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Abstract

Within a Markovian complete financial market, we consider the problem of
hedging a Bermudan option with a given probability. Using stochastic target and
duality arguments, we derive a backward numerical scheme for the Fenchel trans-
form of the pricing function. This algorithm is similar to the usual American
backward induction, except that it requires two additional Fenchel transformations

at each exercise date. We provide numerical illustrations.
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1 Introduction

We study the problem of hedging a claim of Bermudean style with a given probability

p. More precisely, we want to characterize the minimal initial value v(-, p) of an hedging
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portfolio for which we can find a financial strategy such that, with a probability p, it
remains above the exercise value of the Bermudean option at any possible exercise date.

This problem is referred to as quantile hedging, and it was popularized by Féllmer
et al. [12, 13] . For claims of European type, they explained how the so-called quantile
hedging price can be computed explicitly when the market is complete, by using duality
arguments or the Neyman-Pearson lemma. A similar question was studied in Bouchard
et al. [6] but in a Markovian setting. They showed that, even in incomplete markets and
for general loss functions, one can characterize the pricing function as the solution of a
non-linear parabolic second order differential equation, by using tools developed in the
context of stochastic target problems by Soner and Touzi [16]-[17]. When the market is
complete, they also observed that taking a Legendre-Fenchel transform in the equation
reduces the computation of the price to the resolution of a linear parabolic second order
differential equation, which can be solved explicitly by using the Feynman-Kac formula.

As far as super-hedging is concerned, the pricing of a Bermudean option reduces to
a backward sequence of pricing problems for European claims. It is therefore natural
to ask whether a similar result holds for the quantile hedging price, and whether one
can extend the closed-form solutions of [12] and [6] to Bermudean options.

This paper answers to the positive. Namely, we provide a backward induction
algorithm for the Fenchel transform w of the quantile hedging price v(-, p), with respect
to the parameter p which prescribes the probability of hedging, see (2.21) and Theorem
2.1. The algorithm (2.21) is in a sense very similar to the one used for the pricing of
Bermudean options. But it is written on the Fenchel transform w, rather than v, and
it involves two additional Fenchel transformations at each exercise date.

To derive this, we first build on the original idea of [6] which consists in increasing
the state space in order to reduce to a stochastic target problem of American type,
as studied in Bouchard and Vu [8]. We then follow a very different route. Instead of
appealing to stochastic target technics, we derive from this formulation a first dynamic
programming algorithm for v, see Proposition 2.3, which relates to a series of optimal
control of martingale problems. This is in the spirit of Bouchard et al. [5]. This
dynamic programming principle suggests a backward algorithm for the computation of
the Fenchel transform. It is defined in (2.21). We analysis it in details in Section 3.2:
the main difficulty consists in controlling the propagation of the differentiability and
growth properties of the corresponding value function, backward in time. Then, as in
[6, 12], a martingale representation argument allows us to show, by backward induction,
that the algorithms in (2.21) and Proposition 2.3 provides the Fenchel transform of one

another.



Before concluding this introduction, we would like to point out that a similar prob-
lem has been studied recently by Jiao et al. [I1] in the form of general lookback-style
contraints. They provide an alternative formulation in terms of an optimal control of
martingales problem. This has to be compared with [5] and our Proposition 2.3. No
Markovian structure is required, but they do not provide an explicit scheme as we do.
Moreover, the smoothness conditions they impose on their loss functions are not sat-
isfied in the quantile hedging case. They also study the case of several constraints in
expectation set (independently) at the different exercise times, which is close to the
P&L matching problems of Bouchard and Vu [7].

Finally, in this paper, we focus on the quantile hedging problem for sake of simplicity.
It is an archetype of an irregular loss function, and it should be clear that a similar
analysis can be carried out for a wide class of (more regular) loss functions. Also note
that we only use probabilistic arguments, as opposed to PDE technics as in [6], which
opens the door to the study of more general non Markovian settings. We leave this for

future researches.

Notations: Let d be a positive integer. Any vector z of R? is seen as a column
vector. Its norm and transpose are denoted by |z| and 27. We set M? := R?*? and
denote by M " the transpose of M € M?, while Tr [M] is its trace. For ease of notations,
we set OF := (0, 00)%.

We fix a finite time horizon T' > 0. Let ¢ : (t,z,p) € [0,T] x O x R > (¢, z, p).
If it is smooth enough, we denote by dy1) and 0,1 its derivative with respect ¢ and p,
and by 0,v its Jacobian matrix with respect to x, as a line vector. The Hessian with
respect to = is 02,1, é’gpw is the second order derivative with respect to p, and 82,]311}
is the vector of cross second order derivatives. We denote by 9! its Fenchel transform

with respect to the last argument,

¢ﬁ(tax7q) i= sup (quﬂ)(t,$,p)) ) (11)
peR

and define
co[] , the closed convex envelope of 1) with respect to its last argument.

If ) is convex with respect to its last variable, we denote by D;r ¢ and D, ¢ its corre-
sponding right- and left-derivatives. We refer to [15] for the various notions related to
convex analysis.

We fix a complete probability space (€2, F,P) supporting a d-dimensional Brownian
motion W. We denote by F = (F;)o<t<r the usual augmented Brownian filtration. All



over the paper, inequalities between random variables have to be understood in the

P-a.s. sense.

2 Problem formulation and main results

2.1 Financial market and hedging problem

Our financial market consists in a non-risky asset, whose price process is normalized to

unity, and d risky assets X = (X!, ..., X¢) whose dynamics are given by

X;f’xzx—kf
t

S S

p(r, X5%)dr + J o(r, XEH)dW, (2.1)
¢

given the initial data (t,z) € [0,T] x OZ. To ensure that the above is well-defined, we

assume that
1:[0,T] x 0 - R% and o : [0,T] x O — M? are Lipschitz continuous,  (2.2)

and that the unique strong solution to (2.1) takes its values in Oj_l when the original
data lies in O‘f.
In order to enforce the absence of arbitrage and the completeness of the financial market,

we also impose that

o is invertible, \:= ¢ 'y is bounded (2.3)

and Lipschitz continuous in space, uniformly in time.

