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Abstract 

 

It is commonly thought that in a spiral membrane the fouling is high at the module inlet and 

progressively decreases toward the outlet. Thanks to an experimental mapping of the 

irreversible fouling existing in a spiral membrane of 6.5 m
2
 area, this paper shows that it is 

not systematically true and that the fouling distribution can be much more complex. 

This paper shows also in what extent the mapping of the irreversible fouling existing in a 

spiral membrane is a powerful approach to deal with the role of the velocity/turbulences 

gradient that can be experimentally studied independently of the transmembrane pressure 

gradient in appropriate filtering conditions. 

The fouling distribution suggests that the velocity/turbulences are roughly constant on 50 % 

of the membrane area located in its center when dealing with a radial dimension, whereas part 

of this mean position, velocity/turbulences can increase or decrease. 

 

 

1. INTRODUCTION 

 

Fouling systematically occurs during ultrafiltration (UF) of skim milk as for all dairy fluids 

filtered by polyethersulfone (PES) based membranes. Part of this fouling is irreversible (not 

removed by a simple water rinsing) and is known to be only made of proteins in the particular 
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case of skim milk UF [1, 2]. This irreversible part represents the target of the cleaning 

operation that is a well-known bottleneck of membrane processes in food industry. The 

physico-chemical interactions between the filtered fluid and the membrane material have a 

crucial role on the membrane fouling [3], but the membrane geometry, impacting the overall 

hydrodynamic, is also an important criterion. Spiral membrane is a quite complicated 

geometry in which the fluid circulation, responsible of part of the fouling deposit origin, is 

still not well understood.  

 

In literature several approaches are reported when studying fouling distribution in close 

correlation with hydrodynamics. One type of approach deals with simulations at local scale, 

mainly using computational fluid dynamics (CFD) to investigate flow patterns [4-7] and 

foulant deposition [8] around feed spacers. For instance, experimental and numerical (CFD) 

results, obtained for twelve different flow-aligned spacer structures under different 

hydrodynamic conditions are investigated in order to gain insight into the flow and mass 

transfer profiles inside the channels of membrane modules: mass transfer results demonstrated 

that the modified friction factor could be used for selecting the best spacer in terms of mass 

transfer efficiency [4]. Rahimi et al. [5] report CFD and experimental studies on 

microfiltration fouling of a blue indigo solution. A hydrophilized PVDF membrane is used 

and experiments are carried out at cross-flow velocities ranging from 0.5 to 1.3 m.s
-1

. The 

fouled membranes are analysed using Scanning Electron Microscope (SEM) pictures. The 

predicted shear stress distributions upon the membrane, determined from a 3-D CFD 

modelling carried out using FLUENT 6.2 code, are used to explain the observed fouling. CFD 

simulations of particle deposition in a spiral-wound membrane module show that there are 

inherent changes in the deposition profile in the spacer-filled channel due to variations in 

curvature on particle transport [8]. According to the authors, a microscopic understanding 

derived from the CFD analysis could improve module design and enhance membrane module 

performance. All these studies suffer more or less from a lack of experimental validation at a 

scale compatible with a whole spiral element. 

Nevertheless, some recent studies attempt to overcome this conclusion coupling CFD 

calculations and in-situ analysis of fouling distribution in spiral membrane [9-14]. Graf von 

der Schulenburg et al. [9] and Creber et al. [10-12] studied the membrane fouling directly in 

spiral wounded membranes using nuclear magnetic resonance (NMR) for magnetic resonance 

imaging (MRI). This non-invasive technique enables quite thick biofilm to be identified (few 

microns) directly in a whole RO spiral element used for water treatment. The effective 
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membrane surface area is quantified from images and conclusions drawn from the reduction 

of the feed channel observed by MRI are in reasonable agreement with simulations proposed 

by the authors. Vrouwenvelder et al. [14] explain that in spiral wound membrane modules, 

two types of pressure drop can be discriminated: the trans-membrane pressure drop (TMP) 

and the feed spacer channel pressure drop (FCP), also named longitudinal pressure drop. They 

suggest that in extensively pre-treated water of NF and RO, biofouling (mainly corresponding 

to biofilm of micro-organisms) is a feed channel pressure drop problem. Moreover, in a 

another paper [13] they propose a 3D mathematical model showing the same trends for (i) 

feed channel pressure drop, (ii) biomass accumulation, (iii) velocity distribution profile 

resulting in regions of low and high liquid flow velocity.  

 

So it appears from literature that among the possible origins of variation in fouling deposit in 

the spiral membrane and at least in the efficiency of the subsequent step of cleaning, is the 

important pressure drop existing along the spiral element and leading to a transmembrane 

pressure (TMP) gradient. Moreover, if an average cross- flow velocity can be estimated from 

the retentate flow rate and the thickness of the liquid channel, assumed to be that of the 

retentate spacers inserted between two membrane sheets, the local velocity distribution due to 

the occurrence of retentate spacers is far from being well understood. Of course, it is quite 

well known that the insertion of spacers in the liquid channel is a real need to promote 

provoke turbulences and to lower the overall fouling [1, 2, 4-7]. 

