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Within a Markovian complete financial market, we consider the problem of hedging a Bermudan option with a given probability. Using stochastic target and duality arguments, we derive a backward algorithm for the Fenchel transform of the pricing function. This algorithm is similar to the usual American backward induction, except that it requires two additional Fenchel transformations at each exercise date. We provide numerical illustrations.

Introduction

We study the problem of hedging a claim of Bermudan style with a given probability p. More precisely, we want to characterize the minimal initial value vp¨, pq of an hedging lem has been studied recently by Jiao et al. [START_REF] Jiao | Hedging under multiple risk constraints[END_REF] in the form of general lookback-style contraints. They provide an alternative formulation in terms of an optimal control of martingale problems. This has to be compared with [START_REF] Bouchard | Bsdes with weak terminal condition[END_REF] and our Proposition 2.3. No Markovian structure is required, but they do not provide an explicit scheme as we do. Moreover, the smoothness conditions they impose on their loss functions are not satisfied in the quantile hedging case. They also study the case of several constraints in expectation set (independently) at the different exercise times, which is close to the P&L matching problems of Bouchard and Vu [START_REF] Bouchard | A stochastic target approach for p&l matching problems[END_REF].

Finally, in this paper, we focus on the quantile hedging problem for sake of simplicity. It is an archetype of an irregular loss function, and it should be clear that a similar analysis can be carried out for a wide class of (more regular) loss functions. Also note that to obtain the dual algorithm, we only use probabilistic arguments which opens the door to the study of more general non-Markovian settings.

Notations: Let d be a positive integer. Any vector x of R d is seen as a column vector. Its norm and transpose are denoted by |x| and x J . We set M d :" R dˆd and denote by M J the transpose of M P M d , while Tr rM s is its trace. For ease of notations, we set O d `:" p0, 8q d . We fix a finite time horizon T ą 0. Let ψ : pt, x, pq P r0, T s ˆOd `ˆR Þ Ñ ψpt, x, pq. If it is smooth enough, we denote by B t ψ and B p ψ its derivative with respect t and p, and by B x ψ its Jacobian matrix with respect to x, as a column vector. The Hessian with respect to x is B 2 xx ψ, B 2 pp ψ is the second order derivative with respect to p, and B 2 xp ψ is the vector of cross second order derivatives. We denote by ψ 7 its Fenchel transform with respect to the last argument, ψ 7 pt, x, qq :" sup pPR ppq ´ψpt, x, pqq , (

and define corψs , the closed convex envelope of ψ with respect to its last argument.

If ψ is convex with respect to its last variable, we denote by D p ψ and D ṕ ψ its corresponding right-and left-derivatives. We refer to [START_REF] Tyrrell | Convex analysis[END_REF] for the various notions related to convex analysis. We fix a complete probability space pΩ, F, Pq supporting a d-dimensional Brownian motion W . We denote by F " pF t q 0ďtďT the usual augmented Brownian filtration. All over the paper, inequalities between random variables have to be understood in the P-a.s. sense.

2 Problem formulation and main results

Financial market and hedging problem

Our financial market consists in a non-risky asset, whose price process is normalized to unity, and d risky assets X " pX1 , ..., X d q whose dynamics are given by X t,x s " x `ż s t µpr, X t,x r qdr `ż s t σpr, X t,x r qdW r ,

given the initial data pt, xq P r0, T s ˆOd `. To ensure that the above is well-defined, we assume that µ : r0, T s ˆOd `Ñ R d and σ : r0, T s ˆOd In order to enforce the absence of arbitrage and the completeness of the financial market, we also impose that σ is invertible , λ :" σ ´1µ is bounded (2.3) and Lipschitz continuous in space, uniformly in time .

The Lipschitz continuity condition is not required to define the risk neutral measure 1

Q t,x :" 1 Q t,x,1 T ¨P with 1 Q t,x,q :" 1 q E ˆ´ż ẗ λps, X t,x s q J dW s ˙, q ą 0 , (2.4) 
but will be used in some of our forthcoming arguments. In this model, an admissible financial strategy is a d-dimensional predictable process ν such that

E Qt,x "ż T t }ν J s σps, X t,x s q} 2 ds  ă 8 , (2.5) 
and the corresponding wealth process remains non-negative

Y t,x,y,ν :" y `ż ẗ ν J r dX t,x r ě 0 , on rt, T s ,
given the initial data pt, xq of the market and the initial dotation y ě 0. We denote by U t,x,y the collection of admissible financial strategies. As usual, each ν i t should be interpreted as the number of units of asset i in the portfolio at time t.

We now fix a finite collection of times T t :" tt 0 " 0 ď ¨¨¨ď t i ď ¨¨¨ď t n " T u X pt, T s , together with payoff functions

x P O d `Þ Ñ gpt i , xq ě 0, Lipschitz continuous for all i ď n . (2.6)
Our quantile hedging problem consists in finding the minimal initial wealth vpt, x, pq which ensures that the stream of Bermudan payoffs tgps, X t,x s q, s P T t u can be hedged with a given probability p, vpt, x, pq :" inf Γpt, x, pq , (

where Γpt, x, pq :"

! y ě 0 : D ν P U t,x,y s.t. P " Ş sPTt S t,x,y,ν s ı ě p ) , with S t,x,y,ν s :" # Ω if s ď t tY t,x,y,ν s ě gps, X t,x s qu if s ą t .
Observe that vpt, ¨q must be interpreted as a continuation value, i.e. the price at time t knowing that the option has not been exercised on r0, ts. In particular, vpT, ¨q " 0. For p " 1, vpt, ¨, 1q coincides with the continuation value of the super-hedging price of the Bermudan option. In this complete market, it satisfies the usual dynamic programming principle vpt, x, 1q " E Qt,x rpv_gqpt i`1 , X t,x t i`1 , 1qs , for t P rt i , t i`1 q , i ă n ,

see [START_REF] Schweizer | On Bermudan options[END_REF]. Above and in the following, we use the notation gpt, x, pq :" gpt, xq1 t0ăpď1u `81 tpą1u , for p P R .

Note that Γ can also be formulated in terms of stopping times, see the Appendix for the proof.

