t.

The constitutive equation along with balances of mass and momentum are collected in the fol-
lowing system, written in total Lagrangian formulation

σ(u, p) =
∂Ψ

∂F
in Ω0 × (0, T ), (2.1a)

1

λ
p = P(u) in Ω0 × (0, T ), (2.1b)

∂ttu− divσ(u, p) = f(s) in Ω0 × (0, T ), (2.1c)

σν = gN on ΓN
0 × (0, T ), (2.1d)

u = gD on ΓD
0 × (0, T ). (2.1e)

Notice that the motion of the body is assumed to be weakly influenced by pressure-like internal
reactions encoded as a smooth body force being directly proportional to the local (material) gradient
of scalar fields s1, s2, . . . to be made precise later:

f := f(s1,∇s1, s2,∇s2, · · · ).

Remark 1 (Active contraction). In some circumstances the internal chemical reactions strongly
affect the body motion, such as in active muscle contraction. In these situations a weak coupling needs
to be replaced by e.g. an active-strain approach (see [45, 53] for examples in cardiac electromechanics
and developmental modeling, respectively), where it is assumed that the deformation gradient F can
be rewritten in terms of a Kröner–Lee multiplicative decomposition

F = FeFo, (2.2)

where Fo is the active deformation tensor (here representing growth or contraction), to be consti-
tutively prescribed by the scalar fields si (denoting for instance, species concentrations), and Fe is
the passive elastic deformation tensor, or instantaneous accomodation tensor of the body in a virtual
intermediate configuration. Such a splitting is well-known in many constitutive theories (see for
instance, the review in [36]).

Ωt

Ω0

Ωe

Fo

Fe = FF−1
o

F = FeFo

Figure 1: Active strain decomposition entailing the introduction of a virtual intermediate configuration Ωe between
the reference and current states.

Defining the variables γf , γs, γn as the relative displacements in the orthonormal directions f0,
s0, n0 of a contracting unit of the body, respectively, the local deformation is

Fo = I + γff0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0.
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Notice that γf represents the active growth or active shortening of the body contracting units, whereas
γs, γn will take into account the associated thickening or shrinking, in order to obey material in-
compressibility. The thermodynamic assumption of the multiplicative decomposition (2.2) is that the
active deformation Fo stores no energy, so that the strain energy function in the intermediate con-
figuration (see sketch in Figure 1) is Ψ̂ = Ψ(Fe). Finally, a pull-back to the reference configuration
yields

Ψstrain = det FoΨ̂ = det FoΨ(FF−1
o ),

which in turn implies that (2.1) is replaced by

σ(u, p,γ) =
∂ det FoΨ(FF−1

o )

∂F
,

1

λ
p = P(u),

∂tγ = K(γ, s),

∂ttu− divσ(u, p,γ) = f(s),

σν = gN,

u = gD,

(2.3)

where γ = (γf , γs, γn) and the third equation stands for the constitutive equation for the local active
strain and its rate (see examples of specifications for K in e.g. [21]).

Remark 2 (Pressure elimination). Incompressibility is a typical assumption in the modeling of
soft biological tissues, partially justified by the high percentage of water in the cells and proportionally
low compressibility of extracellular constituents [2]. If in addition we consider a Saint Venant-
Kirchhoff material in spatial dimension d, then (2.1a) and (2.1b) can be replaced, respectively, by

σ = 2µε(u) + pI and p− 1

d
trσ = 0 in Ω0 × (0, T ),

which implies that we can eliminate p from the first equation, yielding

1

2µ
σd = ε(u) in Ω0 × (0, T ),

where τ d := τ − 1
d tr τ I for all τ ∈ L2(Ω0) (see e.g. [19]).

Remark 3 (Stress splitting). In the case of Neo-Hookean materials, and also for sake of the
mixed formulation in mind, we can replace (2.1a) and (2.1c) by

1

2µ
σ̃ = F, and − ∂ttu+ div σ̃ − div [pJ(u)F−t] = −f(s),

in Ω0 × (0, T ), respectively.

Existence of solutions to (2.1) has been established in e.g. [35] for displacement-pressure formu-
lations, based on classical arguments of polyconvexity of the strain energy and the implicit function
theorem. For instance, discontinuous Galerkin formulations for (2.1) and (2.3) have been introduced
and analyzed in [59, 3], respectively.

2.2. Mixed formulations for elasticity

From now on, standard notation will be adopted for Lebesgue spaces Lp(Ω0) and Sobolev spaces
Hs(Ω0) with norm ‖·‖s,Ω0

. By M,M we will denote the corresponding vectorial and tensorial coun-

terparts of the generic scalar functional space M. We define the spaces H1
D(Ω0) = {v ∈ H1(Ω0) :
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v|ΓD = gD}, H1
D,0(Ω0) = {v ∈ H1(Ω0) : v|ΓD = 0}, and we recall that the space

H(div ; Ω0) := {τ ∈ L2(Ω0) : div τ ∈ L2(Ω0)},

equipped with the usual norm ‖τ‖2div ,Ω0
:= ‖τ‖20,Ω0

+ ‖div (τ )‖20,Ω0
is a Hilbert space, and we

introduce
HN (div ; Ω0) := {τ ∈ H(div ; Ω0) : τν = 0 on ΓN

0 }.

Multiplying the nonlinear, coupled equations (2.1) by suitable test functions, integrating by
parts over Ω0, and using Remark 3 we arrive at the following variational form of the model problem
with Neo-Hookean elasticity For any t > 0, find (σ̃(t),u(t), p) ∈ HN (div ; Ω0) ×H1

D(Ω0) × L2(Ω0)
satisfying

1

2µ

∫
Ω0

σ̃(t) : τ +

∫
Ω0

u(t) · div τ =

∫
ΓD
0

gD · [τν], (2.4)∫
Ω0

v · div σ̃(t)−
∫

Ω0

∂ttu(t) · v −
∫

Ω0

pJ(u)∇u−t : ∇v = −
∫

Ω0

f · v,

−
∫

Ω0

q[J(u)− 1] +
1

λ

∫
Ω0

pq = 0,

for all (τ ,v, q) ∈ HN (div ; Ω0)×H1
D,0(Ω0)× L2(Ω0).