The Lipschitz continuity condition is not required to define the risk neutral measure!

e 1 : 1 . 1 . tx\ T
Qt@ = @ -IP with W = 65 <—J; )\(S,Xs ) dW5> , @ > 07 (24)
but will be used in some of our forthcoming arguments.
In this model, an admissible financial strategy is a d-dimensional predictable process v
such that

T
EQt.= [J |y§o’(s,X§’z)|2dS] < 0, (2'5)
t

and the corresponding wealth process remains non-negative

YHEUY =y 4 J v dX4* >0, on [t,T],
t

L€ denotes here the Doléans-Dade exponential.



given the initial data (¢,z) of the market and the initial dotation y > 0. We denote
by U ., the collection of admissible financial strategies. As usual, each v} should be
interpreted as the number of units of asset i in the portfolio at time ¢.

We now fix a finite collection of times
Tyi={to=0<---<t;<---<t, =T} (t,T],
together with payoff functions
z e O g(t;,x) = 0, Lipschitz continuous for all i < n. (2.6)

Our quantile hedging problem consists in finding the minimal initial wealth v(¢,z,p)
which ensures that the stream of Bermudan payoffs {g(s, Xt*), s € T;} can be hedged
with a given probability p:

o(t,z,p) :==infI'(¢,z,p), (2.7)
where

L(t,z,p) = {y >0 : Jvelyyst. P [ﬂse'ﬂ‘t Sé’x’y’y] = p} ,
with Sg™%" 1= Q1o + 1ieg {37 = g(s, X0)} .
Observe that v(t,-) must be interpreted as a continuation value, i.e. the price at time ¢
knowing that the option has not been exercised on [0, ¢]. In particular, v(T,-) = 0. For
p =1, v(t,-, 1) coincides with the continuation value of the super-hedging price of the

Bermudan option. In this complete market, it satisfies the usual dynamic programming
principle

v(t,z,1) = EQ"E[(vvg)(tHl,X;’il, 1)], forte [titiy1), i <mn. (2.8)
Above and in the following, we use the notation

g(t,x,p) = g(t7x)1{0<p<1} + oO]-{p>1} , forpeR.

Note that I' can also be formulated in terms of stopping times, see the Appendix for

the proof.
Proposition 2.1. For (t,z,p) € [0,T] x O x [0, 1],

D(t,z,p) = D Avelyyy st P[SEYY] =p, Ve T

{y=0 > (2.9)
= {y=0: 3Jve Upzy st P[Sf{f’y’y] = p}l{t<T} + R+1{t=T} , .

in which Ty is the set of stopping times with values in Ty, and 7, ;= min{s € Ty : yhevy <

g(s, Xﬁz)} AT.



Remark 2.1. The function p — v(-,p) is non-decreasing. It takes the value 0 if p <

Pmin (t, ) where
Pin(t, ) 1= P[g(s, X:") 1,7 = 0 for all s € Ty]. (2.10)
To avoid trivial statements, we assume that pyin(t, ) < 1, for t < T, which implies
v(t,z,1) >0, fort <T. (2.11)

Moreover, it follows from (2.6) that we can find C' > 0 such that g(s, ) < C(l—i—Zf:l ),

for x € Oﬁ, s € Ty. This implies that we can restrict to strategies v such that

O < Yt7x7y7y < C’(l + |Xtvm

), (2.12)

by possibly adopting a buy-and-hold strategy after the first time when the wealth
process hits the right-hand side term, recall that X** has positive components. In

particular,

0<o(t,z,p) <C(1+ |z]). (2.13)

2.2 Equivalent formulation as a stochastic target problem

The first step in our analysis consists in reducing the problem to a stochastic target
problem of American type as studied in [8]. As in [0], we first increase the dimension

of the controlled process by introducing the family of martingales

t

where « is a square integrable predictable process. The process PP will be later on
interpreted as the conditional probability of success. It is therefore natural to restrict

to the class of controls such that
PP e0,1], on [t,T].

We denote by A; ;, the set of predictable square integrable processes such that the above
hods, and set Z/Alt,x’y,p = Uy X At p.

Proposition 2.2. Fiz (t,z,p) € [0,T] x O x [0,1], then

I(t,z,p) = {y >0:3(v,a)€ Z/A[tyx,yyp s.t. YBEUY > g(o XBE PLPe) on ']I't}. (2.14)



Proof. At time T both sets are R, by definition of Tr. We now fix t < T. Let I'(t, z, p)
denote the right-hand side in (2.14) and let y be one of his elements. Fix (v, ) € Uy 5.y
such that Yb&¥¥ > g(., Xt¢ PtPa) on T;. Then, SH&¥%Y 5 { PP > 0} on T;. Since
P'P% ¢ [0,1] and therefore 1(ptp.asgy = P“P*, this implies

P[reer,SE™Y] = Plrser {PiP* >0} > E | PiP° H L prrcsgy
€T\ (T}

The process PYP“ being a martingale, {Py?* = 0} c {P;"* = 0}. Hence
P[rwer SE70] > B[R] = p.

Therefore, y € I'(t, z, p) and this argument proves that I'(¢,z,p) = I'(t,z,p).
We now fix y € I'(¢, z, p) and choose v € U 5, such that p' := P [ﬂsem Si’””’y”’] > p. By

the martingale representation theorem, we can find o € A,y such that

t.p' o t,p,c
1 Sg,x,y,u == PT 2 PT .

ﬂse']l’t

By possibly replacing a by the constant process 0 after the first time after ¢ at which

PP reaches the level 0, we can assume that « € A;,. Moreover, the above implies

t,p,cx
Lgtwww = PP, s €Ty,

S

which by taking conditional expectation and using the fact that PP® is a martingale
leads to 1gtwyr = PYP® on T;. The latter is equivalent to Y%V > g(., Xt& ptpe)
on T;. Hence, y € ['(t,z,p). OJ
2.3 Dynamic programming and dual backward algorithm

With the formulation obtained in Proposition 2.2 at hand, one can now derive a first

dynamic programming algorithm. Its proof is postponed to the Appendix.

Proposition 2.3. Fiz 0 <i<n—1 and (t,z,p) € [ti, t;+1) x O x [0,1],

. . t, £.p,
ot p) = inf B® |(ov) (1, X07, P ] (2.15)
As a consequence, there exists C > 0 such that
[o(t,,p) — v(t,2/, p)| < C(1+ [a] + [2/]) ]z — o], (2.16)

for all (t,p) € [0,T] x [0,1] and x,2" € OF.