Proposition 2.1. For pt, x, pq P r0, T s ˆOd `ˆr0, 1s, Γpt, x, pq " ty ě 0 : D ν P U t,x,y s.t. PrS t,x,y,ν τ s ě p, @ τ P T t u " ty ě 0 : D ν P U t,x,y s.t. PrS t,x,y,ν τν s ě pu1 ttăT u `R`1tt"T u , (2.9) in which T t is the set of stopping times with values in T t , and τν :" mints P T t : Y t,x,y,ν s ă gps, X by possibly adopting a buy-and-hold strategy after the first time at which the wealth process hits the right-hand side term, recall that X t,x has positive components. In particular, 0 ď vpt, x, pq ď Cp1 `|x|q .

(2.13)

Equivalent formulation as a stochastic target problem

The first step in our analysis consists in reducing the problem to a stochastic target problem of American type as studied in [START_REF] Bouchard | The obstacle version of the geometric dynamic programming principle: Application to the pricing of american options under constraints[END_REF]. As in [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF], we first increase the dimension of the controlled process by introducing the family of martingales

P t,p,α :" p `ż ẗ α J s dW s ,
where α is a square integrable predictable process. The process P t,p,α will be later on interpreted as the conditional probability of success. It is therefore natural to restrict to the class of controls such that P t,p,α P r0, 1s , on rt, T s .

We denote by A t,p the set of predictable square integrable processes such that the above holds, and set Ût,x,y,p :" U t,x,y ˆAt,p .

Proposition 2.2. Fix pt, x, pq P r0, T s ˆOd `ˆr0, 1s, then Γpt, x, pq " ! y ě 0 : D pν, αq P Ût,x,y,p s.t. Y t,x,y,ν ě gp¨, X t,x , P t,p,α q on T t ) . (2.14)

Proof. At time T both sets are R `by definition of T T . We now fix t ă T . Let Γpt, x, pq denote the right-hand side in (2.14) and let y be one of his elements. Fix pν, αq P Ût,x,y,p such that Y t,x,y,ν ě gp¨, X t,x , P t,p,α q on T t . Then, S t,x,y,ν Ą tP t,p,α ą 0u on T t . Since P t,p,α P r0, 1s and therefore 1 tP t,p,α ą0u ě P t,p,α , this implies

P " X sPTt S t,x,y,ν s ‰ ě P " X sPTt tP t,p,α s ą 0u ‰ ě E » -P t,p,α T ź sPTtztT u 1 tP t,p,α s ą0u fi fl .
The process P t,p,α being a martingale, tP t,p,α s " 0u Ă tP t,p,α T " 0u, s P pt, T s. Hence

P " X sPTt S t,x,y,ν s ‰ ě E " P t,p,α T ı " p .
Therefore, y P Γpt, x, pq and this argument proves that Γpt, x, pq Ă Γpt, x, pq.

We now fix y P Γpt, x, pq and choose ν P U t,x,y such that p 1 :" P " Ş sPTt S t,x,y,ν s ı ě p. By the martingale representation theorem, we can find α P A t,p 1 such that

1 Ş sPT t S t,x,y,ν s " P t,p 1 ,α T ě P t,p,α T .
By possibly replacing α by the constant process 0 after the first time after t at which P t,p,α reaches the level 0, we can assume that α P A t,p . Moreover, the above implies 1 S t,x,y,ν s ě P t,p,α T , s P T t , which by taking the conditional expectation and using the fact that P t,p,α is a martingale leads to 1 S t,x,y,ν ě P t,p,α on T t . The latter is equivalent to Y t,x,y,ν ě gp¨, X t,x , P t,p,α q on T t . Hence, y P Γpt, x, pq. l Remark 2.2. We shall see in Section 3 that pv_gq can be replaced by its convex envelope with respect to p in (2.15). This phenomenon was already observed in [START_REF] Bouchard | Bsdes with weak terminal condition[END_REF] and [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF].

Dynamic programming and dual backward algorithm

Note that this provides a first way to compute the value function v. Indeed, standard arguments (see [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF]) should lead to a characterization of v on each interval rt i , t i`1 q, i ă n and on O d `ˆp0, 1q as a viscosity solution of sup

αPR d " ´Bt ϕp¨q `αJ λB p ϕp¨q ´1 2 `Tr " σσ J B 2 xx ϕp¨q ‰ `2α J σ J B 2 xp ϕp¨q `|α| 2 B 2 pp ϕp¨q ˘* " 0 , (2.17) 
with the boundary conditions

vpt i`1 ´, ¨q " pv_gqpt i`1 , ¨q, on O d `ˆr0, 1s (2.18) 
vp¨, 1q " E Qt,x rpv_gqpt i`1 , X t,x t i`1 , 1qs, vp¨, 0q " 0, on rt i , t i`1 q ˆOd `, i ă n . (2.19)

However, the fact that the control α P R d in the above is not bounded (as it comes from the martingale representation theorem) makes the associated Hamilton-Jacobi-Bellman operator in (2.17) discontinuous. More precisely it is lower semi-continuous but not upper semi-continuous and a precise statement would then require a relaxation of the operator in (2.17). This discontinuity makes the proof of a comparison result very difficult and the latter is necessary to build convergent numerical schemes. One way to overcome this problem is to consider instead the Fenchel transform v 7 of v, see (1.1) in the notations section. Indeed, heuristically, as already observed in [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF] in the case n " 1, a change of variable argument in (2.17) and the exploitation of the boundary conditions in (2.19) suggests that the dual function v 7 should be at least a viscosity sub-solution of the linear partial differential equation

´Bt ϕp¨q ´1 2 `Trrσσ J B 2 xx ϕp¨qs `2qλ J σ J B 2 xq ϕp¨q `|λ| 2 q 2 B 2 qq ϕp¨q ˘" 0 , (2.20) 
on the different time steps, and of the following boundary condition obtained by taking the Fenchel transform in (2.18)

v 7 pt i`1 ´, ¨q " pv_gq 7 pt i`1 , ¨q . (2.21)
By the Feynman-Kac representation this corresponds to the following representation

v 7 pt, ¨q ď E Qt,x " pv_gq 7 pt i`1 , ¨q‰ , for t P rt i , t i`1 q , i ă n .
The aim of this paper is actually to prove by using probabilistic arguments only that on O d `ˆR # wpT, x, qq :" q `81 tqă0u , wpt, x, qq :"

E Qt,x " pw 7 _gq 7 pt i`1 , X t,x t i`1 , Q t,x,q t i`1 q ı , for t P rt i , t i`1 q , i ă n , (2.22) 
with Q t,x,q defined in (2.4), is the proper algorithm to compute the value function v 7 and thus v. Indeed our main result is given by the following theorem.