 

In the particular case of fouling by dairy fluids, membrane irreversible fouling is assumed to 

depend on both the transmembrane pressure (TMP) used and on the cross-flow velocity (v) of 

the feed fluid, and also probably on a combination of these two parameters. For instance, at a 

given average apparent constant velocity (corresponding to the velocity calculated in the free 

channel) we have shown in a previous study that the irreversible fouling (target of the 

cleaning) obtained by UF of skim milk with a PES membrane at critical TMP is half that 

obtained at higher TMP (including TMP slightly higher than the limiting one) [15].  

 

- Remember that the concept of critical flux, firstly introduced by Field et al. [16] in 1995 and 

modified by the same main author in 2011 [17], proposes a theoretical base for the fouling 

mastering during filtration by the minimization of its irreversible part according to the 

adequate choice of the TMP and its corresponding permeate flux (J) that must be lower than a 

critical value (Jcritical). The critical flux concept was initially developed for a steady state 
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system with a well-mixed feed compartment such as stirred cell and, of course, spiral 

membranes don’t achieve this condition and consequently, significant variations are expected 

in both radial and axial dimensions. Nevertheless, even if this concept is, at first sight, of 

limited applicability to spiral elements because of great deviation from ideal conditions, it has 

been previously shown that it can be used [3] and applied in a close form, more recently 

called “threshold flux concept” [17] which does not rely on the establishment of steady state 

conditions with a homogeneous concentration in the feed - 

 

Diagne et al. [15] have observed the threshold type of the critical flux in the case of skim milk 

UF at 50°C with a 5-10 kg.mol
-1

 PES membrane. At an average estimated cross-flow velocity 

close to 0.3 m.s
-1

 either in spiral and flat configuration (both in presence of turbulences that 

were not quantified but due to similar 1 mm thickness spacers inserted in the feed liquid 

channel), the critical TMP was observed to be 1.5 bar, whereas the limiting one was shown to 

be 3.5 bar. This means that:  

- for J < Jcritical, the flux lowering (when compared to the water flux) is due to the 

superimposition of the concentration polarisation (fully reversible) and of irreversible fouling 

due to adsorption (in the same amount as without any applied pressure).  

- for J > Jcritical  the irreversible part of the fouling severely increases.  

Nevertheless, at this average cross-flow velocity estimated to be 0.34-0.37 m.s
-1

, using a 4333 

spiral membrane (4.3” diameter and 33” length), when the membrane works at an average 

TMP of 2.6 bar, the TMP along the membrane varies in the 3.7- 1.5 bar range because of the 

2.2 bar pressure drop along the spiral element. Consequently, in this particular case, the main 

part of the membrane filters at flux higher than the limiting flux (associated to the limiting 

TMP, TMPlimiting = 3.5 bar) and only a little area is submitted to conditions leading to filtration 

at critical flux (associated to the critical TMP, TMPcritical = 1.5 bar). 

 

Even if the impact of the pressure drop and of the turbulences due to spacers on the local 

fouling/cleaning is commonly suggested, experimental investigations remain particularly 

difficult to hold in order to confirm this assumption and mainly global observations are 

commonly available, except those from NMR studies dealing only with quite thick fouling 

whereas in the case of skim milk UF the irreversible fouling layer is equal or lower than one 

micrometre. 

This paper aims at evidencing how the knowledge of the distribution of a very thin layer of 

irreversible fouling can help to go ahead in the understanding of the fluid circulation in a 
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spiral membrane. The membrane destruction for analysis of fouling due to proteins 

quantitatively determined by mean of FTIR-ATR is an integrant part of the approach together 

with the characterisation of local hydrodynamic using UF experiments performed in small 

plate and frame module working in dedicated conditions.  

 

2. EXPERIMENTAL 

 

2.1 Solutions 

 

The skim milk used is a commercial one (UHT, Lait de Montagne, Carrefour, France) 

containing an average of 32 g.L
-1

 proteins and 48 g.L
-1

 carbohydrates (mainly lactose) and 

only tracks of lipids (< 0.5 %). 

 

Water used either for solution preparation and membrane rinsing is deionised and 1 µm 

filtered. Its conductivity is always lower than 1 µS.cm
-1

.  

 

2.2. Membrane and ultrafiltration loops 

 

2.2.1. Membrane material and membrane preparation 

 

A PES membrane (5-10 kg mol
-1, HFK-131, Koch, USA) is selected because it is the 

worldwide reference for the skim milk UF application at industrial scale. At laboratory scale 

the spiral module is chosen in order to have a filtering area of several square meters (6.5 m
2
, 

4333 K131 VYV module). It can be noticed that according to their date of acquisition, the 

spiral membranes, are made of 3 double sheets of membranes (old version, bought in 2003, 

membrane reference KM8243083017V, corresponding to the spiral membrane used here for 

skim milk UF) then they are made of 4 double sheets of membranes (new version buy after 

2006, corresponding to source of flat membranes used in this study, see below). 

 

- Spiral membrane:  

The spiral membrane (old version, called CIP-1, 2003) used for UF of skim milk is installed 

on the UF pilot of our laboratory since December 2003. It is regularly checked that the 

membrane permeability to water at 50°C remains constant at 50 ± 5 L.h
-1

.m
-2

.bar
-1

 and that 

the permeability in skim milk remains constant at 15 ± 1 L.h
-1

.m
-2

.bar
-1

 at 50°C. This 
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membrane has been regularly cleaned, mainly with alkaline detergents at pH 11.5-12.0. 

