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Abstract

This paper studies large sample properties of the matrix exponential spatial specification (MESS). We find

that the quasi-maximum likelihood estimator (QMLE) for the MESS is consistent under heteroskedasticity,

a property not shared by the QMLE of the SAR model. For the general model that has MESS in both

the dependent variable and disturbances, labeled MESS(1,1), the QMLE can be consistent under unknown

heteroskedasticity when the spatial weights matrices in the two MESS processes are commutative. We also

consider the generalized method of moments estimator (GMME). In the homoskedastic case, we derive a

best GMME that is as efficient as the maximum likelihood estimator under normality and can be asymptot-

ically more efficient than the QMLE under non-normality. In the heteroskedastic case, an optimal GMME

can be more efficient than the QMLE asymptotically. The QML approach for the MESS model has the

computational advantage over that of a SAR model. The computational simplicity carries over to MESS

models with any finite order of spatial matrices. No parameter range needs to be imposed in order for

the model to be stable. Results of Monte Carlo experiments for finite sample properties of the estimators

are reported. Finally, the MESS(1,1) is applied to Belgium’s outward FDI data and we observe that the

dominant motivation of Belgium’s outward FDI lies in finding cheaper factor inputs.
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1. Introduction

The Matrix Exponential Spatial Specification (MESS) has been initially proposed by LeSage and Pace

(2007) as a substitute to the well-known spatial autoregressive (SAR) specification. The difference between

the two rests on the type of decay which characterizes the influence of space. The MESS uses an exponential

decay while the SAR specification is based on a geometrical decay. The motivation of these authors to use

the MESS is its computational simplicity. Indeed, in contrast to the SAR, the quasi-maximum likelihood

(QML) function of the MESS does not involve any Jacobian of the transformation and thus reduces to a

nonlinear regression estimation. This is so even for its extension to models with a finite number of spatial

weights matrices. A second advantage of the MESS is the absence of constraints on the parameter space of the

coefficient that captures interactions between observations since the reduced form of the MESS always exists

(see Chiu et al., 1996). Furthermore, no positivity constraint on the Jacobian of the transformation needs

to be imposed as it does not appear in the quasi log-likelihood function. In Section 2, we nevertheless show

that MESS and SAR models cannot be seen as perfect substitutes since neither a one-to-one correspondence

between the parameters capturing interactions nor between impacts (except in some specific cases) can be

derived. Furthermore, a MESS model is always a stable spatial process, but a SAR model with strong

spatial interaction might be unstable.2

A third advantage of the MESS, proved in this paper, is that the quasi-maximum likelihood estimator

(QMLE) is consistent even in the presence of unknown heteroskedasticity, a feature not shared by the SAR

model (see Lin and Lee, 2010, p. 36). These two authors have however shown in this SAR context that a

Generalized Method of Moments Estimator (GMME) with properly modified quadratic moment conditions

could still be consistent in presence of unknown heteroskedasticity.3 Using quadratic moment conditions

similar to those in Lin and Lee (2010), we derive an optimal GMME consistent in presence of unknown

heteroskedasticity and also generally more efficient with respect to the QMLE (with either normal or non-

normal disturbances). The relative efficiency of the optimal GMME results from the optimal weighting of the

GMM estimation method which uses the same moments that the QMLE integrates. In the homoskedastic

case, we derive a best (optimal) GMME that is as efficient as the MLE under normality and can be more

efficient than the QMLE under non-normality.4 The best GMME takes a much simpler form than that for

2From this view, we may argue that the MESS would be useful only when observed outcomes do not show unstable
phenomena.

3Kelejian and Prucha (2010) also develop a GMME robust to the presence of heteroskedasticity but their main focus is on
spatial autocorrelation in the error terms.

4Lee (2007) derives the best optimal GMME for the SAR model with normal i.i.d. disturbances, which is as efficient as
the QMLE. Liu et al. (2010) consider the best optimal GMME for the SAR model with SAR disturbances that can be more
efficient than the QMLE under non-normality, which is extended to high order SAR models in Lee and Liu (2010).
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the SAR model and the optimal orthogonal conditions do not involve any estimated parameters5.

Even though LeSage and Pace (2007) present the maximum likelihood and Bayesian estimators of the

MESS, no asymptotic theory has been derived for this specification. In this paper, we focus our attention on

the general model where a MESS is present in both the dependent variable and in the error terms (MESS(1,1)

for short), and develop large sample properties for QML and GMM methods under both homoskedastic and

heteroskedastic cases.6 In the homoskedastic case, the best GMME for models with normal disturbances

or commutative spatial weights matrices in the MESS(1,1) is as efficient as the QMLE but generally more

efficient than the QMLE for other ones. In the (unknown) heteroskedastic case, the QMLE for the MESS(1,1)

can be consistent only when the spatial weights matrices for the MESS in the dependent variable and in

disturbances are commutative, but it is less efficient than an optimal GMME. If different variances in the

heteroskedastic case could be estimated consistently, a best GMME could also be implemented.7 We also

perform Monte Carlo experiments to assess the small sample performance of our proposed estimators.

Analysis of significance of determinants’ causal effects on the dependent variable is of interest for

economists. In this paper, we derive a lemma allowing to perform inference on the elements of the ma-

trix of impacts implied by the reduced form of the MESS(1,1). The lemma is based on an adapted version

of the Delta method and can be used to test the significance of (functions of) impacts as long as the number

of constraints is not dependent on the sample size. This lemma is valuable for applied economists since until

now, with the exception of LeSage and Pace (2009) who provide inference for scalar summaries of these

impacts in the SAR model either by simulating the distributions or estimating them via Bayesian methods,8

there does not exist any classical statistical test to assess the significance of (functions of) individual impacts.

The developed estimators are finally applied to a modified gravity equation aimed at explaining Belgium’s

outward FDI. Blonigen et al. (2007) propose four different classifications of FDI which can be distinguished

based on the sign of spatial autocorrelation and market-potential of host countries. In addition to obtain-

ing significant and expected signs for the traditional variables included in the gravity model when spatial

autocorrelation is accounted for, namely GDP, population and bilateral distance, we find a significant neg-

ative spatial autocorrelation and a positive but non-significant market potential effect for hosts countries.

Thus vertical FDI is the dominant type of outward FDI for Belgium. We further compare MESS(1,1) and

5See Lee (2003, 2007) for further details.
6In a supplementary file, we consider the QML estimation of a high order MESS, namely MESS(p,q), with p and q being

the orders of the MESS in the dependent variable and in the errors respectively. While the parameter spaces for high order
SAR models can be hard to find (Lee and Liu, 2010; Elhorst et al., 2012), high order MESS models have the advantage that
the parameter spaces are not restricted.

7For the SAR model under unknown heteroskedasticity, Lin and Lee (2010) have not discussed the possible best GMME.
8See Elhorst (2010) for a step-by-step explanation on how to simulate the distributions.
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SARAR results and show that their economic conclusions in terms of impacts are very similar. However, the

MESS, for several reasons, namely computational, technical and statistical, can be more appealing. Finally,

statistical significance on impacts is analyzed through the application of the derived lemma for inference.

The rest of the paper is organized as follows. Section 2 compares MESS and SAR models in a more

formal way. Section 3 considers the large sample properties the QML and GMM estimators under both

homoskedasticity and unknown heteroskedasticity. It also derives a lemma to perform inference on the

elements of the matrix of impacts of explanatory variables obtained from the reduced form of the MESS(1,1).

Section 4 presents Monte Carlo experiments while Section 5 presents the application of our estimators and

applies the lemma for inference on the determinants of Belgium’s outward FDI. Section 6 concludes. Some

lemmas and proofs are collected in Appendix A.9

2. Comparison of MESS and SAR Specifications

The MESS in LeSage and Pace (2007) is

eαWnyn = Xnβ + ǫn, ǫn = (ǫn1, . . . , ǫnn)
′, (1)

where n is the sample size, yn is an n-dimensional vector of observations on the dependent variable, Xn is an

n× k matrix of exogenous variables with corresponding coefficient vector β, Wn is an n× n spatial weights

matrix modeling interactions among observations (with zero diagonal elements), ǫni’s are independent with

mean zero, and α is the parameter measuring the intensity of interactions between observations. For any

n × n square matrix An, let A
0
n be the n × n identity matrix In. The matrix exponential eαAn , defined as

eαAn =
∑∞

i=0
αiAi

n

i! , is always invertible, with the inverse being e−αAn (Chiu et al., 1996). As a result, the

variance-covariance (VC) matrix of yn which equals to e−α0Wn E (ǫnǫ
′
n) e

−α0W
′

n with α0 being the true value

of α, is always positive definite. No restriction on the parameter space of α needs to be imposed.

In this paper, we consider a general model that has MESS in both the dependent variable and the

disturbances that we label MESS(1,1) (which should be viewed as an analog of the SAR model with SAR

disturbances, i.e., SARAR model):10

eαWnyn = Xnβ + un, eτMnun = ǫn, ǫn = (ǫn1, . . . , ǫnn)
′, (2)

9Except the proof of Proposition 8 which is presented in Appendix A, proofs of remaining propositions are similar to those
in Lee (2004) and Lee (2007). Those proofs are provided in a supplementary file, which is available upon request.

10As pointed out by an anonymous referee, on the r.h.s. of the main equation of (2), to reflect local spatial dependence as in
a spatial Durbin model, we may include an additional term WnXn, or WnX1n if Wn is row-normalized and Xn contains an
intercept term so that Xn = [ln, X1n]. However, as WnXn or WnX1n has the same properties as Xn, the asymptotic analyses
below will be similar. Thus, the additional term is not included for simplicity.
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where Wn and Mn are n× n spatial weights matrices. The Mn may or may not be different from Wn. For

purposes of comparison and later reference, we put down the SARAR model with the same Wn, Mn, Xn,

yn and ǫn:

(In − λWn)yn = Xnβ + un, (In − ρMn)un = ǫn. (3)

The parameter spaces of λ and ρ should be restricted so that the VC matrix of yn, namely (In−λWn)
−1(In−

ρMn)
−1 E (ǫnǫ

′
n) (In−ρM ′

n)
−1(In−λW ′

n)
−1 exists. For the QMLE of the SARAR model with a normalized

Wn matrix, the parameter space for λ is typically considered to be (−1, 1).11

The quasi log likelihood function of the MESS(1,1) presented in (2), as if the ǫni’s were i.i.d. normal, is

Ln(θ) = −n

2
ln(2πσ2) + ln |eαWn |+ ln |eτMn | − 1

2σ2
(eαWnyn −Xnβ)

′eτM
′

neτMn(eαWnyn −Xnβ),

where θ = (γ′, σ2)′ with γ = (α, τ, β′)′. Let θ0 be the true parameter vector. Since |eαWn | = eα tr(Wn) and

|eτMn | = eτ tr(Mn), as long as Wn and Mn have zero diagonals, the Jacobian of the transformation disappears

and the quasi log likelihood function is simplified to

Ln(θ) = −n

2
ln(2πσ2)− 1

2σ2
(eαWnyn −Xnβ)

′eτM
′

neτMn(eαWnyn −Xnβ). (4)

By contrast, the quasi log likelihood function of the SARAR model shown in (3) involves the log determinant

of the Jacobian ln |(In − λWn)(In − ρMn)| = ln |In − λWn| + ln |In − ρMn|, which may make the QMLE

computationally intensive for large sample sizes.

Another difference between these two specifications is that one does not need to normalize the interaction

matrices in the MESS. In the SARAR model, the purpose of normalizing the interaction matrices is to

standardize the parameter spaces for λ and ρ so that they correspond to (−1, 1), which facilitates the

interpretation of these parameters. However, in the MESS, since no parameter constraint is involved, the

normalization of the interaction matrices may not play a special role.

LeSage and Pace (2007) present the MESS as a computationally simpler substitute for the SAR model.12

Using a row-normalized interaction matrix Wn, they propose the approximated relation λ = 1 − eα. They

argue that this approximation is derived by equating the length of ||eαWn ||∞ and ||In −λWn||∞, with ||.||∞
being the maximum row sum matrix norm. However, this approximation is not always right since the matrix

11See Kelejian and Prucha (2010) for a detailed discussion about the parameter space for λ. For high order SARAR models,
finding the parameter spaces can be hard. Elhorst et al. (2012) have outlined a procedure for finding the stationary region, but
the parameter spaces can be complicated even for a SAR model with two spatial weights matrices for the dependent variable.
By contrast, parameters in high order MESS models, labeled MESS(p,q), where p and q are the orders of the MESS in the
dependent variable and disturbances respectively, do not need to be restricted and the effort to find the parameter spaces is
saved. The supplementary file considers the QML estimation of these high order MESS models.

12Han and Lee (2012) consider the J-test procedure to choose between MESS and SAR models.
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norm should be taken over the absolute value of matrix elements. By contrast, if one turns to the impact

analysis, an equivalence between the two specifications can be traced back at least in some specific cases.

Before presenting this correspondence, it is important to discuss the features of impact analysis in spatial

autoregressive (SAR or MESS) regressions. Impact analysis, which is one of the main focuses for economists,

is based on the reduced form of the estimated econometric specification. For the MESS(1,1) case, the reduced

form is yn = e−αWn(Xnβ + e−τMnǫn). One then computes the matrix of impact for each regressor Xnk,

k = 1, · · · , k, by calculating the partial derivative of yn with respect to the concerned regressor. For a

continuous regressor Xnk, this matrix is

Ξyn

Xnk
=

∂E(yn|Xn)

∂X ′
nk

= βke
−αWn . (5)

The diagonal elements of this matrix contain the direct effects including own-spillover effects, which are

inherently heterogeneous in presence of spatial autocorrelation due to differentiated friction terms in the

interaction matrix. This is what Debarsy and Ertur (2010) call interactive heterogeneity. Off-diagonal

elements of this matrix represent indirect effects, meaning the impact of a change in explanatory variable for

individual j on the dependent variable for individual i. These direct and indirect effects are, respectively,

∂E(yn|Xn)i
∂Xnk,i

≡
(

Ξyn

Xnk

)

ii
and ∂E(yn|Xn)i

∂Xnk,j
≡

(

Ξyn

Xnk

)

ij
. For the SARAR model, its associated reduced form is

yn = (In − λWn)
−1[Xnβ + (In − ρMn)

−1ǫn], and the implied impact matrix for regressor Xnk is

Ξyn

Xnk
=

∂E(yn|Xn)

∂X ′
nk

= βk(In − λWn)
−1. (6)

To summarize the information conveyed by these matrices of impacts, LeSage and Pace (2009) propose

extracting several scalar measures, as the average direct effect (mean of the diagonal elements), average

total effect (average of the row or column sums) and average indirect effect (average of the column or row

sums excluding the diagonal element).

Consider a row-normalized interaction matrix Wn in the MESS(1,1) model. Suppose that a shock of the

same magnitude ∆x is applied on the kth explanatory variable Xnk to all spatial units. The new explanatory

variable is now Xnk + ln∆x, with ln being the n-dimensional vector of ones. For the MESS(1,1), from its

reduced form, one calculates a total impact of ∆yn = e−αWn ln∆xβk. The average total effect is thus

equal to 1
n l

′
n∆yn = e−α∆xβk.

13 Correspondingly, the average total impact of Xnk in the SARAR model

is 1
n l

′
n∆yn = 1

1−λ∆xβk. Equating the two gives the relation α = ln(1 − λ) or λ = 1 − eα. Thus, there

is a negative relation between λ and α. λ = 0 if and only if α = 0. When 0 < λ < 1, α will take on

negative values and vice-versa. When the normalization used for Wn differs from the row-normalization,

13As Wn is row-normalized, W k
n ln =Wnln = ln, k ∈ N.
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such a relation does not exist.

Even though a relation between λ and α can be found for a row-normalized Wn, we nevertheless cannot

consider these two models as substitutes of each other. The underlying reason lies in the comparison of

parameter spaces. As mentioned above, for the SARAR model with normalized Wn, λ is usually restricted

to the range (−1, 1). However, in the MESS(1,1), α ∈ (−∞, ∞). So, while λ < −1 is not allowed for a

SARAR model, α can be greater than ln(2), meaning that parameter spaces of α and λ do not correspond.

So, for high negative spatial autocorrelation, we could observe substantial difference between these two

models.14 Furthermore, in a SAR model, if λ > 1, it would be an unstable model, while unstability does

not occur for the MESS with any finite value of α.

3. Estimations of the MESS(1,1) Model

We consider the QML estimation as well as the GMM estimation of the MESS(1,1) in this section. From

(4), it is apparent that the QMLE of γ is the minimizer of the function

Qn(γ) = (eαWnyn −Xnβ)
′eτM

′

neτMn(eαWnyn −Xnβ). (7)

The derivatives of Qn(γ) with respect to α, τ and β at γ0 are, respectively,

∂Qn(γ0)

∂α
= 2(Xnβ0 + e−τ0Mnǫn)

′W ′
ne

τ0M
′

nǫn,
∂Qn(γ0)

∂τ
= 2ǫ′nMnǫn,

∂Qn(γ0)

∂β
= −2X ′

ne
τ0M

′

nǫn. (8)

When ǫni’s are i.i.d. with mean zero and variance σ2
0 , as E(ǫ′nMnǫn) = tr[Mn E(ǫnǫ

′
n)] = σ2

0 tr(Mn) = 0

and E(ǫ′ne
−τ0M

′

nW ′
ne

τ0M
′

nǫn) = σ2
0 tr(W

′
ne

τ0M
′

ne−τ0M
′

n) = σ2
0 tr(W

′
n) = 0, the expected value of ∂Qn(γ0)

∂γ is

zero, which verifies that the minimizer of EQn(γ) can be γ0. When ǫni’s are independent with mean zero

but different variances σ2
ni’s, E(ǫ

′
nMnǫn) = tr(MnΣn) = 0 since the diagonal elements of Mn are all zero,

and Σn = Diag(σ2
n1, . . . , σ

2
nn) is a diagonal matrix containing the different variances as diagonal elements.