For the linear Saint Venant-Kirchhoff material, and thanks to Remark 2, we can write (2.4) as:
Find (σ(t),u(t)) ∈ HN (div ; Ω0)×H1

D(Ω0) such that

1

2µ

∫
Ω0

σd(t) : τ d +

∫
Ω0

u(t) · div τ =

∫
ΓD
0

gD · [τν],

∀τ ∈ HN (div ; Ω0),∫
Ω0

v · divσ(t)−
∫

Ω0

∂ttu(t) · v = −
∫

Ω0

f · v,

∀v ∈ H1
D,0(Ω0).

(2.5)

The (formal) matrix structures of (2.4) and (2.5) are respectively as followsA B∗ 0
B −C dEu
0 E∗ S


︸ ︷︷ ︸

M1

σ̃u
p

 = RHS1,

(
A B∗
B −C

)
︸ ︷︷ ︸

M2

(
σd

u

)
= RHS2, (2.6)

where the involved linear and nonlinear operatorsA : HN (div ; Ω0)→ HN (div ; Ω0)′, B : HN (div ; Ω0)→
[H1

D(Ω0)]′, B∗ : H1
D(Ω0) → HN (div ; Ω0)′, C : H1

D(Ω0) → [H1
D(Ω0)]′, dEu : L2(Ω0) → [H1

D(Ω0)]′,
E∗ : H1

D(Ω0)→ L2(Ω0)′, and S : L2(Ω0)→ L2(Ω0)′ are defined by

[A(σ), τ ] :=
1

2µ

∫
Ω0

σ : τ , [B(σ),v] :=

∫
Ω0

v · divσ,

[B∗(u), τ ] :=

∫
Ω0

u · div τ , [C(u),v] :=

∫
Ω0

∂ttu · v,

[dEu(p),v] := −
∫

Ω0

pJ(u)∇u−t : ∇v,

[E(p),v] := −
∫

Ω0

p[J(v)− 1],
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[E∗(u), q] := −
∫

Ω0

q[J(u)− 1], [S(p), q] :=
1

λ

∫
Ω0

pq.

The motivation for the stress splitting of Remark 3 becomes evident after observing the matrix
structures in (2.6). Notice that M2 yields a linear saddle-point problem whose solvability depends
on the coercivity of the diagonal forms in the kernel of B and on adequate inf-sup conditions for
B. On the other hand, except for E , the system with matrix M1 possesses the structure of a linear
twofold saddle-point problem and it can be studied as in e.g. [18], where the analysis of a continuous
problem and of mixed finite element formulations can be found (see also [20, 28], where the theory
is extended to nonlinear problems).

In the presence of the nonlinear maps E and dE , the system cannot be treated directly as a twofold
saddle point with the arguments from [20], since the nonlinearity is not in the diagonal block of M1.
However, [35] presents a suitable framework where the conditions for existence of solutions are the
ellipticity of A, continuity of C, appropriate inf-sup conditions for B, continuous differentiability of E
in a neighborhood of u and that its gradient dE has a splitting kernel and satisfies a suitable inf-sup
condition.

2.3. Reaction-diffusion equations

For sake of simplicity we will restrict the discussion to reaction-diffusion systems describing
the spatio-temporal interaction of the densities of two species w1, w2, however the presentation is
straightforwardly generalizable to the case of more species. Assuming that all constituent species are
equi-present at each spatial point, the Reynolds transport theorem applied to the mass conservation
of these species yields the following general and non-dimensional reaction-diffusion system for w1, w2

on a spatial (time-dependent) domain

∂twi + v̂ · ∇twi − div t(Di∇twi) = Hi(w1, w2), (2.7)

in Ωt × (0, T ), for i = 1, 2, where Di ∈ Rd×d is a tensor of (possibly anisotropic) diffusion rates
and Hi(w1, w2) are the reaction kinetics of the system representing the production and degradation
of each species concentration. In this particular case, cross-diffusion effects are neglected and the
coupling is present only in the reactive terms. Well-studied examples include the Schnakenberg
model [51], the Gray-Scott model [25], and the FitzHugh-Nagumo equations [16, 43], to name a
few. Notice that the medium incompressibility has been already incorporated in (2.7) by assuming
that div t(v̂wi) = v̂ · ∇twi. A Lagrangian representation of the domain motion allows to rewrite
the target system on a fixed domain in its reference configuration. Pulling back (2.7) to the initial
configuration, using the Piola identity div (JF−t) = 0, applying the material incompressibility, and
endowing the system with zero-flux boundary conditions, we arrive at

∂twi − div (F−1DiF
−t∇wi) = Hi(w1, w2)

in Ω0 × (0, T ), for i = 1, 2,

F−1DiF
−t∇wi · ν = 0

on ∂Ω0 × (0, T ), for i = 1, 2.

(2.8)

For a fixed domain (i.e. F known), the positivity of initial data, the Lipschitz regularity of the
reactive terms Hi(·, ·), and monotonicity of the diffusive term is sufficient to establish the existence
and uniqueness of weak solutions to (2.8) (see e.g. [30], and the references therein). In addition, and
depending on the specific form of the reaction kinetics Hi(·, ·), it is possible to derive so-called Turing
conditions under which spatial patterns can emerge influenced by diffusion-driven instabilities [55].
This is standard practice in fixed domains, however these conditions are quite different and maybe
very difficult to obtain for moving domains, even for very specific types of movement (cf. [37]).
Alternatively to (2.8), one could also devise a mixed formulation for the reaction-diffusion problem
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introducing the gradients of variables wi as additional unknowns (see [29] for an application of
gradient flows in cardiac electrophysiology), but in this context we are only interested in recovering
the scalar primal fields.