Remark 2.2. We shall see in Section 3 that (vvg) can be replaced by its convex envelope

with respect to p in (2.15). This phenomenon was already observed in [5] and [0].

Note that this provides a first way to compute the value function v. Indeed, standard
arguments should lead to a characterization of v as a viscosity solution on each interval

[ti,tis1), i <n of?

sup {—@(p +a Aoy — % (Tr [UJTaixgo] +2Tr [aTaTé’gpcp] + |a|2012)pg0)} =0, (2.17)

acRd

with the boundary condition

v(tiv1— ) = (vvg)(tivr, ). (2.18)

However, the fact that the control a € R? in the above is not bounded renders the use
of numerical schemes delicate in practice.

This can actually be simplified by considering the Fenchel transform v? of v, see (1.1)
in the notations section.

Indeed, as already observed in [6] in the case n = 1, a formal change of variable argument
in (2.17) suggests that the dual function v* should be a viscosity solution of the linear

partial differential equation
1
—0ip — 5 (Tr[oo T 02,0] + 2qTr [N 02,0] + [A\2q?d2,¢) =0, (2.19)

on the different time steps, with the boundary conditions obtained by taking the Fenchel

transform in (2.18):
Fltia—) = (v gt ). (2.20)

By the Feynman-Kac representation this corresponds to the following backward algo-

rithm
w(TvCCaQ) = q+ oo1{q<0}7 (2 21)
w(t,r,q) = EQu= [(wﬁ\/g)ﬁ(tiH,X;ﬁl,Qii’f)] , for te[titiv1),i<n,

in which Q%* is defined in (2.4).
The main result of this paper shows that this algorithm actually allows to compute the

value function v.

Theorem 2.1. v = w* on [0,7] x O x [0,1].

2A precise statement would require a relaxation of the operator, see [6].



The proof of this result is the object of the subsequent sections. Although it is in the
spirit of [6], our proof is different and more involved. The main difficulty comes from
the induction. At each time step, we have to verify that (wfvg) behaves in a sufficiently
nice way. In the one step case, [6] had only to consider the terminal payoff g. Moreover,

we only use probabilistic arguments as opposed to PDE arguments.

Clearly, the algorithm (2.21) provides a way to compute the value function easily. One
can for instance use the fact that w = v* is the unique viscosity solution (2.19) with

the boundary conditions (2.20). Let us make this statement more precise.

Definition 2.1. We say that a lower-semicontinuous function u is a viscosity super-
solution of the system (S) if, on each [t;,t;41) X (’)ﬁ x (0,00), ¢ < m, it is a viscosity
super-solution of (2.19) with the boundary conditions
liminf  w(t,2',q¢") = (ufvg)i(ti,x,q) for (z,q) € O x (0,0), i <n,
t/Tth(Z‘/vql)—)(xﬂq)

liminf — w(t,2',q¢') > ¢HT,x,q) for (z,q)¢€ 0% x (0,00).
1T, (' ,q")—>(2,9)

We define accordingly the notion of sub-solution for upper-semicontinuous functions.
A function is a viscosity solution if its lower- (resp. upper-) semicontinuous envelope is

a viscosity super- (resp. sub-) solution.

Note that in the above definition we have to understand u as being +00 on [0, T] x Oﬁ x

(—00,0) to compute the Fenchel transforms involved in the time boundary conditions.

We now provide a version of the comparison principle for (S) which pertains for the
usual extensions of the Black and Scholes model. The assumptions used below are here
to avoid the boundary of (’)frl - when this is not the case, one has to specify additional

boundary conditions.

Proposition 2.4. The function w is continuous on [0,T) x (’)jf x Ry, non-negative,
has linear growth in its last variable and is a viscosity solution of (S). Moreover, if
there exists two functions ¢ and [ such that o(-,x) = diag|z]o(-,z) and p(-,x) =
diag[z]fi(-, z), then uy = us on [0,T) x O x (0,00) whenever uy and us are respectively
a super- and a subsolution of (S), which are non-negative and have linear growth in
their last variable on [0,T) x O x R..

The proof is postponed to the Appendix. Given the latter, it is not difficult to follow the
arguments of [3] to construct a convergent finite difference scheme for the resolution of
(S). Alternatively, one could also use quantization methods to tackle the approximation
of w, see [1, 2], or a regression based Monte-Carlo method, see the survey paper [9] and

the references therein.



2.4 Examples of application

In this section, we present two examples of application. The numerical results are ob-
tained using the following procedure which is based on the above algorithm to compute
w= vk fori<n-—1,

1) Compute the value of (w# v g)¥(t;; 1, ) by approximating the Fenchel-Legendre trans-
form numerically.

2) Solve the PDE (2.19)-(2.20) for w, using e.g. finite difference methods, on [t;,#;41] x
O? x R,

Wenow fix T = 1 and Ty := {to =0, = %, ty = %, t3 = 1}m(t,t3], t €[0,7T]. We work
in a Black-Scholes setting with market parameters: d = 1, o(¢,z) = 0.25z, A(t,z) = 0.2.

For our first numerical application, we consider a put option, i.e. g(t,z) = [K — z]¥,
with strike K = 30.

In figure 1, we plot the functions v and v* at t = t,. In figure 2(a-b-c), we plot for
different values of = the function v and co[v v g]. This shows the rather complicated
behaviour of the transformation v — co[v v g¢], as predicted by Proposition 3.3 (b)
below. With the notation of this proposition, figure 2(a) corresponds to the case Aj,
figure 2(b) corresponds to the case A3 and figure 2(c) corresponds to the case Aj.
Because of the interest rate being set to 0 and the payoff being convex, we always have

v(t,z,1) = g(t,z). Figure 2(d) shows the decrease of value for v, when p decreases.

Figure 1: Surface of v(t,z,p) and v*(t,z,q) at t = t,.

10
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Figure 2: (a)-(c): plots of v(t,z,-) and co[v v g](¢,x,-) at t = t; and for different values

of z. (d): plot of v(t,-,p) at t = t; and for different values of p.

In our second example, we consider a put spread option with strikes 20 and 30, i.e.

g(t,z) = [30 — z]* — [20 — z]". The numerical results are displayed in Figure 3 and 4.

It may happen here that v(t,x,1) < g(t,x), see figure 4(a).

11
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Figure 3: Surface of v(t,z,p) and vi(t, z, q) at t = to.
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Figure 4: (a): plot of v(¢,x,-) and co[vvyg|(t,z,-) at t = ¢; and for z = 22. (b): plot of
v(t,.,p) at t = t; and for different values of p.