In addition, E(ǫ′ne
−τ0M

′

nW ′
ne

τ0M
′

nǫn) = tr(e−τ0M
′

nW ′
ne

τ0M
′

nΣn), which may not be zero in general. But if

WnMn = MnWn, then W ′
ne

τ0M
′

n = eτ0M
′

nW ′
n and E(ǫ′ne

−τ0M
′

nW ′
ne

τ0M
′

nǫn) = tr(W ′
nΣn) = 0. Therefore,

when the matrix Wn in the spatial lag process can be commutative with the matrix Mn in the spatial error

process, the QMLE for γ, derived from the minimization of Qn(γ), can be consistent even under unknown

heteroskedasticity. This includes the special cases that there is no MESS process in the disturbances or that

Mn = Wn. This robustness of the QMLE for the MESS(1,0) and MESS(1,1) to unknown heteroskedasticity

is a nice feature not shared by the QMLE for the SARAR model.

14For a non-negative and row-normalized symmetric interaction matrix Wn, the parameter space for λ may be taken as
the interval ( 1

µmin,n
, 1) with µmin,n being the minimal real eigenvalue of Wn. However, it does not change the conclusions

regarding the difference between parameter spaces for λ and α.
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The function Qn(γ) may be written as Qn(γ) = (yn − e−αWnXnβ)
′(e−αWne−τMne−τM ′

ne−αW ′

n)−1(yn −

e−αWnXnβ). Using the reduced form of the MESS(1,1), namely yn = e−α0Wn(Xnβ0 + e−τ0Mnǫn), and

assuming that E(ǫnǫ
′
n) = σ2

0In, the VC matrix of yn is σ2
0e

−α0Wne−τ0Mne−τ0M
′

ne−α0W
′

n and the QMLE can

be seen as a continuously updating version of the generalized nonlinear least squares (GNLS). The similarity

between the QML and GNLS is due to the special structure of the matrix exponential specification. By

contrast, there is no such a similarity for the SARAR model (3).15

In addition to the QML estimation, we may also consider the GMM estimation of the MESS(1,1) using

both linear and quadratic moments, as for the SARAR model. The linear moments would be of the form

F ′
nǫn(γ) = 0, where ǫn(γ) = eτMn(eαWnyn −Xnβ) and Fn is an n × kf matrix of instruments constructed

as functions of Wn and Xn, as in the two-stage least squares (2SLS) approach. The quadratic moments

have the form ǫ′n(γ)Pniǫn(γ) = 0; i = 1, · · · , kp, where Pni has trace zero when ǫni’s are i.i.d., implying

that E[ǫ′n(γ0)Pniǫn(γ0)] = σ2
0 tr(Pni) = 0. On the other hand, if the diagonal elements of Pni are all zero

when ǫni’s are independently distributed with possibly different variances, we get E[ǫ′n(γ0)Pniǫn(γ0)] =

tr(PniΣn) = 0.

The basic regularity conditions for estimation are assumed below. The specific sets of hypotheses required

for both methods will be given subsequently.

Assumption 1. Matrices {Wn} and {Mn} are bounded in both row and column sum norms. The diagonal

elements of Wn and Mn are zero.

Assumption 2. Elements of Xn are uniformly bounded constants, Xn has full column rank, and besides,

limn→∞ X ′
nXn/n exists and is nonsingular.

Assumptions 1 and 2 follow from the literature, see, e.g., Kelejian and Prucha (1998) and Lee (2004).

3.1. QMLE

For the QMLE from (4), we may just investigate the minimizers of the functions {Qn(γ)}. For a fixed

φ = (α, τ)′, minimizing Qn(γ) yields β̂n(φ) = (X ′
ne

τM ′

neτMnXn)
−1X ′

ne
τM ′

neτMneαWnyn. Substituting β̂n(φ)

into Qn(γ), we obtain a function of only φ:

Qn(φ) = y′ne
αW ′

neτM
′

nHn(τ)e
τMneαWnyn, (9)

15A function for the SARAR model with a structure similar to Qn(γ) is Q∗

n(ψ) = [(In − λWn)yn −Xnβ]′(In − ρM ′

n)(In −

ρMn)[(In − λWn)yn − Xnβ] with ψ = (λ, ρ, β′)′. At ψ0, E
( ∂Q∗

n(ψ0)

∂λ

)

= −2σ2
0 tr[Wn(In − λ0Wn)−1] and E

( ∂Q∗

n(ψ0)

∂ρ

)

=

−2σ2
0 tr[Mn(In − ρ0Mn)−1], where tr[Wn(In − λ0Wn)−1] 6= 0 and tr[Mn(In − ρ0Mn)−1] 6= 0 in general. Thus the minimizer

of Q∗

n(ψ) is not expected to be a consistent estimator of ψ in the SARAR model (3).
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where Hn(τ) = In−eτMnXn(X
′
ne

τM ′

neτMnXn)
−1X ′

ne
τM ′

n is a projection matrix. The function Qn(φ) can be

used for the analysis of the consistency of the QMLE. Although we may not need to restrict the parameter

space of φ in practice, φ should be bounded in analysis so that eαWn and eτMn would be bounded in both row

and column sum norms, since ||eαWn || = ||∑∞
i=0

αiW i
n

i! || ≤ ∑∞
i=0

|α|i||Wn||i
i! = e|α|·||Wn||, which is bounded if

α is bounded, and so is ||eτMn || if τ is bounded, where || · || denotes either the row or column sum matrix

norm.

Assumption 3. There exists a constant δ > 0 such that |α| ≤ δ, |τ | ≤ δ and the true φ0 is in the interior

of the parameter space Φ = [−δ, δ]× [−δ, δ].

For consistency of the QMLE, we need to show that the difference between Qn(φ)/n and some non-

stochastic function Q̄n(φ)/n converges to zero uniformly over the parameter space Φ.16 The Q̄n(φ) will have

different forms in the homoskedastic and heteroskedastic cases. By Assumptions 2 and 3, 1
nX

′
ne

τM ′

neτMnXn

is bounded. The Qn(φ) is a well-defined function for large enough n if the limit of 1
nX

′
ne

τM ′

neτMnXn exists

and is nonsingular. In addition, we require that the sequence of the smallest eigenvalues of eτM
′

neτMn be

bounded away from zero uniformly in τ , so that Hn(τ) is bounded in both row and column sum norms

uniformly in τ . As eτM
′

neτMn is positive definite, its smallest eigenvalue is positive. The condition further

limits all the eigenvalues to be strictly positive uniformly over the parameter space for all n.

Assumption 4. The limit limn→∞
1
nX

′
ne

τM ′

neτMnXn exists and is nonsingular for any τ ∈ [−δ, δ], and the

sequence of the smallest eigenvalues of eτM
′

neτMn is bounded away from zero uniformly in τ ∈ [−δ, δ].

3.1.1. QMLE: Homoskedastic Case

In this part, we establish consistency and asymptotic normality of the QMLE for the MESS(1,1) with

i.i.d. disturbances.

Assumption 5. The ǫni’s are i.i.d. with mean zero and variance σ2
0 and the moment E |ǫni|4+η for some

η > 0 exists.

Define Q̄n(φ) = minβ EQn(γ), then

Q̄n(φ) = (Xnβ0)
′e(α−α0)W

′

neτM
′

nHn(τ)e
τMne(α−α0)WnXnβ0

+ σ2
0 tr(e

−τ0M
′

ne(α−α0)W
′

neτM
′

neτMne(α−α0)Wne−τ0Mn).

(10)

The identification of φ0 can be based on the minimum values of {Q̄n(φ)/n}. To ensure the identification

uniqueness, the following condition is assumed.

16The main purpose for Assumption 3 is to guarantee that uniform convergence of relevant objects is possible on a compact
parameter space.
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Assumption 6. Either (i) limn→∞ n−1(Xnβ0)
′e(α−α0)W

′

neτM
′

nHn(τ)e
τMne(α−α0)WnXnβ0 6= 0 for any τ

and α 6= α0, and limn→∞ n−1 tr(e(τ−τ0)M
′

ne(τ−τ0)Mn) > 1 for any τ 6= τ0, or

(ii) limn→∞ n−1 tr(e−τ0M
′

ne(α−α0)W
′

neτM
′

neτMne(α−α0)Wne−τ0Mn) > 1 for any φ 6= φ0.

The identification of α0 can come from the first term on the r.h.s. of (10). As Hn(τ)e
τMnXn = 0,

the first term at α0 is zero for any τ . Thus the first term is not sufficient to identify τ0. Given the

identification of α0, τ0 can be identified from the second term. As limn→∞ n−1X ′
ne

τM ′

neτMnXn is non-

singular, by the partition matrix formula, limn→∞ n−1(Xnβ0)
′e(α−α0)W

′

neτM
′

nHn(τ)e
τMne(α−α0)WnXnβ0

is non-zero if and only if limn→∞ n−1(Xn, e
(α−α0)WnXnβ0)

′eτM
′

neτMn(Xn, e
(α−α0)WnXnβ0) is nonsingular.

Thus, the first part of (i) in Assumption 6 relates to asymptotic non-multicollinearity of e(α−α0)WnXnβ0

with Xn. In the proof of Proposition 1, it is shown by the inequality of arithmetic and geometric means that

n−1 tr(e(τ−τ0)M
′

ne(τ−τ0)Mn) ≥ 1 holds for any τ . The second part of (i) further requires n−1 tr(e(τ−τ0)M
′

ne(τ−τ0)Mn)

to be strictly greater than 1 in the limit when τ 6= τ0. For a finite n, the arithmetic and geomet-

ric means are equal if and only if all the eigenvalues of e(τ−τ0)M
′

ne(τ−τ0)Mn are equal to each other,

which implies that e(τ−τ0)M
′

ne(τ−τ0)Mn is proportional to In. This assumption rules out this possibil-

ity in the limit whenever τ 6= τ0. The identification of φ0 can come only from the second term on the

r.h.s. of (10), which is given in (ii) of Assumption 6. This relates to the uniqueness of the VC matrix

of yn, namely σ2
0e

−α0Wne−τ0Mne−τ0M
′

ne−α0W
′

n , since tr(e−τ0M
′

ne(α−α0)W
′

neτM
′

neτMne(α−α0)Wne−τ0Mn) =

tr[e−α0Wne−τ0Mne−τ0M
′

ne−α0W
′

n(e−αWne−τMne−τM ′

ne−αW ′

n)−1].

It is obvious that Assumption 6 (i) fails to hold when β0 = 0. In this case, the identification will rely

solely on (ii). Another case of the failure of (i) even if β0 6= 0 occurs is when Xn contains only an intercept

term, i.e., Xn = ln, and Wn is row-normalized. In this case, Hn(τ)e
τMn ln = 0. Other cases might be

due to very special structures on Wn or Mn. For example, elements of Wn and Mn except the diagonal

ones are all equal to a constant and Xn contains an intercept term. Let Wn = Mn = (n − 1)−1(lnl
′
n − In)

for instance. Then Hn(τ)e
τMnW k

n = (−1)k(n − 1)−kHn(τ)e
τMn . By the expansion form of e(α−α0)Wn ,

Hn(τ)e
τMne(α−α0)WnXn = e(α0−α)/(n−1)Hn(τ)e

τMnXn = 0. Thus the first part in (i) does not hold.

Furthermore, since the eigenvalues ofMn are (1−n)−1, . . . , (1−n)−1 and 1, it follows thatMk
n has eigenvalues
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(1− n)−k, . . . , (1− n)−k, 1. Hence, with this symmetric Mn,

1

n
tr(e(τ−τ0)M

′

ne(τ−τ0)Mn) =
1

n
tr(e2(τ−τ0)Mn) =

1

n

∞
∑

k=0

2k(τ − τ0)
k tr(Mk

n)

k!

=
1

n

∞
∑

k=0

2k(τ − τ0)
k[1 + (n− 1)(1− n)−k]

k!

=
1

n
e2(τ−τ0) +

n− 1

n
e2(τ−τ0)/(1−n),

which is equal to 1 in the limit. Then the second part in (i) does not hold either. In this case, limn→∞
1
n Q̄n(φ)

is equal to σ2
0 for any φ. Looking into Qn(φ) directly, we have Qn(φ) = e−2α/(n−1)y′ne

τM ′

nHn(τ)e
τMnyn,

which is monotonically decreasing in α. Then the QMLE of α will diverge to positive infinity, which is not

equal to α0.
17

In general, (ii) in Assumption 6 would not hold as long as Wn and Mn are equal. When Mn = Wn,

tr(e−τ0M
′

ne(α−α0)W
′

neτM
′

neτMne(α−α0)Wne−τ0Mn) = tr(e(α+τ−α0−τ0)W
′

ne(α+τ−α0−τ0)Wn).

As long as α + τ = α0 + τ0,
1
n tr(e−τ0M

′

ne(α−α0)W
′

neτM
′

neτMne(α−α0)Wne−τ0Mn) = 1. So for the case that

Mn = Wn, the parameter identification depends crucially on Assumption 6 (i). This situation is apparent

as the model becomes yn = e−α0WnXnβ0 + e−(α0+τ0)Wnǫn. Thus, when there are no exogenous variables

and Wn = Mn in the MESS(1,1), α0 and τ0 cannot be identified.

With the identification uniqueness and uniform convergence of [Qn(φ)− Q̄n(φ)]/n to zero on the param-

eter space Φ, consistency of the QMLE follows.

Proposition 1. Under Assumptions 1–6, the QMLE γ̂n of the MESS(1,1) is consistent.

The asymptotic distribution of γ̂n can be derived from applying the mean value theorem to the first-order

condition ∂Qn(γ̂n)
∂γ = 0 at the true γ0, which yields

√
n(γ̂n − γ0) = −

(

1
n

∂2Qn(γ̃n)
∂γ∂γ′

)−1 1√
n

∂Qn(γ0)
∂γ , where γ̃n is

between γ̂n and γ0. Let Wn = eτ0MnWne
−τ0Mn and As = A + A′ for any square matrix A. Under some

regularity conditions, 1
n

∂2Qn(γ̃n)
∂γ∂γ′

= Cn + oP (1), where

Cn = E
( 1

n

∂2Qn(γ0)

∂γ∂γ′
)

=
1

n













σ2
0 tr(W

s
nW

s
n) + 2(Wne

τ0MnXnβ0)
′(Wne

τ0MnXnβ0) ∗ ∗

σ2
0 tr(W

s
nM

s
n) σ2

0 tr(M
s
nM

s
n) ∗

−2(eτ0MnXn)
′
Wne

τ0MnXnβ0 0 2(eτ0MnXn)
′(eτ0MnXn)













.

17See Smith (2009) for a discussion of this special case in the SAR model.
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As tr(AB) = vec′(A′) vec(B) for two conformable matrices A and B, where vec(·) denotes the vectorization

of a matrix, Cn may be written as Cn = 1
nC

′
1nC1n, where

C1n =







σ0 vec(W
s
n) σ0 vec(M

s
n) 0

√
2Wne

τ0MnXnβ0 0 −
√
2eτ0MnXn






. (11)

Thus Cn is positive semi-definite. The following assumption guarantees that Cn is nonsingular in the limit.

Assumption 7. limn→∞
1
n

(

(Wne
τ0MnXnβ0)

′Hn(τ0)(Wne
τ0MnXnβ0)+

σ2
0

2 tr(Ms
nM

s
n)

(

tr(Ws
nW

s
n) tr(M

s
nM

s
n)−

tr2(Ws
nM

s
n)
)

)

6= 0 and limn→∞
1
n tr(Ms

nM
s
n) 6= 0.

As Ms
nM

s
n in the above assumption is positive semi-definite but not a zero matrix, tr(Ms

nM
s
n) > 0. Note that

(Wne
τ0MnXnβ0)

′Hn(τ0)(Wne
τ0MnXnβ0) ≥ 0, and tr(Ws

nW
s
n) tr(M

s
nM

s
n)− tr2(Ws

nM
s
n) ≥ 0 by the Cauchy-

Schwarz inequality. By (8), the first-order derivatives of Qn(γ) at γ0 have mean zero and are linear and

quadratic functions of ǫn. Thus the central limit theorem for linear-quadratic forms in Kelejian and Prucha

(2001) is applicable. Let µ3 = E ǫ3ni, µ4 = E ǫ4ni, and vecD(A) be a vector containing the diagonal elements

of the square matrix A. The VC matrix Ωn of 1√
n

∂Qn(γ0)
∂γ is

Ωn = 2σ2
0Cn+Ω1n with Ω1n =

1

n













(µ4 − 3σ4
0) vecD

′(Ws
n) vecD(W

s
n) + 4µ3(Wne

τ0MnXnβ0)
′ vecD(Ws

n) ∗ ∗

0 0 ∗

−2µ3(e
τ0MnXn)

′ vecD(Ws
n) 0 0













.

When ǫni’s are normal, µ3 = µ4 − 3σ4
0 = 0; when τ0 = 0 or Wn and Mn are commutative, vecD(W

s
n) =

vecD(W
s
n) = 0 as Wn has a zero diagonal. These cases imply that Ω1n = 0 and Ωn simplifies to 2σ2

0Cn. As

Ωn is a VC matrix, it is positive semi-definite. We may also directly show that Ωn is positive semi-definite.