Theorem 2.1. v " w 7 on r0, T s ˆOd `ˆr0, 1s.

The proof of this result is the object of the subsequent sections. Although it is in the spirit of [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF], our proof is different and more involved. The main difficulty comes from the induction. At each time step, we have to verify that pw 7 _gq behaves in a sufficiently nice way. In the one step case, [START_REF] Bouchard | Stochastic target problems with controlled loss[END_REF] had only to consider the terminal payoff g. Moreover, we only use probabilistic arguments as opposed to PDE arguments.

Clearly, the algorithm (2.22) provides a way to compute the value function easily. One can for instance use the fact that w " v 7 is the unique viscosity solution of (2.20) with the boundary condition (2.21). Let us make this statement more precise.

Definition 2.1. We say that a lower-semicontinuous function u is a viscosity supersolution of the system (S) if, on each rt i , t i`1 q ˆOd `ˆp0, 8q, i ă n, it is a viscosity super-solution of (2.20) with the boundary conditions lim inf

t 1 Òt i ,px 1 ,q 1 qÑpx,qq upt 1 , x 1 , q 1 q ě pu 7 _gq 7 pt i , x, qq for px, qq P O d `ˆp0, 8q , i ă n , lim inf t 1 ÒT,px 1 ,q 1 qÑpx,qq
upt 1 , x 1 , q 1 q ě g 7 pT, x, qq for px, qq P O d `ˆp0, 8q .

We define accordingly the notion of sub-solution for upper-semicontinuous functions.

A function is a viscosity solution if its lower-(resp. upper-) semicontinuous envelope is a viscosity super-(resp. sub-) solution.

Note that in the above definition we have to understand u as being `8 on r0, T s ˆOd `p´8, 0q to compute the Fenchel transforms involved in the time boundary conditions.

We now provide a version of the comparison principle for (S) which pertains for the usual extensions of the Black and Scholes model. The assumptions used below are here to avoid the boundary of O d `-when this is not the case, one has to specify additional boundary conditions. Proposition 2.4. The function w is continuous on rt i , t i`1 q ˆOd `ˆR `, i ă n, nonnegative, has linear growth in its last variable and is a viscosity solution of (S). Moreover, if there exists two functions σ and μ such that σp¨, xq " diagrxsσp¨, xq and µp¨, xq " diagrxsμp¨, xq, then u 1 ě u 2 on r0, T q ˆOd `ˆp0, 8q whenever u 1 and u 2 are respectively a super-and a sub-solution of (S), which are non-negative and have linear growth in their last variable on r0, T q ˆOd `ˆR `.

The proof is postponed to the Appendix. Given the latter, it is not difficult to follow the arguments of [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] to construct a convergent finite difference scheme for the resolution of pSq. Alternatively, one could also use quantization methods to tackle the approximation of w, see [START_REF] Bally | Error analysis of the quantization algorithm for obstacle problems[END_REF][START_REF] Bally | A quantization method for pricing and hedging multidimensional american style options[END_REF], or a regression based Monte-Carlo method, see the survey paper [START_REF] Bouchard | Monte-carlo valuation of american options: facts and new algorithms to improve existing methods[END_REF] and the references therein.

Examples of application

In this section, we present two examples of application. The numerical results are obtained using the following procedure which is based on the above algorithm to compute w " v 7 : for i ď n ´1, 1) compute the value of pw We now fix T " 1 and T t :" t 0 " 0, t 1 " 1 3 , t 2 " 2 3 , t 3 " 1 ( Xpt, t 3 s, t P r0, T s. We work in a Black-Scholes setting with market parameters: d " 1, σpt, xq " 0.25x, λpt, xq " 0.2.

For our first numerical application, we consider a put option, i.e. gpt, xq " rK ´xs `, with strike K " 30. In figure 1, we plot the functions v and v 7 at t " t 0 . In figure 2(a-b-c In our second example, we consider a put spread option with strikes 20 and 30, i.e.

gpt, xq " r30 ´xs `´r20 ´xs `. The numerical results are displayed in Figure 3 and4.

It may happen here that vpt, x, 1q ă gpt, xq, see figure 4 We conclude this section with the following remark on the behavior of v near p "1. 

Proof of the backward dual representation

From now on, we extend v to r0, T s ˆOd `ˆR by setting vp¨, pq " 0 if p ă 0 and vp¨, pq " `8 if p ą 1 .

(3.1)

Using the convention inf H " `8, this extension is consistent with (2.7).

The backward algorithm as a lower bound

We first show that the backward algorithm (2.22) actually provides a lower bound for the value function v.

Proposition 3.1. v ě w 7 on r0, T s ˆOd `ˆr0, 1s.

Proof. First note that vpT, ¨q " 0 " w 7 pT, ¨q, by definition. Thus, pv _ gqpT, ¨q " pw 7 _ gqpT, ¨q. We now assume that v ě w 7 on rt i`1 , T s ˆOd `ˆr0, 1s for some i ď n ´1. Then, pv_gq 7 pt i`1 , ¨q ď pw 7 _gq 7 pt i`1 , ¨q and therefore

pv_gq ´ti`1 , X t,x t i`1 , P t,p,α t i`1 ¯ě P t,p,α t i`1 qQ t,x,1 t i`1 ´pv_gq 7 ´ti`1 , X t,x t i`1 , qQ t,x,1 t i`1 ě P t,p,α t i`1 qQ t,x,1 t i`1 ´pw 7 _gq 7 ´ti`1 , X t,x t i`1 , qQ t,x,1 t i`1
¯.

Fix t P rt i , t i`1 q. Taking the expectation on both sides and recalling (2.22), we obtain

E Qt,x
" pv_gq ´ti`1 , X t,x t i`1 , P t,p,α t i`1 ¯ı ě pq ´wpt, x, qq .

Taking first the supremum over q P R in the right-hand side and then the infimum over α P A t,p in the left-hand side, we get from Proposition 2.3 that vpt, x, pq ě w 7 pt, x, pq. l

Representation and differentiability of the backward dual algorithm

This section is devoted to the study of the function pw 7 _gq 7 which appears in the dual algorithm (2.22) and of its Fenchel transform pw 7 _gq 77 . We first provide a decomposition in simple terms in Proposition 3.3. They only contain w, g and auxiliary functions that are easy to handle, see (3.3)-(3.4) below. In view of (2.22), this will then allow us to study the subdifferential of wpt i , ¨q in terms of the subdifferential of wpt i`1 , ¨q. This analysis is reported in Lemma 3.2. These results will be of important use in the final proof of Theorem 2.1 as it will require to find a particular value p in the subdifferential of wpt i , ¨q and then to apply a martingale representation argument between elements of the subdifferential of pw 7 _gq 7 at t i`1 and p at t i , see the proof of Theorem 3.1.