We conclude this section with the following remark on the behaviour of v near p =1.

Remark 2.3. (a) We know from the identification v = w* and Proposition 3.2 (b) that
p — v(t,z,p) is convex and continuous on [0, 1].

(b) Nothing prevents D, v(-,1) to be equal to +co0. This can be checked by direct
calculation in the European case and the Black-Scholes setting using the explicit formula
[12, Equation (3.15)].

12



3 Proof of the backward dual representation
From now on, we extend v to [0,77] x O x R by setting
v(,p)=0if p<0and v(,p) =40 if p>1. (3.1)

Using the convention inf ¢ = 400, this extension is consistent with (2.7).

3.1 The backward algorithm as a lower bound

We first show that the backward algorithm (2.21) actually provides a lower bound for

the value function v.
Proposition 3.1. v > w* on [0,T] x Of x [0,1].

Proof. First note that v(7,-) = 0 = w#(T,-), by definition. Thus, (v v ¢)(T,-) =
(wf v g)(T,-). We now assume that v > wk on [t;41,T] x Of x [0, 1] for some i < n — 1.
Then, (vvg)*(tis1,-) < (whvg)i(tiy1,-) and therefore

t7 t7 b b o)
(/U\/g) (tiJrl)Xtiflthifla> = zfl QQtl+1 (’U\/g)ﬁ (t2+1a 1+17th1+1>

t
tzfla Qtz+1 (w \/g)ﬁ (ti‘*‘l’ t1+1’ Qtz+1) :

Fix t € [t;,t;+1). Taking the expectation on both sides and recalling (2.21), we obtain

t,x
E? [(vvg) (tm,Xt’H,P;f; )] > pq—w(t, z,q).

Taking first the supremum over ¢ € R in the right-hand side and then the infimum over
o € Ay, in the left-hand side, we get from Proposition 2.3 that v(t,z,p) > w*(t, z,p).
(]

3.2 Representation and differentiability of the backward dual algo-

rithm

This section is devoted to the study of the function (w#v g)f which appears in the dual
algorithm (2.21) and of its Fenchel transform (wfvg)®. We first provide a decomposition
in simple terms in Proposition 3.3. They only contain w, g and auxiliary functions that
are easy to handle, see (3.3)-(3.4) below. In view of (2.21), this will then allow us to
study the subdifferential of w(¢;,-) in terms of the subdifferential of w(t;+1,-). This
analysis is reported in Lemma 3.2. These results will be of important use in the final

proof of Theorem 2.1 as it will require to find a particular value p in the subdifferential

13



of w(t;,-) and then to apply a martingale representation argument between elements of

the subdifferential of (w#v g)f at t;1 and p at t;, see the proof of Theorem 3.1.

We start with properties that stem directly from the definition of w and standard results

in convex analysis. The proof is postponed to the Appendix.

Proposition 3.2. For all (t,z) € [0,T] x O¢:

(a) The functions g € R — w(t,x,q) is a proper convex non-decreasing and non-negative
function. Moreover, w(-,0) =0 and w(-,q) = c© for ¢ < 0.

(b) The function p € R — wi(t,z,p) and ¢ € R — (wfv g)i(t,x,q) are conver,
non-negative, non-decreasing and continuous on their respective domains. Moreover,
wh(-,0) = 0 = (w¥vg)*(-,0) and (whv g)¥(-,q) = +o0 for ¢ <O0.

The next result is key to get the representation of (w v g)* and (w® v g)#. Recall that
g(ta $,p) = g(ta $)1{0<p§1} + OO]—{p>1}-

Lemma 3.1. Let py = 0 and f be a non-decreasing convex function such that f(0) = 0,

f = g(t,ﬂf7 ) on [phoo)f f < g(tvxa ) on (_Oo7p1]-
(a) The convex envelope of f v g is given by

(f v9)*(p) =colf v gl(p) = pt1lio<ppr} + F(P)Lipr<p<iy + L1 0y 5

with q1 = g(¢t, $)/p11{p1>0}'
(b) Moreover, we have

(fv9)F(.a) =pla— 1" L ent ppo) + fﬁ(q)l{qw;ﬂpl)} ,q=0,

which is a closed proper conver function. In particular, it is continuous at D;{f(pl)
when 0 < DJ f(p1) < +o0.

Proof.

1. The left-hand side identity in (a) follows from see [15, Theorem 12.2]. We set
o p = philgeo Vv f (p), which is convex. By assumption, we already know that
f(p) < g(t,z,p) =0 for p < 0. Since f(0) = 0and f(p1) = g(t, z), we have by convexity
that f(p) < pq1, p € [0, p1], which implies p(p)1(,<p,} = Pq11{0<p<p,}> for p < p1. Since
f(p) < pq1 for p € [0,p1] and f(p1) = p1q1, we compute that D, f(p1) = q1. By
convexity, we also have f(p) = f(p1) + D, f(p1)(p — p1) = pq1 for p > p1 and then
©1ip, o0) = fl[p,,c0)- In particular, we observe that ¢ < fvg. It is straightforward to
check that any candidate for the convex envelop of fv g is below ¢. The above shows
also that Df f(p1) > 0 whenever ¢; > 0.

2. Let us now observe that f¥(q) < oo, for ¢ = 0, since f(-,p) = g(-,p) = oo for
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p > 1 v pi. It follows that the subdifferential of f* at non-negative ¢ is non empty.
The proof of (b) follows from calculations based on the following results from convex
analysis, see e.g. [1 1, Chapter I Proposition 5.1]. Let ¢ be a proper function on R, then
p is in the subdifferential of ¢ at ¢ if and only if

VH(p) +4(9) = pg. (3.2)
(i) At p = 0, the subdifferential of (fv g)# = co[f v g] is equal to [0,¢;]. This follows

directly from the characterisation of the convex envelope of fv g given in (a). Using
the above equality with ¢ = (f v g)¥, we then have for ¢ € [0, q1]

(fvg)*0) + (fvg)Ha) =0xq = (fvg)(q) =0,

since (fv g)¥(0) = 0 by our assumption, namely f(0) =0 = g(-,0) and g > 0.