Note that E(ǫ2ni−σ2
0)

2 E ǫ2ni ≥
(

E[(ǫ2ni−σ2
0)ǫni]

)2
, i.e. (µ4−σ4

0)σ
2
0 ≥ µ2

3, by the Cauchy-Schwarz inequality.

In addition, tr(Diag(Ws
n)Diag(Ws

n)) = vecD
′(Ws

n) vecD(W
s
n), and tr(Diag(Ws

n)M
s
n) = 0 as Mn has a zero

diagonal, where Diag(A) for a square matrix A denotes a diagonal matrix whose diagonal is equal to that

of A. Then Ωn can be written as Ωn = 1
nΩ

′
2nΩ2n, where

Ω2n =







√
2σ2

0 vec
(

W
s
n −Diag(Ws

n) +
√

σ2
0(µ4−σ4

0)−µ2
3

2σ6
0

Diag(Ws
n)
) √

2σ2
0 vec(M

s
n) 0

2σ0Wne
τ0MnXnβ0 +

µ3

σ0
vecD(W

s
n) 0 −2σ0e

τ0MnXn






.

Thus Ωn is positive semi-definite.

Proposition 2. Under Assumptions 1–7,
√
n(γ̂n − γ0)

d−→ N(0, limn→∞ C−1
n ΩnC

−1
n ). If ǫn ∼ N(0, σ2

0In);

τ0 = 0; or Wn and Mn are commutative, then
√
n(γ̂n − γ0)

d−→ N(0, 2σ2
0 limn→∞ C−1

n ).
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When the disturbances ǫni’s are normal, the generalized information matrix equality holds, thus the

limiting distribution of the MLE γ̂n does not depend on moments of the disturbances higher than the

second order. Even when the disturbances ǫni’s are not normally distributed, if there is no MESS process

in the disturbances or the spatial weights matrices Mn and Wn are commutative, the limiting distribution

of the QMLE does not involve moments of the disturbances higher than the second order.

3.1.2. QMLE: Heteroskedastic Case when Wn and Mn are Commutative

When the disturbances ǫni’s are independent but may have different variances, the following assumption

is made about the disturbances.

Assumption 8. The ǫni’s are independent (0, σ2
ni) and the moments E |ǫni|4+η for some η > 0 exist and

are uniformly bounded for all n and i.

As argued earlier, when Wn and Mn can commute, or τ0 = 0, the minimization of the function Qn(γ)

may yield a consistent estimator γ̂n of γ under unknown heteroskedasticity, since the first-order derivatives

of Qn(γ) at γ0 have zero expectation. In practice for some situations, one may use a single spatial weights

matrix Wn for both the main equation and the disturbance process, which implies the commutative property.

Assumption 9. Wn and Mn are commutative or τ0 = 0.

Define Q̄n(φ) = minβ EQn(γ). The identification of φ0 can be based on minimizers of {Q̄n(φ)}. Using

Assumption 9, we have Q̄n(φ) = Q̄1n(φ)+Q̄2n(φ), where Q̄1n(φ) = (Xnβ0)
′e(α−α0)W

′

neτM
′

nHn(τ)e
τMne(α−α0)WnXnβ0

and Q̄2n(φ) = tr(e(α−α0)W
′

ne(τ−τ0)M
′

ne(τ−τ0)Mne(α−α0)WnΣn). It is obvious that Q̄1n(φ) ≥ 0 and Q̄1n(φ0) =

0. As Wn and Mn have zero diagonals and Σn is a diagonal matrix, ∂Q̄2n(φ0)
∂α = tr[(W ′

n + Wn)Σn] = 0

and ∂Q̄2n(φ0)
∂τ = tr[(M ′

n + Mn)Σn] = 0. Thus φ0 is a stationary point of Q̄2n(φ) and also Q̄n(φ). Using

the commutative property of Wn and Mn, we have ∂2Q̄2n(φ)
∂α2 = tr[Σ

1/2
n e(α−α0)W

′

ne(τ−τ0)M
′

n(W ′2
n + W 2

n +

2W ′
nWn)e

(τ−τ0)Mne(α−α0)WnΣ
1/2
n ],

∂2Q̄2n(φ)

∂τ2
= tr[Σ1/2

n e(α−α0)W
′

ne(τ−τ0)M
′

n(M ′2
n +M2

n + 2M ′
nMn)e

(τ−τ0)Mne(α−α0)WnΣ1/2
n ]

and ∂2Q̄2n(φ)
∂α∂τ = tr{Σ1/2

n e(α−α0)W
′

ne(τ−τ0)M
′

n [(W ′
n +Wn)Mn +M ′

nWn +W ′
nM

′
n]e

(τ−τ0)Mne(α−α0)WnΣ
1/2
n }. If

W ′
nWn = WnW

′
n, then W ′2

n +W 2
n+2W ′

nWn = (W ′
n+Wn)

2; if M ′
nMn = MnM

′
n, then M ′2

n +M2
n+2M ′

nMn =

(M ′
n +Mn)

2; if M ′
nWn = WnM

′
n, then (W ′

n +Wn)Mn +M ′
nWn +W ′

nM
′
n = (W ′

n +Wn)(M
′
n +Mn). Thus,

under the conditions that W ′
nWn = WnW

′
n, M

′
nMn = MnM

′
n and M ′

nWn = WnM
′
n, by the Cauchy-Schwarz

inequality, ∂2Q̄2n(φ)
∂α2

∂2Q̄2n(φ)
∂τ2 ≥

(∂2Q̄2n(φ)
∂α∂τ

)2
. In this case, ∂2Q̄2n(φ)

∂φ∂φ′
is positive semi-definite and Q̄2n(φ) is a
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concave function. It follows that φ0 is a global minimizer of Q̄2n(φ) and Q̄n(φ). Hence, with some extra

conditions on Wn and Mn, it is possible that φ0 uniquely minimizes Q̄n(φ)/n in the limit.

It is also possible that φ0 is only a local minimizer of Q̄n(φ). For example, in the case that Wn = Mn,

∂2Q̄2n(φ0)
∂α2 = ∂2Q̄2n(φ0)

∂τ2 = ∂2Q̄2n(φ0)
∂α∂τ = tr[(W ′2

n +W 2
n + 2W ′

nWn)Σn], which is positive if elements of Wn are

non-negative. Then ∂2Q̄2n(φ0)
∂φ∂φ′

is positive semi-definite and Q̄2n(φ) is concave at φ0. Hence, φ0 is a local

minimizer of Q̄2n(φ) and Q̄n(φ). These considerations motivate the following identification condition.

Assumption 10. limn→∞
1
n [Q̄n(φ)− tr(Σn)] > 0 for any φ 6= φ0.

Proposition 3. Under Assumptions 1–4 and 8–10, the QMLE γ̂n is consistent for γ0.

Let Dn = 1
n E

(∂2Qn(γ0)
∂γ∂γ′

)

and ∆n = 1
n E

(∂Qn(γ0)
∂γ

∂Qn(γ0)
∂γ′

)

, then

Dn =
2

n













tr(W s
nWnΣn) + (Wne

τ0MnXnβ0)
′(Wne

τ0MnXnβ0) ∗ ∗

tr(Ms
nWnΣn) tr(Ms

nMnΣn) ∗

−(eτ0MnXn)
′Wne

τ0MnXnβ0 0 (eτ0MnXn)
′(eτ0MnXn)













,

and

∆n =
2

n













tr(ΣnW
s
nΣnW

s
n) + 2(Wne

τ0MnXnβ0)
′Σn(Wne

τ0MnXnβ0) ∗ ∗

tr(ΣnM
s
nΣnW

s
n) tr(ΣnM

s
nΣnM

s
n) ∗

−2(eτ0MnXn)
′ΣnWne

τ0MnXnβ0 0 2(eτ0MnXn)
′Σn(e

τ0MnXn)













.

Note that ∆n, being the VC matrix of a vector of linear-quadratic forms of disturbances, does not involve

higher than the second moments of disturbances, because Wn and Mn in the quadratic forms ǫ′nW
s
nǫn and

ǫ′nM
s
nǫn have zero diagonals (see Lee, 2007). We may write ∆n as ∆n = 1

n∆
′
1n∆1n, where

∆1n =







√
2 vec(Σ

1/2
n W s

nΣ
1/2
n )

√
2 vec(Σ

1/2
n Ms

nΣ
1/2
n ) 0

2Σ
1/2
n Wne

τ0MnXnβ0 0 −2Σ
1/2
n eτ0MnXn






,

thus ∆n is positive semi-definite. To make sure that Dn is invertible for large enough n, we need the

following assumption.

Assumption 11. limn→∞
1
n tr(Ms

nMnΣn) 6= 0 and limn→∞
1
n

(

(Wne
τ0MnXnβ0)

′Hn(τ0)(Wne
τ0MnXnβ0) +

tr(W s
nWnΣn) tr(M

s
nMnΣn)−tr2(Ms

nWnΣn)
tr(Ms

nMnΣn)

)

6= 0.

When elements ofWn andMn are non-negative, tr(Ms
nMnΣn) > 0, tr(Ms

nWnΣn) ≥ 0 and tr(W s
nWnΣn) >

0, because Mn and Wn are not zero matrices and the diagonal elements of Σn are positive in general.

Proposition 4. Under Assumptions 1–4 and 8–11,
√
n(γ̂n − γ0)

d−→ N(0, limn→∞ D−1
n ∆nD

−1
n ).
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With the requirement of τ0 = 0 or commutativeness of Wn and Mn, in addition to the consistency, the

QMLE under unknown heteroskedasticity has an asymptotic distribution that does not involve higher than

the second moments of the disturbances, whether the disturbances are normal or not.

To make asymptotically valid inference using the QMLE γ̂n under unknown heteroskedasticity, we

need a consistent estimator for D−1
n ∆nD

−1
n . As in White (1980), we may have a consistent estimator

of D−1
n ∆nD

−1
n without being able to consistently estimate Σn, which has n unknown parameters. Let

Σ̂n = Diag(ǫ̂2n1, . . . , ǫ̂
2
nn), where ǫ̂n = (ǫ̂n1, . . . , ǫ̂nn)

′ is the residual vector from the QML estimation. Con-

sistent estimators for Dn and ∆n can be, respectively, D̂n and ∆̂n, which are the matrices derived from

replacing Σn in Dn and Ωn by Σ̂n, and replacing γ0 by a consistent estimator γ̂n. The D̂n and ∆̂n can be

consistent because Dn and ∆n with fixed dimensions are estimated as whole terms.

Proposition 5. Under Assumptions 1–4 and 8–10, D̂n = Dn + oP (1) and ∆̂n = ∆n + oP (1).

3.2. GMME

We now consider the GMM estimation of the MESS(1,1). Let the moment vector be

gn(γ) =
1

n

(

ǫ′n(γ)Pn1ǫn(γ), . . . , ǫ
′
n(γ)Pn,kp

ǫn(γ), ǫ
′
n(γ)Fn

)′
, (12)

where ǫn(γ) = eτMn(eαWnyn − Xnβ), the n-dimensional square matrices Pni’s for the quadratic moments

have zero traces when ǫni’s are i.i.d. and have zero diagonals when ǫni’s are independent but with different

variances, and the n × kf instrumental variable matrix Fn used in the 2SLS approach can consist of the

independent columns of Xn, WnXn, MnXn, W
2
nXn, M

2
nXn and so on.18 The GMM objective function with

the weighting matrix ana
′
n is g′n(γ)ana

′
ngn(γ), where the full column rank (kp + kf ) × ka matrix an with

ka ≥ k + 2 converges to a full rank matrix a0 by design.

3.2.1. GMME: Homoskedastic Case

When the disturbances are i.i.d., the GMME can be consistent when the matrices Pni’s have zero traces

but not necessarily zero diagonals. The Pni’s are constructed from Wn and Mn, thus we may assume that

Pni’s are bounded in row and column sum norms.

Assumption 12. The n-dimensional square matrices Pn1, . . . , Pn,kp
have zero traces and are bounded in

both row and column sum norms. Elements of Fn are uniformly bounded constants.

18For α and β, we may use only the linear instrument Fn and implement a 2SLS estimation, for which the objective function

is (eαWnyn−Xnβ)′Fn(F ′

nFn)
−1F ′

n(e
αWnyn−Xnβ) or (eαWnyn−Xnβ)′eτ̂nM

′

nFn(F ′

nFn)
−1F ′

ne
τ̂nMn (eαWnyn−Xnβ) when

taking into account the MESS process in the disturbances, where τ̂n is an initial consistent estimator of τ . This is a nonlinear
2SLS that does not have a closed-form solution. Thus it does not have a computational advantage as the traditional 2SLS and
we do not discuss it separately.
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For any γ,

E[ǫ′n(γ)Pniǫn(γ)] = (e(α−α0)WnXnβ0 −Xnβ)
′eτM

′

nPnie
τMn(e(α−α0)WnXnβ0 −Xnβ)

+ σ2
0 tr(e

−τ0M
′

ne(α−α0)W
′

neτM
′

nPnie
τMne(α−α0)Wne−τ0Mn),

(13)

E[F ′
nǫn(γ)] = F ′

ne
τMn(e(α−α0)WnXnβ0 −Xnβ). (14)

The identification of γ0 requires a unique solution of the limiting equations limn→∞ E gn(γ) = 0 at γ0.

When α = α0 and β = β0, E[F
′
nǫn(γ)] = 0 whatever τ is. Thus τ cannot be identified from the linear

moments E[F ′
nǫn(γ)] = 0, because it only plays a role as weighting. It is possible that α0 and β0 may be

identified from E[F ′
nǫn(γ)] = 0, and τ0 be identified from the quadratic moments E[ǫ′n(γ)Pniǫn(γ)] = 0,

i = 1, . . . , kp. Let Fn = (F1n, F2n) such that limn→∞
1
nF

′
2ne

τMnXn is nonsingular for any τ ∈ [−δ, δ], which

is a part of a rank condition for valid IV’s. The E[F ′
nǫn(γ)] = 0 is equivalent to F ′

1ne
τMn(e(α−α0)WnXnβ0 −

Xnβ) = 0 and F ′
2ne

τMn(e(α−α0)WnXnβ0 − Xnβ) = 0. From the equation involving only F2n, we have

β = (F ′
2ne

τMnXn)
−1F ′

2ne
τMne(α−α0)WnXnβ0. With substitution, the equation involving F1n becomes

F ′
1nH1n(τ)e

τMne(α−α0)WnXnβ0 = 0, where H1n(τ) = In − eτMnXn(F
′
2ne

τMnXn)
−1F ′

2n. Furthermore, it

reduces to F ′
1nH1n(τ)e

τMnXnβ0 = 0 when α = α0. In the case that α0 can be identified from the

equation, F ′
1nH1n(τ)e

τMneηWnXnβ0 6= 0 for any η 6= 0. When α = α0 and β = β0, (13) becomes

σ2
0 tr(e

(τ−τ0)M
′

nPnie
(τ−τ0)Mn) = 0. Then the identification of τ0 requires some matrix Pni such that

limn→∞
1
n tr(e(τ−τ0)M

′

nPnie
(τ−τ0)Mn) 6= 0 when τ 6= τ0. It is also possible that α0 cannot be identified

from the linear moment (14), then the identification of (α0, τ0) would be from the quadratic moments.19

Assumption 13. Suppose that Fn may be written as Fn = (F1n, F2n) such that limn→∞
1
nF

′
2ne

τMnXn is

nonsingular for any τ ∈ [−δ, δ]. Furthermore, either 1) limn→∞
1
nF

′
1nH1n(τ)e

τMneηWnXnβ0 6= 0 for any

η 6= 0 and for all τ ∈ [−δ, δ]; and, for any τ 6= τ0, limn→∞
1
n tr(e

(τ−τ0)M
′

nPnie
(τ−τ0)Mn) 6= 0, for some i ∈

{1, · · · , kp}; or, 2) for any (α, τ) 6= (α0, τ0), limn→∞
1
nβ

′
0X

′
ne

(α−α0)W
′

neτM
′

nH ′
1n(τ)PniH1n(τ)e

τMne(α−α0)WnXnβ0+

σ2
0

n tr(e−τ0M
′

ne(α−α0)W
′

neτM
′

nPnie
τMne(α−α0)Wne−τ0Mn) 6= 0, for some i ∈ {1, · · · , kp}.

As usual for nonlinear extremum estimators, we assume the compactness of the parameter space of γ

(Amemiya, 1985).

Assumption 14. The parameter space Γ of γ is compact and the true γ0 is in the interior of Γ.

Proposition 6. Under Assumptions 1, 2, 5 and 12–14, the GMM estimator γ̂n from the minimization of

g′n(γ)ana
′
ngn(γ) is a consistent estimator of γ0, and

√
n(γ̂n − γ0)

d−→ N
(

0, lim
n→∞

(G′
nana

′
nGn)

−1G′
nana

′
nVnana

′
nGn(G

′
nana

′
nGn)

−1
)

,

19For example, this can occur when F1n is linearly dependent on F2n.
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where Vn = nE[gn(γ0)g
′
n(γ0)] =

1
n





σ4
0

2 ω′
nωn + 1

4 (µ4 − 3σ4
0)ω

′
ndωnd

1
2µ3ω

′
ndFn

1
2µ3F

′
nωnd σ2

0F
′
nFn



 and

Gn = E
∂gn(γ0)

∂γ′ =
1

n





σ2
0

2 ω′
n vec(W

s
n)

σ2
0

2 ω′
n vec(M

s
n) 0

F ′
nWne

τ0MnXnβ0 0 −F ′
ne

τ0MnXn



 ,

with ωn =
(

vec(P s
n1), . . . , vec(P

s
n,kp

)
)

and ωnd =
(

vecD(P
s
n1), . . . , vecD(P

s
n,kp

)
)

, under the condition that

limn→∞ a′nGn exists and has the full rank k + 2.

