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This paper addresses the propagation of high amplitude acoustic pulses through a 1D lattice of Helmholtz resonators connected to a waveguide. Based on the model proposed by Sugimoto (J. Fluid. Mech., 244 (1992), 55-78), a new numerical method is developed to take into account both the nonlinear wave propagation and the different mechanisms of dissipation: the volume attenuation, the linear visco-thermic losses at the walls, and the nonlinear absorption due to the acoustic jet formation in the resonator necks. Good agreement between numerical and experimental results is obtained, highlighting the crucial role of the nonlinear losses. Different kinds of solitary waves are observed experimentally with characteristics depending on the dispersion properties of the lattice.

Introduction

The dynamics of nonlinear waves in lattices has been the object of a great interest in the scientific community. This theme has stimulated researches in a wide range of areas, including the theory of solitons and the dynamics of discrete networks. Works have been led in electromagnetism and optics [START_REF] Kevrekidis | Non-linear waves in lattices: past, present, future[END_REF], and numerous physical phenomena have been highlighted, such as dynamical multistability [START_REF] Wan | Wave transmission in one-dimensional nonlinear lattice : multi stability and noise[END_REF][START_REF] Hawrylak | Self-induced gaps and optical bistability in semiconductor superlattices[END_REF][START_REF] Li | Wave propagation in nonlinear photonic band-gap materials[END_REF], chaotic phenomena [START_REF] Grabowski | Wave propagation in a nonlinear periodic medium[END_REF][START_REF] Wan | One-dimensional nonlinear Schrödinger equation: A nonlinear dynamical approach[END_REF], discrete breathers [START_REF] Lazarides | Discrete breathers in nonlinear magnetic metamaterials[END_REF][START_REF] Boechler | Discrete breathers in one-dimensional diatomic granular crystals[END_REF][START_REF] Feng | Discrete breathers in two-dimensional nonlinear lattices[END_REF] and solitons or solitary waves [START_REF] Li | Scattering properties of solitons in nonlinear disordered chains[END_REF][START_REF] Li | Lattice-soliton scattering in nonlinear atomic chains[END_REF]; for a review, see [START_REF] Kartashov | Solitons in Nonlinear Lattices[END_REF].

Solitary waves have been observed and studied firstly for surface wave in shallow water [START_REF] Russell | Report on Waves, Made to the Meetings of the British Association in 1842-1843[END_REF]. These waves can propagate without change of shape and with a velocity depending of their amplitude [START_REF] Remoissenet | Waves Called Solitons: Concepts and Experiments[END_REF]. This phenomenon has been studied in many physical systems, for instance in fluid dynamics, optics, plasma physics. For a review, see [START_REF] Engelbrecht | Nonlinear Evolution Equations[END_REF] and the citations in [START_REF] Dauxois | Physics of Solitons[END_REF].

In the field of acoustics, numerous works have shown the existence of solitary waves in uniform or inhomogeneous rods [START_REF] Dai | Solitary waves in an inhomogeneous rod composed of a general hyper elastic material[END_REF][START_REF] Khusnutdinova | Fission of longitudinal strain solitary wave in a delaminated bar[END_REF][START_REF] De Billy | Generation of transversal envelope soliton in polymeric and wooden rods[END_REF], periodic chains of elastics beads [START_REF] Lazaridi | Observation of a new type of solitary waves in one-dimensional granular medium[END_REF][START_REF] De Billy | On the formation of envelope solitons with tube ended by spherical beads[END_REF][START_REF] Coste | Solitary waves in a chain of beads under Hertz contact[END_REF][START_REF] Daraio | Tunability of solitary wave properties in one-dimensional strongly nonlinear phononic crystals[END_REF][START_REF] Moleron | Solitary waves in chain of repelling magnets[END_REF], periodic structures such as lattices or crystals [START_REF] Chetverikov | Localized nonlinear, soliton-like waves in two-dimensional anharmonic lattices[END_REF][START_REF] Hao | Experiments with acoustic solitons in crystalline solids[END_REF][START_REF] Hess | Solitary surface acoustic waves and bulk solitons in nanosecond and picosecond laser ultrasonics[END_REF], elastic layers [START_REF] Kuznetsov | Soliton-like lamb waves[END_REF][START_REF] Lomonosov | Nonlinear surface acoustic waves: Realization of solitary pulses and fracture[END_REF][START_REF] Mayer | Nonlinear surface acoustic waves: Theory[END_REF], layered structures coated by film of soft material [START_REF] Kovalev | Solitary Rayleigh waves in the presence of surface nonlinearities[END_REF] and microstructured solids [START_REF] Engelbrecht | Nonlinear deformation waves in solids and dispersion[END_REF]. As we can see, most studies concern elastic waves in solids. Indeed, only a few works deal with acoustic waves in fluid, even if experimental observations of solitary waves have been made in the atmosphere [START_REF] Christie | Solitary waves in lower atmosphere[END_REF][START_REF] Rao | Observations of atmospheric solitary waves in the urban boundary layer[END_REF][START_REF] Doviak | A thunderstormgenerated solitary wave observation compared with theory for nonlinear waves in a sheared atmosphere[END_REF] or in the ocean [START_REF] Synolakis | The run-up of solitary waves[END_REF][START_REF] Li | Non-breaking and breaking solitary wave run-up[END_REF][START_REF] Apel | Internal solitons in the ocean and their effect on underwater sound[END_REF].