(ii) The subdifferential of (fv g)# = co[f v g] at p; is equal to D := [q1, Dy f(p1)] if
D} f(p1) < +oo or [q1, +o0) otherwise. This follows again directly from (a). We recall
from the Step 1. that f(p;) = qip1. Then, using (3.2) with ¢ = (fvg)f and (a), we
have for ¢ € D

(fva)* () + (fv9)a) = pa = (fvg)(9)=pig— f(p1) = pi(a — a)=pilg — a:]" .

(iii) If ¢ > Dl‘f f(p1), an element p of the subdifferential of f* at ¢ satisfies

() + f*(a) = pq.
We first note that p > p; necessarily. Indeed, by [I1, Chapter I Corollary 5.2], ¢ €
[D, f(p), D} f(p)] while ¢ > D f(p1). Recall that f = (fvg) on [p1,0). We then
deduce from the previous equality that
(fvo)¥(p) + (@) =pg = fH@)=pg—(Fve)¥p) < (fva)(e).
Observing that the reverse inequality follows from f < fv g, we get f4(q) = (fvg)¥(q)
for g € (D} f(p1), +0). O

We are now in position to provide the decomposition of (w# v g)* and (w® v g)#. It

basically follows from the application of the previous Lemma to f = w¥.
Proposition 3.3. For (t,z,p) € [0,T] x O x R, we define the following ‘facelift’ of g

g(t,z,p) = qq(t, 2)pLliocp<ry + Olgp=1y -

with
t,x
qq(t, @) := ;}(@x))l{pg(t:xbo} and pgy(t,z) := sup {p € R[wﬂ(t,x,p) = g(t, :z:)} Al
g\l
Then,
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(a) The function q — (w'v g)¥(-, q) is continuous on its domain and
(wf v g)* = co[wvg] = wivg. (3.3)
(b) For allge Ry :
(whv ) (- q) = [a = 9(C)]F 14, () + w(, @) Laz () + 6, @) Lag () (3.4)
where
£ 0) = Po() [a = a5 ()] Lgeqryy + w( @) Ligzq0) »
with q(-) := D;wti (-,pg(+)) and the subset of [0, T]xO%: Ay = {g >0, w*(-,1) < g},
Ay ={g =0}, A3 = {g >0, wi(-, 1) > g}.
Remark 3.1. (a) It follows from Proposition 3.2 that wf(-,0) = 0. Hence, g(t,z) > 0

implies pgy(t, ) > 0 and

Qg(t, T) = pgg((tg’z))

(b) The decomposition on Ay, As and Az will prove useful in the sequel, see e.g. proof

1ig(t.x)>0y S0 that gy(t,x) = 0 if and only if g(t,x) = 0.

of Lemma 3.2(c) below.

(c) On A3, we have ¢ > 0 since w*(-,p,(*)) = g > 0 and w?(-,0) = 0, see Proposition
3.2.

Proof of Proposition 3.3. The identities in (3.3) are immediate consequences of
Lemma 3.1(a), Proposition 3.2(b) and of the definition of p,. We now prove (3.4).
For (t,z) € Ay, we have wf(t,z,-) < g and therefore (wv ¢)f(t,x,-) = gi(t,z,-) =
[ — g(t,x)]T on Ry. For (t,z) € Ay, we have that w* > g by Proposition 3.2(b) and
the result follows directly. On As, the expression is exactly the one given by Lemma

3.1(b). 0

We can now turn to the study of the subdifferential of w. Recall the definition of pyi,
in (2.10).

Lemma 3.2. Fiz 0<i<n—1 and (t,z) € [t;,tit1) x OL. Then:
(a) DFw(t,z,-) =0 if¢=0 and Dyw(t,z,-) =0 if ¢ > 0.
(b) limgpoo D w(t, z,q) = 1.
(¢) DFw(t,2,0) = pmin(t, ).

Moreover,
D w(t,z,q) =E [D; (whv g)* (tis1, Xflfl,quill))] forq>0, and (3.5)
Dfw(t,z,q) = B[ D (whv g)H(tisn, X[\, aQ)))| fora =0, (3.6)
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Proof. The proof is based on an induction argument. Our assumptions guarantee
that (a)-(b)-(c) are valid at 7. Let us assume that it holds true on [t;11,7"] for some
1<n—1

In view of Proposition 3.3, we obtain for ¢ > 0 and j < n that
D (w*v g) (tj,2,q) = Ligzg(t; mpyLas (b, @) + D w(ty, x,q)1a,(t), )
+ D k(tj, x,q)1a,(t5, 2),
with

Dy k(tj,,q) = py(ts, ©) g, (1, 2)<q<atty o)) + D w(tj, @) 1ig=q0t, )} -

For ¢ > 0, we have

Dq_(wﬁ\/g)ﬁ(tjanaQ) = Lig>g(t;2)) 14 (tj, ) + D‘;w(tj’$’Q)1A2 (1)
+ Dq_lﬁ(tj,l', q)]-Ag(tjvx) )
with

Dg w(t2,0) = Pg(tj, ) Ligq (1) x)<q=<att; o)) + Dg w(tj, )L {g>q(t;.0)) -
Using our induction hypothesis, we have limg;4 D;r k(ti+1,2,q) = 1, which ensures that
limgp oo D; (wh v g)¥(tit1,z,q) = 1. By the convexity of (wfv g)f, this implies that
Df (whv g)¥(tis1, 7, q) < 1. In view of (2.21), a dominated convergence argument then
leads to (3.5)-(3.6) and limgsyo DF w(t, z,q) = 1.
We now use our induction hypothesis again to observe from the decomposition above
that

Dq_(wﬁvg)ﬁ(tiﬂ,x,q) >0, ¢g>0, and D;(wﬁvg)ﬁ(tiﬂ,x,q) =>0,q=0.

Recalling (3.5)-(3.6), this shows that D w(t,z,q) = 0 for ¢ > 0 and Dfw(t,z,q) = 0

for ¢ = 0.

