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Abstract. The performance of a polarization-independent fiber-based optical parametric amplifier is 
experimentally investigated in terms of amplification and wavelength conversion for optical phase 
conjugation applications using 5×28-GBd PDM 16-QAM signals. Good conjugated signal quality up to 
13-dB gain is obtained. 

Introduction 
The nonlinear Shannon limit represents one of 
the most critical challenges optical networks will 
have to address in the near future1. In this 
context, a renewed interest for nonlinear 
compensation has led to several demonstrations 
both in the digital and the optical domains2-4. 
Optical phase conjugation (OPC) is a 
well-known technique allowing inverting the 
signal spectrum, therefore enabling the com-
pensation of dispersion and Kerr effect accumu-
lated through propagation by further transmis-
sion of the conjugated signal. For practical 
application, an OPC device should provide 
broadband operation as well as modulation-
format transparency and polarization indepen-
dence. Towards this aim, nonlinear compensa-
tion was demonstrated in Ref. 5 for 
16-quadrature amplitude modulation (QAM) 
signals. However, operation was restricted to 
single polarization and limited by the penalty 
introduced by the OPC itself. In Ref. 2, polariza-
tion-independence was achieved, but only 
quadrature phase-shift keying (QPSK) operation 
was reported.  

In this work, we investigate the potential of 
using a broadband dual-pump fiber optical 
parametric amplifier (FOPA) to provide polariza-
tion-independent and low penalty OPC opera-

tion for a 5-channel wavelength-division multip-
lexed (WDM) 28-GBd polarization division 
multiplexed (PDM) 16-QAM signal. The relative 
performances of the amplified signal and idler 
are evaluated in terms of polarization sensitivity 
and bit-error ratio (BER), highlighting the key 
optimization aspects for the successful design of 
a black-box OPC device. 

Experimental setup 
The experimental setup is presented in Fig. 1. 
The setup consists of a 5-channel 28-GBd PDM 
16-QAM transmitter, the FOPA, and a coherent 
receiver. Five continuous wave (cw) external 
cavity lasers (ECLs) on a 50-GHz grid centered 
at 1550.12 nm were modulated with 16-QAM at 
28 GBd using an IQ modulator driven by two 
channels of a 56-GS/s arbitrary waveform 
generator (AWG). A polarization emulator 
(PolMux) was then used to generate a PDM 
signal, followed by a decorrelation stage to fully 
decorrelate all five channels6. Before entering 
the FOPA, a scrambler was used to randomize 
the state-of-polarization (SOP) of the signal. 

The FOPA consists of two ECLs serving as 
cw pump sources at 1534 nm and 1574 nm with 
linewidths of 25 kHz and 100 kHz, respectively. 
The pumps were separately modulated using 
phase modulators (PMs) driven in a coun-

Fig. 1: Experimental setup. 
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ter-phasing fashion by two sinusoidal tones 
(69 MHz and 253 MHz; modulation index of 
1.4 radians) generated by another two-channel 
AWG in order to increase the stimulated 
Brillouin scattering (SBS) threshold and to 
minimize the transfer of pump phase modulation 
to the generated idlers7. The pumps were 
amplified by EDFAs (output optical signal-to-
noise ratio (OSNR) of 59 dB and 56 dB for the 
C- and L-band pumps, respectively) and 
combined with a WDM coupler. The pump 
power levels were controlled via variable optical 
attenuators (VOAs) thus ensuring constant 
pumps OSNR values. Optical band-pass filters 
(OBPFs) with a full-width at half-maximum 
(FWHM) bandwidth of 0.8 nm suppress the out-
of-band amplified spontaneous emission (ASE). 
Pumps and signal were combined using a WDM 
coupler before being sent to the diversity loop 
consisting of a polarization beam splitter (PBS) 
and a piece of highly nonlinear fiber (HNLF) 
(length 300 m, zero dispersion wavelength 
1555.6 nm, nonlinear coefficient 16.3/W/km, 
attenuation 1.4 dB/km, dispersion slope 
0.019 ps/nm2/km). The total signal power at the 
PBS was kept constant at -5 dBm throughout 
the evaluation except for the saturation analysis. 
In order to match the gain in both loop 
directions, the SOP of the pumps was tuned via 
two polarization controllers (PCs) and the SOP 
of the signal was randomized using the 
polarization scrambler. A 20-dB coupler in the 
loop was used to monitor the pumps power 
levels in both directions of the loop. A PC in the 
loop was used to ensure that the waves at the 
output of the HNLF exit at port-R of the PBS. 
The output spectra after the diversity loop were 
monitored by an optical spectrum analyzer 
(OSA) via a 20-dB coupler. At the FOPA output 
a tunable (T) OBPF with 4-nm FWHM bandwidth 
was used to select either the amplified signal or 
the idler bands and to suppress the pumps.  

At the receiver, the signal was noise-loaded, 
the channel under test was selected by a 
T-OBPF and injected together with a local 
oscillator (LO) with 100-kHz linewidth in a 
coherent receiver consisting of a 90° optical 
hybrid, balanced photodiodes (BPD) and a 
40 GS/s real-time sampling scope (RTO). Offline 
processing was then performed, including 
frequency-offset estimation, adaptive 
equalization, carrier phase estimation and error 
counting6. 
Results and Discussions 
The transfer of pump phase noise to the idler 
strongly degrades the quality of the idler. 
Therefore the counter-phasing was optimized 
using a single channel cw signal at 1550.12 nm 

injected into the FOPA. The generated idler was 
detected using the RTO and its spectrum was 
monitored to assess the amount of phase 
modulation at 69 MHz and 253 MHz being 
transferred from the pumps. As shown in 
Fig. 2a, regardless of the On-Off gain values 
(5 dB, 10 dB and 13 dB were considered in this 
investigation), the suppression ratio between the 
carrier and the two tones and their harmonics 
was higher than 33 dB, showing that low phase 
modulation was transferred to the idler7.  