One reason of this lack originates from the fact that the intrinsic dispersion of acoustic equations is too low to compete with the nonlinear effects, preventing from the occurence of solitons. To observe the latter waves, geometrical dispersion must be introduced. It has been the object of the works of Sugimoto and his co-authors [START_REF] Sugimoto | Experimental demonstration of generation and propagation of acoustic solitary waves in a air-filled tube[END_REF][START_REF] Sugimoto | Propagation of nonlinear acoustic waves in a tunnel with an array of Helmholtz resonators[END_REF][START_REF] Sugimoto | Acoustic solitary waves in a tunnel with an array of Helmholtz resonators[END_REF][START_REF] Sugimoto | Verification of acoustic solitary waves[END_REF], where the propagation of nonlinear waves was considered in a tube connected to an array of Helmholtz resonators. A model incorporating both the nonlinear wave propagation in the tube and the nonlinear oscillations in the resonators has been proposed. Theoretical and experimental investigations have shown the existence of acoustic solitary waves [START_REF] Sugimoto | Experimental demonstration of generation and propagation of acoustic solitary waves in a air-filled tube[END_REF].

The present study extends the work of Sugimoto. We examine the validity of his theoretical model to describe the propagation of nonlinear acoustic waves in a tunnel with Helmholtz resonators. For this purpose, we develop both a new numerical method and real experiments. Compared with our original methodology presented in [START_REF] Lombard | Numerical modeling of nonlinear acoustic waves in a tube with Helmholtz resonators[END_REF], improvements are introduced to model numerically the attenuation mechanisms. The combination of highlyaccurate numerical simulations and experimental results enables to study quantitatively the generation of solitary waves, and also to determine the role of the different physical phenomena (such as the linear and nonlinear losses) on wave properties.

The paper is organized as follows. Section 2 introduces the model of Sugimoto [START_REF] Sugimoto | Verification of acoustic solitary waves[END_REF]. Section 3 presents the evolution equations. The nonlocal fractional derivatives modeling the viscothermic losses are transformed into a set of memory variables satisfying local-in-time ordinary differential equations.

Sugimoto's model is then transformed into a first-order system of partial differential equations. Section 4 details the numerical methods. The coefficients of the memory variables are issued from a new optimization procedure, which ensures the decrease of energy. A splitting strategy is then followed to integrate the evolution equations. Compared with [START_REF] Lombard | Numerical modeling of nonlinear acoustic waves in a tube with Helmholtz resonators[END_REF], another novelty concerns the integration of a nonlinear differential equation describing the nonlinear losses. Section 5 introduces the experimental setup, the acquisition chain, and some validation tests. Section 6 compares the experimental results and the simulated results, confirming the validity of the theoretical model [START_REF] Sugimoto | Propagation of nonlinear acoustic waves in a tunnel with an array of Helmholtz resonators[END_REF] and the existence of acoustic solitary waves. The configuration under study is made up of an air-filled tube connected with uniformly distributed cylindrical Helmholtz resonators (figure 1). The geometrical parameters are the radius of the guide R; the axial spacing between resonators D; the radius of the neck r; the length of the neck L; the radius of the cavity r h ; and the height of the cavity H. The cross-sectional area of the guide is A = π R 2 and that of the neck is B = π r 2 , the volume of each resonator is V = π r 2 h H. Corrected lengths are introduced:

Problem statement

L ′ = L + 2 r
accounts for the viscous end corrections, and the corrected length L e = L + η accounts for the end corrections at both ends of the neck, where η ≈ 0.82 r is determined experimentally [START_REF] Sugimoto | Propagation of nonlinear acoustic waves in a tunnel with an array of Helmholtz resonators[END_REF].

The physical parameters are the ratio of specific heats at constant pressure and volume γ; the pressure at equilibrium p 0 ; the density at equilibrium ρ 0 ;

the Prandtl number Pr; the kinematic viscosity ν; and the ratio of shear and bulk viscosities µ v /µ. The linear sound speed a 0 , the sound diffusivity ν d , the dissipation in the boundary layer C, and the characteristic angular frequencies of the resonator ω 0 and ω e , are given by:

a 0 = γ p 0 ρ 0 , ν d = ν 4 3 + µ v µ + γ -1 Pr , C = 1 + γ -1 √ Pr , ω 0 = a 0 B L V = a 0 r r h 1 √ L H , ω e = L L e ω 0 . (1) 

Model of Sugimoto

Given a characteristic angular frequency ω, the main assumptions underlying Sugimoto's model are [START_REF] Sugimoto | Propagation of nonlinear acoustic waves in a tunnel with an array of Helmholtz resonators[END_REF]:

• low-frequency propagation (ω < ω * = 1.84 a 0 R ), so that only the plane mode propagates and the 1D approximation is valid [START_REF] Chaigne | Acoustique des Instruments de Musique[END_REF];

• weak acoustic nonlinearity in the tube (small Mach number) [START_REF] Hamilton | Nonlinear Acoustics[END_REF];

• continuous distribution of resonators (λ ≫ D, where λ = 2 π a 0 /ω).