During the 9 years of its service life, the cleaning time by alkaline bleach at 200 ppm in total 

free chlorine has been negligible thus limiting the chemical ageing of the membrane material. 

Between each UF, the membrane has been stocked in sodium metabisulfite (5 g.L
-1

) to avoid 

micro-organisms growth. Even if the permeability to water remains always correct, we have 

autopsied the membrane, to understand its fouling behaviour. 

 

- Flat membranes: 

Several flat membranes of 127 cm
2
 filtering area and spacers (V type, 1 mm thickness) are 

sampled in a second virgin spiral membrane of the same reference as described above (new 

version commercialised after 2006). A new flat membrane is used for each experiment and is 

firstly rinsed with warm water to remove the preservative and then inserted in a plate and 

frame module. Secondly a procedure of compaction is applied to reach a stable water flux. 

The compaction step consists in UF of deionised water during 6 h at 50°C applying an 

increasing TMP from 1 to 4 bar. The permeability to water is measured on all flat membranes. 

We have observed that the water flux of the flat membrane depends on the location of the 

membrane coupon in the spiral membrane. Figure 1 highlights this phenomenon, evidencing 

that the flux is greater in the spiral sheet centre and can be very low on the sides (especially 

near the glue, our hypothesis is that this difference in the heterogeneousness of the membrane 

permeability could be partly attributed to the diffusion of the glue on the edges of the 

membrane together with heterogeneity of the membrane material itself due to its fabrication 

process, but experiments are needed to confirm this assumption). This allows establishing 

mapping of the permeability distribution in a virgin spiral membrane. As shown on Figure 1 

the variation on the membrane permeability can be 10 % or 20 % depending on the sheet in 

the same spiral membrane. 

A similar procedure was punctually applied to another virgin spiral membrane allowing 

confirming the general trends in the description of the permeability distribution and up to 50% 

variation can sometimes be observed. 

 

2.2.2 UF with the spiral membrane 

 

The spiral membrane is installed on a pilot provided by TIA (TIA 3093, Bollène, France) 

shown on Figure 2. The two pumps impose a cross-flow velocity close to 0.37 m.s
-1 

(see 
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Appendix 1) in the recirculation loop thanks to the 10.5 m
3
.h

-1
 flow rate. 

In such configuration, the feed is introduced perpendicularly to the membrane axis and 

against a sharp right angle provoking turbulences in the carter. Nevertheless the membrane 

entrance is few centimetre after this angle and a stable regime is probably established before 

the membrane entrance (Figure 2, Figure 3). 

The average TMP is classically calculated as the mean value when considering the membrane 

inlet TMP and the membrane outlet TMP. Nevertheless, it must be kept in mind that the 

pressure drop along the membrane element is 2.2 bar that is not a negligible value by 

comparison to the average TMP (see below). 

Fouling of the PES membrane is achieved by UF of skim milk during 3 h at 50°C in batch 

mode, meaning here that both the retentate and the permeate are fully recycled in the feed 

tank. This corresponds to a volume reduction ratio (VRR) of 1. Because of the dead volume 

of the pilot, 24 L is the minimum volume to be processed to allow filtration without any 

vortex in the feed tank and some sampling. Several TMPs ranging from 1 to 4 bar can be 

applied (see results). The membrane flux (JUF) is followed all over the skim milk UF. The 

irreversible part of the fouling is evaluated from the water flux measurement (Jirrev,initial) after a 

careful water rinsing. 

 

2.2.3 UF with the flat membranes 

 

The plate and frame module (Ray-Flow X100, Novasep-Process, France) allows using two 

membranes in series. Two new membranes (2 x 127 cm
2
) are used for each experiment. After 

the compaction procedure, the water flux (J0) is further used as reference for the pristine 

membrane. 

Fouling of two PES membranes is simultaneously achieved by UF of skim milk during 3 h at 

46°C ± 1°C in batch mode. Because of the dead volume of the pilot, the skim milk volume 

used is the minimum one, equal to 4 L. The average cross flow velocity is v= 0.34 m.s
-1 

and 

spacers are added in the liquid channel, in order to be, as close as possible, in the same 

hydrodynamic conditions as with the spiral membrane. Various TMPs ranging from 1 to 4 bar 

are applied (see results) and the membrane flux (JUF) is followed all over the skim milk 

filtration. 

Then membranes are carefully rinsed with deionised water and the final water flux (Jirrev, initial) 

is determined for both membranes, evidencing the good agreement between the two 

membrane behaviors. 
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Resistances due to membrane and fouling (both overall and irreversible one remaining after 

water rinsing) are determined from the well-known resistance in series model. 

 

2.2.4. Determination of the limiting and critical/threshold fluxes 

 

The protocol used has been already described in [3] for the spiral membrane and adapted for 

the flat membrane as described in [15]. Some details are briefly repealed here for sake of 

clarity. Permeate fluxes are measured during skim milk UF by increasing step by step the 

TMP from 1 to 4 bar (Figure 4). The permeate flux at plateau value corresponds to the 

limiting flux (Jlimiting) and in the following the (TMP limiting, Jlimiting) point is determined as the 

first point for which the plateau value of flux is reached. The critical/threshold point is 

determined from the shape of the J vs TMP curve: the relationship remains linear below the 

(Jcritical/threshold, TMPcritical/threshold) point allowing its determination. It is noticeable that without 

retentate spacers in the liquid channel, the limiting flux is quite immediately reached 

highlighting the role of local turbulences due to the presence of spacers when the cross-flow 

velocity is so low that only a laminar regime is established from the fluid circulation. 