We start with properties that stem directly from the definition of w and standard results in convex analysis. The proof is postponed to the Appendix.

Proposition 3.2. The following holds for all pt, xq P r0, T s ˆOd `.

(a) The functions q P R Þ Ñ wpt, x, qq is a proper convex non-decreasing and non-negative function. Moreover, wp¨, 0q " 0 and wp¨, qq " 8 for q ă 0.

(b) The function p P R Þ Ñ w 7 pt, x, pq and q P R Þ Ñ pw 7 _ gq 7 pt, x, qq are convex, non-negative, non-decreasing and continuous on their respective domains. Moreover, w 7 p¨, 0q " 0 " pw 7 _gq 7 p¨, 0q and pw 7 _gq 7 p¨, qq " `8 for q ă 0.

The next result is key to get the representation of pw 7 _ gq 7 and pw 7 _ gq 77 . Recall that gpt, x, pq " gpt, xq1 t0ăpď1u `81 tpą1u .

Lemma 3.1. Let p 1 ě 0 and f be a non-decreasing convex function such that f p0q " 0, f ě gpt, x, ¨q on rp 1 , 8q, f ď gpt, x, ¨q on p´8, p 1 s.

(a) The convex envelope of f _ g is given by pf _gq 77 ppq "corf _gsppq " pq 1 1 t0ďpăp 1 u `f ppq1 tp 1 ďpď1u `81 tpą1u , with q 1 " gpt, xq{p 1 1 tp 1 ą0u .

(b) Moreover, we have pf _gq 7 p¨, qq " p 1 rq ´q1 s `1tqďD p f pp 1 qu `f 7 pqq1 tqąD p f pp 1 qu , q ě 0 , which is a closed proper convex function. In particular, it is continuous at D p f pp 1 q when 0 ă D p f pp 1 q ă `8.

Proof.

1. The left-hand side identity in (a) follows from [15, Theorem 12.2]. We set ϕ : p Þ Ñ pq 1 1 tpą0u _ f ppq, which is convex. By assumption, we already know that f ppq ď gpt, x, pq " 0 for p ď 0. Since f p0q " 0 and f pp 1 q " gpt, xq, we have by convexity that f ppq ď pq 1 , p P r0, p 1 s, which implies ϕppq1 tpďp 1 u " pq 1 1 t0ďpďp 1 u , for p ď p 1 . Since f ppq ď pq 1 for p P r0, p 1 s and f pp 1 q " p 1 q 1 , we compute that D ṕ f pp 1 q ě q 1 . By convexity, we also have f ppq ě f pp 1 q `Dṕ f pp 1 qpp ´p1 q ě pq 1 for p ě p 1 and then ϕ1 rp 1 ,8q " f 1 rp 1 ,8q . In particular, we observe that ϕ ď f _g. It is straightforward to check that any candidate for the convex envelope of f _g is below ϕ. The above shows also that D p f pp 1 q ą 0 whenever q 1 ą 0.

2.

Let us now observe that f 7 pqq ă 8, for q ě 0, since f p¨, pq " gp¨, pq " 8 for p ą 1 _ p 1 . It follows that the subdifferential of f 7 at non-negative q is non empty. The proof of (b) follows from calculations based on the following results from convex analysis, see e.g. [11, Chapter I Proposition 5.1]. Let ψ be a proper function on R, then p is in the subdifferential of ψ at q if and only if

ψ 7 ppq `ψpqq " pq . (3.2) 
(i) At p " 0, the subdifferential of pf _gq 77 " corf _gs is equal to r0, q 1 s. This follows directly from the characterization of the convex envelope of f _g given in (a). Using the above equality with ψ " pf _gq 7 , we then have for q P r0, q 1 s pf _gq 77 p0q `pf _gq 7 pqq " 0 ˆq ùñ pf _gq 7 pqq " 0 , since pf _gq 77 p0q " 0 by our assumption, namely f p0q " 0 " gp¨, 0q and g ě 0.

(ii) The subdifferential of pf _gq 77 " corf _gs at p 1 is equal to D :" rq 1 , D p f pp 1 qs if D p f pp 1 q ă `8 or rq 1 , `8q otherwise. This follows again directly from (a). We recall from the step 1. that f pp 1 q " q 1 p 1 . Then, using (3.2) with ψ " pf _gq 7 and (a), we have for q P D pf _gq 77 pp 1 q `pf _gq 7 pqq " p 1 q ùñ pf _gq 7 pqq" p 1 q ´f pp 1 q " p 1 pq ´q1 q" p 1 rq ´q1 s `.

(iii) If q ą D p f pp 1 q, an element p of the subdifferential of f 7 at q satisfies f ppq `f 7 pqq " pq .

We first note that p ě p 1 necessarily. Indeed, by [11, Chapter I Corollary 5.2], q P rD ṕ f ppq, D p f ppqs while q ą D p f pp 1 q. Recall that f " pf _gq 77 on rp 1 , 8q. We then deduce from the previous equality that pf _gq 77 ppq `f 7 pqq " pq ùñ f 7 pqq" pq ´pf _gq 77 ppq ď pf _gq 7 pqq .

Observing that the reverse inequality follows from f ď f _g, we get f 7 pqq " pf _gq 7 pqq for q P pD p f pp 1 q, `8q. l

We are now in position to provide the decomposition of pw (b) The decomposition on A 1 , A 2 and A 3 will be useful in the sequel, see e.g. proof of Lemma 3.2(c) below. (c) On A 3 , we have q ą 0 since w 7 p¨, p g p¨qq ě g ą 0 and w 7 p¨, 0q " 0, see Proposition 3.2.

Proof of Proposition 3.3. The identities in (3.3) are immediate consequences of Lemma 3.1(a), Proposition 3.2(b) and of the definition of p g . We now prove (3.4).

For pt, xq P A 1 , we have w 7 pt, x, ¨q ď g and therefore pw 7 _ gq 7 pt, x, ¨q " g 7 pt, x, ¨q " r¨´gpt, xqs `on R `. For pt, xq P A 2 , we have that w 7 ě g by Proposition 3.2(b) and the result follows directly. On A 3 , the expression is exactly the one given by Lemma

3.1(b). l

We can now turn to the study of the subdifferential of w. Recall the definition of p min in (2.10).