The wave fields are split into simple right-going waves (denoted +) and leftgoing waves (denoted -) that do not interact together during their propagation. The variables are the axial velocity of the gas u ± and the excess pressure in the cavity p ± . The excess pressure in the tube is denoted by p ′ ± .

In the linear theory, it is related to u ± by

p ′ ± = ±ρ 0 a 0 u ± . (2) 
Each simple wave is modeled by a coupled system of a partial differential equation (PDE) and a ordinary differential equation (ODE):

           ∂u ± ∂t + ∂ ∂x ±au ± + b (u ± ) 2 2 = ±c ∂ -1/2 ∂t -1/2 ∂u ± ∂x + d ∂ 2 u ± ∂x 2 ∓ e ∂p ± ∂t , (3a) 
∂ 2 p ± ∂t 2 + f ∂ 3/2 p ± ∂t 3/2 + gp ± -m ∂ 2 (p ± ) 2 ∂t 2 + n ∂p ± ∂t ∂p ± ∂t = ±hu ± , (3b) 
with the coefficients

a = a 0 , b = γ + 1 2 , c = C a 0 √ ν R * , d = ν d 2 , e = V 2 ρ 0 a 0 A D , f = 2 √ ν r L ′ L e , g = ω 2 e , h = ω 2 e γ p 0 a 0 , m = γ -1 2 γ p 0 , n = V B L e ρ 0 a 2 0 . (4)
The PDE (3a) models nonlinear acoustic waves in the tube (coefficients a and b). Viscous and thermal losses in the boundary layer of the tube are introduced by the coefficient c [START_REF] Chester | Resonant oscillations in closed tubes[END_REF]. The diffusivity of sound in the tube is also introduced by the coefficient d.

The ODE (3b) models the air oscillation in the neck of the resonators thanks to the coefficients f and g [START_REF] Monkewitz | The response of Helmholtz resonators to external excitation. Part 1. Single resonators[END_REF][START_REF] Monkewitz | The response of Helmholtz resonators to external excitation. Part 2. Arrays of slit resonators[END_REF]. Compared to the ODE used in [START_REF] Lombard | Numerical modeling of nonlinear acoustic waves in a tube with Helmholtz resonators[END_REF], the following modifications have been introduced:

• the natural angular frequency of the resonator ω 0 has been replaced by the corrected angular frequency ω e (1),

• f has been multiplied by L ′ /L e ,

• new coefficients m and n have been introduced, describing nonlinear attenuation processes.

The coefficient m models the nonlinearity due to the adiabatic process in the cavity, whereas the semi-empirical coefficient n accounts for the jet loss resulting from the difference in inflow and outflow patterns [START_REF] Sugimoto | Propagation of nonlinear acoustic waves in a tunnel with an array of Helmholtz resonators[END_REF][START_REF] Sugimoto | Verification of acoustic solitary waves[END_REF]. As it will be illustrated later, these nonlinear losses need to be be included to get good agreement with the experimental measurements.

The coupling between (3a) and (3b) is done by the coefficients e and h. If the resonators are suppressed (H → 0 and thus V → 0), then the coefficient e → 0: no coupling occurs, and the classical Chester's equation is recovered [START_REF] Menguy | Weakly nonlinear gas oscillations in airfilled tubes; solutions and experiments[END_REF].

Fractional operators of order -1/2 and 3/2 are involved in the system (3), via the coefficients c and f . These operators model the viscothermal losses in the tube and in the resonators, respectively proportional to 1/(i ω) 1/2 and (i ω) 3/2 in the frequency domain. In (3a), the Riemann-Liouville fractional integral of order 1/2 of a causal function w(t) is defined by

∂ -1/2 ∂t -1/2 w(t) = H(t) √ π t * w = 1 √ π t 0 (t -τ ) -1/2 w(τ ) dτ, ( 5 
)
where * is the convolution product in time, and H(t) is the Heaviside step function [START_REF] Podlubny | Fractional Differential Equations[END_REF]. The Caputo fractional derivative of order 3/2 in (3b) is obtained by applying (5) to ∂ 2 p ± /∂t 2 .

Dispersion regimes

Sugimoto's model (3) relies on a low-frequency assumption. In this case, the set of discrete Helmholtz resonators separated by portions of tube are replaced by a continuous surfacic distribution of resonators. To examine the validity of this model in our experimental configuration, one can compare the dispersion relations obtained respectively by the continuous model and by the discrete one, the latter being deduced from a Floquet-Bloch analysis [START_REF] Sugimoto | Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators[END_REF].

In the linear regime, the lossy continuous model proposed by Sugimoto leads to the following dispersion relation [START_REF] Sugimoto | Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators[END_REF]:

(QD) 2 = 1 - √ 2 (1 -i) C R * ν ω 1/2 + i ν d ω a 2 0 -1 1 - κ Z 2 (ω) ωD a 0 2 , ( 6 
)
where Q is the Bloch wave number, κ = V /(AD) and

Z 2 (ω) = ω ω e 2 -1 + √ 2 (1 -i) r L ′ L e ν ω e 1/2 ω ω e 3/2
.