Within the GMM framework, with moments gn(γ), an optimum GMM will use V −1
n as the optimum

weighting in place of ana
′
n. The variance matrix Vn of gn(γ0) in the preceding proposition can be put into a

more informative form as a positive semi-definite matrix. Let ω#
n = (vec(P#s

n1 ), . . . , vec(P#s
n,kp

)), where P#s
ni =

1
2

√

µ4 − σ4
0 −

µ2
3

σ2
0

Diag(P s
ni) +

√
2σ2

0

2 [P s
ni − Diag(P s

ni)], then Vn = 1
n







ω#
n 0

µ3

2σ0
ωnd σ0Fn







′ 





ω#
n 0

µ3

2σ0
ωnd σ0Fn






.

Thus Vn is positive semi-definite. We require the non-singularity of Vn to formulate the feasible optimal

GMM, which is guaranteed by the following assumption.

Assumption 15. The limits of 1
nF

′
nFn and

σ4
0

2n (ω
′
nωn−ω′

ndωnd)+
1
4n (µ4−σ2

0−
µ2
3

σ2
0

)ω′
ndωnd+

µ2
3

4nσ2
0

ω′
ndHFn

ωnd

exist and are nonsingular, where HFn
= In − Fn(F

′
nFn)

−1F ′
n.

Note that ω′
nωn−ω′

ndωnd =
(

vec(P#s
n1 −Diag(P#s

n1 )), . . . , vec(P#s
n,kp

−Diag(P#s
n,kp

))
)′(

vec(P#s
n1 −Diag(P#s

n1 )),

. . . , vec(P#s
n,kp

− Diag(P#s
n,kp

))
)

≥ 0. When limn→∞
1
nF

′
nFn is nonsingular, the above assumption is satisfied

as long as one of the terms limn→∞
1
n (ω

′
nωn − ω′

ndωnd), limn→∞
1
nω

′
ndωnd, and limn→∞

µ2
3

n ω′
ndHFn

ωnd is

nonsingular. A consistent estimator V̂n for Vn may be obtained from replacing the σ2
0 , µ3 and µ4 in Vn by

their consistent estimators.

Proposition 7. Under Assumptions 1, 2, 5 and 12–15, the feasible optimal GMME γ̂n,o from the minimiza-

tion of g′n(γ)V̂
−1
n gn(γ) is a consistent estimator of γ0, and

√
n(γ̂n,o − γ0)

d−→ N
(

0, limn→∞(G′
nV

−1
n Gn)

−1
)

.

As the possible selections of linear and quadratic moments via Fn and Pni’s are numerous, there is an

issue regarding the best design for those matrices. For that purpose, we follow Breusch et al. (1999) to show

that additional linear and quadratic moments are redundant given properly selected ones.20 If eτ0MnXn

contains an intercept term due to the presence of an intercept term in Xn, let X
∗
n be the submatrix of Xn

with the intercept term deleted, so that eτ0MnXn = [eτ0MnX∗
n, c(τ0)ln], where c(τ0) is a scalar function of

20This pursuit is motivated by that in Liu et al. (2010).
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τ0.
21 Otherwise, X∗

n = Xn and eτ0MnX∗
n = eτ0MnXn. Suppose that there are k∗ columns in X∗

n. Let X∗
nl

be the lth column of X∗
n, η3 = µ3σ

−3
0 and η4 = µ4σ

−4
0 be the skewness and kurtosis of the disturbances.

Furthermore, let A
(t)
n = An − In tr(An)/n for any n × n matrix An, which is the matrix An with its trace

subtracted out from its diagonal. Thus A
(t)
n has zero trace. The following proposition gives the moment

conditions for the GMME that generate the smallest variance within the class of all GMM estimators with

linear and quadratic moments, when disturbances are homoskedastic.

Proposition 8. Suppose that Assumptions 1, 2, 5, and 12–15 hold. Let g∗n(γ) =
1
n (P

∗
n1ǫ(γ), . . . , P

∗
n,k∗+4ǫ(γ),

F ∗
n)

′ǫ(γ), where P ∗
n1 = Wn, P ∗

n2 = Diag(Wn), P ∗
n3 = Diag(eτ0MnWnXnβ0)

(t), P ∗
n4 = Mn, P ∗

n,l+4 =

Diag(eτ0MnX∗
nl)

(t) for l = 1, . . . , k∗, and F ∗
n = (F ∗

n1, F
∗
n2, F

∗
n3, F

∗
n4) with F ∗

n1 = eτ0MnX∗
n, F

∗
n2 = eτ0MnWnXnβ0,

F ∗
n3 = ln, and F ∗

n4 = vecD(Wn). Denote V ∗
n = nE[g∗n(γ0)g

∗′

n (γ0)]. Then γ̂∗
n = minγ g

∗′

n (γ)V ∗−1
n g∗n(γ) is the

best GMME within the class of GMMEs with linear and quadratic moments, and γ̂∗
n has the asymptotic

distribution that
√
n(γ̂∗

n − γ0)
d−→ N

(

0, limn→∞ Λ∗−1
n

)

, where Λ∗
n = G∗′

n V ∗−1
n G∗

n with G∗
n = E

∂g∗

n(γ0)
∂γ′

.

The detailed proof of this proposition is in Appendix A. From the proof, Λ∗
n has the following expression

Λ∗
n =

1

n













tr(P ∗s
αnWn) + σ−2

0 (eτ0MnWnXnβ0)
′F ∗

αn ∗ ∗

tr(P ∗s
τnWn) tr(P ∗s

τnMn) ∗

−σ−2
0 (eτ0MnXn)

′F ∗
αn 0 σ−2

0 (eτ0MnXn)
′F ∗

βn













, (15)

where P ∗
αn = P ∗

n1 − (η4−3)−η2
3

(η4−1)−η2
3

P ∗
n2 − σ−1

0 η3

(η4−1)−η2
3

P ∗
n3, P ∗

τn = Mn, P ∗
βnl = P ∗

n,l+4 for l = 1, . . . , k∗, F ∗
αn =

η4−1
(η4−1)−η2

3

F ∗
n2 −

η2
3

(η4−1)−η2
3

F ∗
n3(

1
n l

′
ne

τ0MnWnXnβ0)− 2σ0η3

(η4−1)−η2
3

F ∗
n4,

F ∗
βn =

η4 − 1

(η4 − 1)− η23
F ∗
n1 −

η23
(η4 − 1)− η23

F ∗
n3(

1

n
l′ne

τ0MnX∗
n)

if eτ0MnXn does not contain an intercept term; otherwise

F ∗
βn =

η4 − 1

(η4 − 1)− η23
F ∗
n1(Ik∗ , 0k∗×1) +

η4 − 1

(η4 − 1)− η23
c(τ0)F

∗
n3e

′
kk − η23

(η4 − 1)− η23
F ∗
n3(

1

n
l′ne

τ0MnXn),

where ekj is the jth unit vector in Rk. From the proof, the best moments in Proposition 8 are equivalent

to the use of the following moments 1
n

(

P ∗
αnǫn(γ), P

∗
τnǫn(γ), P

∗
βn1ǫn(γ) . . . , P

∗
βnk∗ǫn(γ), F

∗
αn, F

∗
βn

)′
ǫn(γ). The

above vector relates the moments to the skewness and kurtosis.

In the case of normal disturbances, as η3 = η4−3 = 0, the best moments can be simplified and are equiv-

alent to 1
n

(

Wnǫn(γ),Mnǫn(γ), P
∗
βn1ǫn(γ) . . . , P

∗
βnk∗ǫn(γ), e

τ0MnWnXnβ0, e
τ0MnXn

)′
ǫn(γ). Furthermore, the

21IfMn is row-normalized and Xn contains an intercept term, eτ0Mn ln =
∑

∞

j=0
1
j!
τ
j
0M

j
nln = eτ0 ln. In this case, c(τ0) = eτ0 .

Otherwise eτ0MnXn generally does not contain an intercept term.
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moments
(

P ∗
βn1ǫn(γ) . . . , P

∗
βnk∗ǫn(γ)

)′
ǫn(γ) can be shown to be redundant given

g#n (γ) =
1

n

(

Wnǫn(γ),Mnǫn(γ), e
τ0MnWnXnβ0, e

τ0MnXn

)′
ǫn(γ), (16)

by an argument similar to the proof of Proposition 8. This result can also be shown by using the generalized

Cauchy-Schwarz inequality, as in subsequent section.

The Gn in Proposition 7 can be written as Gn = 1
nσ2

0

G′
2nG1n, where

G1n =







√
2σ2

0

2 vec(Ws
n)

√
2σ2

0

2 vec(Ms
n) 0

σ0Wne
τ0MnXnβ0 0 −σ0e

τ0MnXn






and G2n =







√
2σ2

0

2 ωn 0

0 σ0Fn






.

When ǫni’s are normal, µ3 = µ4 − 3σ4
0 = 0. Furthermore, even under non-normal disturbances, if

Pn1, ..., Pn,kp
are chosen to have zero diagonal, then ωnd = 0. For those cases, Vn in Proposition 7 reduces

to Vn = 1
nG

′
2nG2n. Thus for those cases, G′

nV
−1
n Gn ≤ Λn by the generalized Cauchy-Schwarz inequality,

where Λn = 1
nσ4

0

G′
1nG1n. As Wn and Mn both have zero traces, when the moment vector is g#n (γ) in (16),

G′
nV

−1
n Gn = Λn. Thus the best moment vector is g#n (γ) in (16) when ǫni’s are normal. When Wn and Mn

can commute, the best moment vector, with the restriction that Pni’s have zero diagonals, is22

g#n,d(γ) =
1

n

(

Wnǫn(γ),Mnǫn(γ), e
τ0MnWnXnβ0, e

τ0MnXn

)′
ǫn(γ). (17)

Since G1n =
√
2σ0

2 C1n, where C1n is given in (11), the asymptotic VC matrix Λ−1
n for the best GMME in

the case of normal disturbances is the same as that for the MLE of γ. It is of interest to note that for

the case with non-normal disturbances, when Wn and Mn can commute the QMLE of γ happens to be

asymptotically efficient within the class of GMMEs with linear and quadratic moments where the quadratic

matrices Pni’s have zero diagonals.

Corollary 1. Suppose that Assumptions 1, 2, 5 and 12–15 hold.

(i) When the disturbances ǫni’s are normal, for the class of GMMEs with linear and quadratic moments

where the quadratic matrices Pni’s have zero traces, the best GMME is the optimal GMME with the

moment vector g#n (γ) in (16);

(ii) When Wn and Mn can commute, for the class of GMMEs with linear and quadratic moments where the

quadratic matrices Pni’s have zero diagonals, the best GMME is the optimal GMME with the moment

vector g#n,d(γ) in (17).

The best moments in the case of normal disturbances are of interest to be compared with those for the

SARAR model. For the latter model, the best instruments are Rn[Xn,WnS
−1
n Xnβ0] and the matrices for

22When Wn =Mn, the moment 1
n
ǫ′n(γ)Mnǫn(γ) should not be considered.
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the best quadratic moments are RnWnS
−1
n R−1

n − In tr(WnS
−1
n )/n and MnR

−1
n − In tr(MnR

−1
n )/n, where

Rn = In − ρ0Mn and Sn = In − λ0Wn. Thus, in addition to Xn and WnXn, higher order spatially lagged

Xn, i.e., W 2
nXn, W 3

nXn, etc., will provide additional information. For the quadratic moments, spatial

weights matrices of higher order, namely, W 2
n , W

3
n , etc., from which the average of their diagonal elements is

subtracted from each diagonal element, can be used as additional orthogonal conditions. On the other hand,

the best instruments and quadratic moments for the MESS(1,1) rely simply on spatial weights matrices Wn

and Mn. Note also that when there is no MESS process in the disturbances, the moment vector for the best

GMME in the case of normal disturbances can be simply taken as 1
n [ǫ

′
n(γ)Wnǫn(γ), ǫ

′
n(γ)(WnXn, Xn)IN ]′,

where (WnXn, Xn)IN denotes the independent columns of (WnXn, Xn).
23 Thus it has a simple form which

does not involve any unknown parameter. By contrast, the moment vector for the best optimal GMME of

the SAR model can be taken as 1
n [ǫ

′
n(γ)(WnS

−1
n − In tr(WnS

−1
n )/n)ǫn(γ), ǫ

′
n(γ)(WnS

−1
n Xn, Xn)IN ]′, which

involves the unknown parameter λ0 in the matrix inverse S−1
n .

There exists a link between the MLE (or QMLE) and moment conditions. The first order conditions for

the MLE using the function Qn(γ) can be written as

∂Qn(γ)

∂α
= 2(eτMnWnXnβ)

′ǫn(γ) + 2ǫ′n(γ)e
τMnWne

−τMnǫn(γ), (18)

∂Qn(γ)

∂τ
= 2ǫ′n(γ)Mnǫn(γ) and

∂Qn(γ)

∂β
= −2(eτMnXn)

′ǫn(γ). (19)

Thus the underlying moments integrated by the MLE are also the linear moments with instruments from

eτ0MnXn and eτ0MnWnXn, and the quadratic moments with the matrices Wn and Mn. The matrix eτ0Mn

in front of Xn and WnXn is a transformation for the MESS disturbances. When the likelihood function

is correctly specified under the normal disturbances, the combinations of linear and quadratic moments in

(18)–(19) are the efficient ones. But they might not be so when the likelihood function is only a quasi one.

The optimal GMME employs an optimal weighting matrix when using the moments g#n (γ), but the QMLE

might not. Thus a best GMME within the class of linear and quadratic moments can be more efficient

asymptotically than the QMLE when the disturbances are non-normal or Wn and Mn cannot commute.

This can be shown analytically. Let

hn(γ) =
2

n













(eτ0MnWnXnβ0)
′ǫn(γ) + ǫ′n(γ)Wnǫn(γ)

ǫ′n(γ)Mnǫn(γ)

−(eτ0MnXn)
′ǫn(γ)













= Ag#n (γ), with A = 2













1 0 1 0

0 1 0 0

0 0 0 −Ik













.

23If Wn is row normalized and Xn contains an intercept, as Wnln = ln, only one of the two intercepts should be included in
(WnXn, Xn).
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The hn(γ) and
1
n

∂Qn(γ)
∂γ have a similar structure: replacing τ0 in the components eτ0MnWnXnβ0 and eτ0MnXn

in hn(γ) by τ yields 1
n

∂Qn(γ)
∂γ . It is obvious that E ∂hn(γ0)

∂γ′
= 1

n E
(∂2Qn(γ0)

∂γ∂γ′

)

and E
(

nhn(γ0)h
′
n(γ0)

)

=

1
n E

(∂Qn(γ0)
∂γ

∂Qn(γ0)
∂γ′

)

. Thus, by Proposition 4, the asymptotic VC matrix for the QMLE of γ is equal to

limn→∞
(

E ∂hn(γ0)
∂γ′

)−1
E
(

nhn(γ0)h
′
n(γ0)

)(

E ∂hn(γ0)
∂γ

)−1
. Therefore,

(

E
∂hn(γ0)

∂γ′
)−1

E[hn(γ0)h
′
n(γ0)]

(

E
∂h′

n(γ0)

∂γ

)−1
=

[

G#′

n (γ0)A
′[AE

(

g#n (γ0)g
#′

n (γ0)
)

A′]−1
AG#

n (γ0)
]−1

≥
[

G#′

n (γ0)
[

E
(

g#n (γ0)g
#′

n (γ0)
)]−1

G#
n (γ0)

]−1

,

(20)

by the generalized Cauchy-Schwarz inequality, where G#
n (γ0) = E

∂g#
n (γ0)
∂γ′

. The last term above is the

asymptotic VC matrix of the feasible optimal GMME with the moment vector g#n (γ). The inequality in

(20) becomes an equality if there is a matrix ∆gh such that G#
n (γ0) = E

(

g#n (γ0)g
#′

n (γ0)
)

A′∆gh. From

Proposition 6, we have

G#
n (γ0) =

1

n













σ2
0 tr(W

s
nWn) σ2

0 tr(W
s
nMn) 0

σ2
0 tr(M

s
nWn) σ2

0 tr(M
s
nMn) 0

(eτ0MnWnXnβ0, e
τ0MnXn)

′eτ0MnWnXnβ0 0 −(eτ0MnWnXnβ0, e
τ0MnXn)

′eτ0MnXn













and

E
(

g#n (γ0)g
#′

n (γ0)
)

A′ =
2σ2

0

n
G#

n +

2

n2













(µ4 − 3σ4
0) vecD

′(Wn) vecD(Wn) + µ3 vecD
′(Wn)e

τ0MnWnXnβ0 0 −µ3 vecD
′(Wn)e

τ0MnXn

0 0 0

µ3(e
τ0MnWnXnβ0, e

τ0MnXn)
′ vecD(Wn) 0 0













.

When τ0 = 0; Wn and Mn can commute; or µ3 = µ4 − 3σ4
0 = 0, we have ∆gh = n

2σ2
0

Ik+2. Except for those

cases, ∆gh may not exist. As g#n (γ) in (16) is only a special case of linear and quadratic moments, the best

GMME in Proposition 8 can be more efficient asymptotically than the QMLE.

The best moment vector g∗n(γ) and the optimal weighting matrix V ∗−1
n involve unknown parameters.

In practice, g∗n(γ) and V ∗−1
n can be estimated using initial consistent estimates and a feasible best GMME

can be derived. Such a feasible best GMME has the same asymptotic distribution as the best GMME in

Proposition 8.