Lemma 3.2. Fix 0 ď i ď n ´1 and pt, xq P rt i , t i`1 q ˆOd `. Then: (a) D q wpt, x, ¨q ě 0 if q ě 0 and D q wpt, x, ¨q ě 0 if q ą 0, (b) lim qÒ8 D q wpt, x, qq " 1, (c) D q wpt, x, 0q " p min pt, xq. Moreover, D q wpt, x, qq " E " D q pw 7 _gq 7 pt i`1 , X t,x t i`1 , qQ t,x,1 t i`1 qq ı for q ą 0 , and (3.5) D q wpt, x, qq " E " D q pw 7 _gq 7 pt i`1 , X t,x t i`1 , qQ t,x,1 t i`1 qq ı for q ě 0 .

(3.6)
Proof. The proof is based on an induction argument. Our assumptions guarantee that (a)-(b)-(c) are valid at T . Let us assume that it holds true on rt i`1 , T s for some i ď n ´1.

In view of Proposition 3.3, we obtain for q ě 0 and j ď n that D q pw 7 _gq 7 pt j , x, qq " 1 tqěgpt j ,xqu 1 A 1 pt j , xq `Dq wpt j , x, qq1 A 2 pt j , xq `Dq κpt j , x, qq1 A 3 pt j , xq , with D q κpt j , x, qq " p g pt j , xq1 tqgpt j ,xqďqăqpt j ,xqu `Dq wpt j , x, qq1 tqąqpt j ,xqu .

For q ą 0, we have D q pw 7 _gq 7 pt j , x, qq " 1 tqągpt j ,xqu 1 A 1 pt j , xq `Dq wpt j , x, qq1 A 2 pt j , xq `Dq κpt j , x, qq1 A 3 pt j , xq , with D q κpt j , x, qq " p g pt j , xq1 tqgpt j ,xqăqďqpt j ,xqu `Dq wpt j , x, qq1 tqąqpt j ,xqu .

We have by induction lim qÒ8 D q κpt i`1 , x, qq " 1, which ensures that lim qÒ8 D q pw 7 _ gq 7 pt i`1 , x, qq " 1. By the convexity of pw 7 _gq 7 , this implies that D q pw 7 _gq 7 pt i`1 , x, qq ď 1. In view of (2.22), a dominated convergence argument then leads to (3.5)-(3.6) and lim qÒ`8 D q wpt, x, qq " 1. We now use our induction hypothesis again to observe from the decomposition above that D q pw 7 _gq 7 pt i`1 , x, qq ě 0 , q ą 0 , and D q pw 7 _gq 7 pt i`1 , x, qq ě 0 , q ě 0 .

Recalling (3.5)- (3.6), this shows that D q wpt, x, qq ě 0 for q ą 0 and D q wpt, x, qq ě 0 for q ě 0. It remains to prove (c). From Remark 3.1(a) and (c), the above decomposition implies that D q pw 7 _ gq 7 pt i`1 , x, 0q " D q wpt i`1 , x, 0q1 tgpt i`1 ,xq"0u . By our induction hypothesis, the last term is D q pw 7 _gq 7 pt i`1 , x, 0q " p min pt i`1 , xq1 tgpt i`1 ,xq"0u . This identity combined with (3.6) provides

D q wpt, x, 0q " E " p min pt i`1 , X t,x t i`1 q1 ! gpt i`1 ,X t,x t i`1 q"0 )  " p min pt, xq ,
in which the last identity is an obvious consequence of the definition of p min in (2.10). l Remark 3.2. Note that the subdifferential of wpt, x, ¨q at 0 is p´8, p min pt, xqs, since wpt, x, qq " 8 for q ă 0 and D q wpt, x, 0q " p min pt, xq. See (a) of Proposition 3.2 and (c) of Lemma 3.2.

The backward algorithm as an upper-bound

Our final proof will proceed by backward induction on the time steps. Fix 0 ď i ď n´1.

Part of the induction hypothesis is:

Hypothesis (H i`1
). The following holds (i) The functions vpt i`1 , ¨q and corv_gspt i`1 , ¨q are continuous on O d `ˆr0, 1s.

(ii) corv_gspt i`1 , ¨, 0q " 0 and corv_gspt i`1 , ¨, 1q " pv_gqpt i`1 , ¨, 1q.

(iii) For all x P O d `, the map q P R `Þ Ñ q ´pw 7 _ gq 7 pt i`1 , x, qq is non-decreasing, continuous and converges to pv_gqpt i`1 , x, 1q as q Ñ 8.

Before turning to the final argument, we provide three additional results that hold at any time t P rt i , t i`1 q whenever H i`1 is in force.

Bounds and limits for w 7

Our first additional result concerns the behavior of w 7 . It shows that w 7 pt i , x, 1q " vpt i , x, 1q. The last assertion will be used in the proof of Lemma 3.4 below to show that (iii) of H i holds if (iii) of H i`1 does. Lemma 3.3. Let (iii) of H i`1 hold. Fix pt, xq P rt i , t i`1 q ˆOd `. Then, w 7 pt, x, ¨q is non-negative, continuous on its domain p´8, 1s and 0 ď w 7 pt, x, ¨q ď w 7 pt, x, 1q " vpt, x, 1q on p´8, 1s .

Moreover, the map q P R Þ Ñ q ´wpt, x, qq is non-decreasing, continuous on R `and converges to vpt, x, 1q as q Ñ 8.

Proof. The continuity and non-negativity of w 7 pt, x, ¨q are stated in (b) of Proposition 3.2. We now observe that (2.22) implies that δpqq :" q ´wpt, x, qq " E Qt,x " qQ t,x,1 t i`1 ´pw 7 _gq 7 pt i`1 , X t,x t i`1 , qQ t,x,1 t i`1 q ı , which shows that q Þ Ñ δpqq is non-decreasing since (iii) of H i`1 holds. Applying the monotone convergence Theorem, (iii) of H i`1 and (2.8), we obtain that q P R `Þ Ñ q ´wpt, x, qq is continuous and that lim qÑ8

δpqq " E Qt,x

" pv_gqpt i`1 , X t,x t i`1 , 1q ı " vpt, x, 1q .
This implies that w 7 pt i , x, 1q " sup qě0 δpqq ě lim qÑ8 δpqq " vpt, x, 1q, while w 7 pt, x, pq ě lim qÑ8 pqpp ´1q `δpqqq " 8 for p ą 1. The fact that w 7 pt i , x, 1q ď vpt, x, 1q has been proved in Proposition 3.1. l

Convexification in the dynamic programming algorithms

As already mentioned in Remark 2.2, one can expect that v _ g can be replaced by its convex envelope, with respect to p, in (2.15). The Hypotheses (i)-(ii) of H i`1 ensure this, see Proposition 3.4 below. We shall prove a similar result for w 7 later on in Theorem 3.1. Note that the two identities (3.7) and (3.9) below already suggest that the equality v " w 7 at t i`1 should iterate at t i , since we already know from Proposition 3.1 that v ě w 7 .