2.4. Weak formulation for the coupled model problem

Multiplying (2.8) by suitable test functions, integrating by parts over Ω0, and putting the result
together with (2.4), we arrive at the following primal-mixed variational form of the model problem
with Neo-Hookean elasticity in terms of species concentration, strains, deformations and pressure:

For any t > 0, find (w1(t), w2(t), σ̃(t),u(t), p) ∈ H1(Ω0) × H1(Ω0) × HN (div ; Ω0) ×H1
D(Ω0) ×

L2(Ω0) satisfying

[Wσ̃(w1(t), w2(t)), (s1, s2)] = [H(w1(t), w2(t)), (s1, s2)],

[A(σ̃(t)), τ ]+ [B∗(u(t)), τ ] = G(τ ), (2.9)

[B(σ̃(t)),v]− [C(u(t)),v] + [dEu(p),v]= [F(w1(t), w2(t)),v],

[E∗(u(t)), q] + [S(p), q] = 0,

for all (s1, s2, τ ,v, q) ∈ H1(Ω0)×H1(Ω0)×HN (div ; Ω0)×H1
D,0(Ω0)× L2(Ω0), and where

[Wσ̃(w1, w2), (s1, s2)] :=

2∑
i=1

∫
Ω0

∂twisi + 4µ2

∫
Ω0

σ̃−1Diσ̃
−t∇wi · ∇si, G(τ ) :=

∫
ΓD
0

gD · τν,

[H(w1, w2), (s1, s2)] :=

2∑
i=1

∫
Ω0

Hi(w1, w2)si, [F(w1, w2),v] := −
∫

Ω0

f(w1, w2) · v.

An analogous system arises in the case of a linear Saint Venant-Kirchhoff material. Existence and
uniqueness results for (2.9) are not yet available from the literature, and they currently go beyond
the scope of the present paper. However a similar (linearized) system arising in the study of cardiac
electromechanics has been recently studied in [1] using parabolic regularization, the Faedo-Galerkin
method, and monotonicity-compactness arguments.

3. Discretization of the model problem

Here we focus on the space-time discretization of the coupled problem (2.9). A Rothe-type
strategy is used, where we first apply a time discretization based on finite differences (in particular,
the well-known BDF2 method), followed by the formulation of a primal-mixed finite element method
for the spatial discretization.

3.1. Time discretization

The evolution in time is performed considering a uniform partition of the interval [0, T ] as
[0, . . . , tn, . . . , tN = T ] into N subintervals of size ∆t. We apply a second order backward difference
advancing scheme (BDF2, see e.g. [26]): For given values of w0

i , w
−1
i ,σ0,u0,u−1,u−2,p0, and for

n = 0, 1, . . ., find (wn+1
1 , wn+1

2 ,σn+1,un+1, pn+1) such that

2∑
i=1

1

∆t

(
ẇn+1
i , si

)
Ω0

+ 4µ2
(
σ̃−1Diσ̃

−t∇wn+1
i ,∇si

)
Ω0

= [H(wn+1
1 , wn+1

2 ), (s1, s2)],

[A(σ̃n+1), τ ] + [B∗(un+1), τ ] = G(τ ),

[B(σ̃n+1),v]− 1

(∆t)2
(ün+1,v)Ω0 + [dEun+1(pn+1),v] = [F(wn+1

1 , wn+1
2 ),v],
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[E∗(un+1), q] + [S(pn+1), q] = 0,

for all (s1, s2, τ ,v, q) ∈ H1(Ω0) × H1(Ω0) × HN (div ; Ω0) ×H1
D,0(Ω0) × L2(Ω0), where the dot and

double dot symbols denote the second order BDF approximations of the first and second time
derivatives, respectively, i.e.,

ṡn+1 :=
3

2
sn+1 − 2sn +

1

2
sn−1,

v̈n+1 := 2vn+1 − 5vn + 4vn−1 − vn−2.

Since the time advancing scheme is fully implicit, no CFL condition is required in principle. However,
in all subsequent simulations, the time step will be heuristically chosen so that the underlying physics
of each particular problem are not missed.

3.2. Space discretization

Let us denote by Th a regular simplicial partition of Ω0 by triangles (for d = 2, or tetrahedra
for d = 3) K of diameter hK and define the meshsize as h := max{hK : K ∈ Th}. For the
approximation of strains, deformations, species concentrations, and pressure, respectively, we will
employ finite dimensional spaces Hh, Vh, Sh, Qh that we will specify later on. The fully-discrete
counterpart of the nonlinear system (2.9) consists in solving

2∑
i=1

1

∆t

(
ẇn+1
i,h , si

)
Ω0

+ 4µ2
(
σ̃−1
h Diσ̃

−t
h ∇wn+1

i,h ,∇si
)

Ω0
= [H(wn+1

1,h , wn+1
2,h ), (s1, s2)],

[A(σ̃n+1
h ), τ ] + [B∗(un+1

h ), τ ] = G(τ ),

[B(σ̃n+1
h ),v]− 1

(∆t)2
(ün+1

h ,v)Ω0
+ [dEun+1

h
(pn+1
h ),v] = [F(wn+1

1,h , wn+1
2,h ),v],

[E∗(un+1
h ), q] + [S(pn+1

h ), q] = 0,

(3.1)

for all (s1, s2, τ ,v, q) ∈ Sh×Hh×Vh×Qh and for each n = 0, 1, . . .. In what follows, and whenever
clear from the context, we will drop the superscript n+ 1 corresponding to the current time step.