Proposition 9. Suppose that Assumptions 1, 2, 5 and 12–15 hold. Let γ̂n, σ̂2
n, µ̂3n and µ̂4n be, respec-

tively,
√
n-consistent estimators of γ0, σ2

0, µ3 and µ4. The P̂ ∗
n1, . . . , P̂ ∗

n,k∗+4, F̂ ∗
n , F̂ ∗

1n, . . . , F̂ ∗
n4 and

V̂ ∗
n denote the matrices derived when the unknown parameters in P ∗

n1, . . . , P ∗
n,k∗+4, F ∗

n , F ∗
1n, . . . , F ∗

n4

and V ∗
n are replaced by the corresponding consistent estimators. Then the feasible best GMME γ̂∗

n,f =

minγ ĝ
∗′

n (γ)V̂ ∗−1
n ĝ∗n(γ), where ĝ∗n(γ) =

1
n (P̂

∗
n1ǫ(γ), . . . , P̂

∗
n,k∗+4ǫ(γ), F̂

∗
n)

′ǫ(γ), has the same asymptotic distri-

20



bution as γ̂∗
n = minγ g

∗′

n (γ)V ∗−1
n g∗n(γ).

3.2.2. GMME: Heteroskedastic Case

When the disturbances are independent but may have different variances, the GMME can be consistent

when the matrices Pni’s have zero diagonals.24

Assumption 16. The n-dimensional square matrices Pn1, . . . , Pn,kp
have zero diagonals and are bounded

in both row and column sum norms. Elements of Fn are uniformly bounded constants.

By taking into account variances of disturbances, the identification condition is similarly derived as that

in the homoskedastic case.

Assumption 17. Suppose that Fn may be written as Fn = (F1n, F2n) such that limn→∞
1
nF

′
2ne

τMnXn is

nonsingular for any τ ∈ [−δ, δ]. Furthermore, either 1) limn→∞
1
nF

′
1nH1n(τ)e

τMneηWnXnβ0 6= 0 for any

η 6= 0 and for all τ ∈ [−δ, δ]; and, for any τ 6= τ0, limn→∞
1
n tr(e

(τ−τ0)M
′

nPnie
(τ−τ0)MnΣn) 6= 0, for some i ∈

{1, · · · , kp}; or, 2) for any (α, τ) 6= (α0, τ0), limn→∞
1
nβ

′
0X

′
ne

(α−α0)W
′

neτM
′

nH ′
1n(τ)PniH1n(τ)e

τMne(α−α0)WnXnβ0+

1
n tr(e−τ0M

′

ne(α−α0)W
′

neτM
′

nPnie
τMne(α−α0)Wne−τ0MnΣn) 6= 0, for some i ∈ {1, · · · , kp}.

Proposition 10. Under Assumptions 1, 2, 8, 14, 16 and 17, the GMM estimator γ̂n from the minimization

of g′n(γ)ana
′
ngn(γ) is a consistent estimator of γ0, and

√
n(γ̂n − γ0)

d−→ N
(

0, lim
n→∞

(G′
nana

′
nGn)

−1G′
nana

′
nVnana

′
nGn(G

′
nana

′
nGn)

−1
)

,

where Vn = nE[gn(γ0)g
′
n(γ0)] =

1
n





1
2ω

′
nωn 0

0 F ′
nΣnFn



, and

Gn = E
∂gn(γ0)

∂γ′ =
1

n





1
2ω

′
n vec(Σ

1/2
n (Σ−1

n Wn)
sΣ

1/2
n ) 1

2ω
′
n vec(Σ

1/2
n (Σ−1

n Mn)
sΣ

1/2
n ) 0

F ′
nWne

τ0MnXnβ0 0 −F ′
ne

τ0MnXn





with ωn =
(

vec(Σ
1/2
n P s

n1Σ
1/2
n ), . . . , vec(Σ

1/2
n P s

n,kp
Σ

1/2
n )

)

, under the condition that limn→∞ a′nGn exists and

has the full rank k + 2.

The Vn does not involve the third and fourth moments of the disturbances, as the matrices in the

quadratic forms of disturbances in gn(γ0) have zero diagonals. An optimal GMME can also be formulated.

Assumption 18. The limits of 1
nω

′
nωn and 1

nF
′
nΣnFn exist and are nonsingular.

A consistent estimator for Vn is the matrix V̂n derived by replacing the Σn in Vn by Σ̂n = Diag(ǫ̂2n1, . . . , ǫ̂
2
nn),

where ǫ̂ni’s are the residuals from an initial GMM estimation. Under Assumption 18, the limiting inverse

of Vn exists. Then the objective function for the feasible optimal GMME is g′n(γ)V̂
−1
n gn(γ).

24Pni =Wn; Pni =Mn or Pni =
(

W 2
n −Diag(W 2

n)
)

constitute three examples of matrices that could be used.

21



Proposition 11. Under Assumptions 1, 2, 8, 14 and 16–18, the feasible optimal GMME γ̂n,o from the mini-

mization of g′n(γ)V̂
−1
n gn(γ) is a consistent estimator of γ0, and

√
n(γ̂n,o−γ0)

d−→ N
(

0, limn→∞(G′
nV

−1
n Gn)

−1
)

.

Note that tr
(

ΣnP
s
niΣn(Σ

−1
n Wn)

s
)

= tr
(

ΣnP
s
niΣn

(

Σ−1
n (Wn − Diag(Wn))

)s)
as P s

ni has a zero diagonal

and Σn is a diagonal matrix, then Gn may be written as Gn = 1
n







√
2
2 ωn 0

0 Σ
1/2
n Fn







′

G1n, where

G1n =







√
2
2 vec

(

Σ
1/2
n

(

Σ−1
n (Wn −Diag(Wn))

)s
Σ

1/2
n

)

√
2
2 vec(Σ

1/2
n (Σ−1

n Mn)
sΣ

1/2
n ) 0

Σ
−1/2
n Wne

τ0MnXnβ0 0 −Σ
−1/2
n eτ0MnXn






.

Thus G′
nV

−1
n Gn ≤ Λn by the generalized Cauchy-Schwarz inequality, where Λn = 1

nG
′
1nG1n. When the

moment vector gn(γ) is equal to g∗n(γ) =
1
n

[

ǫ′n(γ)Σ
−1
n (Wn − Diag(Wn))ǫn(γ), ǫ

′
n(γ)Σ

−1
n Mnǫn(γ), ǫ

′
n(γ)F

∗
n

]′

with F ∗
n = Σ−1

n [Wne
τ0MnXnβ0, e

τ0MnXn], G
′
nV

−1
n Gn = Λn. Therefore, if the variances σ2

ni’s can be con-

sistently estimated, e.g., when we have a parametric model for the variances, then we may have a feasible

best optimal GMME, for which the moment vector is obtained from replacing the γ0 in g∗n(γ) by an initial

consistent estimator.25

If the elements of Σn cannot be consistently estimated, we do not have a feasible best GMME, e.g., for

the unknown heteroskedastic case, Σn with n parameters cannot be consistently estimated. However, we

may use the moment vector

ĝ#n,d(γ) =
1

n
[ǫ′n(γ)(Ŵn −Diag(Ŵn))ǫn(γ), ǫ

′
n(γ)Mnǫn(γ), ǫ

′
n(γ)[Ŵne

τ̂nMnXnβ̂, e
τ̂nMnXn]]

′, (21)

and implement a feasible optimal GMM estimation. A special case of interest is when Wn and Mn can

commute. In that case, ĝ#n,d(γ) reduces to

ĝ#n,d(γ) =
1

n
[ǫ′n(γ)Wnǫn(γ), ǫ

′
n(γ)Mnǫn(γ), ǫ

′
n(γ)[Wne

τ̂nMnXnβ̂n, e
τ̂nMnXn]]

′. (22)

It can be shown, as for the proof of Proposition 9, that the optimal GMME using the moment vector ĝ#n,d(γ)

has the same asymptotic distribution as that using the moment vector g#n,d(γ) in (17). As shown in (18)–(19),

the QMLE also integrates those moments in g#n,d(γ). But because of the optimal weighting, the optimal

GMME using the moment vector g#n,d(γ) is at least as efficient as the QMLE and generally more efficient

than the QMLE asymptotically, according to (20) and arguments similar to those after (20).

25For the SARAR model with heteroskedasticity, we have also found that the best instruments are Σ−1
n Rn[Xn,WnS

−1
n Xnβ0]

and the matrices for the quadratic moments are Σ−1
n [RnWnS

−1
n R−1

n − Diag(RnWnS
−1
n R−1

n )] and Σ−1
n [MnR

−1
n −

Diag(MnR
−1
n )]. For the SAR model with heteroskedasticity, Lin and Lee (2010) have not discussed the possible best GMME

by the generalized Cauchy-Schwarz inequality as above.
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3.3. On the Inference of Elements in Impact Matrices

Assessing the statistical significance of the effect of a change in a regressor on the dependent variable

is one of the main objectives of applied economists. In spatial regressions, as shown in Section 2, one first

has to compute the reduced form of the specification and calculate the matrix of partial derivatives of

the dependent variable with respect to the concerned regressor in order to figure out the matrix of impacts.

Inference regarding causal effects should then be based on this matrix, which, for regressor Xnk, is presented

in (5). All the elements of this impact matrix are possibly different from each other and performing inference

on them would be of value.

For the SAR model, LeSage and Pace (2009) propose a Bayesian Markov chain Monte Carlo approach to

produce inference on the scalar summary of effects, namely the average direct, indirect and total impacts. In

this paper, we take the classical approach based on the Delta method to perform inference on those elements

of the impact matrix. Statistical significance on differences of impacts can also be assessed. For instance,

one could be interested in testing if the effect of the kth regressor for observation i on yni will be the same

as of the lth regressor (with l possibly different from k) for individual j on ynj , with j possibly different

from i.

Let γ̂n be a
√
n-consistent estimator of γ, and eni be the ith column of In. The impact of xn,jp (pth

regressor for individual j) on yni is estimated to be e′nie
−α̂nWnenj β̂np, and the effect of xn,sq on ynr is

estimated to be e′nre
−α̂nWnensβ̂nq. Then, by the mean value theorem,

√
n[(e′nie

−α̂nWnenj β̂np − e′nre
−α̂nWnensβ̂nq)− (e′nie

−α0Wnenjβ0p − e′nre
−α0Wnensβ0q)]

= A1n

√
n(α̂n − α0, β̂np − β0p, β̂nq − β0q)

′ + oP (1)

d−→ N(0, lim
n→∞

A1nB1nA
′
1n),

(23)

where A1n = [−e′nie
−α0WnWnenjβ0p + e′nre

−α0WnWnensβ0q, e
′
nie

−α0Wnenj ,−e′nre
−α0Wnens] and B1n is the

asymptotic VC matrix of
√
n(α̂n−α0, β̂np −β0p, β̂nq −β0q)

′. To test whether the two impacts are equal, we

may use the asymptotically standard normal statistic
√
n(e′nie

−α̂nWnenj β̂np−e′nre
−α̂nWnensβ̂nq)/(Â1nB̂1nÂ

′
1n)

1/2

under the null hypothesis, where Â1n and B̂1n are, respectively, consistent estimates of A1n and B1n. An-

other example is in testing whether the average direct effect 1
n tr(eα̂nWn)β̂np is significantly different from

zero. It can be shown that

1√
n
tr(e−α̂nWn)β̂np −

1√
n
tr(e−α0Wn)β0p = A2n

√
n[α̂n − α0, β̂np − β0p]

′ + oP (1)

d−→ N
(

0, lim
n→∞

A2nB2nA
′
2n

)

,

(24)

where A2n = [− 1
n tr(e−α0WnWn)β0p,

1
n tr(e−α0Wn)] and B2n is the asymptotic VC matrix of

√
n[α̂n −
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α0, β̂np − β0p]
′. Let Â2n and B̂2n be, respectively, consistent estimates of A2n and B2n.

Lemma 1.
√
n[(e′nie

−α̂nWnenj β̂np−e′nre
−α̂nWnensβ̂nq)−(e′nie

−α0Wnenjβ0p−e′nre
−α0Wnensβ0q)](Â1nB̂1nÂ

′
1n)

−1/2 d−→
N(0, 1) and 1√

n
[tr(e−α̂nWn)β̂np − tr(e−α0Wn)β0p](Â2nB̂2nÂ

′
2n)

−1/2 d−→ N(0, 1).

Several applications of this lemma will be presented in Section 5 which is dedicated to the application

of the MESS to figure out the dominant type of outward FDI for Belgium. However, before turning to the

empirical application, we first present Monte Carlo experiments which assess the finite sample performance

of the MLEs, QMLEs and GMMEs.

4. Monte Carlo Simulations

We consider a MESS(1,1) model with two regressors: eαWnyn = β1Xn1+β2Xn2+un, e
τMnun = ǫn. The

interaction matrix Wn is defined as the 5 nearest neighbors, while we considered two different definitions for

Mn. Firstly, Mn = Wn which makes the QMLE consistent even in the presence of unknown heteroskedas-

ticity. Secondly, Mn is defined as a 15 nearest neighbors. In this case, Wn and Mn do not commute and

the QMLE will not be consistent in the presence of unknown heteroskedasticity.26 The elements of Xn1 and

Xn2 are independently drawn from, respectively, the uniform distribution U(0, 10) and the standard normal

distribution. For each repetition, the regressors are randomly redrawn.

Three different specifications for the error term are considered. In the first case, the disturbances are

i.i.d. normal; in the second case, the disturbances are i.i.d. with a standardized Γ(2, 1) distribution; in the

third case, the disturbances are heteroskedastic, where the heteroskedasticity is defined as the multiplication

of a standardized Γ(2, 1) distribution by the value of the first regressor. In the homoskedastic cases (the

first two cases), the variance σ2 of disturbances is set to keep the signal-to-noise ratio constant. This ratio is

defined as the variance of β1Xn1+β2Xn2 over the sum of variances of β1Xn1+β2Xn2 and ǫn (see Liu et al.,

2010). In these Monte Carlo experiments, the signal-to-noise ratio is set to 0.5. In the absence of spatial

autocorrelation, this ratio would represent a R2 = 0.5. In the heteroskedastic case, the average variances of

the disturbances is set to be equal to σ2.

Two sample sizes, 100 and 254, are considered, corresponding respectively to the number of counties in

North Carolina and in Texas. The values of α and τ vary from −2 to 2 by increment of 1 while β1 and β2

are set to 1. All the experiments were replicated 1000 times. For these simulations, the GMM estimator is

a two step feasible optimal GMME with the first step weighting matrix being an identity matrix. The best

26Interaction matrices have been normalized by the spectral radius.
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moments are used for the homoskedastic case,27 while the moment vector for the heteroskedastic case is

(21). When there are unknown parameters in the moment conditions, the initial consistent estimator used

is the GMME with the moment vector [ǫ′n(γ)Wnǫn, ǫ
′
n(γn)Mnǫn(γ), ǫ

′
n(γ)(WnXn, Xn)]

′.

Tables 1–3 summarize the results for the homoskedastic cases with the sample size n = 100.28 We report

the bias, standard errors (in italics) and root mean squared error (RMSE) (in bold) for both QML and

GMM estimates. When the disturbances are normal, the results for the QML and GMM estimates are very

similar in most cases. While the biases for α, β1 and β2 are all smaller than 0.1, the bias for τ can be close

to 0.3. Relatively large standard error is also observed for τ in some cases. When the disturbances are

non-normal, for β1 and β2 in all cases and α in most cases, the GMM estimator has smaller standard error

than the QML estimator; for τ , the GMM estimator has a smaller standard error only when Wn = Mn.

Table 4 reports the estimates of α and τ in the heteroskedastic case. When Wn = Mn, the biases of the

QML and GMM estimators are very small and their variances have similar magnitudes. When Wn 6= Mn,

we observe that it is mainly the estimation of τ which is affected by the difference in interaction matrices.

Indeed, for both QML and GMM estimation procedures, estimators of α, β1 and β2 have similarly small

biases and RMSE. For positives values of τ , GMME behaves better than its QMLE counterpart while for

negative and null values of τ both estimators behaves similarly. Even though the QMLE is inconsistent

theoretically when Wn 6= Mn and τ 6= 0, the largest bias for the QMLE of τ in simulations does not exceed

0.3. For n = 254, we do not observe any difference in the behavior of QMLE and GMME.

5. Application to Belgium’s outward FDI

To the best of our knowledge, with the recent exceptions of Coughlin and Segev (2000); Blonigen et al.

(2007); Baltagi et al. (2007, 2008) and Garretsen and Peeters (2009), the literature on FDI has overlooked

the third country effect as a determinant of bilateral FDI. Coughlin and Segev (2000) consider inward

FDI for 29 Chinese provinces and find positive and significant spatially autocorrelated error terms (SEM

specification). Blonigen et al. (2007) distinguish 4 different types of FDI that multinational enterprises

(MNEs) can undertake, summarized in Table 5 (corresponding to Table 1 in Blonigen et al., 2007) and

can be identified based on the sign of the spatial lag parameter and of the surrounding-market potential

variable.29

27The moment vector (16) for normal disturbances, and g∗n(γ) in Proposition 8 for non-normal disturbances.
28The results for n = 254 are similar. We observe that bias, standard errors and thus RMSE are lower when the sample size

becomes larger. These results are reported in the supplementary file. Besides, estimates for β1 and β2 are only reported for
the QML estimator in the homoskedastic case and others are in the supplementary file.