Proposition 3.4. Let (i)-(ii) of H i`1 hold. Then, for all t P rt i , t i`1 q and px, pq P O d `ˆr0, 1s, we have

vpt, x, pq " inf αPAt,p E Qt,x " corv_gs ´ti`1 , X t,x t i`1 , P t,p,α t i`1 ¯ı . (3.7) 
Moreover, (ii) of H i holds.

Proof. We fix pt, xq P rt i , t i`1 q ˆOd `. Assuming that (3.7) is true, we deduce that (ii) of H i holds, since A t,p " t0u for p P t0, 1u and therefore P t,p,α t i`1 " p for α P A t,p . By (ii) of H i`1 , the same argument combined with Proposition 2.3 implies that (3.7) is valid for p P t0, 1u. It remains to prove (3.7) for 0 ă p ă 1. In view of Proposition 2.3, this reduces to showing that inf αPAt,p E Qt,x " corv_gs ´ti`1 , X t,x t i`1 , P t,p,α t i`1 ¯ı ě inf αPAt,p E Qt,x " pv_gq ´ti`1 , X t,x t i`1 , P t,p,α t i`1 ¯ı , the reverse inequality being trivial. We argue as in [5, Proof of Proposition 3.3]. It follows from the Caratheodory theorem that we can find two maps pλ j , π j q : px, pq P O d `ˆr0, 1s Þ Ñ pλ j , π j qpx, pq P O d `ˆr0, 1s, j ď 2, such that ř 2 j"1 π j px, pq " 1 , p " ř 2 j"1 π j px, pqλ j px, pq and corv_gspt i`1 , x, pq " ř 2 j"1 π j px, pqpv_gqpt i`1 , x, λ j px, pqq .

(

We claim that they can be chosen in a measurable way. More precisely, (i) of H i`1 and [4, Proposition 7.49] imply that they can be chosen to be analytically measurable. We can then appeal to [START_REF] Dimitri | Stochastic optimal control: The discrete time case[END_REF]Lemma 7.27] to obtain a Borel-measurable version which coincides a.e. for the pull-back measure of pX t,x t i`1

´ε, P t,p,α t i`1

´εq, for α P A t,p and 0 ă ε ă t i`1 ´t fixed. This is this version that we use in the following. We now let ξ be a F t i`1 -measurable random variable such that Prξ " λ j pX t,x t i`1 ´ε, P t,p,α t i`1 ´εq|F t i`1 ´εs " π j pX t,x t i`1 ´ε, P t,p,α t i`1 ´εq .

Then, Erξ|F t i`1 ´εs " P t,p,α t i`1 ´ε by the above construction, and we can then find α ε P A t,p such that P t,p,αε t i`1 ´ε " P t,p,α t i`1 ´ε and P t,p,αε t i`1 " ξ. Recalling (3.8), we obtain E " ´Qt,x,1

t i`1
´ε¯´1 corv_gs ´ti`1 , X ). Moreover, since 0 ď corv_gspt i`1 , x, ¨q ď v_gpt i`1 , x, ¨q ď Cp1 `|x|q, using (i) of H i`1 , we can pass to the limit to obtain

E Qt,x
" corv_gs ´ti`1 , X t,x t i`1 , P t,p,α t i`1 ¯ı ě inf

α 1 PAt,p E Qt,x
" pv_gq ´ti`1 , X t,x t i`1 , P t,p,α 1 t i`1 ¯ı . l Since our final result is v " w 7 , the same convexification should appear in the dual algorithm. As already mentioned, it will actually allow us to show that v " w 7 at t i if this true at t i`1 .

Theorem 3.1. Let (iii) of H i`1 hold. Fix pt, x, pq P rt i , t i`1 q ˆOd `ˆr0, 1s. Then, there exists ᾱ P A t,p such that w 7 pt, x, pq " E Qt,x " corw 7 _gs ´ti`1 , X t,x t i`1 , P t,p,

ᾱ t i`1 ¯ı . (3.9)
Proof. Recall the definition of p min in (2.10).

1. We first assume that p P pp min pt, xq, 1q. We know from Lemma 3.2(b)-(c) that there exists a q P p0, 8q such that p lies in the subdifferential of wpt, x, ¨q at q. Then, we can find λ P r0, 1s such that p " λD q wpt, x, qq `p1 ´λqD q wpt, x, qq. In view of (3.5)-(3.6), this implies that p " E " pλD q pw 7 _gq 7 `p1 ´λqD q pw 7 _gq 7 q ´ti`1 , X t,x t i`1 , qQ t,x,1 t i`1 ¯ı .

(3.10)

It follows from Lemma 3.2 and its proof that the random variable in the expectation is valued in r0, 1s. By the martingale representation theorem, we can find ᾱ P A t,p such that pλD q pw 7 _gq 7 `p1 ´λqD q pw 7 _gq 7 q ´ti`1 , X We conclude by appealing to (3.3).

2. We now assume that p P r0, p min pt, xqs. Since r0, p min pt, xqs belongs to the subdifferential of wpt, x, ¨q at 0, recall Remark 3.2, and p min pt, xq " D q wpt, x, 0q, recall Lemma 3.2, we can find λ P r0, 1s such that p " λD q wpt, x, 0q. We then proceed as above up to obvious modifications.

3. We finally assume that p " 1. We know from Lemma 3.3 that w 7 pt, x, 1q " vpt, x, 1q. Hence, (2.8) implies

w 7 pt, x, 1q " vpt, x, 1q " E Qt,x " pv_gq ´ti`1 , X t,x t i`1 , 1 ¯ı .
As in the proof of Lemma 3.3, we deduce from (iii) of H i`1 that corw 7 _gspt i`1 , ¨, 1q " pw 7 _ gq 77 pt i`1 , ¨, 1q ě pv _ gqpt i`1 , ¨, 1q. In view of Proposition 3.1, this leads to pv _ gqpt i`1 , x, 1q " corw 7 _gspt i`1 , x, 1q. l

Appendix

We provide here the proofs of some technical results that were used in the proof of Theorem 2.1.