3.3. Consistent Newton-Raphson linearization

As long as we focus on Saint Venant-Kirchhoff materials, the only nonlinearities in (3.1) consist
in the reaction and the coupling terms. For instance, a standard fixed point argument allows the
decoupling of the governing equations and an abundant literature exists dedicated to the analysis
and efficient mixed finite element discretization of linear elasticity, where the constitutive equation
can be easily inverted (see e.g. [11], and the references therein). The scenario is less favorable
for nonlinear materials and so we provide details on the Jacobian employed in the solution of the
linearized equations. We will denote by (δw1,h, δw2,h, δσ̃h, δuh, δph) the incremental solutions to

the following linearization of (3.1) around a generic state (ŵ1,h, ŵ2,h, ̂̃σh, ûh, p̂h):

2∑
i=1

3

2∆t
(δwi,h + ŵi,h, si)Ω0

− 4µ2
2∑
i=1

(̂̃σ−1

h Di
̂̃σ−th δσ̃t

h
̂̃σ−th ∇ŵi,h,∇si)Ω0

+ 4µ2
2∑
i=1

(̂̃σ−1

h Di
̂̃σ−th ∇δwi,h,∇si)Ω0

− 4µ2
2∑
i=1

(̂̃σ−1

h δσ̃h ̂̃σ−1

h Di
̂̃σ−th ∇ŵi,h,∇si)Ω0

−
2∑
i=1

1

2∆t
(4ŵni,h − ŵn−1

i,h , si)Ω0 − [dH(δw1,h, δw2,h), (s1, s2)]− [H(ŵ1,h, ŵ2,h), (s1, s2)] = 0,

9
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[A(δσ̃h), τ ] + [A( ̂̃σh), τ ] + [B∗(δuh), τ ] + [B∗(ûh), τ ]− G(τ ) = 0, (3.2)

[B(δσh),v] + [B(σ̂h),v]− 2

(∆t)2
(δuh + ûh,v)Ω0

+ [dEûh
(δph),v] + [d2Eδuh,ûh

(p̂h),v]

+ [dEûh
(p̂h),v] +

1

(∆t)2
(5unh − 4un−1

h + un−2
h ,v)Ω0

− [dF(δw1,h, δw2,h),v]

− [F(ŵ1,h, ŵ2,h),v] = 0,

[dE∗(δuh), q] + [E∗(ûh), q] + [S(δph), q] + [S(p̂h), q] = 0,

for all (s, τ ,v, q) ∈ Sh×Hh×Vh×Qh, where the (Gâteaux) derivatives appearing in (3.2), computed
in the direction of the corresponding increments are

[dH(δw1, δw2), (s1, s2)] :=

2∑
i,j=1

∫
Ω0

d

dŵj
Hi(ŵ1, ŵ2)δwjsj ,

[dF(δw1, δw2),v] := −
2∑
i=1

∫
Ω0

δwi
d

dŵi
f(ŵ1, ŵ2) · v,

[dE∗(δu), q] := −
∫

Ω0

qJ(û)∇û−t div(δu),

[d2Eδu,û(p̂),v] :=

∫
Ω0

p̂J(û)∇û−t(∇δu−∇δut)∇û−t:∇v.

Provided that the initial guess is sufficiently close to the updated solution, the use of the exact
Jacobian ensures quadratic convergence of the Newton algorithm.

3.4. Finite element spaces

As usual, Pr(R) denotes the space of polynomial functions of degree s ≤ r defined on the set R.
For each element K ∈ Th, we recall that the local Raviart-Thomas space of order k, k ≥ 0 is defined
as

RTk(K) = Pk(K)d ⊕ Pk(K)x,

for x ∈ Rd, the local Brezzi-Douglas-Marini space of order k is defined as

BDMk(K) = Pk(K)d ∩H(div,K),

and we specify the finite element spaces Hh ⊂ HN (div; Ω0), Vh ⊂ H(div,Ω0), Sh ⊂ H1(Ω0),
Qh ⊂ L2(Ω0) for the approximation of strains, deformations, species concentrations, and pressure,
respectively, as follows:

Hh := {τh ∈ HN (div ; Ω0) : (τ i1h , . . . , τ
id
h )t ∈ RTk(K), ∀i ∈ {1, . . . , d},∀K ∈ Th},

Vh := {vh : vh|K ∈ BDMk+1(K),∀K ∈ Th},
Sh := {sh ∈ H1(Ω0) : sh|K ∈ Pk+1(K),∀K ∈ Th},
Qh := {qh ∈ L2(Ω0) : qh|K ∈ Pk(K),∀K ∈ Th}.

Notice that for the linear elastic material, one could also employ [Pk(K)]d elements (with arbitrary
k ≥ 0) for the approximation of the deformation field, since neither the gradient of trial nor tests
deformations appear in the discrete formulation associated to (2.5).

Concentrating only on the hyperelasticity part of (3.2), we realize that its matrix structure
assumes the form A B∗ 0

B −C d̂E
0 d̂E∗ −S


δσ̃hδuh
δph

 = RHS3,

10
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Space convergence

h eh(w1) rh(w1) eh(w2) rh(w2) eh(σ) rh(σ) eh(u) rh(u) eh(p) rh(p)

1.0017 2.6442 – 2.6530 – 0.8381 – 0.9533 – 0.2799 –
0.7534 2.1830 0.6725 2.1881 0.6769 0.6725 0.7724 0.7734 0.7347 0.2177 0.8824
0.3818 1.1361 0.9614 1.1360 0.9636 0.3467 0.9749 0.3983 0.9762 0.1119 0.8793
0.2037 0.6098 0.9899 0.6089 0.9929 0.1860 0.9909 0.2133 0.9937 0.0599 0.9243
0.1070 0.3211 0.9965 0.3209 0.9954 0.0979 0.9965 0.1123 0.9971 0.0315 0.8984
0.0561 0.1692 0.9921 0.1693 0.9898 0.0517 0.9887 0.0589 0.9981 0.0165 0.9397
0.0294 0.0907 0.9662 0.0906 0.9683 0.0278 0.9599 0.0311 0.9894 0.0086 0.9959
0.0167 0.0556 0.8632 0.0555 0.8662 0.0173 0.8352 0.0181 0.9547 0.0049 0.9637