It remains to prove (c¢). From Remark 3.1 (a) and (c), the above decomposition implies

that D (whv g)f(tiy1,2,0) = Dfw(tiz1,2,0)1g,, 2)=0y- By our induction hypoth-

esis, the last term is D;’(wti v )ity z,0) = Pmin(tiv1, ) 1(g(t;,1,0)=0y- This identity

combined with (3.6) provides

DS w(t,z,0) = E[pmm(tm, D) {o (tM’X%)_Oﬂ = Pmin(t, 2)

in which the last identity is an obvious consequence of the definition of pp;, in (2.10).
]

Remark 3.2. Note that the subdifferential of w(t,z,-) at 0 is (—00, pmin(t, )], since

w(t,x,q) = o for ¢ < 0 and Dfw(t,,0) = pmin(t,2). See (a) of Proposition 3.2 and

(c) of Lemma 3.2.
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3.3 The backward algorithm as an upper-bound

Our final proof will proceed by backward induction on the time steps. Part of the

induction hypothesis is:

Hypothesis (Hiy1). The following holds
(i) The functions v(t;+1,) and co[vv g](tit1,) are continuous on O x [0, 1].
(ii) colvvg](ti+1,-,0) =0 and colvv g](tit1,-,1) = (vvg)(tit1,-,1).

(iii) For all z € Of, the map ¢ € Ry — g — (w¥v g)*(tis1,7,q) is non-decreasing,

continuous and converges to (vv g)(t;+1,x,1) as ¢ — o0.

Before to turn to the final argument, we provide three additional results that hold at

any time ¢ € [¢;,t;+1) whenever Hjy is in force.

3.3.1 Bounds and limits for w’

Our first additional result concerns the behaviour of wf. Tt shows that wi(t;,z,1) =
v(t;, z,1). The last assertion will be used in the proof of Lemma 3.4 below to show that
(iii) of Hj holds if (iii) of Hj;1 does.

Lemma 3.3. Let (iii) of Hit1 hold. Fiz (t,z) € [ti,t;+1) x OL. Then, wi(t, z,) is
non-negative, continuous on its domain (—o0, 1] and

0< wu(tvxa ) < wﬁ(tvwa 1) = U(t,(]}, 1) on (_007 1] :

Moreover, the map q € R — q — w(t,z,q) is non-decreasing, continuous on Ry and

converges to v(t,x,1) as ¢ — 0.

Proof. The continuity and non-negativity of wf(t, x, -) are stated in (b) of Proposition
3.2. We now observe that (2.21) implies that

8(g) =g — w(t,x,q) = E% [qQZﬁ’f — (whv g)F(tisa, Xf;fl,quﬁ’f)] )

which shows that ¢ — d(¢) is non-decreasing since (iii) of Hj;1 holds. Applying the
monotone convergence Theorem, (iii) of Hiy; and (2.8), we obtain that ¢ € Ry —

q — w(t,z,q) is continuous and that

lim 8(q) = EQe [(vvg)(tm,xt’f 1)] —o(t,z,1).

q—00 tiv1?

This implies that w(t;, z, 1) = sup,=q 6(q) = limg—e 6(q) = v(t, z, 1), while w(t, z,p) >
limgo(q(p — 1) + 6(g)) = oo for p > 1. The fact that wk(¢;,z,1) < v(t,,1) has been
proved in Proposition 3.1. O
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3.3.2 Convexification in the dynamic programming algorithms

As already mentioned in Remark 2.2, one can expect that v v ¢ can be replaced by its
convex envelope, with respect to p, in (2.15). The Hypothesis (i)-(ii) of Hj41 ensures
this, see Proposition 3.4 below. We shall prove a similar result for w! later on in
Theorem 3.1. Note that the two identities (3.7) and (3.9) below already suggest that
the equality v = w! at t;,1 should iterate at t;, since we already know from Proposition
3.1 that v > w.

Proposition 3.4. Let (i)-(ii) of Hi41 hold. Then, for all t € [t;,t;y1) and (x,p) €
O¢ x [0,1], we have

o(t,z,p) = inf EQe [co[vvg] (tiH,Xt’x(tHl),PtOfp(tHl))] : (3.7)

Oce.At,p
Moreover, (ii) of H; holds.

Proof. We fix (t,x) € [t;,tir1) x O%. Assuming that (3.7) is true, we deduce that (ii)
of H; holds, since Az, = {0} for p € {0,1} and therefore Ptti’f’la = p for a € A ). By (ii)
of Hj, the same argument combined with Proposition 2.3 implies that (3.7) is valid for
p € {0,1}.
It remains to prove (3.7) for 0 < p < 1. In view of Proposition 2.3, this reduces to
showing that

. © t, t.p, . = t, t,p,
uf B9 [eolov) (tn, X7, PIET) | > it B9 (ove) (tn, X0, PEEY) |
the reverse inequality being trivial. We argue as in the [5, Proof of Proposition 3.3].

It follows from the Caratheodory theorem that we can find two maps (\;,7;) : (z,p) €
O x [0,1] = (A\j, ) (2, p) € O x [0,1], j < 2, such that

2 mi(wp) =1, p =Y m(x,p)A (@, p)

and cofov gl(tiar z.p) = X2y 1 (o)) 0y lisnw Ny (wp)) .

We claim that they can be chosen in a measurable way. More precisely, (i) of H; and [4,
Proposition 7.49] imply that they can be chosen to be analytically measurable. We can
then appeal to [4, Lemma 7.27] to obtain a Borel-measurable version which coincides
a.e. for the pull-back measure of (Xf;fl—mpttif .
fixed. This is this version that we use in the following.

), forae Aypand 0 < e < tiy1 — 1t

We now let £ be a F;,,,-measurable random variable such that

PIE = Aj(X0E, o, PP )| Fuy o) = my (X0 PEL)

i+1—€7 " tit1—¢€ tit1—&7 " tiy1—€
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Then, E[{|Ft,, -] = phre by the above construction, and we can then find o, € Ay,

ti+1—€
such that Ptti’f e = Ptti’f % . and Ptti’f ¢ = ¢. Recalling (3.8), we obtain
t’ t7 K xT t7 t7 yxe
ECs [CO[UVg] (ti"'l’Xtifl—&’aifla—E)] - E® [(vVg) (ti"l'l’Xtifl_S’Ptifla )]
. - t, t,p,0
> inf B |(ovg) (6 X7 R
+ Ao,

with A(ﬁ) = —CEQt,z [(1 + ’Xt,z

tig1—¢

|+ X5 DX - X y], recall (2.6) and (2.16).
Moreover, since 0 < co[vv g](tit1,x,-) <vvg(tit1,z,) < C(1 + |z|), using (i) of Hiy1,
we can pass to the limit to obtain

EQte [co[vvg] (tiH,Xt’x Pt’p’a>] > inf EQe [(vvg) (tHl,Xt’x Pt’p’a/ﬂ .

tit1? " tit1 a'€Arp tit1? " i1

]
Since our final result is v = wf, the same convexification should appear in the dual
algorithm. As already mentioned, it will actually allow us to show that v = wf at t; if

this true at ¢;41.