 

2.2.5. Quantification of residual proteins on membranes 

 

We have previously shown that the irreversible fouling is only made of proteins as we have 

not been able to show the presence of other compounds on the membrane [1, 2]. 

Consequently, the fouling seems to be valuably appreciated from the protein quantification 

that can be achieved by an infra-red technique according to a procedure established in our 

laboratory [18] and previously described in [1, 2]. The calibration range is 1 - 350 µg.cm
-2

. 

 

Infra-red (FTIR) analyses are performed using the Attenuated Total Reflection mode (ATR) 

directly on fouled membranes. The FTIR-ATR spectra are recorded between 4000 and 600 

cm
-1

 with a spectrometer provided by Perkin-Elmer (Paragon 1000, spectrum for windows 

software) equipped with a ZnSe crystal with an incidence angle of 45° allowing 12 reflections. 

The background spectrum is recorded in the air. The conditions of acquisition are as follows: 

20 scans, 2 cm
-1 

resolution. The membrane samples are carefully dried under dynamic 

vacuum before registration. 
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Two specific procedures are used: one for the flat fouled membranes and the other for the 

spiral fouled membrane. 

 

- Specific procedure for the flat membranes 

To take into account possible variations of the irreversible fouling amount due to small 

variations of the velocity profile in the plate and frame module [2] an average value is 

calculated from the quantification of the fouling deposit measured on nine equivalent pieces 

cut in the membrane. Generally the difference does not exceed 3 µg.cm
-2

 between the 9 

samples of a 127 cm
2
 membrane coupons. As two flat membranes are simultaneously fouled 

on the plate and frame module, it has been preliminary checked that the average amount of 

proteins are similar for the two membranes in series. 

 

- Specific procedure for the spiral membrane 

The spiral membrane after fouling by skim milk and rinsing by deionised water can also be 

analyzed. This procedure can only be one time applied at the end of the overall study. It can 

be underlined that the limitation is only due to economic considerations and time 

consumption and not because of technical aspects. The overall spiral membrane (6.5 m
2
) is 

cut in 336 pieces of 127 cm
2
 area. Only the center of each sample is analyzed by FTIR-ATR 

for quantification purpose (of course each sample could be divided in 9 smaller pieces as for 

the flat membranes, but it has been checked that the variations were not very different and a 

single result seems quite acceptable for the followed purpose). This autopsy allows 

establishing a mapping of the irreversible fouling that would be compared to the fouling 

amount obtained for the flat membranes at various TMPs (see results and discussion). 
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3. RESULTS AND DISCUSSION  

 

3.1. Fouling 

 

3.1.1 Hydraulic characterisation 

 

The limiting and critical points are determined either with the flat and spiral membranes. It 

has been checked that in both cases the critical TMP is 1.5 bar whereas the limiting TMP is 

3.5 bar. 

Then UF has been performed at constant TMP values including TMPcritical and TMPlimiting, but 

also an intermediate value of 2.0 bar. A fourth value greater than TMPlimiting is also tested, 

namely 4.0 bar. Table 1 summarizes the resistances due to the overall fouling (Rf) for the set 

of experiments. Rf can be considered as roughly constant from 1.5 bar to 4.0 bar, regardless of 

the membrane geometry. 

For a given TMP of fouling and after water rinsing, the remaining fouling resistance 

(Rirrev,initial) is roughly the same for both flat and spiral membranes, even if it seems to slightly 

increase with the TMP increase in this last case. More or less, 35 % of the fouling is 

irreversible in the 1.5-4.0 bar TMP range.  

Finally, on a global hydraulic point of view, fouling obtained with the two membranes 

geometries can be considered as similar. 

 

3.1.2 Physico-chemical characterisation 

 

Table 2 shows the residual amount of proteins after fouling of flat membranes obtained at 

constant TMP ranging from 1.5 to 4.0 bar and after water rinsing. Contrary to hydraulic 

characterisation, this quantification highlights differences according to the TMP. The protein 

amount at 1.5 bar (critical TMP) is about half that obtained for higher TMPs. 

Similar quantifications are performed on the spiral membrane fouled at an average TMP of 

2.6 bar (3.7 bar inlet and 1.5 bar outlet). This spiral membrane is made of 3 sheets of 

membrane corresponding to 6 different flat membranes assembled by two, back to back 

(Figure 3, Figure 5). 

 

Figure 6 shows the distribution of the residual protein amount according to the location on 

the six membranes issued from the autopsied fouled spiral membrane. At first sight, 
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regardless of the membrane, the zone in close vicinity to the permeate collector axis is always 

the most fouled one. The other parts of the membranes are heterogeneously fouled.  

In a first attempt of simplification, an average value is calculated representing 85 % of the 

membrane area (except values in close vicinity to the collector axis), that corresponds to 40 ± 

20 µg.cm
-2

 and (Figure 7). 

 

The fouling can also be discussed with more accuracy. For instance, considering an average 

TMP of 2.6 bar, the expected amount of the residual fouling calculated from the flat 

membrane experiments would be close to 22 µg.cm
-2 

(Table 2) that is half of the average 

value calculated above. Figure 6 and Figure 7 show clearly that some zones of the spiral 

membrane are fouled with this protein amount but some others are much more fouled. 