29Since the data we have do concern countries and not MNEs, we can only observe the dominant type of MNE behavior in
terms of FDI, as the data may contain a mixture of the different motivations for FDI.
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Table 1: QML estimation results for α̂ and τ̂ for the homoskedastic case with n=100
Results for the α̂ estimator

Results for Wn = Mn Results for Wn 6= Mn

Normally distributed error terms Non-normally distributed error terms Normally distributed error terms Non-normally distributed error terms
α α α α

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

τ = −2
0.027 0.029 0.027 0.027 0.029 0.013 0.017 0.012 0.011 0.021 0.007 0.007 0.008 0.007 0.008 0.007 0.007 0.008 0.008 0.007
0.261 0.261 0.260 0.260 0.262 0.248 0.250 0.250 0.250 0.248 0.162 0.161 0.161 0.161 0.161 0.158 0.158 0.158 0.157 0.158
0.262 0.262 0.261 0.262 0.263 0.248 0.250 0.251 0.251 0.249 0.162 0.161 0.161 0.161 0.161 0.158 0.159 0.158 0.158 0.158

τ = −1
0.002 0.002 0.003 0.002 0.004 0.002 0.000 0.002 0.002 0.003 0.000 0.002 0.003 0.003 0.002 0.005 0.003 0.004 0.005 0.004
0.143 0.143 0.142 0.143 0.143 0.136 0.136 0.136 0.137 0.136 0.128 0.127 0.127 0.127 0.127 0.127 0.125 0.126 0.128 0.126
0.143 0.143 0.142 0.143 0.143 0.136 0.136 0.136 0.137 0.136 0.128 0.127 0.127 0.127 0.127 0.127 0.125 0.126 0.128 0.126

τ = 0
0.011 0.012 0.010 0.012 0.010 0.005 0.006 0.007 0.006 0.007 0.007 0.007 0.006 0.006 0.007 0.007 0.008 0.007 0.008 0.007
0.111 0.113 0.110 0.111 0.111 0.107 0.106 0.107 0.108 0.108 0.096 0.096 0.095 0.095 0.095 0.098 0.099 0.098 0.099 0.098
0.112 0.114 0.111 0.112 0.111 0.107 0.106 0.107 0.108 0.108 0.096 0.096 0.095 0.095 0.095 0.099 0.099 0.098 0.099 0.099

τ = 1
0.016 0.015 0.016 0.016 0.016 0.007 0.008 0.005 0.008 0.007 0.009 0.009 0.010 0.009 0.010 0.010 0.009 0.008 0.009 0.009
0.121 0.121 0.121 0.122 0.122 0.118 0.118 0.117 0.118 0.117 0.093 0.092 0.094 0.093 0.093 0.095 0.095 0.095 0.095 0.094
0.122 0.122 0.123 0.123 0.123 0.118 0.118 0.117 0.118 0.118 0.093 0.092 0.094 0.093 0.093 0.095 0.095 0.095 0.095 0.094

τ = 2
0.014 0.016 0.016 0.014 0.015 0.003 0.006 0.003 0.004 0.005 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 0.009
0.118 0.118 0.118 0.117 0.118 0.116 0.115 0.116 0.116 0.116 0.091 0.091 0.091 0.091 0.090 0.091 0.091 0.091 0.091 0.091
0.119 0.119 0.120 0.118 0.119 0.116 0.116 0.116 0.116 0.116 0.091 0.091 0.091 0.091 0.090 0.092 0.091 0.091 0.092 0.091

Results for the τ̂ estimator
Results for Wn = Mn Results for Wn 6= Mn

Normally distributed error terms Non-normally distributed error terms Normally distributed error terms Non-normally distributed error terms
α α α α

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

τ = −2
0.016 0.019 0.016 0.016 0.021 0.016 0.020 0.013 0.013 0.023 0.049 0.049 0.050 0.053 0.049 0.075 0.075 0.073 0.075 0.072
0.325 0.323 0.324 0.325 0.326 0.314 0.313 0.315 0.315 0.313 0.382 0.378 0.384 0.380 0.381 0.381 0.381 0.380 0.382 0.379
0.326 0.324 0.325 0.326 0.327 0.314 0.314 0.316 0.316 0.313 0.385 0.382 0.387 0.384 0.385 0.389 0.388 0.387 0.389 0.386

τ = −1
0.026 0.026 0.023 0.026 0.025 0.018 0.014 0.017 0.015 0.018 0.108 0.100 0.102 0.104 0.101 0.121 0.116 0.123 0.120 0.122
0.234 0.234 0.234 0.234 0.235 0.224 0.223 0.224 0.223 0.224 0.382 0.382 0.383 0.383 0.380 0.383 0.379 0.386 0.382 0.385
0.235 0.236 0.235 0.236 0.237 0.225 0.224 0.224 0.224 0.225 0.397 0.395 0.396 0.397 0.393 0.402 0.397 0.405 0.400 0.404

τ = 0
0.050 0.053 0.051 0.052 0.048 0.035 0.035 0.036 0.033 0.034 0.153 0.152 0.155 0.154 0.156 0.161 0.167 0.162 0.166 0.161
0.219 0.221 0.219 0.219 0.219 0.208 0.208 0.210 0.209 0.211 0.364 0.367 0.372 0.368 0.366 0.377 0.377 0.377 0.379 0.377
0.224 0.227 0.225 0.225 0.224 0.211 0.211 0.213 0.212 0.214 0.395 0.397 0.403 0.399 0.398 0.410 0.412 0.410 0.414 0.409

τ = 1
0.075 0.075 0.075 0.075 0.076 0.054 0.055 0.053 0.057 0.054 0.209 0.209 0.209 0.210 0.211 0.214 0.206 0.208 0.208 0.205
0.229 0.229 0.229 0.230 0.229 0.218 0.218 0.219 0.217 0.217 0.398 0.397 0.397 0.397 0.399 0.395 0.394 0.393 0.394 0.395
0.241 0.241 0.241 0.242 0.241 0.224 0.225 0.225 0.225 0.224 0.449 0.449 0.449 0.449 0.451 0.449 0.444 0.444 0.446 0.445

τ = 2
0.091 0.092 0.093 0.091 0.092 0.068 0.072 0.069 0.071 0.069 0.283 0.285 0.282 0.280 0.284 0.274 0.281 0.280 0.280 0.281
0.224 0.225 0.227 0.225 0.226 0.217 0.217 0.217 0.217 0.219 0.427 0.428 0.425 0.424 0.426 0.421 0.421 0.421 0.422 0.424
0.242 0.243 0.245 0.243 0.244 0.228 0.228 0.228 0.229 0.230 0.513 0.515 0.510 0.509 0.512 0.502 0.507 0.506 0.506 0.509

Figures in italics are the standard errors, figures in bold represent RMSE and figures without any layout are the biases.
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Table 2: QML estimation results for β̂1 and β̂2 for the homoskedastic case with n=100
Results for the β̂1 estimator

Results for Wn = Mn Results for Wn 6= Mn

Normally distributed error terms Non-normally distributed error terms Normally distributed error terms Non-normally distributed error terms
α α α α

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

τ = −2
0.009 0.011 0.009 0.010 0.009 0.002 0.004 0.002 0.002 0.004 0.005 0.006 0.005 0.004 0.005 0.003 0.002 0.004 0.003 0.002
0.104 0.104 0.103 0.104 0.104 0.101 0.102 0.101 0.101 0.101 0.095 0.094 0.094 0.095 0.095 0.097 0.097 0.097 0.097 0.098
0.105 0.104 0.104 0.104 0.105 0.101 0.102 0.101 0.101 0.101 0.095 0.094 0.094 0.095 0.095 0.097 0.097 0.097 0.097 0.098

τ = −1
0.006 0.006 0.006 0.006 0.006 0.002 0.002 0.001 0.001 0.000 0.005 0.005 0.005 0.005 0.005 0.000 0.001 0.001 0.001 0.000
0.084 0.083 0.083 0.083 0.083 0.084 0.084 0.083 0.084 0.083 0.093 0.092 0.092 0.093 0.092 0.095 0.094 0.094 0.094 0.094
0.084 0.084 0.084 0.083 0.083 0.084 0.084 0.083 0.084 0.083 0.093 0.092 0.092 0.093 0.092 0.095 0.094 0.094 0.094 0.094

τ = 0
0.007 0.008 0.006 0.007 0.007 0.001 0.001 0.001 0.000 0.001 0.005 0.005 0.004 0.005 0.005 0.003 0.003 0.003 0.003 0.002
0.099 0.099 0.098 0.099 0.099 0.098 0.098 0.098 0.099 0.099 0.089 0.089 0.089 0.088 0.089 0.092 0.092 0.091 0.092 0.092
0.099 0.100 0.099 0.099 0.099 0.098 0.098 0.098 0.099 0.099 0.089 0.089 0.089 0.088 0.089 0.092 0.092 0.091 0.092 0.092

τ = 1
0.009 0.008 0.009 0.009 0.009 0.001 0.000 0.002 0.000 0.000 0.005 0.005 0.005 0.005 0.005 0.005 0.003 0.003 0.004 0.004
0.116 0.117 0.117 0.117 0.117 0.115 0.115 0.115 0.115 0.115 0.091 0.090 0.092 0.092 0.092 0.093 0.093 0.093 0.093 0.093
0.116 0.117 0.117 0.118 0.117 0.115 0.115 0.115 0.115 0.115 0.092 0.091 0.092 0.092 0.092 0.094 0.094 0.093 0.093 0.093

τ = 2
0.007 0.009 0.009 0.007 0.008 0.004 0.000 0.004 0.003 0.002 0.005 0.005 0.004 0.005 0.004 0.003 0.004 0.003 0.004 0.005
0.116 0.116 0.116 0.115 0.116 0.115 0.114 0.114 0.115 0.114 0.090 0.090 0.091 0.090 0.090 0.090 0.090 0.090 0.090 0.090
0.116 0.116 0.116 0.115 0.116 0.115 0.114 0.115 0.115 0.114 0.091 0.091 0.091 0.090 0.090 0.090 0.090 0.090 0.090 0.090

Results for the β̂2 estimator
Results for Wn = Mn Results for Wn 6= Mn

Normally distributed error terms Non-normally distributed error terms Normally distributed error terms Non-normally distributed error terms
α α α α

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

τ = −2
0.011 0.012 0.013 0.011 0.010 0.006 0.006 0.007 0.006 0.004 0.010 0.011 0.011 0.005 0.009 0.006 0.008 0.007 0.007 0.009
0.220 0.218 0.217 0.219 0.220 0.231 0.231 0.231 0.232 0.232 0.272 0.271 0.270 0.273 0.271 0.287 0.285 0.287 0.286 0.286
0.220 0.218 0.218 0.219 0.220 0.231 0.231 0.231 0.232 0.232 0.272 0.271 0.271 0.273 0.271 0.287 0.285 0.287 0.286 0.286

τ = −1
0.007 0.005 0.009 0.002 0.006 0.008 0.009 0.007 0.009 0.007 0.008 0.010 0.011 0.011 0.009 0.008 0.009 0.004 0.006 0.006
0.273 0.273 0.273 0.271 0.274 0.287 0.287 0.288 0.286 0.289 0.295 0.291 0.290 0.293 0.292 0.311 0.312 0.314 0.313 0.313
0.273 0.273 0.274 0.271 0.274 0.287 0.287 0.288 0.287 0.289 0.295 0.291 0.290 0.294 0.292 0.311 0.312 0.314 0.313 0.313

τ = 0
0.009 0.006 0.010 0.007 0.009 0.002 0.001 0.002 0.008 0.000 0.010 0.012 0.014 0.012 0.009 0.005 0.010 0.005 0.003 0.007
0.304 0.305 0.300 0.304 0.303 0.328 0.329 0.329 0.326 0.327 0.305 0.307 0.307 0.302 0.306 0.331 0.331 0.331 0.331 0.331
0.304 0.305 0.301 0.304 0.303 0.328 0.329 0.329 0.326 0.327 0.305 0.307 0.307 0.302 0.306 0.331 0.331 0.331 0.331 0.331

τ = 1
0.012 0.012 0.014 0.012 0.013 0.003 0.003 0.005 0.007 0.004 0.013 0.013 0.013 0.013 0.012 0.001 0.003 0.004 0.002 0.001
0.249 0.250 0.248 0.250 0.248 0.273 0.273 0.270 0.273 0.274 0.299 0.297 0.298 0.298 0.300 0.310 0.310 0.310 0.309 0.311
0.249 0.250 0.249 0.250 0.248 0.273 0.273 0.270 0.273 0.274 0.299 0.297 0.298 0.298 0.300 0.310 0.310 0.310 0.309 0.311

τ = 2
0.011 0.012 0.012 0.011 0.011 0.001 0.000 0.000 0.001 0.003 0.016 0.014 0.015 0.015 0.014 0.000 0.000 0.002 0.002 0.003
0.163 0.164 0.163 0.164 0.162 0.174 0.172 0.173 0.173 0.172 0.230 0.228 0.228 0.227 0.228 0.237 0.236 0.237 0.235 0.234
0.163 0.165 0.163 0.165 0.162 0.174 0.172 0.173 0.173 0.172 0.230 0.228 0.228 0.227 0.229 0.237 0.236 0.237 0.235 0.234

Figures in italics are the standard errors, figures in bold represent RMSE and figures without any layout are the biases.
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Table 3: GMM estimation results for α̂ and τ̂ for the homoskedastic case with n=100
Results for the α̂ estimator

Results for Wn = Mn Results for Wn 6= Mn

Normally distributed error terms Non-normally distributed error terms Normally distributed error terms Non-normally distributed error terms
α α α α

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

τ = −2
0.010 0.014 0.015 0.014 0.016 0.031 0.032 0.043 0.043 0.042 0.004 0.020 0.022 0.022 0.022 0.016 0.014 0.016 0.014 0.015
0.240 0.246 0.244 0.244 0.244 0.213 0.214 0.415 0.421 0.414 0.160 0.173 0.175 0.175 0.174 0.152 0.154 0.156 0.153 0.154
0.240 0.246 0.244 0.245 0.245 0.215 0.216 0.417 0.423 0.416 0.160 0.174 0.176 0.176 0.176 0.153 0.155 0.157 0.154 0.154

τ = −1
0.001 0.001 0.002 0.002 0.002 0.021 0.021 0.022 0.021 0.021 0.001 0.015 0.016 0.014 0.015 0.013 0.011 0.011 0.011 0.011
0.143 0.144 0.143 0.144 0.143 0.127 0.127 0.128 0.127 0.127 0.132 0.130 0.130 0.131 0.131 0.125 0.126 0.126 0.126 0.127
0.143 0.144 0.143 0.144 0.143 0.129 0.129 0.130 0.129 0.129 0.132 0.131 0.131 0.132 0.132 0.126 0.127 0.127 0.127 0.127

τ = 0
0.009 0.009 0.008 0.008 0.008 0.012 0.013 0.013 0.013 0.013 0.002 0.010 0.011 0.010 0.011 0.010 0.011 0.011 0.011 0.011
0.111 0.110 0.110 0.111 0.111 0.087 0.088 0.087 0.088 0.088 0.105 0.100 0.100 0.099 0.099 0.088 0.088 0.087 0.088 0.088
0.112 0.111 0.110 0.111 0.111 0.088 0.089 0.088 0.089 0.089 0.105 0.100 0.100 0.100 0.100 0.088 0.089 0.088 0.089 0.089

τ = 1
0.001 0.008 0.009 0.009 0.008 0.013 0.008 0.007 0.008 0.008 0.004 0.007 0.008 0.008 0.008 0.008 0.010 0.009 0.009 0.009
0.121 0.120 0.120 0.120 0.119 0.098 0.090 0.090 0.090 0.090 0.100 0.098 0.096 0.096 0.096 0.080 0.079 0.079 0.079 0.079
0.121 0.120 0.121 0.121 0.120 0.099 0.090 0.090 0.090 0.090 0.100 0.098 0.097 0.096 0.096 0.081 0.080 0.079 0.079 0.079

τ = 2
0.003 0.004 0.005 0.006 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.007 0.006 0.006 0.006 0.009 0.007 0.006 0.007 0.007
0.117 0.117 0.118 0.118 0.117 0.089 0.089 0.089 0.089 0.088 0.097 0.094 0.094 0.094 0.094 0.077 0.079 0.078 0.078 0.077
0.117 0.117 0.118 0.118 0.117 0.089 0.089 0.089 0.089 0.088 0.097 0.095 0.094 0.094 0.094 0.077 0.079 0.078 0.078 0.077

Results for the τ̂ estimator
Results for Wn = Mn Results for Wn 6= Mn

Normally distributed error terms Non-normally distributed error terms Normally distributed error terms Non-normally distributed error terms
α α α α

-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

τ = −2
0.018 0.024 0.024 0.022 0.026 0.037 0.039 0.052 0.050 0.050 0.051 0.092 0.098 0.099 0.102 0.073 0.072 0.074 0.073 0.072
0.300 0.307 0.305 0.306 0.306 0.285 0.287 0.489 0.496 0.489 0.397 0.469 0.477 0.478 0.477 0.396 0.397 0.398 0.391 0.397
0.301 0.308 0.306 0.307 0.307 0.288 0.290 0.492 0.499 0.491 0.401 0.478 0.487 0.488 0.488 0.403 0.404 0.405 0.398 0.403

τ = −1
0.026 0.028 0.029 0.028 0.029 0.042 0.042 0.042 0.041 0.041 0.070 0.127 0.131 0.126 0.131 0.092 0.090 0.087 0.088 0.090
0.236 0.236 0.236 0.237 0.234 0.220 0.220 0.221 0.220 0.220 0.415 0.442 0.440 0.441 0.442 0.404 0.401 0.406 0.401 0.407
0.237 0.238 0.238 0.238 0.236 0.224 0.224 0.225 0.223 0.224 0.421 0.460 0.459 0.459 0.461 0.415 0.411 0.415 0.411 0.417

τ = 0
0.048 0.047 0.046 0.047 0.048 0.041 0.044 0.044 0.043 0.044 0.086 0.152 0.153 0.152 0.152 0.115 0.113 0.115 0.113 0.117
0.222 0.222 0.220 0.222 0.220 0.203 0.204 0.204 0.204 0.203 0.442 0.420 0.421 0.421 0.420 0.407 0.404 0.398 0.404 0.401
0.227 0.227 0.225 0.227 0.225 0.207 0.209 0.209 0.208 0.208 0.451 0.447 0.448 0.447 0.447 0.423 0.419 0.414 0.419 0.418

τ = 1
0.053 0.065 0.065 0.065 0.065 0.065 0.055 0.053 0.055 0.053 0.093 0.173 0.178 0.183 0.182 0.138 0.135 0.140 0.138 0.136
0.221 0.231 0.231 0.232 0.230 0.212 0.210 0.209 0.210 0.209 0.483 0.458 0.447 0.436 0.435 0.421 0.416 0.418 0.418 0.416
0.227 0.240 0.240 0.240 0.239 0.221 0.217 0.216 0.217 0.216 0.492 0.490 0.481 0.473 0.472 0.443 0.438 0.441 0.440 0.437

τ = 2
0.076 0.079 0.081 0.079 0.077 0.064 0.065 0.065 0.063 0.063 0.134 0.193 0.196 0.196 0.195 0.208 0.183 0.187 0.185 0.192
0.230 0.230 0.231 0.231 0.231 0.210 0.211 0.210 0.211 0.211 0.524 0.466 0.464 0.452 0.454 0.443 0.440 0.436 0.436 0.435
0.242 0.244 0.245 0.244 0.243 0.220 0.221 0.220 0.220 0.220 0.541 0.504 0.503 0.492 0.494 0.490 0.477 0.474 0.473 0.475

Figures in italics are the standard errors, figures in bold represent RMSE and figures without any layout are the biases. We observe that for Wn = Mn, non-normal disturbances and
τ = −2, the standard errors corresponding to α = 0, −1 and 2 are significantly larger than those for α = −2 and 1. These are caused by outliers. We have computed a robust measure
of the standard deviation, the mean absolute deviation, and find that the values have similar magnitudes for different values of α when τ = −2.

