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Abstract This paper presents an overview of recent work on the use of silicon waveguides for 
processing optical data signals. We will describe ultra-fast, ultra-broadband, polarisation-insensitive and 
phase-sensitive applications including processing of spectrally-efficient data formats and optical phase 
regeneration.  

Introduction and background 
As the Internet traffic maintains its double-digit 
percentage growth, the need for novel and more 
energy- and spectrally efficient processing 
technologies never subsides. With the (re-) 
introduction of coherent communications and 
advanced modulation formats strongly bound to 
electronic digital signal processing (DSP), a 
whole range of transmission impairment 
mitigation techniques have become possible. 
These include in particular dispersion 
compensation, and to some degree nonlinear 
transmission impairment compensation by e.g. 
digital back-propagation 1. Alongside these very 
successful DSP endeavours, optical signal 
processing (OSP) has been undergoing a 
tremendous development, though still short of 
commercial penetration. Over recent years, OSP 
has been demonstrated to allow for phase-
sensitive amplification for phase regeneration 2, 
ultra-broadband flexi-grid light sources 3, 
add/drop multiplexing of spectrally intertwined 
data channels like OFDM 4, time lens based 
linear transmission impairment compensation 5, 
optical phase conjugation and optical twin-wave 
transmission for nonlinear transmission 
impairment compensation 6-7, and many other 

exciting functionalities. The foundation of OSP is 
efficient optical nonlinearities, and many 
materials are being investigated today. The most 
successful materials platform today is 
undoubtedly highly nonlinear fibres (HNLF), 
where the nonlinearity may be accumulated over 
a large length of fibre. HNLF, however, needs 
special efforts to reduce stimulated Brillouin 
scattering and increase the OSP bandwidth, 
which may be improved on by Al-doping, strain 
and stable dispersion designs like the SPINE-
HNLF 8. Compact waveguide platforms are also 
very interesting, in particular because of the very 
stable dispersion properties, allowing for ultra-
broadband OSP bandwidths, as demonstrated 
e.g. in silicon nanowires 9. Other platforms 
include chalcogenide (ChG) waveguides 10, III-V 
photonic wires 11, periodically poled Lithium 
Niobate (PPLN) 12 and semiconductor optical 
amplifiers (SOAs) 13. This paper will focus on 
silicon optical signal processing and mostly on 
crystalline silicon (c-Si). However, c-Si 
waveguides suffer from two-photon absorption 
(TPA) at 1550 nm, and hence other related 
materials are heavily researched today—such as 
amorphous silicon 14 with reduced TPA allowing 
for more efficient lower power OSP 15-18, as well 

 

Fig. 1: Ultra-fast FWM and XPM in a silicon nanowire 24 

 
Fig. 2: Ultra-broadband FWM bandwidth available with 

dispersion-engineered silicon nanowire. Lower right: 
Example of FWM-based broadband OSP: Wavelength 

conversion, up to 640 Gbit/s 26-28.  
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as Hydex glass and silicon nitride 19-21, as well as 
III-V wires 11. One other approach is to apply a p-
i-n junction across ones wire and apply a reverse 
voltage to reduce the steady state density of free 
carriers, thus strongly reducing the nonlinear 
absorption loss 22-23.    

Ultra-fast and ultra-broadband OSP in c-Si  
Fig. 1 shows an experimental spectrogram 24 of a 
pump-probe characterisation in a c-Si nanowire. 
This shows that there is indeed no memory effect 
in FWM in c-Si, and that XPM has both a fast red 
and fast blue shift, allowing for dual-copy 
wavelength conversion 25. Fig. 2 shows how 
proper nano-engineering by waveguide 
dimensioning can match 2 and 4 to yield an 
ultra-broadband FWM bandwidth extending over 
several hundred nm 26-27. Thus c-Si nanowires 
may be used for both ultra-fast and ultra-
broadband OSP. Fig. 2 also shows an example 
of ultra-fast wavelength conversion of an up to 
640 Gbit/s serial data signal 28. Other broadband 
demonstrations include 640 Gbit/s serial-to-
parallel conversion 29, OSP of 1.28 Tbit/s data 30, 
BER-confirmed OOK all-optical regeneration 31-

33], Fig. 3 shows a very recent experiment, where 
wavelength conversion of the very spectrally 
efficient data format Nyquist-OTDM was 
demonstrated at 320 Gbit/s 34.  

Polarisation-insensitive OSP in c-Si  
All the above functionalities are based on 
polarisation sensitive processes, so it is very 
important to find polarisation-insensitive 
solutions. Fig. 4 shows an integrated polarisation-
diversity chip using two c-Si nanowires with a 
polarisation splitter and rotator (PSR) in either 
end 35. An integrated polarisation-insensitive 
optical ring resonator based DPSK demodulator 
was implemented in a similar way 36. In 35, as 
shown in Fig. 4, 40 Gbit/s polarisation-
independent optical phase conjugation was 
accomplished allowing for 160 km transmission. 

Other similar approaches are demonstrated in 
SOAs37 and PPLN 38.  

Phase-sensitive amplification in c-Si  
Fig. 5 shows results from 39 with the first phase-
regeneration using silicon. A c-Si nanowire in a p-
i-n junction 22 is employed to reduce 
accumulation of TPA-generated free carriers. 
With this device it is possible to increase the 
pump power and use longer waveguides (4 cm) 
enabling a very high CW conversion efficiency of 
minus a few dB with -25 V bias 40. This high 
efficiency enable a phase-sensitive extinction 
ratio (ER) up to a record 20 dB for a chip with CW 
operation, and this in turn allows for a 
demonstration of 10 Gbit/s DPSK phase 
regeneration with a 14 dB receiver sensitivity 
improvement. Other chip-based investigations 
count Si photonic crystal waveguides with 11 dB 
ER 41, ChG 42 and PPLN 43.  

Conclusions 
We have attempted to provide an overview of 
major milestones achieved using crystalline 
silicon nanowires for optical signal processing. 
Nanowires have the benefit of allowing for ultra-
fast and ultra-broadband OSP, and may in 
addition be made polarisation-independent and 
with very high conversion efficiency allowing for 
phase-sensitive applications. 

 
Fig. 4: Polarisation-insensitive FWM device with integrated silicon nanowires 35.  

 
Fig. 3: Ultra-fast FWM-based wavelength conversion of 

a 320 Gbit/s Nyquist-OTDM data signal 34.  
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Fig. 5: Phase-regeneration in a crystalline silicon 

nanowire in a p-i-n junction 39.
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