 

In order to propose a more accurate analysis of the irreversible fouling distribution in the 

spiral membrane, attempt of correlation with the local TMP would be interesting. As no local 

measurement can be available, an attempt of calculation is made. On an experimental point of 

view the pressure drop on the retentate side is measured at 2.2 bar. It can be reasonably 

assumed that the pressure drop is linear along the membrane length (that must be understood 

as parallel to the direction of the permeate axis, in other words the axial direction, Figure 5b). 

As permeate side is opened to air (and then set at atmospheric pressure), the variation of the 

permeate pressure with the location on membrane can be is neglected at first sight. 

Nevertheless, it is probable that some variations also occurred with respect to the membrane 

wounding and the presence of permeate spacers that are able to generate some turbulences 

and consequently a pressure drop. It can be guessed that near the permeate axis the pressure is 

that of atmosphere but at the end of each sheet the pressure could be greater (Figure 5c, 

Figure 5d). Consequently the TMP is probably a little overestimated in our approach for the 

zones far from the permeate axis. 

 

This hypothesis leads to the assumption that firstly TMP mainly depends on the position along 

the collector axis (feed flow direction, axial dimension) and then decreases from the inlet to 

the outlet. Secondly, it is considered that for a given distance from the membrane inlet (feed 

flow direction along the permeate axis) the TMP variation with the distance (d, Figure 7) 

from the permeate axis is negligible (in other words the radial dimension, Figure 5c and 

Figure 5d). It is then inferred that the spiral membrane can be divided in four main zones of 

TMP, defined by reference to the 127 cm
2
 samples that will be cut in the membrane for 
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autopsy purpose and corresponding to “local” TMP values (at sample centre) of 3.5, 3.0, 2.5 

and 2.0 bar, respectively (Figure 6). An average of protein amount is then determined for 

each “local” TMP (Table 2). In the spiral module the same protein average amount is 

obtained for TMP in the range 2.0 to 3.5 bar that is in good agreement with experiments on 

flat membrane. But, it is also observed that the level of the irreversible fouling is significantly 

higher in the spiral membrane than with the flat one for the same TMP range. 

Looking carefully at the quantification of the protein amount in the spiral membrane, a 

fouling distribution can be observed for a given average local TMP on a single membrane 

sheet (Figure 6). All membrane sheet demonstrate different fouling amount. The possible 

origins of this fouling distribution are discussed below. 

 

3.1.3. Discussion on the possible origin of fouling distribution 

 

Different hypotheses can be made to explain these differences either based on the initial 

membrane material heterogeneity and on the variable local hydrodynamic conditions. 

 

3.1.3.1 . Heterogeneity of the virgin membrane permeability 

 

The heteregoneity of the membrane material is observed from water permeability 

measurements performed on several membrane pieces that are sampled in a spiral virgin 

membrane (Figure 1). Similar trends are observed for all sheets of this spiral membrane and 

on all sheets of a second spiral membrane (not shown here). In our laboratory we performed 

such measurements systematically from more than six years now, and finally, the permeability 

is generally higher in the spiral membrane center, in other words far from the edges where is 

applied the glue between two membranes of a same double sheet. 

It can be noticed that FTIR-ATR spectrum of membrane (active layer side) allows to 

demonstrate the presence of glue at membrane edges (superimposition of FTIR spectra of 

PES and additives containing C=O bound that could correspond to polyurethane glue type). 

We guess that the membrane permeability is probably decreased by the diffusion of the glue 

from the edges toward the center, but we have failed to prove its presence on the active layer 

side when going away from the center. Another explanation could be the heterogeneity of the 

active layer thanks to the process achieved to obtain polymer large sheets.  

Nevertheless, permeability in skim milk is always the same regardless of the initial water 

permeability of the membrane coupon. So in the following we suggest to ignore this 
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assumption as a possible main origin of fouling variation. 

 

3.1.3.2 . TMP gradient in the spiral membrane 

 

The second hypothesis to explain the heterogeneity of the irreversible protein amount on the 

spiral membrane is linked to the TMP variation as discussed in the following. 

Generalising results obtained with the flat membranes at various TMPs (Table 2), we can 

consider that all TMPs higher than the critical TMP might lead to the same fouling amount. 

Because of the pressure drop, the center of all pieces sampled in the spiral membrane 

(location of the protein quantification) are in the 2.0 – 3.5 bar range, corresponding to a TMP 

range higher than the critical TMP (1.5 bar). Nevertheless a small part of the membrane outlet 

is set at the critical TMP and is probably fouled in a lower extend but this phenomenon can be 

considered as negligible for this particular membrane. 

Consequently the variation of the fouling amount from the inlet to the outlet at a given 

distance from the permeate collector axis (radial dimension, Figure 8) cannot be mainly 

attributed to the TMP variation and the main origin must be found elsewhere. 

 

3.1.3.3 . Gradient of velocity/turbulences in the spiral membrane 

 

The third hypothesis to explain the heterogeneity of the irreversible protein amount on the 

spiral membrane is linked to the fluid distribution and fluid velocity/turbulences in this quite 

complex geometry. Of course, as the filtered fluid is newtonien, it is not compressible. So in 

abscence of local turbulences, the fluid velocity must remain constant along the membrane 

length. But to avoid a very important fouling, lowering the process productivity, retentate 

spacers are added in the liquid channel to promote local turbulences. The result would be the 

creation of a local field of velocity/turbulences. 