Proof of Proposition 2.1 For t " T the sets in (2.9) are R `by definition of T t and T t . For t ă T , the definition of τν implies S 

¯.

In particular, Y t,x,y,ν t i`1 ě g ´ti`1 , X t,x t i`1 , P t,p,α t i`1 ¯. Since, we also have Y t,x,y,ν t i`1

ą vpt i`1 , X t,x t i`1 , P t,p,α t i`1 q, it follows from the same arguments as in the proof of [8, Lemma 2.2] that we can find a predictable process pν, αq which coincides with pν, αq on rt, t i`1 s, in the dt ˆdP-sense, and such that Y t,x,y,ν s ě g `s, X t,x s , P t,p, α s ˘, for all s P T t i`1 .

These processes are elements of Ût,x,y,p whenever ν is square integrable in the sense of (2.5) and α is such that P t,p, α P r0, 1s. The latter can be modified so that P t,p, α is restricted to live in the interval r0, 1s while ν can be modified so that (2.12) holds. By the Itô isometry, this induces the required square integrability property of the financial strategy, recall (2.2)-(2.3). Combining the above with Proposition 2.2 shows that vpt, x, pq ě vpt, x, pq. Conversely, let us fix y ą vpt, x, pq. Then, it follows from the geometric dynamic programming principle of [8, Theorem 2.1] that there exists pν, αq P Ût,x,y,p such that

Y t,x,y,ν t i`1 ě pv _ gq ´ti`1 , X t,x t i`1 , P t,p,α t i`1 ¯.
Since Y t,x,y,ν is a super-martingale under Q t,x , this implies that y ě Jpt, x, p, αq. The fact that vpt, x, pq ě vpt, x, pq then follows from the arbitrariness of α.

2. We now prove the Lipschitz continuity property. Note that it is true for t " T , since vpT, ¨q " 0 by construction. Let us assume that (2.16) holds on rt i`1 , T s for some i ă n and show that it is then also true on rt i , T s. Let us fix pt, pq P rt i , t i`1 q ˆr0, 1s and x, x 1 P O d `. We have that for all α P A t,p ´Qt,x,1

t i`1 ¯´1 pv _ gq ´ti`1 , X t,x t i`1 , P t,p,α t i`1 " ´Qt,x 1 ,1 t i`1 ¯´1 pv _ gq ´ti`1 , X t,x 1 t i`1 , P t,p,α t i`1
Qt,x,1

t i`1
¯´1 " pv _ gq ´ti`1 , X t,x t i`1 , P t,p,α t i`1 ¯´pv _ gq ´ti`1 , X Proof of Proposition 2.4. The growth property on r0, T q ˆOd `ˆp0, 8q follows from Proposition 3.2 (which will be proved just below), Theorem 2.1, (3.1) and (2.13), 0 ď wpt, w, qq " sup pPR ppq ´vpt, x, pqq " sup pPr0,1s ppq ´vpt, x, pqq ď q .

Note that Theorem 2.1 implies that pw 7 _gq 7 pT, ¨q " g 7 . The fact that the lower-(resp. upper-) semicontinuous envelope of w is a viscosity super-(resp. sub-) solution of (S) is standard and we omit the proof. Continuity will then follow from the comparison principle. The comparison can be proved by backward induction. It is well-known that (2.20) admits a comparison principle in the class of functions with polynomial growth, see e.g. [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. Hence, the comparison holds on rt n´1 , T q. Assume that it holds on rt i`1 , T q, i ă n and that pu 7 j 1 r0,T q _gq 7 pt i`1 , ¨q has polynomial growth, for j " 1, 2, then it holds on rt i , T q too since u 1 pt i`1 , ¨q ě u 2 pt i`1 , ¨q implies pu 7 1 _ gq 7 pt i`1 , ¨q ě pu 7 2 _gq 7 pt i`1 , ¨q. Hence, we just have to prove that pu 7 1 _gq 7 has polynomial growth. By [START_REF] Tyrrell | Convex analysis[END_REF]Theorem 16.5], we have pu 7 j _gq 7 " coru 77 j _g 7 s. Since 0 ď u 77 j _g 7 ď u j _g 7 and the later has polynomial growth, the required property holds. l

Proof of Proposition 3.2. We proceed by backward induction on T 0 Y t0u. Our claims are straightforward from (2.22) at time T . Indeed, direct computations show that w 7 pT, ¨, pq " 0`81 tpą1u . Hence, pw 7 _gq 7 pT, x, qq " g 7 pT, x, qq " rq ´gpT, xqs `81 tqă0u . The properties (a) and (b) hold. We now assume that (a) and (b) are satisfied on rt i`1 , T s for some i ď n ´1 and fix pt, xq P rt i , t i`1 q ˆOd `. Then, the definition of w in (2.22) implies that wpt, x, ¨q is nonnegative, non-decreasing, convex and that wpt, x, 0q " 0 (it is in particular proper). It takes the value `8 for q ă 0, by (2.22) and the fact that pw 7 _ gq 7 pt i`1 , ¨, qq " `8 for q ă 0. Hence (a) holds on rt i , T s. These two last assertions imply that w 7 p¨, pq " sup qě0 tpq ´wp¨, qqu and w 7 pt, ¨, pq " 0 for p ď 0. We know from [START_REF] Tyrrell | Convex analysis[END_REF]Theorem 12.2] that it is closed, convex and continuous on the interior of its domain. Since w 7 is non-decreasing, by definition, we get from its closeness that it is continuous on its domain. The fact that w 7 pt, ¨, ¨q ě w 7 pt, ¨, 0q " 0 also implies that pw 7 _ gqpt, x, ¨q is non-negative; moreover, pw 7 _ gqpt, ¨, 0q " 0. For q ă 0, we then compute pw 7 _ gq 7 pt, ¨, qq " sup pď1 pq ´pw 7 _gqpt, ¨, pq ( " `8. For q ě 0, we get pw 7 _gq 7 pt, ¨, qq " sup pPr0,1s pq ´pw 7 _gqpt, ¨, pq ( ě 0. Moreover, pw 7 _gq 7 pt, x, ¨q non-decreasing on r0, 8q. By definition, pw 7 _ gq 7 pt, x, ¨q is closed, convex and continuous on the interior of its domain. Being non-decreasing and closed, it is in fact continuous on its domain. l

  ), we plot for different values of x the function v and corv _ gs. This shows the rather complicated behavior of the transformation v Þ Ñ corv _ gs, as predicted by Proposition 3.3(b) below. With the notation of this proposition, figure 2(a) corresponds to the case A 1 , figure 2(b) corresponds to the case A 3 and figure 2(c) corresponds to the case A 2 . Because of the interest rate being set to 0 and the payoff being convex, we always have vpt, x, 1q ě gpt, xq.