On the contrary, the dispersion relation of the discrete model writes [START_REF] Richoux | Acoustic characterization of the Hofstadter butterfly with resonant scatterers[END_REF] cos

QD = cos(kD) + U (k) 2k sin(kD), (7) 
where k = ω/a 0 is the wave number and U (k) is the equivalent potential of the Helmholtz resonators given by

U (k) = B A k tan(k L e ) + α tan(kH) 1 -α tan(kL e ) tan(kH) , (8) 
with α = (r h /r) 2 . The losses in the waveguide and resonators are modeled by introducing an imaginary part in the wavenumber k as presented in [START_REF] Sugimoto | Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators[END_REF].

Results from equations ( 6) and ( 7) will be compared in section 5.3.

Evolution equations

Diffusive approximation

The fractional integral ( 5) is non local in time and relies on the full history of w(t), which is numerically memory-consuming. An alternative approach is based on a diffusive representation of fractional derivatives, and then on its approximation. This method has already been presented in [START_REF] Lombard | Numerical modeling of nonlinear acoustic waves in a tube with Helmholtz resonators[END_REF] and we just recall the main steps: following [START_REF] Diethelm | An investigation of some nonclassical methods for the numerical approximation of Caputo-type fractional derivatives[END_REF], equation ( 5) is recast as

∂ -1/2 ∂t -1/2 w(t) = +∞ 0 φ(t, θ) dθ, (9) 
where the diffusive variable φ satisfies the local-in-time ordinary differential equation

   ∂φ ∂t = -θ 2 φ + 2 π w, φ(0, θ) = 0. (10) 
To approximate the integral ( 9), a quadrature formula on N q points is used, with weights µ ℓ and nodes θ ℓ :

∂ -1/2 ∂t -1/2 w(t) ≃ Nq ℓ=1 µ ℓ φ ℓ (t), (11) 
where the diffusive variables φ ℓ (t) = φ(t, θ ℓ ) satisfy the ODE [START_REF] Christie | Solitary waves in lower atmosphere[END_REF]. Similarly, the derivative of order 3/2 is written

∂ 3/2 ∂t 3/2 w(t) ≃ Nq ℓ=1 µ ℓ -θ 2 ℓ ξ ℓ + 2 π dw dt , (12) 
where the ξ ℓ (t) = ξ(t, θ ℓ ) satisfy the ODE

   ∂ξ ∂t = -θ 2 ξ + 2 π dw dt , ξ(0, θ) = 0. ( 13 
)
The determination of weights and nodes µ ℓ and θ ℓ is discussed in section 4.1.

First-order systems

Equations ( 3), ( 11), ( 10), ( 12) and ( 13) governing the evolution of rightgoing and left-going simple waves are put together. On obtains two first-order systems

                                     ∂u ± ∂t + ∂ ∂x ±au ± + b (u ± ) 2 2 = ±c Nq ℓ=1 µ ℓ φ ± ℓ + d ∂ 2 u ∂x 2 ∓ eq ± , ∂p ± ∂t = q ± , ∂q ± ∂t = 1 1 -2mp ± ±hu ± -gp ± -f Nq ℓ=1 µ ℓ -θ 2 ℓ ξ ± ℓ + 2 π q ± + 2m(q ± ) 2 -n|q ± | q ± , ∂φ ± ℓ ∂t - 2 π ∂u ± ∂x = -θ 2 ℓ φ ± ℓ , ℓ = 1 • • • N q , ∂ξ ± ℓ ∂t = -θ 2 ℓ ξ ± ℓ + 2 π q ± , ℓ = 1 • • • N q , (14) 
with null initial conditions. A source term at x = 0 models the acoustic source of right-going wave

u + (0, t) = s(t). ( 15 
)
The rigid end of the tube is modeled by Dirichlet conditions on the velocity

u -(L, t) = -u + (L, t), (16) 
hence u + (L, t) acts as a source for the system of left-going waves. In the third equation of ( 14), a division by 1 -2mp ± occurs. In practice, this terms does not vanish: in the low-frequency regime, one has from (3b) that gp ± ≈ hu ± which leads to p ± /p 0 ≈ γu ± /a 0 . From the definition of m in (4), it follows that

2mp ± ≈ (γ -1) u ± a 0 , (17) 
which is lower than 1 under the hypothesis of weak nonlinearity (|u ± | ≪ a 0 ).

The (3 + 2 N q ) unknowns for each simple waves are gathered in the two vectors

U ± = u ± , p ± , q ± , φ ± 1 , • • • , φ ± Nq , ξ ± 1 , • • • , ξ ± Nq T . ( 18 
)
Then the nonlinear systems ( 14) can be written in the form

∂ ∂t U ± + ∂ ∂x F ± (U ± ) = G ∂ 2 ∂x 2 U ± + S ± (U ± ), (19) 
where F ± are the flux functions

F ± = ±au ± + b (u ± ) 2 2 , 0, 0, - 2 π u ± , • • • , - 2 π u ± , 0, • • • , 0 T . ( 20 
)
The Jacobian matrices ∂F ± ∂U ± in ( 20) are diagonalizable with real eigenvalues:

±a + b u ± , and 0 with multiplicity 2 N q + 2, which ensures propagation with finite velocity. These eigenvalues do not depend on the quadrature coefficients µ ℓ and θ ℓ . The diagonal matrix G = diag(d, 0, • • • , 0) incorporates the volume attenuation. Lastly, S ± are the source terms