28



Table 4: Estimation results for α̂ and τ̂ for the heteroskedastic case with n=100
Results for the α̂ estimator

Results for QML estimation Results for GMM estimation
Heteroskedastic with Wn = Mn Heteroskedastic with Wn 6= Mn Heteroskedastic with Wn = Mn Heteroskedastic with Wn 6= Mn

α α α α
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

τ = −2
0.004 0.006 0.008 0.003 0.004 0.000 0.001 0.000 0.000 0.000 0.012 0.014 0.016 0.016 0.016 0.016 0.008 0.009 0.009 0.003
0.154 0.154 0.156 0.154 0.155 0.114 0.113 0.114 0.113 0.114 0.153 0.155 0.155 0.155 0.155 0.110 0.111 0.112 0.112 0.110
0.155 0.155 0.157 0.155 0.156 0.114 0.114 0.114 0.113 0.114 0.153 0.155 0.156 0.156 0.156 0.111 0.112 0.113 0.113 0.110

τ = −1
0.002 0.001 0.000 0.001 0.002 0.001 0.001 0.001 0.000 0.001 0.006 0.007 0.007 0.007 0.006 0.007 0.003 0.003 0.003 0.003
0.065 0.064 0.064 0.064 0.063 0.067 0.067 0.067 0.067 0.067 0.065 0.065 0.065 0.065 0.065 0.079 0.064 0.064 0.064 0.064
0.065 0.064 0.064 0.064 0.063 0.067 0.067 0.067 0.067 0.067 0.066 0.066 0.066 0.066 0.065 0.079 0.064 0.064 0.064 0.064

τ = 0
0.000 0.001 0.000 0.001 0.000 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.000 0.004 0.004 0.005 0.004
0.047 0.047 0.047 0.046 0.047 0.046 0.047 0.047 0.047 0.046 0.049 0.049 0.049 0.049 0.049 0.060 0.049 0.047 0.047 0.047
0.047 0.047 0.047 0.046 0.047 0.046 0.047 0.047 0.047 0.046 0.049 0.049 0.049 0.049 0.049 0.060 0.049 0.047 0.047 0.047

τ = 1
0.000 0.000 0.000 0.001 0.001 0.002 0.003 0.002 0.002 0.002 0.004 0.004 0.004 0.005 0.004 0.003 0.006 0.004 0.007 0.006
0.064 0.064 0.065 0.064 0.064 0.056 0.056 0.056 0.056 0.056 0.066 0.066 0.066 0.066 0.066 0.062 0.056 0.056 0.057 0.056
0.064 0.064 0.065 0.064 0.064 0.056 0.056 0.056 0.056 0.056 0.066 0.066 0.066 0.067 0.066 0.062 0.056 0.056 0.057 0.057

τ = 2
0.001 0.002 0.001 0.002 0.000 0.003 0.003 0.003 0.003 0.002 0.004 0.000 0.004 0.004 0.004 0.004 0.006 0.005 0.008 0.005
0.067 0.066 0.066 0.067 0.067 0.061 0.060 0.060 0.060 0.060 0.070 0.067 0.069 0.067 0.069 0.065 0.061 0.059 0.059 0.059
0.067 0.066 0.066 0.067 0.067 0.061 0.060 0.060 0.060 0.060 0.070 0.067 0.069 0.067 0.069 0.065 0.061 0.060 0.060 0.060

Results for the τ̂ estimator
Results for QML estimation Results for GMM estimation

Heteroskedastic with Wn = Mn Heteroskedastic with Wn 6= Mn Heteroskedastic with Wn = Mn Heteroskedastic with Wn 6= Mn

α α α α
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2

τ = −2
0.002 0.005 0.008 0.001 0.004 0.079 0.079 0.072 0.077 0.073 0.005 0.002 0.001 0.002 0.001 0.037 0.050 0.055 0.054 0.076
0.238 0.238 0.237 0.237 0.237 0.365 0.363 0.365 0.365 0.364 0.230 0.234 0.235 0.234 0.235 0.333 0.360 0.363 0.363 0.383
0.238 0.238 0.237 0.237 0.237 0.373 0.372 0.372 0.373 0.371 0.231 0.234 0.235 0.234 0.235 0.335 0.363 0.367 0.367 0.391

τ = −1
0.012 0.012 0.015 0.014 0.011 0.121 0.124 0.119 0.124 0.126 0.022 0.021 0.021 0.021 0.023 0.055 0.116 0.120 0.119 0.120
0.186 0.186 0.186 0.186 0.187 0.359 0.360 0.360 0.359 0.357 0.187 0.190 0.190 0.190 0.189 0.339 0.350 0.351 0.351 0.351
0.187 0.186 0.187 0.187 0.187 0.379 0.381 0.379 0.380 0.379 0.189 0.191 0.191 0.191 0.190 0.343 0.369 0.371 0.370 0.371

τ = 0
0.029 0.027 0.027 0.023 0.024 0.149 0.154 0.152 0.153 0.153 0.039 0.042 0.042 0.042 0.042 0.023 0.139 0.154 0.154 0.154
0.182 0.179 0.181 0.179 0.181 0.347 0.349 0.349 0.348 0.346 0.187 0.187 0.187 0.187 0.187 0.367 0.349 0.346 0.343 0.346
0.184 0.181 0.183 0.181 0.182 0.377 0.381 0.380 0.380 0.378 0.191 0.191 0.191 0.191 0.191 0.368 0.376 0.379 0.376 0.379

τ = 1
0.045 0.045 0.044 0.043 0.039 0.193 0.192 0.194 0.193 0.193 0.057 0.060 0.060 0.060 0.060 0.030 0.174 0.176 0.179 0.178
0.188 0.188 0.189 0.187 0.187 0.371 0.371 0.370 0.372 0.372 0.195 0.195 0.195 0.195 0.195 0.424 0.369 0.355 0.350 0.353
0.194 0.193 0.194 0.192 0.191 0.418 0.417 0.418 0.419 0.419 0.203 0.204 0.204 0.204 0.204 0.425 0.408 0.396 0.393 0.395

τ = 2
0.062 0.060 0.062 0.061 0.060 0.265 0.262 0.260 0.264 0.263 0.071 0.069 0.075 0.072 0.075 0.091 0.175 0.199 0.210 0.200
0.189 0.186 0.190 0.190 0.190 0.406 0.406 0.404 0.404 0.402 0.198 0.194 0.197 0.184 0.197 0.453 0.416 0.377 0.376 0.379
0.199 0.195 0.200 0.200 0.199 0.485 0.484 0.480 0.483 0.481 0.210 0.206 0.210 0.198 0.210 0.462 0.451 0.426 0.430 0.429

Figures in italics are the standard errors, figures in bold represent RMSE and figures without any layout are the biases.
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Table 5: Expected signs for spatial lag and surrounding-market potential variables

FDI Motivation Sign of spatial lag Sign of surrounding-market
potential variable

Pure horizontal 0 0
Export-platform − +
Pure vertical − 0
Vertical specialization + 0
Source: Blonigen et al. (2007).

MNEs can firstly embark in FDI for market access reasons and avoidance of high trade or tariff costs

in a host country. This is horizontal FDI. If trade barriers between the parent country (where the MNE

is located) and host country (where the MNE would like to make its products available) are too high, the

MNE could decide to build a plant in the latter country to avoid export costs but at the expense of building

a new production plant. Blonigen et al. (2007) note that no spatial autocorrelation between FDI should be

observed since MNEs make independent decisions about serving a market either through exports or affiliate

sales. Besides, for this basic form of FDI, we do not expect any market potential effect of host country since

the MNE looks for access to the considered market only.

A second motivation for FDI occurs if trade barriers between a set of destination markets are lower

than trade frictions between these destination markets and the parent country. In that setup, a MNE could

decide to build a plant in a host country, export to other markets and facing lower trade costs only. This

type of FDI is called export-platform. As the MNE will not build a production plant in each host country,

we expect a negative spatial autocorrelation between neighboring FDI locations. However, we anticipate a

positive effect of the surrounding-market potential variable since the MNE will locate its new plant in the

host country which has access to the largest surrounding market.

MNEs will make vertical FDI if they want to access to cheaper factor inputs for their products. In its

simplest form, namely pure vertical, host countries are in competition in terms of input factor prices to

receive FDI. Hence, we expect a negative spatial autocorrelation between FDI. However, since the product

is shipped back to the parent country to be further processed, no effect from surrounding-market potential

is foreseen. A more complex form of vertical FDI has been developed by Davies (2005) and Baltagi et al.

(2007). Within that framework, named vertical specialization, the MNE decides to split its vertical chain of

production among possibly several host countries, to benefit from the comparative advantage of the hosts.

In such a framework, according to Blonigen et al. (2007), we should observe positive spatial autocorrelation

due to possible agglomeration forces such as the presence of immobile resources, since the suppliers’ presence

in neighboring host countries is likely to increase FDI to a particular market. However, for the same reason
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as in pure vertical FDI, we do not predict any surrounding-market effect.

Blonigen et al. (2007) use outbound US FDI to 35 countries over the period 1983 to 1998 to test the

dominant type of FDI which characterizes US MNEs. Even though they found a positive and significant

spatial dependence effect, the authors acknowledge the fragility of their results with respect to the countries

considered. Besides, significance of the surrounding market effect variable is affected by the presence of

individual effects in the regression. Garretsen and Peeters (2009) also test the dominant motivation for FDI

using outward Dutch FDI to 19 countries from 1984 to 2004. When analyzing their complete sample, they

find a positive and significant market potential effect but also positive and significant spatial autocorrelation

among FDI.

Our contribution to this literature is threefold. Firstly, we analyze the dominant pattern of Belgium’s

outward FDI using a modified gravity equation which, in addition to traditional determinants found in

the literature, also captures effects of spatial interactions and market potential. We secondly compare

results using a MESS(1,1) and a SARAR specification and highlight the similarities in terms of economic

interpretations of these two models. We finally apply the lemma concerning inference to assess statistical

significance of elements of impact matrices of FDI’s determinants.

5.1. Data and empirical specification

This application concerns Belgium’s outward FDI into 35 countries in 2009. These 35 host countries

belong either to OECD or European Union and represent 94% of Belgium’s total outward FDI.30

The modified gravity to be estimated is presented in (25).

LFDIi = β1 + β2 LGDPi + β3 LPOPi + β4 OECDi + β5 LDISi + β6 TARIFFSi + β7 MPi + ǫi. (25)

LFDIi is the stock of outward FDI (in logs) from Belgium to host country i. FDI stocks were extracted

from the OECD International Direct Investment Statistics. The set of regressors includes host GDP in

logs (LGDP ), host population in logs (LPOP ), an OECD dummy which captures an OECD effect, the

bilateral distance between Belgium and country i expressed in logs (LDIS) and a measure of trade costs

which corresponds to the weighted mean of applied tariffs on all products, as defined by the World bank

WDI database and labeled as TARIFFS. The last exogenous regressor is the surrounding-market potential

variable, MP . We follow a similar approach to Blonigen et al. (2007) in the definition of this variable. For

30The countries considered are: Australia, Austria, Bulgaria, Canada, Cyprus, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Ireland, Italy, Japan, South Korea, Latvia, Lithuania, Luxembourg, Mexico, Netherlands,
New Zealand, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom
and United States of America.
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host country i, we define the market potential as the sum of inverse-distance weighted log-GDPs of all other

k 6= i countries in the world for which we could obtain GDP data (this amounts to 183 countries). The only

difference from Blonigen et al. (2007) is that these authors use the log of the inverse-distance weighted GDP

to measure surrounding market potential.31 LGDP , LPOP and TARIFFS all come from the World Bank

WDI database while bilateral distances and distances used to construct the MP variable come from CEPII’s

databases. Finally, all the concerned variables are expressed in constant USD of 2000. Some descriptive

statistics of the data are presented in Table 6.

Table 6: Descriptive statistics for the data

Mean Std dev Min Max
LFDI 8.394 1.997 4.410 11.851
LGDP 25.973 1.775 22.782 30.048
LPOP 16.390 1.450 13.118 19.542
OECD 0.857 0.355 0 1
LDIS 7.337 1.157 5.154 9.853

TARIFFS 1.877 1.369 0.990 8.930
MP 1.364 0.491 0.356 2.257

Accounting for spatial autocorrelation in FDI requires the setup of an interaction scheme, modeled

through the interaction (spatial weights) matrix Wn. In this application, we follow Blonigen et al. (2007)

and use an inverse arc-distance between capitals to model interactions between host countries. However,

we do not multiply the weights by the shortest distance between capitals as done in Blonigen et al. (2007)

since we do not row-normalize our weight matrix but instead use the spectral radius to standardize the

matrix.32 This approach is advocated by Baltagi et al. (2008) who argue that row-normalizing a distance

based interaction matrix converts absolute distance-based interactions to relative distance-based and thus

changes the information content of the interaction scheme.33 In addition, we control for the presence of

residual spatial autocorrelation in the error terms. We consider the same interaction matrix for both MESS

processes. As shown in Section 3, the QMLE can be consistent in presence of unknown heteroskedasticity.

Table 7 summarizes the results of different econometric specifications which extend (25). Columns 2–7

present estimation results respectively for homoskedastic SARAR (by QML), homoskedastic MESS(1,1) (by

QML), homoskedastic MESS(1,1) (by optimal GMM with the moment vector ĝ#n,d(γ) in Proposition 9),

31This difference in the position of the logarithm is motivated by the fact that as the host GDP enters equation (25)
in logarithms, we believe the surrounding market variable should also be based on logged GDP. Also,Garretsen and Peeters
(2009) construct their surrounding-market potential variable in a different way since they only consider the GDP of all host
countries in the sample.

32As each weight will be multiplied by a common factor, the spectral radius will also be multiplied by this factor, implying
that the normalized matrix will be the same, no matter if the interaction matrix is initially rescaled or not.

33For further information concerning matrix normalizations, interested readers may consult Kelejian and Prucha (2010).
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heteroskedastic SARAR (by optimal GMM34), heteroskedastic MESS(1,1) (by QML) and heteroskedastic

MESS(1,1) (by optimal GMM with the moment vector ĝ#n,d(γ) in (22)).

Let us first note that the quasi maximum likelihood and GMM estimation of the MESS(1,1) with ho-

moskedastic and heteroskedastic disturbances provide similar results for both estimated values and standard

errors. The second result we would like to pinpoint relates to the sign of the parameter capturing interac-

tions between observations. We observe a negative λ for both SARAR specifications (homoskedastic and

heteroskedastic) while the MESS(1,1) provides a positive value for α. Thus, a negative λ translates in a

positive α.35 Finally, there is no significant spatial autocorrelation left in the error terms.36

The computation of matrices of impacts of changes in determinants on FDI is required to be able to

give conclusions regarding the dominant type of FDI characterizing Belgium. Indeed, as MESS(1,1) and

SARAR are estimated under implicit form (see (2) and (3)), we need to compute their associated reduced

form and then calculate the matrix of partial derivatives with respect to each explanatory variable to get

impact matrices. For the MESS(1,1), this impact matrix for regressor Xnk is shown in (5).

To compare MESS(1,1) and SARAR results, we report in Table 8 the average direct effect and the average

total effect for each of the explanatory variables for heteroskedastic SARAR and MESS(1,1), estimated both

by QML and GMM. The average direct effect is computed as the average of diagonal elements of the impact

matrix while the average total effect is defined as the mean of the row-sum of its elements
(

1
n l

′
nΞ

yn

Xnk
ln
)

. In

terms of impacts on the dependent variable, the main focus for economists, we observe a strong similarity

of impacts produced by the two specifications even though parameters capturing spatial dependence are

completely different from each other.