Time convergence

∆t e∆t(w1) r∆t(w1) e∆t(w2) r∆t(w2) e∆t(σ) r∆t(σ) e∆t(u) r∆t(u) e∆t(p) r∆t(p)

0.1000 194.56 – 187.80 – 55.278 – 62.409 – 21.698 –
0.0500 43.950 1.8210 41.730 1.8565 14.062 1.8874 16.385 1.9037 6.3712 1.9021
0.0250 11.162 1.9247 10.427 1.9082 3.5731 1.9250 4.8210 1.8978 1.6147 1.9574
0.0125 3.3217 1.8962 2.8633 1.8301 0.9013 1.8346 1.2367 1.9344 0.4258 1.9338
0.0062 0.8281 1.9615 0.8236 1.9803 0.2678 1.8804 0.4109 1.9486 0.1129 1.8076
0.0031 0.2152 1.8921 0.2231 1.8320 0.0680 1.8372 0.1063 1.9590 0.0253 1.9039
0.0017 0.0577 1.9187 0.0561 1.9473 0.0169 1.7471 0.0268 1.9332 0.0062 1.8894
0.0008 0.0142 1.9452 0.0141 1.9682 0.0043 1.9603 0.0065 1.9764 0.0016 1.9342

Table 1: Spatial and temporal error history associated to the FEM-BDF2 discretization of the model problem,
computed until a final time T = 1. Errors on the top rows were computed using a fixed time step of ∆ = 0.001,
whereas those on the bottom rows were obtained on a fine mesh of size h = 0.0109.

which is a linear problem for the solution increments, where RHS3 contains body and boundary
forces, the terms associated to the previous time steps, and the Newton residuals. Assuming enough
regularity, this twofold saddle point system can be solved as long as A is Hh-elliptic, C,S are positive

semi-definite, and B, d̂E satisfy uniform inf-sup conditions on Hh ×Vh and Vh × Qh, respectively
(see e.g. [20]).

Formally, expected convergence rates for the spatial approximation of the linearized coupled
problem (3.2) will be optimally of order k + 1 in the natural norms (in the sense that they coincide
with the interpolation properties of the specific spaces employed herein).

4. Numerical examples

This section contains an example assessing the experimental spatio-temporal convergence rate
of the proposed primal-mixed method, plus some selected illustrative tests of high interest in the
simulation of mezo and macroscopic cardiac chemo-mechanics.

4.1. Accuracy tests

We first verify the spatial convergence of the proposed numerical scheme, restricting ourselves
to the lowest order case (k = 0). We consider the following version of (2.9) defined on the unit disk

11
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Figure 2: Approximate norm of the Neo-Hookean stress tensor (top left), velocity components with vectors (top center
and right), pressure profile (bottom left), and species concentrations (bottom center and right) for the spatio-temporal
accuracy test, all rendered on the deformed domain Ωt, and computed at the final time T = 1. For sake of visualization
we also depict a coarse mesh of the reference disk-shaped domain Ω0.

Ω0 = {(x, y) : x2 + y2 ≤ 1} and for the time horizon t ∈ (0, T = 1)∫
Ω0

∂tw1s1 + 4µ2

∫
Ω0

σ̃−1D1σ̃
−t∇w1 · ∇s1 −

∫
Ω0

w1s1 =

∫
Ω0

f1s1,∫
Ω0

∂tw2s2 + 4µ2

∫
Ω0

σ̃−1D2σ̃
−t∇w2 · ∇s2 −

∫
Ω0

w2s2 =

∫
Ω0

f2s2,

[A(σ̃), τ ] + [B∗(u), τ ] =

∫
ΓD
0

gD · [τν],∫
Ω0

∂ttu · v + [B(σ̃),v] + [dEu(p),v] +

∫
Ω0

f(w1, w2) · v = −
∫

Ω0

g · v,

[E∗(u), q] + [S(p), q] = 0,

(4.1)

which admits an exact solution given by

u = 2µ sin(
π

2
t)(− sin(x) cos(y), cos(x) sin(y))t,

p = 4µ2π2 sin2(
π

2
t)(sin2(x) sin2(y)− cos2(x) cos2(y)),

w1 = sin(
π

2
t) exp(−x) cos(y), w2 = sin(

π

2
t) exp(−y) sin(x).

(4.2)

12
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Figure 3: Phase portrait of species w1, w2 including typical nullclines and numerically computed trajectories of local
kinetics starting from points A,B,C and reaching the origin (left) and reaction kinetics (right) for the Goldbeter
model (4.4).