S ± =                   ±c N ℓ=1 µ ℓ φ ± ℓ ∓ e q ± q ± 1 1 -2mp ± ±hu ± -gp ± -f N ℓ=1 µ ℓ -θ 2 ℓ ξ ± ℓ + 2 π q ± + 2m(q ± ) 2 -n|q ± |q ± -θ 2 ℓ φ ± ℓ , ℓ = 1 • • • N q -θ 2 ℓ ξ ℓ + 2 π q ± , ℓ = 1 • • • N q                   . (21) 
As soon as m = 0 and n = 0, S ± (U ± ) is no longer a linear operator (m = 0 = n has been considered in [START_REF] Lombard | Numerical modeling of nonlinear acoustic waves in a tube with Helmholtz resonators[END_REF]). The Jacobian matrices T ± = ∂S ± ∂U ± are

T ± =                      0 0 ∓e ±c µ 1 • • • ±c µ N 0 • • • 0 0 0 1 0 • • • 0 0 • • • 0 ±h ∆ ± - g (∆ ± ) 2 T ± 22 0 • • • 0 f ∆ ± µ 1 θ 2 1 • • • f ∆ ± µ N θ 2 N 0 0 0 -θ 2 1 . . . . . . . . . . . . 0 0 0 -θ 2 N 0 0 2 π -θ 2 1 . . . . . . . . . . . . 0 0 2 π -θ 2 N                      , (22) with 
∆ ± = 1 -2mp ± , T ± 22 = 1 ∆ ± 4mq ± -2n|q ± | - 2 π f Nq ℓ=1 µ ℓ . (23) 

Numerical methods

Quadrature coefficients

In [START_REF] Lombard | Numerical modeling of nonlinear acoustic waves in a tube with Helmholtz resonators[END_REF], a detailed discussion on the possible strategies to compute the 2 N q quadrature coefficients µ ℓ and θ ℓ in [START_REF] Flannery | Numerical Recipes in C: the Art of Scientific Computing[END_REF] has been proposed, and a linear optimization was preferred. The nodes θ ℓ were distributed linearly on a logarithmic scale on the frequency range of interest, and then the weights were determined by a simple least-squares method. One drawback is that negative weights µ ℓ may be obtained, which may yield a non-physical increase of energy [START_REF] Ben Jazia | Wave propagation in a fractional viscoelastic Andrade medium: Diffusive approximation and numerical modeling[END_REF].

Here we improve the optimization procedure to get positive weights µ ℓ .

Dispersion analysis shows that the original model of Sugimoto (3) and its diffusive counterpart [START_REF] Dauxois | Physics of Solitons[END_REF] differ only in their symbols

         χ(ω) = (i ω) -1/2 , χ(ω) = 2 π Nq ℓ=1 µ ℓ θ 2 ℓ + i ω . ( 24 
)
For a given number K q of angular frequencies ω k , one introduces the objective function

J ({(µ ℓ , θ ℓ )} ℓ ; N q , K q ) = Kq k=1 χ(ω k ) χ(ω k ) -1 2 = Kq k=1 2 π Nq ℓ=1 µ ℓ (iω k ) 1/2 θ 2 ℓ + iω k -1 2 (25 
) to be minimized w.r.t parameters {(µ ℓ , θ ℓ )} ℓ for ℓ = 1, . . . , N q . A nonlinear optimization with the positivity constraints µ ℓ ≥ 0 and θ ℓ ≥ 0 is chosen for this purpose. The additional constraint θ ℓ ≤ θ max is also introduced to avoid the algorithm to diverge. These 3N q constraints can be relaxed by

setting µ ℓ = µ ′ ℓ 2 and θ ℓ = θ ′ ℓ
2 and solving the following problem with only

N q constraints min {(θ ′ ℓ ,µ ′ ℓ )} ℓ J {(µ ′ ℓ 2 , θ ′ ℓ 2 )} ℓ ; N q , K q with θ ′ ℓ 2 ≤ θ max for ℓ = 1, . . . , N q .
(26) As problem ( 26) is nonlinear and non-quadratic w.r.t. nodes θ ′ ℓ , we implement the algorithm SolvOpt [START_REF] Kappel | An implementation of Shor's ralgorithm[END_REF][START_REF] Rekik | Optimization of the collocation inversion method for the linear viscoelastic homogenization[END_REF] based on the iterative Shor's method [START_REF] Shor | Minimization Methods for Non-Differentiable Functions[END_REF]. Initial values used in the algorithm must be chosen with care; for this purpose we propose to use the coefficients obtained by the modified Jacobi approach [START_REF] Birk | An improved non-classical method for the solution of fractional differential equations[END_REF]: see method 3 of [START_REF] Lombard | Numerical modeling of nonlinear acoustic waves in a tube with Helmholtz resonators[END_REF]. Finally, the angular frequencies ω k for k = 1, ..., K q in (25) are chosen linearly on a logarithmic scale over a given optimization band [ω min , ω max ], i.e.

ω k = ω min ω max ω min k-1 Kq -1 . ( 27 
)
The choice of ω min and ω max depends on the configuration under study (tube alone or coupled system with resonators) and has been detailed in [START_REF] Lombard | Numerical modeling of nonlinear acoustic waves in a tube with Helmholtz resonators[END_REF]. Besides the positivity of the quadrature coefficients, a great improvement of accuracy is observed numerically when using the nonlinear optimization described above.