It can be underlined that up to now computational fluid dynamic (CFD) is not able to propose 

theoretical approach of the fluid velocity profile in a whole spiral membrane and calculations 

are mainly achieved in close vicinity of a single cross of the retentate spacers, as seen above. 

Even though, the validation of theoretical proposal will always be a need. The mapping of 

fouling has been shown to be an experimental way to study the velocity field in the case of a 

flat membrane inserted in a plate and frame module, by comparing the fouling amount and the 

velocity gradient calculated from CFD [2]. This methodology has also been validated to 

discuss the shear stress in dynamic filtration with circular membrane inserted on a V-Sep 
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vibrating module [2]. These experimental results are in good accordance with some NMR 

observations achieved on a whole spiral membrane fouled by micro-organisms leading to a 

biofilm (in this case the fouling layer was very thick contrary to the thickness of the 

irreversible deposit of proteins of the present study) [9-12]. 

 

The discussion proposes here is in the continuity of the experimental approch described in [2]. 

Considering a given distance from the permate axis (d, radial dimension), the fouling varies 

from the inlet to the outlet but it is not in a continuous trends (Figure 8a). Generally in a first 

section (further called zone A) the fouling at inlet is greater than the fouling at outlet, then the 

fouling is roughly the same at inlet and outlet of the membrane (Zone B), finally the fouling is 

systematically higher at outlet than at inlet (Zone C) (Figure 8b). 

From one membrane to another, the size of each three zones varies as shown in Table 3. 

Nevertheless as first attempt we can considered that zone A corresponds to the first 300 x 10
-3

 

m, zone B to the 300 x 10
-3 -

 1000 x 10
-3 

m range and zone C to the last part of the unwounded 

membrane in the 1000 x 10
-3

 - 1200 x 10
-3

 m range. The 3 zones (A, B, C) are schematically 

shown Figure 9. For the most inner membrane sheet (F1C1), zone A corresponds more or less 

to the two first turns of the membrane in the wound, zone B to the 3 and 4 turns plus part of 

turn number 5, whereas zone C corresponds to the last part of turn 5 and to turn 6. Similar 

drawn can be established for the other membrane sheets and clearly the three zones are not 

correlated to the upper or lower positions in the carter toward fluid entrance. 

Considering that the lower the fouling is the higher velocity/turbulences are, it can be drawn 

that (i) in zone A, velocity/turbulences increase from inlet to outlet, (ii) in zone B, there is no 

significant variation of velocity/turbulences from inlet to outlet, (iii) in zone C, 

velocity/turbulences decrease from inlet to outlet. 

Nevertheless, if similar trends are shown, our results also highlight the difference in local 

fluid distribution from one membrane sheet to another, as fouling level is different from one 

membrane to another. Li et al. [20] have proposed an interesting discussion about the 

curvature effect of the spacer in a spiral membrane. They finally suggest to optimize the 

design of the spiral module by varying that of the spacers from one feed channel to another, 

aiming at the decrease of the imbalance shear stress between the inner and outer membrane 

walls. We agree with such proposals. If such module could be fabricated, the fouling mapping 

we proposed in this paper would be a way to experimentally establish the proof of concept. 
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4. CONCLUSION 

 

The approach discussed in this paper aims at show that analysis of a thin layer of irreversible 

fouling in a spiral membrane, each zone of which filtering in conditions over the critical one, 

is a powerful approach to deal with the role of the velocity/turbulences independently of the 

transmembrane pressure gradient. Considering that the lower the fouling is the higher the 

velocity/turbulences are, it can be drawn that the 6.5 m
2
 membrane studied here made of three 

double sheets of membrane can be roughly described from only one sheet. Each sheet can be 

divided in 3 zones having more or less the same size when comparing one sheet to another. 

These zones are defined according to their distance toward the permeate collector axis (radial 

dimension) and not regarding the position according to inlet or outlet of the spiral element 

(axial dimension). Fouling amount suggests that the velocity/turbulences are constant in the 

main middle part of the membrane (zone B, 50% of the global area). But for the area in close 

vicinity to the permeate axis, and corresponding to 30 % of the whole membrane (zone A), the 

fouling decreases from inlet to outlet meaning that velocity/turbulences increase. On the 

contrary, for the area far from the permeate axis and corresponding to the last 20 % of the 

membrane (zone C) the fouling increases from inlet to outlet meaning that 

velocity/turbulences decrease. Differences between the behaviors of zone A and zone C could 

perhaps be related to an additional gradient of centrifuge forces. To go ahead, a similar study 

applied to several a spiral membranes of same area but made of four double sheets of 

membranes instead of three in the present case is in progress, also taking into account other 

TMP gradient ranges applied to the filtering area. 

Moreover, in order to have a better insight, we need now to establish a correlation between 

the fouling amount and controlled velocity/turbulences in order to appreciate the real gradient 

in a more accurate way. A first limitation is already observed depending on the membrane 

material itself, as irreversible fouling clearly increases with membrane ageing [19] and 

consequently the age of the membrane material must be carefully mastered in addition to the 

control of hydrodynamics. This work is also currently in progress. 
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Appendix 1 - Estimation of the cross-flow velocity in the spiral membrane 

 

 

Figure A1 describes the unwounded spiral membrane as an equivalent rectangle of the same 

area as the whole spiral membrane. This membrane is made of 3 double sheets of membrane 

• Length of permeate axis is 84 cm 

• Membrane area is 6.5 m
2
 

• Membrane modelized as a rectangle of 6.5 m
2
 (allowing the determination of L) 

• Area = 84x10
-2

 x L = 6.5! L = 7.74 m 

 

 

 
 

Figure A1 : Equivalent rectangle of the unwounded spiral membrane of 6.5 m
2
. 