Theorem 3.1. Let (iii) of Hit1 hold. Fiz 0 <i<n—1, (t,x,p) € [ti,tiy1) x O x [0,1].

Then, there exists & € Ay such that

wh(t, z,p) = EQe [co[wﬁ\/g] <ti+1,Xf’x Pt’p’&)] . (3.9)

i+17 7 iy

Proof. Recall the definition of pyiy in (2.10).

1. We first assume that p € (pmin(f, ), 1). We know from Lemma 3.2 (b)-(c) that there
exists a ¢ € (0,00) such that p lies in the subdifferential of w(t,z,-) at §. Then, we can
find A € [0,1] such that p = ADfw(t,z,q) + (1 — \) Dy w(t, z,q). In view of (3.5)-(3.6),
this implies that

p =B |(ADF (wfvg) + (1= Dy (wivg)) (6, X07,,4007, )| - (3.10)

It follows from Lemma 3.2 and its proof that the random variable in the expectation is
valued in [0,1]. By the martingale representation Theorem, we can find & € Ay, such
that

tit1

(ADF (whv g)f + (1= \)Dy (whv g)?) (ti1, X027, 4Q17, ) = p +J aldw, =: PLPS.

q ti7+1 C T tig
t
For later use, note that the above implies

PLPRGQL — (whv g)f (tian, X027,,0Q1° ) = (whv o) (ten, X7, PEVE) L (301
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where we used (3.2) with ¢ = (wvg)f. On the other hand, we also have, again by (3.2)
with ¢ = w,

w(t,z, ) + w(t,z,p) = dp, (3.12)

and, by (2.21),
w(t,a,d) = B | (wiv o) (tn, X17,,0Q07, )| (3.13)
Thus, inserting (3.10) and (3.13) into (3.12), and using (3.11), leads to
wi(t,,p) = B9 [PEPEGQLT, — (whv g)f (i, X701 )|

i

— FQe [(wﬁ vg)ﬁﬁ <ti+1,Xt’x PLP@)] ]

tit1? " tit1

We conclude by appealing to (3.3).

2. We now assume that p € [0, pmin (¢, )]. Since [0, pmin (¢, )] belongs to the subdiffer-
ential of w(t,z,-) at 0, recall Remark 3.2, and pmin(t,z) = DS w(t, x,0), recall Lemma
3.2, we can find A € [0,1] such that p = AD;w(t,z,0). We then proceed as above up
to obvious modifications.

3. We finally assume that p = 1. We know from Lemma 3.3 that wf(¢,z,1) = v(t,z,1).
Hence, (2.8) implies

tit1?

wh(t, 1) = o(t,z,1) = EQe [(vvg) (tm,xm 1)] .

As in the proof of Lemma 3.3, we deduce from (iii) of Hiyjthat co[w!v g](tiz1,-,1) =
(whv ¢)(tiv1,-,1) = (vvg)(tis1,-,1). In view of Proposition 3.1, this leads to (v v
9)(tiv1,x,1) = co[wh v g (tit1, z,1).

3.4 Conclusion of the proof
To conclude the proof of Theorem 2.1, we need to prove the inequality v < w?.
Proposition 3.5. v < wf on [0,T] x O¢ x [0,1].

Proof. We use a backward induction argument. We assume that H;;; holds and that

v = wk and on [t;41,T] x O x [0,1] for some i < n — 1. Since it is true for i = n by

construction, the proof will be completed if one can show that this implies that H; holds

and that v = w¥ on [t;, T] x O¢ x [0, 1].

Let us fix (t,2,p) € [t;,ti+1) x O x [0,1]. Then, our induction hypothesis implies that
EQ.= [co[vvg] (tiH,Xt’x Ptt’p’O‘)] = EQe [co[wﬁvg] (tHl,Xt’z Pt’p’o‘)] ,

tiv1? " tiva tiv1? " tiv
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for all a € Ay . It then follows from Theorem 3.1 and Proposition 3.4 that v(t, z, p) <
wk(t,z, p). But, the reverse inequality is proved in Proposition 3.1. This shows that
v = wk on on [t;, T] x O x [0,1]. Then (i) of H; is a consequence of Proposition 3.3
and Proposition 3.2. Proposition 3.4 implies (ii) of H;. Regarding the validity of (iii)
of Hj, it is proved in Lemma 3.4 below. O

Lemma 3.4. The hypothesis Hi1 implies (iii) of Hj.

Proof. It follows from (3.4) that

q— (wﬁ\/g)ﬁ(t%xv CI) = (q - [q - g(ti,fﬁ)]+)1A1 (thx)
+ (¢ —w(ti,z,q))1a,(ti, x) + (q — ﬁ(ti,x,q))1A3 (tiyx), (3.14)

in which

q— K(tia z, q) = (q - pg(tia :U) [q - Qg(ti; x)]+)1{q<q(ti,a¢)} + (q - w(tl’ z, Q))l{q>Q(ti,z)} .

By Lemma 3.3, w*(t;, 2, 1) = v(t;, , 1) so that Ay U A3 = {v(-,1) > g}, recall (2.11). In
particular, we observe that ¢ < oo on Az. The fact that the right-hand side in (3.14)
converges to (vv g)(ti,z,1) as ¢ — o0 is then a consequence of Lemma 3.3 and the
definition of the (4;);<3.

It remains to show that each term in (3.14) is non-decreasing and continuous. From
Lemma 3.3, we know that ¢ — (¢ — w(t;, x,q) is continuous and non-decreasing. The
second term in the right-hand side of (3.14) is continuous and non-decreasing as well.
As for the last term, we know that ¢ — k(t;,z,q) is continuous, so that it suffices to
check the monotony on each sub-interval (—oo, q(¢;, z)] and [g(t;, z), 00) distinctly. On
the second interval, we have that ¢ — ¢ — k(t;, x, q) is non-decreasing by Lemma 3.3.

This is also true on first interval since pgy(t;, ) < 1. 0

4 Appendix

We provide here the proofs of some technical results that were used in the proof of
Theorem 2.1.