Figure 1 :Figure 2 :

 12 Figure 1: Surface of vpt, x, pq and v 7 pt, x, qq at t " t 0 .

Figure 3 :

 3 Figure 3: Surface of vpt, x, pq and v 7 pt, x, qq at t " t 0 .

Remark 2 . 3 .

 23 (a) We know from the identification v " w 7 and Proposition 3.2(b) that p Þ Ñ vpt, x, pq is convex and continuous on r0, 1s. (b) Nothing prevents D ṕ vp¨, 1q to be equal to `8. This can be checked by direct calculation in the European case and the Black-Scholes setting using the explicit formula[START_REF] Föllmer | Quantile hedging[END_REF] Equation (3.15)].

  7 _ gq 7 and pw 7 _ gq 77 . It basically follows from the application of the previous Lemma to f " w 7 . The function q Þ Ñ pw 7 _gq 77 p¨, qq is continuous on its domain and pw 7 _gq 77 " corw 7 _gs " w 7 _g . For all q P R `: pw 7 _gq 7 p¨, qq " rq ´gp¨qs `1A 1 p¨q `wp¨, qq1 A 2 p¨q `κp¨, qq1 A 3 p¨q ,(3.4)where κp¨, qq :" p g p¨q rq ´qg p¨qs `1tqďqp¨qu `wp¨, qq1 tqąqp¨qu , with qp¨q :" D p w 7 p¨, p g p¨qq and the subsets of r0, T sˆO d `: A 1 " g ą 0, w 7 p¨, 1q ď g ( , A 2 " tg " 0u, A 3 " g ą 0, w 7 p¨, 1q ą g ( .

	(a) (3.3)
	(b)				
	Proposition 3.3. For pt, x, pq P r0, T s ˆOd `ˆR, we define the following 'facelift' of g
			gpt, x, pq " q g pt, xqp1 t0ďpď1u `81 tpą1u .		
	with				
	q g pt, xq :"	gpt, xq p g pt, xq	1 tpgpt,xqą0u and p g pt, xq :" sup p P R | w 7 pt, x, pq " gpt, xq	(	^1 .
	Then,				

Remark 3.1. (a) It follows from Proposition 3.2 that w 7 p¨, 0q " 0. Hence, gpt, xq ą 0 implies p g pt, xq ą 0 and q g pt, xq " gpt, xq p g pt, xq 1 tgpt,xqą0u so that q g pt, xq " 0 if and only if gpt, xq " 0 .

  t,x 1 t i`1 , P t,p,α Using first(2.6), the linear growth of v (see(2.13)) together with the fact that (2.16) holds for pv _ gqpt i`1 , ¨, pq, and using then (2.15), we deduce that there exists C ą 0 such that |vpt, x, pq ´vpt, x 1 , pq| is bounded by´Xt,x 1 t i`1 |p1 `|X t,x t i`1 | `|X t,x 1 t i`1 |q `|Q t,x,1 t i`1 {Q t,x 1 ,1 t i`1 ´1| p1 `|X t,x 1 t i`1 |q ı .In view of (2.2)-(2.3), this is controlled by |x ´x1 |p1 `|x| `|x 1 |q up to a multiplicative constant. l

							¯ı
							t i`1
						
		`"´Q t,x,1 t i`1	¯´1	´´Q t,x 1 ,1 t i`1	¯´1	pv _ gq ´ti`1 , X t,x 1 t i`1 , P t,p,α t i`1	¯.
	C E Qt,x	" |X t,x t i`1				

E denotes here the Doléans-Dade exponential.
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Conclusion of the proof

To conclude the proof of Theorem 2.1, we need to prove the inequality v ď w 7 . Proposition 3.5. v ď w 7 on r0, T s ˆOd `ˆr0, 1s.

Proof. We use a backward induction argument. We assume that H i`1 holds and that v " w 7 and on rt i`1 , T s ˆOd `ˆr0, 1s for some i ď n ´1. Since it is true for i " n by construction, the proof will be completed if one can show that this implies that H i holds and that v " w 7 on rt i , T s ˆOd `ˆr0, 1s. Let us fix pt, x, pq P rt i , t i`1 q ˆOd `ˆr0, 1s. Then, our induction hypothesis implies that Proof. It follows from (3.4) that q ´pw 7 _gq 7 pt i , x, qq " `q ´rq ´gpt i , xqs `˘1 A 1 pt i , xq `pq ´wpt i , x, qqq1 A 2 pt i , xq ``q ´κpt i , x, qq ˘1A 3 pt i , xq , (3.14) in which q ´κpt i , x, qq " pq ´pg pt i , xqrq ´qg pt i , xqs `q1 tqďqpt i ,xqu `pq ´wpt i , x, qqq1 tqąqpt i ,xqu .

By Lemma 3.3, w 7 pt i , x, 1q " vpt i , x, 1q so that A 2 Y A 3 " tvp¨, 1q ą gu, recall (2.11). In particular, we observe that q ă 8 on A 3 . The fact that the right-hand side in (3.14) converges to pv _ gqpt i , x, 1q as q Ñ 8 is then a consequence of Lemma 3.3 and the definition of the pA i q iď3 . It remains to show that each term in (3.14) is non-decreasing and continuous. From Lemma 3.3, we know that q Þ Ñ q ´wpt i , x, qq is continuous and non-decreasing. The second term in the right-hand side of (3.14) is continuous and non-decreasing as well.

As for the last term, we know that q Þ Ñ κpt i , x, qq is continuous, so that it suffices to check the monotony on each sub-interval p´8, qpt i , xqs and rqpt i , xq, 8q distinctly. On the second interval, we have that q Þ Ñ q ´κpt i , x, qq is non-decreasing by Lemma 3.3. This is also true on first interval since p g pt i , xq ď 1. l