 

 

Then two assumptions are considered to model the membrane. 

 

Hypothesis 1: In the spiral membrane the feed flow is equally distributed along the surface 

seen at entrance. In other terms the feed see the whole L length at membrane entrance (Figure 

A2) 

 

 

 
 

Figure A2: Hypothesis of equal distribution of fluid at spiral membrane entrance 

 

 

 

Hypothesis 2: The thickness of the liquid channel is that of the retentate spacer as the spiral 

membrane is very compact. Consequently, the area in which the fluid is distributed is a small 

rectangle (Figure A3). Then Area = 1 mm x 7.74 m ! 7.74 x 10
-3

 m
2 

Consequently, the cross-flow velocity v = Qfeed / area = 2.92 x 10
-3

 / 7.74 x10
-3

 =0.37 m.s
-1

 

 

 

 

 
 

Figure A3: Hypothesis on the thickness of the liquid channel in the spiral membrane 

84 cm

L= 7.74 m (correspond to unwounded 6 single sheet one after one )

8
4
 c

m

L= 7.74 m
Q feed = 12.5 m3.h-1

= 3.47 x 10-3 m3.s-1

1 mm

L= 7.74 m (correspond to unwounded 6 single sheet one after one )
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Figure captions 

 

Figure 1: Evidencing of the distribution of the permeability to water at 50°C on  two sheets (a 

and b) of a same virgin 4333 spiral membrane (this behaviour is representative of all sheets 

for which we have performed such measurements in different spiral membranes having 3 or 4 

sheet. Flux measurements are performed on flat membranes of 127 cm
2 

filtering area sampled 

in the different sheets. 

 

Figure 2. Scheme of the UF pilot equipped with the 4333 spiral membrane allowing the feed 

entrance in the carter first perpendicularly to the membrane axis. 

 

Figure 3. Pictures of the spiral membrane of this study - (a) inserted in the stainless steel 

carter on the pilot – (b) evidencing the distribution system at outlet of the spiral membrane. 

 

Figure 4 - Typical UF of skim milk at 46°C, VRR= 1, 0.34 m.s
-1 

with step by step increase of 

TMP for a flat membrane inserted in the plate and frame module with (●) or without (�) 

retentate spacers of 1 mm inserted in the liquid channel. 

 

Figure 5. Schemes of a spiral membrane (a) with 3 double sheets highlighting the different 

channels in which are inserted retentate or permeate spacer, respectively. Each membrane is 

labelled according to the same nomenclature as those used for the quantification of protein 

amount for the autopsied membrane. F1C1 is the innermost membrane whereas F3C2 is the 

outermost one - (b) single sheet made of two membranes glued back to back and direction of 

feed flow- (c) single sheet of membrane and direction of permeate when crossing the 

membrane – (d) single sheet of membrane and direction of permeate moving toward the 

permeate axis in the permeate channel shared by two membranes glued by to back. 

 

Figure 6. Mapping of the protein irreversible deposit in the spiral membrane determined from 

FTIR-ATR quantification (protein amount in µg.cm
-2

) according to the location in the spiral 

membrane. The local TMP is calculated from the assumption of a linear pressure drop 

decrease. The membrane labels are defined on Figure 5. (nd = not determined) 

 

Figure 7. Irreversible amount of proteins on the spiral membrane versus the distance from the 

permeate collector axis (at a given distance each point correspond to a local TMP for the 6 

membrane sheets). The estimation of the local average TMP is calculated from TMP at inlet 

and outlet and assuming a linear decrease of the pressure drop of 2.2 bar along the spiral 

membrane element.  
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Figure 8 : Amount of protein irreversible deposit on the spiral membrane versus the distance 

from the permeate collector axis for inlet (♦, local TMP = 3.5 bar) and outlet (×, local TMP 

= 2.0 bar) samples . (a) All membranes – (b) F1C2 membrane (see Figure 5 for definition). 

The estimation of the local average TMP is calculated from TMP at inlet and outlet and 

assuming a linear decrease of the pressure drop along the spiral membrane element. 

 

Figure 9: The 3 zones A, B, C (defined Table 3) on a membrane sheet and variation of fouling 

from which is deduced variation of velocity/turbulences 
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Figures 

 

 

 

 

 

 

(a) one sheet (F1C2)                                                                  (b) another sheet(F2 C1) 

 

Figure 1: Evidencing of the distribution of the permeability to water at 50°C on  two sheets (a 

and b) of a same virgin 4333 spiral membrane (this behaviour is representative of all sheets 

for which we have performed such measurements in different spiral membranes having 3 or 4 

sheet. Flux measurements are performed on flat membranes of 127 cm
2 

filtering area sampled 

in the different sheets. 