Proof of Proposition 2.1 For t = T the sets in (2.9) are R, by definition of T; and
T;. Fort < T, S?f’y’” < Nser, SLTYY < ShTYY for any T € T;, which proves (2.9) again.

Proof of Proposition 2.3. 1. We first show that (2.15) holds. Let u(t,z,p) denote
the right-hand side of (2.15) and set

J(t,xp.0) = B8 [(0vg) (1, X027, L) |
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Fix y and o € Ay, such that y > J(¢,z,p, ). Then, it follows from the martingale
representation theorem that we can find v € U; , , such that

Y0 s (v g) (tiH,X’ phpe ) )

tit1 tiv1? " it

t x,y, t x,y,

>y ( Hl,Xt’H,Pt’f’l ) Since, we also have Y, ’ > v(t z+1,X’

In particular, Y’ tys

Ptti’f ), it follows from the same arguments as in the proof of [, Lemma 2.2] that we
can find a predictable process (7,&) which coincides with (v, «) on [¢,t;11], in the
dt x dPP-sense, and such that

VIR > g (s, XL", PPPY) | for all se T,

i+1

These processes are elements of Z/Alt%y,p whenever ¥ is square integrable in the sense of
(2.5), and & is square integrable in the classical sense. To reduce to this case, we use the
fact that P4P¢ is restricted to live in the interval [0, 1] while # can be modified so that
(2.12) holds. By the It6 isometry, this induces the required square integrability property
of the financial strategy, recall (2.2)-(2.3). Combining the above with Proposition 2.2
shows that v(¢, z,p) = v(t, z,p).

Conversely, let us fix y > v(t,z,p). Then, it follows from the geometric dynamic
programming principle of [, Theorem 2.1] that there exists (v, «) € Z;{t,x,%p such that

yLovy > (vvyg) (tiH,Xf,’x Pt,’p’a> )

tz+1 i+1? tz+1

Since Y4*¥" is a super-martingale under Q ., this implies that y > J(¢,z,p, ). The
fact that v(t,x,p) = v(t,x,p) then follows from the arbitrariness of a.

2. We now prove the Lipschitz continuity property. Note that it is true for t = T', since
v(T,-) = 0 by construction. Let us assume that (2.16) holds on [t;+1, 7] for some i < n
and show that it is then also true on [t;,T]. Let us fix (¢,p) € [ti,ti+1) x [0,1] and
z,2' € Of. It follows from (2.15) that |v(t,x,p) — v(t,2’,p)| is bounded from above by

|

Since (2.16) holds for (v v g)(ti+1,,p), (2.6) holds, and v has linear growth, see (2.13),
we deduce that there exists C' > 0 such that the above is bounded by

- t t, ) s
Sup E% H(v v g) <ti+1’X zfl’szla) o ( tz+1/Qtz+1>(v v g) (ti+1’X1+1’sz1 >

OcE.At,p

t, t, t,x
C B |02, — XL+ X024 XE2 )+ 1QE2 QL — 1] 1+ 1XE7))]

In view of (2.2)-(2.3), this is controlled by |z — z|(1 + |x| + |2/|) up to a multiplicative

constant. O

23



Proof of Proposition 2.4. The growth property on [0,7) x Off x (0, 0) follows from
Proposition 3.2 (which will be proved just below), Theorem 2.1, (3.1) and (2.13):

0 < w(t,w,q) =sup(pg — v(t,z,p)) = sup (pg—v(t,z,p)) <q.
peR pe[0,1]
Note that Theorem 2.1 implies that (wfv g)#(T,-) = g*. The fact that the lower- (resp.
upper-) semicontinuous envelope of w is a viscosity super- (resp. sub-) solution of (S)
is standard and we omit the proof. Continuity will then follow from the comparison
principle. The comparison can be proved by backward induction. It is well-known that
(2.19) admits a comparison principle in the class of functions with polynomial growth,
see e.g. [10]. Hence, the comparison holds on [t,_1,T"). Assume that it holds on [t;4+1,T)
and that (ugl[()’T)vg)ﬁ(tiH, -) has polynomial growth, for j = 1,2, then it holds on [¢;, T')
too since uj(tit1,-) = ua(tiy1,-) implies (u’i v)tive, ) = (uﬁ2 v g)i(tis1,-). Hence, we
just have to prove that (u§ vg)ti has polynomial growth. By [15, Theorem 16.5], we have
i

(ugvg)ﬁ = colu; vg#]. Since 0 < ug-ﬁvgTj < u;vg* and the later has polynomial growth,

the required property holds. O
Proof of Proposition 3.2. We proceed by backward induction on Ty u {0}. Our
claims are straightforward from (2.21) at time 7". Indeed, direct computations show
that w*(T,-,p) = 0401, qy. Hence, (wfv o) (T, z,q) = ¢*(T,z,q) = [¢ — (T, 2)]" +
©01g4<0y- The properties (a) and (b) hold.

We now assume that (a) and (b) are satisfied on [t;41,7T] for some ¢ < n — 1 and fix
(t,z) € [ti, tiy1) x OZ. Then, the definition of w in (2.21) implies that w(t,z,-) is non-
negative, non-decreasing, convex and that w(t,z,0) = 0 (it is in particular proper). It
takes the value +oo for ¢ < 0, by (2.21) and the fact that (w v g)*(tiy1,-,q) = +o©
for ¢ < 0. Hence (a) holds on [t;, T]. These two last assertions imply that wf(-, p) =
sup,=o {pg — w(-,q)} and wh(t,-,p) = 0 for p < 0. We know from [15, Theorem 12.2]
that it is closed, convex and continuous on the interior of its domain. Since w? is
non-decreasing, by definition, we get from its closeness that it is continuous on its
domain. The fact that wh(¢,-,-) = wi(t,-,0) = 0 also implies that (wfv g)(t,z,-)
is non-negative; moreover, (wfv g)(t,-,0) = 0. For ¢ < 0, we then compute (wfv
9H(t, - q) = sup,<q {pg — (whvg)(t,-,p)} = +o0. For ¢ > 0, we get (whvg)i(t,-,q) =
SUPpe(0,1] {pq — (w*v g)(t,-,p)} = 0. Moreover, (w*vg)¥(t, z, ) non-decreasing on [0, o).
By definition, (w#v g)¥(t,z,-) is closed convex and continuous on the interior of its

domain. Being non-decreasing and closed, it is in fact continuous on its domain. O
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