We consider the material to be Neo-Hookean and choose λ = 1, µ = 0.09, f(w1, w2) =
w2

1w2 − w1w
2
2, while source terms f1, f2, g and Dirichlet boundary conditions of the problem are

adjusted according to these exact solutions. The computational domain is discretized on a family
of unstructured triangular meshes having 2l+1, l = 0, 1, . . . nodes on the circle defining the domain
boundary. Relative spatial errors and convergence rates between exact and approximate solutions
in different norms are defined as

eh(σ) =
‖σ(·, T )− σNh ‖div ,Ω0

‖σ(·, T )‖div ,Ω0

, eh(u) =
‖u(·, T )− uNh ‖1,Ω0

‖u(·, T )‖1,Ω0

,

eh(wi) =
‖wi(·, T )− wNi,h‖1,Ω0

‖wi(·, T )‖1,Ω0

, eh(p) =
‖p(·, T )− pNh ‖0,Ω0

‖p(·, T )‖0,Ω0

, rh(·) =
log(eh(·)/êh(·))

log(h/ĥ)
,

(4.3)

where e and ê denote errors generated on two consecutive meshes of sizes h and ĥ. These errors
are computed using Gauss quadrature formulas that are, for the chosen approximation spaces, exact
on each element. Here q(·, T ) and qNh denote the continuous and discrete approximation of the
generic field q evaluated at the final time tN = T . We depict in Table 1 empirical relative errors and
convergence rates (4.3) for the numerical solutions compared with respect to (4.2), as function of the
meshsize h, where we observe first order convergence for all fields in their relevant norms. We also
evidence a second order convergence rate for the time approximation of the problem when refining
the timestep ∆t. Errors associated to the temporal discretization of a generic field q are measured
in the `∞(0, t; ·)−norm, that is:

e∆t(q) =

N∑
n=0

‖q(·, tn)− qnh‖i,Ω, r∆t(q) =
log(e∆t(q)/ê∆t(q))

log(∆t/∆̂t)
,

on successively refined partitions of (0, T ), where i ∈ {div, 0, 1}. Even if rigorous theoretical esti-
mates are not yet available for problems like (4.1), related (continuous in time) results for elasticity,
poroelasticity and cardiac mechanics [3, 11, 47, 49, 60] suggest that the obtained rates are optimal.
At each Newton iteration the involved linear systems have been solved with the GMRES method
(with a tolerance of 1e-7), combined with Schwarz preconditioning. Figure 2 displays a snapshot
of the approximate solutions at the final time T = 1, obtained with the proposed mixed-primal
formulation on a mesh generated after six levels of refinement (representing roughly 200K degrees
of freedom).

13
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Figure 4: Propagation of two calcium waves starting at the ends of a single cardiomyocyte. The employed mesh has
77031 elements and 18191 vertices. The superimposed hollow geometry represents the deformed configuration.

4.2. Slow calcium waves in isolated cardiomyocytes

Simplified calcium-induced-calcium-release dynamics inside a single cardiac cell can be modeled
with the following specification for the reaction terms [24], where w1, w2 represent the concentrations
of cytosolic and sarcoplasmic calcium

H1(w1, w2) = ν1 −
ν2w

2
1

k2 + w2
1

+
ν3w

4
1w

2
2

(k3 + w2
2)(k4 + w4

1)
− ν4w1,

H2(w1, w2) =
ν2w

2
1

k2 + w2
1

− ν3w
4
1w

2
2

(k3 + w2
2)(k4 + w4

1)
− ν5w1.

(4.4)

Here ν1 = 1.58 represents an inflow flux plus intracellular calcium pulses originated from the asyn-
chrony of calcium pools receptors, ν2 = 16 and ν3 = 91 account for low and high levels of free
cytosolic calcium flux pumped from the sarcoplasmic reticulum, and ν4 = 2 models an efflux of cal-
cium out of the cell following a chemical exchange process. The remaining parameters are ν5 = 0.2,
k2 = 1, k3 = 4, k4 = 0.934. Only cytosolic calcium is assumed to diffuse, with anisotropy imposed
by D1 = diag(Df , Ds, Dn) with Df = 60, Ds = 30, Dn = 30, and D2 = 0. These parameter values
lead to cyclic patterns on a fixed domain (see Figure 3).

The material is assumed nonlinear mimicking the properties of living tissue, and we use an active
stress approach to incorporate the influence of calcium (in this case, cytosolic calcium only) into the
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Figure 5: Comparison of the time evolution of strains obtained via postprocessing from displacements (Test A, left
panels) and strains computed directly from the mixed formulation (Test B, right panels). Here the hollow mesh
represents the undeformed reference configuration.

cell deformation. We propose to employ the following specification of the forcing term

f(w1) = γf0 ⊗ f0∇w1 + w1div (f0 ⊗ f0), (4.5)

where f0 is a local unit vector denoting a known preferred direction of contraction in the myocyte
reference configuration, and γ = 0.25 is an amplification factor. This term arises from an active
stress of the form γw1f0 ⊗ f0. Robin boundary conditions are applied on the whole surface ∂Ω0.
A tetrahedral mesh comprising 77031 elements and 18191 vertices (cf. [22]) is employed for the
subsequent simulations (see initial fiber distribution in the top left panel of Figure 6), where we
observe the propagation of cytosolic calcium starting from initial sparks near the cell ends, and how
it influences the contraction of the cell. Six snapshots of the evolution of calcium concentration w1 are
displayed in Figure 4. We stress that all computations are purely Lagrangian, that is, elasticity and
reaction equations are always solved in the reference configuration and the domain is moved according
to the resulting deformations. Strains obtained directly from the mixed elasticity formulation are
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Figure 6: Transients at a single point P on the myocyte boundary. Calcium concentrations (top right), displacement
components (bottom left), and strains obtained via postprocessing from displacements (Test A) or mixed formulation
(Test B) (bottom right).

compared to those computed by numerical differentiation from a pure displacement computation.
We can see from Figure 5 a clear loss of accuracy, concentrated specially on the regions of high
residual gradients. This issue illustrates the importance of computing strains directly, particularly
when the interest lies in identifying zones of adhesion, or in determining provoked wall stresses.
Further insight can be achieved from plotting transients of the computed solutions on a point near
the cell mass center. Figure 6 shows the evolution of calcium concentrations, displacement in all
directions, and norm of the strain computed from numerical differentiation (test A) and from the
mixed formulation (test B). A clear underestimation of strains and spurious oscillations are seen in
test A with respect to the direct computation of test B, whereas calcium and displacements coincide
in both tests.