 

  

permeate tube permeate tube

110 113 95

107 109 93 128 179 180 133

114 115 97 178 173

97 111 112 99 125 164 176

101 127 123 102 121 184 200

104 120 118 101 186 241

97 119 120 97 199 221

99 113 114 94 201 202

108 109 99

94 97 94 231 270

87 88 96 212 218

average 105 average 187

standard deviation 10 standard deviation 38

RSD (%) 10 RSD (%) 21
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Figure 2. Scheme of the UF pilot equipped with the 4333 spiral membrane allowing the feed 

entrance in the carter first perpendicularly to the membrane axis. 
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Figure 4 - Typical UF of skim milk at 46°C, VRR= 1, 0.34 m.s
-1 

with step by step increase of 

TMP for a flat membrane inserted in the plate and frame module with (●) or without (�) 

retentate spacers of 1 mm inserted in the liquid channel. 
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Figure 5. Schemes of a spiral membrane (a) with 3 double sheets highlighting the different 

channels in which are inserted retentate or permeate spacer, respectively. Each membrane is 

labelled according to the same nomenclature as those used for the quantification of protein 

amount for the autopsied membrane. F1C1 is the innermost membrane whereas F3C2 is the 

outermost one - (b) single sheet made of two membranes glued back to back and direction of 

feed flow- (c) single sheet of membrane and direction of permeate when crossing the 

membrane – (d) single sheet of membrane and direction of permeate moving toward the 

permeate axis in the permeate channel shared by two membranes glued by to back. 
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Figure 6. Mapping of the protein irreversible deposit in the spiral membrane determined from 

FTIR-ATR quantification (protein amount in µg.cm
-2

) according to the location in the spiral 

membrane. The local TMP is calculated from the assumption of a linear pressure drop 

decrease. The membrane labels are defined on Figure 5. (nd = not determined) 
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Figure 7. Irreversible amount of proteins on the spiral membrane versus the distance from the 

permeate collector axis (at a given distance each point correspond to a local TMP for the 6 

membrane sheets). The estimation of the local average TMP is calculated from TMP at inlet 

and outlet and assuming a linear decrease of the pressure drop of 2.2 bar along the spiral 

membrane element.  
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(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 8 : Amount of protein irreversible deposit on the spiral membrane versus the distance 

from the permeate collector axis for inlet (♦, local TMP = 3.5 bar) and outlet (×, local TMP 

= 2.0 bar) samples . (a) All membranes – (b) F1C2 membrane (see Figure 5 for definition). 

The estimation of the local average TMP is calculated from TMP at inlet and outlet and 

assuming a linear decrease of the pressure drop along the spiral membrane element. 
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Figure 9: The 3 zones A, B, C (defined Table 3) on a membrane sheet and variation of fouling 

from which is deduced variation of velocity/turbulences 

 

  

Inlet Outlet

TMP(bar)
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135 zone A
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495 zone B
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675 constant fouling
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855 5
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Tables 

 

 

 

 

 

 

 

Table 1. Resistances of overall (Rf) and irreversible (Rirrev,initial) fouling due to skim milk UF at 

46 – 50 °C at several constant TMP(*) for the spiral and flat membranes  

 

 

 

 

 

 

* TMP in spiral configuration is the average value calculated from TMP at inlet and outlet in 

presence of a 2.2 bar pressure drop. The pressure drop in the plate and frame module is 

negligible (less than 100 mbar). 

  

TMP (bar) 1.5  2.0  3.5  4.0 

Resitance 

(10 
12

 m
-1

) 

Spiral  Flat  Spiral  Flat  Spiral Flat  Spiral  Flat  

Rf 40 ± 5 44 ± 2 41 ± 1 45 ± 2 47 ± 5 49 ± 1 46 ± 3 50 ± 1 

Rirrev., initial 11 ± 2 15 ± 3 13 ± 3 17 ± 2 17 ± 3 19 ± 3 16 ± 3 20 ± 3 
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Table 2. Protein amount (from FTIR-ATR) in the initial irreversible fouling due to skim milk 

UF at different TMP for the flat membranes (*) and the spiral one (**). 

 

TMP (bar) 1.5 2.0 2.5 3.0 3.5 4.0 

[Protein] (µg.cm
-2

)  

flat membrane  

13 ± 2 22 ± 2 - - 23 ± 2 26 ± 3 

[Protein] (µg.cm
-2

) 

spiral membrane 

 38 ± 4 35 ± 5 37 ± 5 37 ± 5  

 

* TMP in flat configuration is the average value calculated from TMP at inlet and outlet, the 

pressure drop in the plate and frame module is negligible (less than 100 mbar). each value is 

the average of 9 analyses. 

** TMP in the spiral configuration is the local value calculated from TMP at inlet and outlet 

and assuming a linear decrease of the pressure drop of 2.2 bar along the spiral membrane 

element. In this case the average TMP is 2.6 bar and the TMP at inlet is 3.7 bar. Each value is 

the average of 84 analyses. 
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Table 3: Size (according to the distance toward the permeate collector axis, d in 10
-3

 m)  of 

zones A, B, C (defined on Figure 8b) for each membranes. (nd = not determined) 

 

membrane Zone A Zone B Zone C 

F1C1 0-200 200-1200 nd 

F1C2 0-350 400- 900 950-1200 

F2C1 0-250 300-1050 1100-1200

F2C2 nd 200-900 950-1200 

F3C1 0-350 400-1100 1100-1200

F3C2 0-350 400-900 950-1200 
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