Numerical scheme

In order to integrate the systems [START_REF] Engelbrecht | Nonlinear Evolution Equations[END_REF], a grid is introduced with a uniform spatial mesh size ∆x = L/N x and a variable time step ∆t n . The approximation of the exact solution U ± (x j = j ∆x, t n = t n-1 + ∆t n-1 ) is denoted by U n± j . A splitting strategy is followed here, ensuring both simplicity and efficiency. Instead of integrating the original equations [START_REF] Engelbrecht | Nonlinear Evolution Equations[END_REF], propagative equations

∂ ∂t U ± + ∂ ∂x F ± (U ± ) = G ∂ 2 ∂x 2 U ± (28) 
and forcing equations

∂ ∂t U ± = S ± (U ± ) (29) 
are solved successively. The discrete operators to solve ( 28) and ( 29) are denoted by H ± a and H ± b , respectively. Strang splitting [START_REF] Toro | Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction[END_REF] is then used between t n and t n+1 , solving successively ( 28) and ( 29) with adequate time increments:

• U (1)± j = H ± b ( ∆ tn 2 ) U n± j , • U (2)± j = H ± a (∆ t n ) U (1)± j , • U (n+1)± j = H ± b ( ∆ tn 2 ) U (2)± j . ( 30 
)
Provided that H ± a and H ± b are second-order accurate and stable operators, the time-marching [START_REF] Kovalev | Solitary Rayleigh waves in the presence of surface nonlinearities[END_REF] gives second-order accurate approximations of the original equations [START_REF] Engelbrecht | Nonlinear Evolution Equations[END_REF].

As explained in [START_REF] Lombard | Numerical modeling of nonlinear acoustic waves in a tube with Helmholtz resonators[END_REF], the propagative equation ( 28) is solved by a standard second-order TVD scheme for nonlinear hyperbolic PDE [START_REF] Leveque | Numerical methods for conservation laws, 2nd edition[END_REF] combined with a centered finite-difference approximation. The discrete operator H a is stable under a usual CFL condition.

Contrary to [START_REF] Lombard | Numerical modeling of nonlinear acoustic waves in a tube with Helmholtz resonators[END_REF] where S ± was a constant linear operator, the forcing equations ( 29) can no longer be solved exactly. Here, they are solved by a second-order implicit trapezoidal method [62]

U (n+1)± = U n± + τ n 2 S ± (U n± )) + S ± (U (n+1)± ) , (31) 
with τ n = ∆t n /2. The nonlinear systems [START_REF] Khusnutdinova | Fission of longitudinal strain solitary wave in a delaminated bar[END_REF] are solved iteratively by the Newton-Raphson method. In practice, a single iteration is accurate enough.

Linearizing the equations and using the Jacobian [START_REF] Grabowski | Wave propagation in a nonlinear periodic medium[END_REF], the discrete operator

H ± b recovers the semi-implicit trapezoidal scheme U (n+1)± = U n± + τ n I - τ n 2 T n± -1 S ± (U n± ), (32) 
which is unconditionnally stable.

Once time-marching is completed, the source terms ( 15) and ( 16) are updated at the grid nodes 0 (for the right-going wave) and N x (for the leftgoing wave). The forcing term s(t n ) in ( 15) is obtained from (2) and from the pressure p ′ (0, t n ) measured experimentally by the first microphone: see section 5 for details on that topic. The first resonator lies 0.2 m after the beginning of the tube. The end of the lattice is closed by a rigid cork located at D/2 after the last resonator.

Experimental set-up and validation

Lattice sample

Then, the waves impinging the lattice end are reflected and travel in the 

Source and acquisition

The input signal is generated by the explosion of a balloon. The latter is introduced into a 20 cm long waveguide connected to the main tube and is inflated until its explosion. The shape of the generated impulsion (width and amplitude) depends on the balloon length at the explosion time, varying slightly from one experiment to the other.

The excess pressure p It is then injected in the numerical scheme and acts as a forcing term s: see section 4.2. In other words, our resolution method requires only the input data signal as initial conditions to solve the system (3). It is an important difference with the resolution method in [START_REF] Sugimoto | Verification of acoustic solitary waves[END_REF] which requires the fitting of the experimental signal after some distance of propagation. 

′ = p ′ + + p ′ -is

Linear dispersion in a Helmholtz resonator lattice

The goal of this section is to examine the validity of the model ( 3) to describe the experimental configuration under study. For this purpose, figure 4 compares the dispersion curves obtained with the continuous description of resonators [START_REF] Boechler | Discrete breathers in one-dimensional diatomic granular crystals[END_REF] and with the discrete description [START_REF] Chaigne | Acoustique des Instruments de Musique[END_REF]. Three different heights of resonators are considered: H = 16.5 cm (f 0 = 345 Hz), H = 7 cm (f 0 = 586 Hz), and H = 2 cm (f 0 = 1027 Hz). In each case, f 0 = ω 0 /(2π) is the resonance frequency of the Helmholtz resonators [START_REF] Apel | Internal solitons in the ocean and their effect on underwater sound[END_REF].

Good agreement between these two families of dispersion curves is obtained on a large frequency domain, up to the Bragg band gap at 1800

Hz. Because of the continuous approximation, equation ( 6) cannot predict the Bragg band gap due to the lattice periodicity. However, the first hybridization band gap (due to Helmholtz resonance) is well described by the continuous model.