Finally, we verify the optimal convergence of the numerical solution by looking at the quadratic
decay of Newton-Raphson residuals associated to each field. Even though the results in Table 2 are
provided for a single time step, a a similar behavior is evidenced throughout the whole simulation.

4.3. Electric waves on slabs of excitable living tissue

We now turn to the simulation of potential propagation and its interaction with the deformable
tissue. The specific model has been proposed in [46] and similar variants have been explored in e.g.
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iter number ‖res(w1)‖ ‖res(w2)‖ ‖res(σ)‖ ‖res(u)‖ ‖res(p)‖
1 7.0388e+1 4.1768e+1 1.9204e+1 3.7492e+0 6.7291e+0
2 1.3827e-2 3.7614e-2 4.0120e-2 1.1973e-1 8.8144e-1
3 2.7652e-4 5.8706e-4 6.8255e-4 3.8311e-3 1.9463e-3
4 1.6930e-5 2.9384e-6 5.7713e-6 7.0881e-5 7.2538e-5
5 1.1373e-7 3.5419e-7 1.0709e-7 2.6127e-7 9.5301e-8
6 3.3596e-9 1.9213e-9 5.4420e-9 6.2094e-9 8.4129e-9

Table 2: L2-norm of the residual vectors associated to the primal-mixed discretization of the single cell model,
computed from time t = 2 − ∆t to t = 2 and stopped when reaching the tolerance 1e-8.
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Figure 7: Phase portrait of species w1, w2 with nullclines and numerically computed trajectories starting from points
A,B,C and reaching the origin (left); and reaction kinetics (right) for the Aliev-Panfilov model with mechanical
activation based on local stretch and w2 (4.6)-(4.7).

[13]. The kinetics considered herein are

H1(w1, w2) = −kw1(w1 − a)(w1 − 1)− w1w2 + Iext,

H2(w1, w2) =

(
c+

d1w2

d2 + w1

)(
−w2 − kw1(w1 − b− 1)

)
,

(4.6)

where a = b = 0.1, k = 8.0, c = 0.01, d1 = 0.12, and d2 = 0.3 are dimensionless parameters and Iext

denotes a given time- or time- and space-dependent external stimulus. In this case the activation of
the tissue deformation is encoded using the active-strain approach (see Remark 1) with an activation
evolution dictated by

K(γ,w2) = k1I4(1 + γ)3 + k2w2, (4.7)

where k1 = −0.3, k2 = −2.4. Reaction kinetics and a phase diagram are shown in Figure 7.

The conductivity tensors for both species are taken isotropic Di = DiI with D1 = 60 and
D2 = 50. As in the previous example, the the material is assumed Neo-Hookean incompressible
with λ = 1, µ = 4000, and the fibers direction is constant throughout the domain, aligned with the
positive vertical axis f0 = (0, 1)T . The undeformed computational domain consists of a square with
boundaries of length 50 and centered in the origin, which has been discretized into 29244 triangular
elements and using 14613 points. Robin conditions (with a bulk coefficient of 0.002) are enforced on
the whole boundary. In order to onset the formation of spiral waves, a broken wave is considered as
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Figure 8: Snapshots at time instants t = 25, 50, 100 of reentrant waves exhibited by species w1 for a fixed (top) and
a hyperelastic (bottom) slab.

initial data [9]:

w1(x, y, 0) =


−1 if x ≥ 0, y ≥ 0,

1 if x < 0, y < 0,

0 otherwise,

w2(x, y, 0) =


−1 if x ≤ 0, y ≥ 0,

1 if x > 0, y < 0,

0 otherwise.

The timestep is set to ∆t = 0.001, and the Newton tolerance is fixed to 1e − 8. Three snapshots
illustrating the dynamics of the spatial distribution of species w1 and the corresponding motion of
the hyperelastic domain are displayed in the bottom panels of Figure 8. For comparison purposes we
have also included a computation of a fixed-domain example employing exactly the same reaction
diffusion model, indicating in this case a faster conduction of the field w1.

4.4. Cardiac electro-mechanics

We close this section with the application of the proposed primal-mixed finite element formulation
in the numerical simulation of a simplified cardiac electromechanical problem. As in the previous
examples, the tissue is assumed hyperelastic and anisotropic (with transverse isotropy across the
fiber directions). The reaction diffusion system corresponds to the monodomain equations incor-
porating the four-fields single cell model for human epicardial action potential proposed in [7], and
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Figure 9: Left: rescaled time evolution of the transmembrane potential w1, and calcium w4 on a single point according
to the Bueno-Orovio model (4.8), and activation field γ based on calcium, local stretch, and phenomenological force-
length relations, governed by (4.9). Center: clipped biventricular geometry and generated fiber directions. Right:
computational mesh partitioned into eight subdomains.

characterized by D2 = D3 = D4 = 0 and the reaction terms

H1(w1, w3, w4) = −w2H(w1 − θ1)(w1 − θ1)(wv − w1)/(χτfi)−H(w1 − θ2)w3w4/(χτsi)

+ (w1 − w0)(1−H(w1 − θ2))/(χτo) +H(w1 − θ2)/(χτso) + Iext,

H2(w1, w2) = (1−H(w1 − θ1))(w2,inf − w2)/τ−1 −H(w1 − θ1)w2/τ
+
1 ,

H3(w1, w3) = (1−H(w1 − θ2))(w3,inf − w3)/τ−2 −H(w1 − θ2)w3/τ
+
2 ,

H4(w1, w4) = ((1 + tanh(k3(w1 − v3)))/2− w4)/τ3,

(4.8)

where H denotes the Heaviside function and the parameters are set as vo = 0, vv = 1.58, θ1 = 0.3,
θ2 = 0.015, θ−1 = 0.015, θo = 0.006, τ−1,1 = 60, τ−1,2 = 1150, τ+

1 = 1.4506, τ−2,1 = 70, τ−2,2 = 20,

k−2 = 65, v−2 = 0.03, τ+
2 = 280, τfi = 0.11, τo,1 = 6, τo,2 = 6, τso,1 = 43, τso,2 = 0.2, kso = 2,

vso = 0.65, τ3,1 = 2.7342, τ3,2 = 3, k3 = 2.0994, v3 = 0.9087, τsi = 2.8723, τ2,∞ = 0.07, w∗2,∞ = 0.94.
The constant initial conditions are w1(x, 0) = 0, w2(x, 0) = w3(x, 0) = 1, w4(x, 0) = 0.02155, and
we employ a diffusion of D1 = 1.19 cm2/s for the first species.