Fig. 2b shows the On-Off gain and conver-
sion efficiency (CE) as functions of the signal 
power at the PBS input. The CE is defined as 
the ratio of idler to signal powers with pumps off 
measured at the FOPA output. This particular 
characterization was done in a polarization 
dependent configuration. The polarizations of 
the pumps and a cw signal at 1550.12 nm were 
aligned to propagate in one direction of the 
diversity loop without polarization scrambling. As 
expected, the difference between gain and CE 
decreases with increasing the gain. Higher gains 
begin to saturate at lower input powers than 
lower gain levels. However, gain reduction of 
1 dB is obtained at a signal input power of 
+5 dBm even when the gain is 13 dB.  

For the gain bandwidth measurement, the 
WDM coupler (signal-pump combiner) was 
temporarily replaced with a 10-dB coupler. This 
characterization was performed with the pumps 
SOPs set for polarization-independent opera-
tion, and polarization-scrambling of the 
cw-probe signal, whose wavelength was swept 
from 1535 nm to 1572 nm. The total pump 
power into the loop was set to 28.2 dBm, 
29.9 dBm, and 30.8 dBm for 5 dB, 10 dB, and 
13 dB On-Off gain, respectively. The results are 
summarized in Fig. 2c and show a flat gain with 
1-dB bandwidth of 24 nm at 5-dB On-Off gain 
which reduces to 18 nm at 13 dB. A slight gain 
tilt resulting from the Raman effect is also visible 
though its impact was kept low by setting the 
C-band pump power ~ 1.8 dB higher than the 
L-band pump power. Fig. 2c also illustrates the 
PDG for the modulated signal and its idler 
measured using the zero-span function of the 
OSA while scrambling a single-channel 28-GBd 
16-QAM signal with the PDM emulator by-
passed. Averaging effects in the PDG mea-
surement are minimized by the use of a low 
scrambling rate. The signal wavelength varied 
from 1542.5 nm to 1565 nm, i.e. the flat region 
of the gain profile. The measurement was done 
for 5-dB, 10-dB, and 13-dB gain showing low 
PDG values ranging from 0.2 dB to 0.5 dB with 
similar signal/idler values. Note that at higher 
gain, the pump-power splitting is more critical 
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due to the exponential gain regime, resulting in 
slightly higher PDG values.  

Fig. 2d shows the WDM spectra after the 
diversity loop with pumps On and Off for 5-dB, 
10-dB, and 13-dB gain with a total WDM-signal 
input power into the loop of -5 dBm. This power 
was used to operate the FOPA in the linear 
regime8. The wavelengths of the WDM channels 
have been selected to be within the flat range of 
the gain spectra. The BER performance for the 
amplified signals and the generated idlers were 
measured for the 5-channel WDM input as well 
as for a single-channel input (WDM center-
channel). The WDM results are shown in Fig. 2e 
in which the average BER of the five channels is 
plotted as a function of the OSNR (in 0.1 nm 
reference bandwidth). Very small BER 
differences were identified between the 
channels. A summary of the measured OSNR 
penalties for both single and WDM scenarios at 
a BER of 1x10-4 is depicted in Fig. 2f for the 
selected On-Off gain values. Signal and idler 
show similar BER performances, demonstrating 
the effectiveness of the scheme for OPC 
operation. However, the distortion experienced 
in the FOPA increases with gain and is stronger 
in the WDM case, indicating that a limited gain 
of 5 dB would be more beneficial for practical 
implementation.  

The degradation is attributed to distortions 
such as self phase modulation in the case of the 
single-channel and cross phase modulation, 
cross gain modulation, and inter-channel 
four-wave mixing in the case of WDM8. 
Additionally, the diversity loop operation 
introduces extra penalty compared to a 

polarization dependent scheme8 limiting the 
gain. Further studies are therefore required. 
Conclusion 
A polarization-independent FOPA for OPC was 
experimentally demonstrated at 5 dB, 10 dB, 
and 13 dB On-Off gain for 28-GBd PDM 
16-QAM signals in a 5-channel WDM system. 
Signal and idler investigations showed OSNR 
penalties below 1 dB for both single channel and 
a 5-channel WDM cases at 5-dB On-Off gain 
and at a BER of 1x10-4. The maximum polariza-
tion dependent gain was also measured to be 
below 0.5 dB across a 22.5-nm wavelength 
range (1542.5 nm to 1565 nm). The scheme is 
well suited for in-line OPC applications at 5-dB 
gain for gain-transparent operation with minimal 
penalty from the FOPA. 
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Fig. 2: (a) Spectra of RTO-acquisition showing suppression of pump phase modulation tones on the generated idler. (b) Gain 
saturation characteristics. (c) Gain bandwidth and PDG for the amplified signals and the idlers. (d) Spectra at the HNLF output 
for the different gain levels showing the 5-channel DWDM signal and the generated idlers. (e) 5-channel BER curves for signal 
and idler at different gain levels. (f) OSNR penalties at a BER of 1x10-4 for both signal and idler as functions of On-Off gain. 
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