A second observation deduced from figure 4 concerns the dispersive behavior of the medium under study. Recall that the upper limit of the source frequency range f max is around 650 Hz. If

f 0 ≫ f max (i.e. H = 2 cm),
we observe a linear frequency dependance of QD in [0, f max ], which implies that the dispersion is weak (figure 4-(c)). On the contrary, when f 0 lies in the source frequency range (figure 4-(a) for H = 16.5 cm and figure (4b) for H = 7 cm), the dispersion is strong. This impacts strongly the shape of the waves, as detailed in section 6.4. 

Tube without resonators

Before considering the interaction of waves with the lattice of resonators, we consider the simple case of a uniform tube. Figure 5 shows the profiles of the measured and simulated excess pressure p ′ /p s at the position x = 6.15 m in a waveguide without resonator, where p s is the magnitude of the input signal. The blue and red lines correspond to the simulated and experimental results, respectively. The initial pressure wave has evolved to a triangular shape wave during the propagation, due to a well-known nonlinear process [START_REF] Hamilton | Nonlinear Acoustics[END_REF][START_REF] Menguy | Weakly nonlinear gas oscillations in airfilled tubes; solutions and experiments[END_REF]. The good agreement between the simulated and measured pressure highlights the validity of the lossy nonlinear model for the waveguide propagation described by the equation (3a) where the coupling term with the resonators is canceled. The model describing the losses in the waveguide propagation by fractional derivatives is verified by this comparison and will not be discussed further. Note lastly that the volume attenuation and the viscothermic losses in the tube are insufficient to prevent from the occurence of shocks [START_REF] Sugimoto | Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves[END_REF].

6. Experiments in a tube with resonators Unlike the waveguide without resonators, where a triangular wave is obtained (figure 5), the lattice produces a wave with a smooth and symmetrical shape (figure 6). This constitutes a signature of solitary waves.

Existence of solitary waves

Good agreement between experimental and simulated waves is obtained when the nonlinear losses are taken into account. On the contrary, the linear viscothermic losses alone are insufficient to predict the right amplitude, which is overestimated compared to the experimental results. Moreover, spurious oscillations are observed in the linear case, that are suppressed when nonlinear losses are incorporated.

In addition, the comparison between the heights H = 7 cm (figure 6-(a))

and H = 13 cm (figure 6-(b)) highlights the influence of the resonators on the evolution of the pulse. The solitary wave being the result of a competition between the nonlinearity and the dispersion in the media, it is very sensitive to the cavity length. The decrease of the Helmholtz resonance frequency leads to an increase of the wave attenuation, an increase of the pulse width, and a decrease of the wave celerity. These results corroborate the theoretical analysis performed in [START_REF] Sugimoto | Verification of acoustic solitary waves[END_REF] and confirm the existence of an acoustic solitary wave.

Spatio-temporal evolution

In this section, we illustrate the evolution of solitary waves during their propagation, in the case H = 13 cm. The experimental and simulated results are in good agreement, for both the shape and the velocity of the waves. To highlight these two different regimes, figure 9 shows the time evolution of the wave recorded during the first 3 meters. The shape of the initial high amplitude pulse is greatly modified, leading to a symmetrical and smooth shape after 2 m of propagation. In addition, a strong attenuation is observed (50 % of amplitude decay). After, the wave shape remains constant and the attenuation becomes weaker. Again, these results show the crucial role of nonlinear absorption process in the evolution of a high amplitude pulse to a solitary wave.

Influence of the dispersion

Here we study the influence of the Helmholtz resonance frequency on the features of the solitary waves (velocity, amplitude and shape). Experimental The properties of the acoustic solitary waves have been studied in terms of the dispersion of the lattice. In the case of low dispersion, the solitary wave is compact with a narrow shape. Its velocity is close to the sound celerity and its attenuation is weak. In the case of a strong dispersion, the shape of the solitary wave is broader, its velocity is smaller and its attenuation is large.

The numerical and the experimental studies show the great importance of losses in the generation of acoustic solitary waves in periodic locally resonant structures. It contributes to promising research in the field of nonlinear acoustic propagation in metamaterials and acoustic transmission filters. Future works will be devoted to the study of nonlinear acoustic propagation in disordered systems. In particular, our numerical and experimental setups will be used to investigate the competition between nonlinear dynamics, dispersion processes and disorder effects.
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Figure 1 :

 1 Figure 1: Sketch of the guide connected with Helmholtz resonators.

Figure 2 :

 2 Figure 2: experimental set-up; all the dimensions are detailed in mm. (a): description of the Helmholtz resonators lattice. (b): description of one Helmholtz resonator.

  opposite direction (keeping the cell length constant) into the lattice, allowing to increase the lattice length from 6 m to 12 m. Numerical modeling of this configuration amounts to solve (3) by considering a 0.2 m long waveguide with no resonator, connected to a 5.95 m long lattice of resonators closed by a rigid end, in accordance with the experimental set-up. A second experimental system, consisting in a waveguide with no array of resonator, is used in section 5.4 to highlight the influence of the Helmholtz resonators in the nonlinear process. This waveguide has exactly the same features than the previous one. Numerical modeling of this configuration amounts to solve (3a) on a 6.15 m long waveguide closed by a rigid end, with e = 0.