Mechanical activation is imposed following the law derived in [48], which we modified accordingly
to the transversely-isotropic case

K(γ,w4) = FA(w4, I4) +

3∑
i=1

(−1)i(i+ 1)(i+ 2)I4γ
i, (4.9)

where FA(s, I4) = (w4 − w4,0)2Rfl(I4), with w4,0 = 0.2155 and the force-length relationship Rfl
introduced in [49]. The dynamics of w1, w4 and γ are illustrated in Figure 9, left. Robin boundary
data are imposed on the whole epicardial boundary with coefficient 3.75 mmHg cm−1, whereas the
ventricular wall undergoes an initial pressure of 15 mmHg, and is let stress free afterwards. The
computational domain (see Figure 9, center and right panels) consists of a biventricular geometry
discretized into 94590 tetrahedral elements and 23210 vertices, on which a rule-based algorithm has
been used to generate a fiber field [48, Algorithm 1]. We employed a timestep of ∆t = 0.05 ms and
the external electric stimulus Iext was applied after 5 ms on the half lower part of the right ventri-
cle. Figure 10 presents a series of snapshots of the propagation of species w1 (the transmembrane
potential) across the myocardium, and we also depict the corresponding deformed mesh according
to the displacement field. We observe a milder contraction (both wall thickening and apex-base
shortening) and a slightly lower conduction velocity than those reported in [48], which can be ex-
plained by differences in the activation mechanism model and the passive mechanical law (here we
have restricted to Neo-Hookean materials, sheetlet directions have not been employed, and we do
not discard the acceleration term in the momentum equation).
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Figure 10: Clipped snapshots of transmembrane potential w1 and cut of the deformed mesh at time instants t =
100, 300, 500, 700, 900, 1100 ms.

Let us point out that the influence of either a) postprocessing the strain tensor from the piecewise
linear approximations of displacements, or b) computing it directly from the mixed formulation, not
only affects the identification of high stress zones or other mechanisms directly related to strain
computation, but also modifies substantially other indirectly related processes, such as the spatio-
temporal behavior of the calcium field. Figure 11 shows the dynamics of species w4 in scenarios a)
(top panels) and b) (bottom panels). Here we can readily observe qualitative differences in terms
of calcium conduction velocity, that in turn, will inevitably have an impact in the transmembrane
potential conduction velocity. For instance, the computations shown in the top panels yield a max-
imum conduction velocity of 59 cm/s for w1, whereas those associated to case b) imply a maximum
conduction velocity of 72 cm/s, the latter being closer to the expected physiological value (87 cm/s)
reported in [44].

5. Concluding remarks

In this paper we have introduced a primal-mixed formulation for the two-way coupling of non-
linear reaction-diffusion equations and linear/nonlinear elasticity. A flexible and robust mixed finite
element method has been proposed, which follows the same structure as the continuous formulation,
and where the main advantage with respect to the methods introduced in [1, 4] is the possibility
of recovering with the desired accuracy the strain (deformation gradient) needed in the modified
diffusion of the reaction-diffusion system, and, as usual in mixed methods, the restrictions on the
finite element spaces associated to the elasticity equations can be relaxed. The proposed formulation
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Figure 11: Snapshots of reentrant waves in species w4 at times t = 20, 150, 300 ms for the case of strains obtained via
numerical differentiation from piecewise linear approximation of displacements (top), and strains computed directly
from the mixed formulation (bottom panels).

has been structured so that it fits in the study of some typical scenarios in biological systems where
the reactions affect directly the material displacements through either active stress or active strain
models. The numerical scheme has been validated in terms of spatio-temporal accuracy of approx-
imate solutions, and a few examples related to cardiac biomechanics were provided to illustrate its
feasibility.

While this paper has focused on relatively simple cases, model complexity can be readily in-
creased so that the present framework can be straightforwardly employed in the control of a larger
class of problems and more involved (not necessarily biological) processes such as chemical reactions
in fully-saturated rigid porous skeletons [17], and its extension to the case of deformable porous me-
dia. Many other ingredients can be added, for instance material orthotropy or statistical properties
of fiber families [56], or multiscale descriptions. We stress that our model for the way that species’
concentration affects the motion of the tissue (for instance, (4.5)) depends strongly on the specific
application, which leaves plenty of room for further investigation, especially in terms of restrictions
imposed by the second law of thermodynamics and other aspects related to energy-derived mechan-
ical activation [48, 49] (see also Remark 1). Notice that remeshing is not performed in the present
case, since the proposed formulation is entirely Lagrangian and the numerical solution is carried
out using a fixed mesh on the reference configuration. Nevertheless, special techniques to enforce
mesh quality during large body deformations may become essential if we couple the present frame-
work with Eulerian descriptions of flow (e.g. in cardiac mechano-electrical-fluidic models), where
mesh motion of the fluid domain may lead to highly distorted elements. A recent remedy, based on
adaptive smoothing and remeshing is presented in [39].

Further lines of development also include HPC-related questions such as scalability of solvers
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and construction of smart preconditioners. Finally, we mention that the development of fully mixed
formulations for (2.9) and their convergence analysis will be the subject of a separate contribution.
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