  measured with 3 PCB 106B microphones. They are located at the beginning of the system (20 cm before the first resonator) and at 2 different positions into the lattice, depending on the experiment. The sensibility of the microphones is 0.045 V/kPa, and a PCB 441A101 conditioning amplifier is used for each of them. The acquisition is made by a National Instrument BNC 2110 card with a sample frequency of 250 kHz, connected to a computer.The input signal shown in the figure3-(a) can be described by a gatesignal with a high amplitude around 30 kPa, and a width around 1.5 ms with the presence of a tail caused by reflexion at the end of the source tube.The initial excess pressure consists of a compression wave. The figure3-(b)shows the spectrum of the input signal and points out that the frequency range excited by the source is mostly included in [0 -650] Hz. This input signal, generated by the balloon explosion, is measured at each experiment.

Figure 3 :

 3 Figure 3: acoustic source measured at the entry of the tube. (a): time history of the excess pressure p ′ + (0, t). (b): Fourier transform of the signal.

Figure 4 :

 4 Figure 4: dispersion relation of an array of Helmholtz resonators for H = 16.5 cm (a), H = 7 cm (b) and H = 2 cm (c). The open circles correspond to the continuous model[START_REF] Boechler | Discrete breathers in one-dimensional diatomic granular crystals[END_REF]. The continuous red line corresponds to the discrete model[START_REF] Chaigne | Acoustique des Instruments de Musique[END_REF].

Figure 5 :

 5 Figure 5: time history of the excess pressure p ′ /p s in a tube with no array of resonators, at x = 6.15 m. The blue and red lines represent the experimental and simulated profiles, respectively.

Figure 6

 6 Figure 6 presents the experimental and simulated temporal profiles p ′ /p s at x = 2.1 m, in a waveguide connected to an array of Helmholtz resonators.

Figure 6 :

 6 Figure 6: time history of the excess pressure p ′ /p s at x = 2.1 m in a tube with an array of resonators. The heights of resonators are: H = 7 cm (a), H = 13 cm (b). The blue line represents the experimental pressure. The red and black lines represent the simulated pressure, with (red) or without (black) nonlinear losses.

Figure 7

 7 displays the experimental results (top panel) and the simulated results with nonlinear lossy attenuation (bottom panel), in the space × time plane. Experimentally (figure 7-(a)), the signals have been recorded at 15 different positions of microphones regularly spaced, from 0.2 m to 4.4 m inside the lattice with a spacing 0.3 m. Since only two microphones were available, acquisition was performed during 8 successive experiments, the pair of micro-phones being successively shifted. A new source was used in each experiment, leading to small deviations from one experiment to the other. These 8 sources were used as initial data for the corresponding numerical simulations. For both experiments and simulations, we present the ratio between the excess pressure in the waveguide and the source amplitude p ′ /p s .

Figure 7

 7 Figure 7 clearly shows the propagation of a solitary wave without change of shape and with a constant velocity characterized by a constant slope in the space × time plane, both experimentally and numerically. The symmetry of figure 7 with respect to time t = 29 ms illustrates the reflexion of the solitary wave at the closed end of the tube. A second reflexion at the opposite closed end is visible in the experimental case, but it is not simulated numerically.

Figure 7 :

 7 Figure 7: spatio-temporal evolution of the waves in a waveguide with an array of resonators of height H = 13 cm. (a) experiments, (b) simulations. The horizontal axis represents the time t.

Figure 8

 8 Figure 8 illustrates the attenuation of acoustic solitary waves during their propagation, in the case of resonators with height H = 13 cm. Experimen-

Figure 8 :

 8 Figure 8: magnitude of the solitary wave in terms of the propagation distance in the lattice, with Helmholtz resonators of height H = 13 cm. Blue line presents the experimental results. Red and black lines present the numerical results obtained with the full model (red) and without the nonlinear attenuation (black).

Figure 9 :

 9 Figure 9: time history of the excess pressure p ′ /p s measured experimentally in the case of Helmholtz resonators of height H = 13. The measures are done from x = 0.2 m to x = 2.6 m, with a spacing 0.3 m.

  and simulated time evolutions of p ′ /p s are compared in figure10in the case of heights H = 2 cm (figure10-(a)) and H = 16.5 cm (figure10-(b)). Three waves are observed from the left to the right, corresponding successively to the direct wave at the receivers x = 2.8 m and 5.95 m, and to the reflected wave at x = 2.8 m. In the case H = 2 cm (f 0 = 1027 Hz), the dispersion is weak in the frequency range of the source (see figure4), contrary to the case H = 16.5 cm (f 0 = 345 Hz) where the dispersion is strong. Comparing these two cases shows the essential role of the dispersion on the characteristics of the wave.

Figure 10 :

 10 Figure 10: time history of the excess pressure p ′ /p s at x = 2.8 m and x = 5.95 m. (a) H = 2 cm, corresponding to f 0 = 1027 Hz. (b) H = 16.5 cm, corresponding to f 0 = 345 Hz.

Figure 11 :

 11 Figure 11: (a) velocity, (b) attenuation factor and (c) half-width of the pulse versus resonance frequencies of the resonators. Experimental and numerical results are shown in red line and black line, respectively.

Table 1 :

 1 physical parameters of air at 15 • C, and geometrical data.

	). The