The lemma derived in Section 3 allows performing inference on elements of the impact matrices of the

MESS(1,1). Table 9 summarizes inference results performed on different (functions of) elements of these

impact matrices, based on the heteroskedastic MESS(1,1) estimated by GMM. The first row analyzes the

significance of average direct effects. The results indicate a non-significant elasticity of surrounding-market

potential on FDI. This result, combined with a negative spatial autocorrelation, points to the dominance of

pure vertical type of FDI. To the best of our knowledge, this application is the first to indicate such a clear

cut result. One possible explanation of this result lies in the production costs faced by Belgian multinationals

34In the moment vector, the instruments for the linear moments are R̂n[Xn,WnŜ
−1
n Xnβ̂n] and the matrices for the quadratic

moments are R̂nWnŜ
−1
n R̂−1

n −Diag(R̂nWnŜ
−1
n R̂−1

n ) and MnR̂
−1
n −Diag(MnR̂

−1
n ), where R̂n = In− ρ̂nMn, Ŝn = In− λ̂nWn

and (λ̂n, ρ̂n, β̂′

n)
′ is an initial GMME.

35This difference comes from the definitions of these two models, as shown in Section 2.
36In the supplement file, we report the estimation results of the MESS(1,0). All results are qualitatively the same.
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Table 7: Estimation results for different specifications

(1) (2) (3) (4) (5) (6)
Cons. −2.438 −3.021 −5.367 −1.266 −3.023 −2.819

(4.582 ) (4.660 ) (4.564 ) (3.899 ) (4.288 ) (4.274 )
LGDP 1.106*** 1.114*** 1.325*** 1.089*** 1.113*** 1.110***

(0.243 ) (0.246 ) (0.237 ) (0.220 ) (0.241 ) (0.240 )
LPOP −0.584** −0.585** −0.803*** −0.591** −0.584** −0.586**

(0.243 ) (0.246 ) (0.237 ) (0.235 ) (0.254 ) (0.252 )
OECD 1.064* 1.037* 0.912* 1.023* 1.037* 1.029*

(0.548 ) (0.551 ) (0.534 ) (0.605 ) (0.611 ) (0.613 )
LDIS −1.245*** −1.199*** −1.177*** −1.293*** −1.199*** −1.206***

(0.223 ) (0.220 ) (0.220 ) (0.209 ) (0.200 ) (0.200 )
TARIFFS 0.107 0.106 0.151 0.108 0.106 0.106

(0.112 ) (0.113 ) (0.110 ) (0.084 ) (0.084 ) (0.083 )
MP 1.275 1.212 1.534 1.156 1.212 1.183

(1.079 ) (1.105 ) (1.095 ) (1.147 ) (1.186 ) (1.185 )
Spat auto −0.331** 0.265** 0.284*** −0.335** 0.265** 0.264**

in y (0.153 ) (0.109 ) (0.107 ) (0.173 ) (0.121 ) (0.121 )
Spat auto 0.015 −0.004 −0.136 0.282 −0.004 −0.024
in errors (0.530 ) (0.516 ) (0.527 ) (0.598 ) (0.419 ) (0.418 )

n 35 35 35 35 35 35
Standard errors between brackets; (1) is homoskedastic SARAR, (2) is homo.
MESS(1,1) by QML, (3) is homo. MESS(1,1) by GMM, (4) is heteroskedastic
SARAR, (5) is hetero. MESS(1,1) by QML and (6) is hetero. MESS(1,1) by
GMM; ∗, ∗∗ and ∗∗∗ correspond to significance at the 10%, 5% and 1% respectively.

Table 8: Comparison of average direct effects and average total effects

Average direct effects Average total effects
SARAR MESS(1,1) MESS(1,1) SARAR MESS(1,1) MESS(1,1)

QML GMM QML GMM
LGDP 1.094 1.116 1.113 0.884 0.921 0.919
LPOP −0.595 −0.586 −0.587 −0.480 −0.484 −0.485
OECD 1.029 1.039 1.031 0.831 0.858 0.855
LDIS −1.300 −1.202 −1.209 −1.050 −0.992 −0.998

TARIFFS 0.109 0.107 0.106 0.088 0.088 0.088
M PO 1.163 1.214 1.185 0.939 1.001 0.979

Effects are computed from estimation results of heteroskedastic SARAR and
MESS(1,1) (estimated by QML and GMM).

in Belgium. Indeed, labor costs in Belgium are amongst the highest in Europe.37 Besides, determinants of

the traditional gravity equation have the expected sign. We observe a positive and significant elasticity of

GDP, which captures the wealth effect, while elasticities of population and bilateral distance are found to

be negative. The OECD dummy is found to be significant at the 10% level. Finally, the tariffs variable is

found to be non-significant which can be explained by the homogeneity of the sample.

37See Eurostat database on labor costs.
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The second row presents inference on the indirect effect of Austria on Slovakia, (Ξyn

Xnk
)SV K,AUT . In other

words, we analyze if a shock on a regressor in Austria will affect outward FDI from Belgium to Slovakia. We

observe a significant effect for the host GDP variable and bilateral distance but the effect is non-significant

for the four other regressors. For instance, increasing the GDP of Austria by 1% will reduce outward FDI

from Belgium to Slovakia by 0.147%. Finally, the last row of Table 9 studies significance of the difference

between the indirect effect of Mexico on the United-States and the indirect effect of Canada on United-

States ,(Ξyn

Xnk
)USA,MEX − (Ξyn

Xnk
)USA,CAN . We observe significant difference between those indirect effects

for GDP and bilateral distance. In other words, the effect of a variation of Mexican GDP on outward FDI

from Belgium to the United States will be statistically different from the effect of the same variation of

Canadian GDP on outward FDI from Belgium to the United States.

Table 9: Inference on elements of impact matrices

LGDP LPOP OECD LDIS TARIFF MP

1
n tr(Ξyn

Xnk
)

1.113*** −0.586** 1.039* −1.202*** 0.106 1.213
(0.242 ) (0.255 ) (0.613 ) (0.200 ) (0.083 ) (1.190 )

(Ξyn

Xnk
)SV K,AUT

−0.147* 0.078 −0.137 0.160** −0.014 −0.157
(0.084 ) (0.058 ) (0.120 ) (0.075 ) (0.013 ) (0.226 )

(Ξyn

Xnk
)USA,MEX − (Ξyn

Xnk
)USA,CAN

0.009* −0.005 0.008 −0.010** 0.001 0.010
(0.005 ) (0.004 ) (0.008 ) (0.005 ) (0.001 ) (0.016 )

Standard errors are between brackets; AUT stands for Austria, CAN for Canada, MEX for
Mexico, SVK for Slovakia and USA for the United States; 1

n tr(Ξyn

Xnk
) is the average direct

effect, (Ξyn

Xnk
)SV K,AUT is the indirect effect between Austria and Slovakia; (Ξyn

Xnk
)USA,MEX −

(Ξyn

Xnk
)USA,CAN is the difference between the indirect effect of a change in x in Mexico on outward

FDI in the United States and the indirect effect of a change in x in Canada on outward FDI in
the United States; ∗, ∗∗ and ∗∗∗ correspond to significance at the 10%, 5% and 1% respectively.

6. Conclusions

This paper firstly develops the asymptotic theory of the matrix exponential spatial specification (MESS)

in both the dependent variable and error terms. We show that the GMME is consistent and asymptotically

normal even in the presence of unknown heteroskedasticity as long as the interaction matrix has zero

diagonal elements. Besides we show that if the interaction matrices for the dependent variable and the error

terms commute, the QMLE may also be consistent and asymptotically normal in the presence of unknown

heteroskedasticity. In the homoskedastic case, we develop a best optimal GMME which is much simpler than

the best optimal GMME for the SAR specification since moment conditions do not depend on estimated

parameters. In case of non-normality, the homoskedastic best optimal GMME is shown to be more efficient

than the QMLE. In the heteroskedastic case, a best optimal GMME cannot be derived except if we know the
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structure of heteroskedasticity. We thus develop an optimal GMME which is shown to be more efficient than

the QMLE. We also derive a lemma to perform inference on the elements, or functions of them, of the impact

matrices implied by the reduced form of the MESS, which is very important for applied economists. Monte

Carlo experiments are conducted and show the good small sample properties of the proposed estimators.

Finally, we apply our estimators to show that outward FDI from Belgium are mainly characterized by the

vertical type. We also compare SARAR and MESS(1,1) impacts and note that they are very similar, which

pleads for the use of the latter. When the spatial process is stable, the MESS has many advantages over the

SAR model.

Appendix A.

For the best GMME in the homoskedastic case, we show that adding any other moments to the selected

ones cannot improve the asymptotic efficiency using the redundancy conditions in Breusch et al. (1999).

Suppose that we have a set of moment conditions E[g∗n(γ)] = 0 with the corresponding optimal GMME being

γ̂∗
n. Adding some additional moment conditions E[gn(γ)] = 0 to E[g∗n(γ)] = 0, we have an optimal GMME

γ̂n using both sets of moment conditions. Then the moment conditions E[gn(γ)] = 0 are redundant given

E[g∗n(γ)] = 0 if the asymptotic variances of γ̂∗
n and γ̂n are the same. Let V ∗

n = nE[g∗n(γ0)g
∗′

n (γ0)], Vn,21 =

nE[gn(γ0)g
∗′

n (γ0)], G∗
n = E

∂g∗

n(γ0)
∂γ′

and Gn = E ∂gn(γ0)
∂γ′

. The following two lemmas from Breusch et al.

(1999) give conditions for moment redundancy.

Lemma 2. The following statements are equivalent: (a) E[gn(γ)] = 0 is redundant given E[g∗n(γ)] = 0; (b)

Gn = Vn,21V
∗−1
n G∗

n; and (c) there exists a matrix T such that G∗
n = V ∗

n T and Gn = Vn,21T .

Lemma 3. Let the set of moment conditions to be considered be E[gn(γ)] = E[g′1n(γ), g
′
2n(γ), g

′
3n(γ)]

′ = 0,

or simply g = (g′1, g
′
2, g

′
3)

′. Then (g′2, g
′
3)

′ is redundant given g1 if and only if g2 is redundant given g1 and

g3 is redundant given g1.

Proof of Proposition 8. To show that γ̂∗
n is the best GMME within the class of GMMEs with linear

and quadratic moments, we prove that the moment condition E[gn(γ)] = 0, where gn(γ) is a set of arbitrary

linear and quadratic moments in (12), is redundant given the moment conditions E[g∗n(γ)] = 0. By Lemmas

2 and 3, it is sufficient to show that there exists a matrix T such that Gn = E ∂gn(γ0)
∂γ′

= Vn,21T and

G∗
n = V ∗

n T , where Vn,21 = nE(gn(γ0)g
∗′

n (γ0)) =
1
n







1
2σ

4
0ω

′
nω

∗
n µ3ω

′

ndF
∗
n

µ3F
′

nω
∗
nd σ2

0F
′
nF

∗
n






+

(µ4−3σ4
0)

n







ω′
ndω

∗
nd 0

0 0






, with

ωn = (vec(P s
n1), . . . , vec(P

s
n,kp

)), ω∗
n = (vec(P ∗s

n1), . . . , vec(P
∗s
n,k∗+4)), ωnd = (vecD(Pn1), . . . , vecD(Pn,kp

)) and

ω∗
nd = (vecD(P

∗
n1), . . . , vecD(P

∗
n,k∗+4)), by Lemma A.2 in the supplementary file.
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Let P ∗
αn = P ∗

n1 −
(η4−3)−η2

3

(η4−1)−η2
3

P ∗
n2 −

σ−1
0 η3

(η4−1)−η2
3

P ∗
n3, P

∗
τn = Mn, P

∗
βnl = P ∗

n,l+4 for l = 1, . . . , k∗, and F ∗
αn =

η4−1
(η4−1)−η2

3

F ∗
n2 −

η2
3

(η4−1)−η2
3

F ∗
n3(

1
n l

′
ne

τ0MnWnXnβ0)− 2σ0η3

(η4−1)−η2
3

F ∗
n4. If e

τ0MnXn does not contain an intercept

term, let F ∗
βn = η4−1

(η4−1)−η2
3

F ∗
n1−

η2
3

(η4−1)−η2
3

F ∗
n3(

1
n l

′
ne

τ0MnX∗
n); otherwise, let F

∗
βn = η4−1

(η4−1)−η2
3

F ∗
n1(Ik∗ , 0k∗×1)+

η4−1
(η4−1)−η2

3

c(τ0)F
∗
n3e

′
kk − η2

3

(η4−1)−η2
3

F ∗
n3(

1
n l

′
ne

τ0MnXn), where ekj is the jth unit vector in Rk. Then

ǫ′n(γ)(P
∗
αnǫn(γ), P

∗
τnǫn(γ), P

∗
βn1ǫn(γ), . . . , P

∗
βnk∗ǫn(γ)) = ǫ′n(γ)(P

∗
n1ǫn(γ), . . . , P

∗
n,k∗+4ǫn(γ))∆P ,

where

∆′
P =













1 − (η4−3)−η2
3

(η4−1)−η2
3

− σ−1
0 η3

(η4−1)−η2
3

0 0

0 0 0 1 0

0 0 0 0 Ik∗













.

If eη0MnXn does not contain an intercept term, (F ∗
αn, F

∗
βn) = (F ∗

n1, F
∗
n2, F

∗
n3, F

∗
n4)∆F1, where

∆′
F1 =







0 η4−1
(η4−1)−η2

3

− η2
3

(η4−1)−η2
3

( 1n l
′
ne

τ0MnWnXnβ0) − 2σ0η3

(η4−1)−η2
3

η4−1
η4−1−η2

3

Ik∗ 0 − η2
3

(η4−1)−η2
3

( 1n l
′
ne

τ0MnX∗
n)

′ 0






;

otherwise, (F ∗
αn, F

∗
βn) = (F ∗

n1, F
∗
n2, F

∗
n3, F

∗
n4)∆F2, where

∆′
F2 =







0 η4−1
(η4−1)−η2

3

− η2
3

(η4−1)−η2
3

( 1n l
′
ne

τ0MnWnXnβ0) − 2σ0η3

(η4−1)−η2
3

η4−1
η4−1−η2

3

(Ik∗ , 0k∗×1) 0 η4−1
(η4−1)−η2

3

c(τ0)ekk − η2
3

(η4−1)−η2
3

( 1n l
′
ne

τ0MnXn)
′ 0






.

Let ∆PF =







∆P 0

0 ∆F1






if eη0MnXn does not contain an intercept term and ∆PF =







∆P 0

0 ∆F2







otherwise. Then g∗
′

n (γ)∆PF = ǫ′n(γ)(P
∗
αnǫn(γ), P

∗
τnǫn(γ), P

∗
βn1ǫn(γ), . . . , P

∗
βnk∗ǫn(γ), (F

∗
αn, F

∗
βn)). Let

∆′
T =













σ−2
0 0 0 (σ−2

0 , 0)

0 σ−2
0 0 (0, 0)

0 0 b′ (0,−σ−2
0 Ik)













,

where b′ = (b′1, . . . , b
′
k∗) with bl =

σ−3
0 η3

(η4−1)−η2
3

e′kl. Define T = ∆PF∆T . We shall show that Gn = Vn,21T and

G∗
n = V ∗

n T for this T .

Let Jn = In− 1
n lnl

′
n and Pn be any n×nmatrix with trace zero. The following identities are useful to show

the desired results: (a) vecD(P
∗
αn) = 2

(η4−1)−η2
3

vecD(Wn) − σ−1
0 η3

(η4−1)−η2
3

Jne
τ0MnWnXnβ0; (b) vecD(P

∗
βnl) =

Jne
τ0MnX∗

nl; (c)
∑k∗

l=1 vecD(P
∗
βnl)e

′
kl = Jne

τ0MnXn; (d) σ2
0F

∗
αn + µ3 vecD(P

∗
αn) = σ2

0e
τ0MnWnXnβ0; (e)

F ∗
βn − η2

3

(η4−1)−η2
3

∑k∗

l=1 vecD(P
∗
βnl)e

′
kl = eτ0MnXn; (f) vecD

′(Pn)F
∗
βn = η4−1

(η4−1)−η2
3

vecD
′(Pn)e

τ0MnXn; (g)

µ3 vecD
′(Pn)F

∗
αn + σ4

0 tr(P
s
nP

∗
αn) + (µ4 − 3σ4

0) vecD
′(Pn) vecD(P

∗
αn) = σ4

0 tr(P
s
nWn).
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Since g∗
′

n (γ)∆PF = ǫ′n(γ)(P
∗
αnǫn(γ), P

∗
τnǫn(γ), P

∗
βn1ǫn(γ), . . . , P

∗
βnk∗ǫn(γ), F

∗
αn, F

∗
βn) as shown above and

P ∗
βnl’s are diagonal matrices, we have

Vn,21∆PF = E[gn(γ0)(g
∗′

n (γ0)∆PF )] =
1

n







σ4
0ω

′
n vec(P

∗
αn) σ4

0ω
′
n vec(P

∗
τn) σ4

0ω
′
ndsω

∗
ndβ µ3ω

′
nd(F

∗
αn, F

∗
βn)

µ3F
′
n vecD(P

∗
αn) µ3F

′
n vecD(P

∗
τn) µ3F

′
nω

∗
ndβ σ2

0F
′
n(F

∗
αn, F

∗
βn)







+
(µ4 − 3σ4

0)

n







ω′
nd vecD(P

∗
αn) ω′

nd vecD(P
∗
τn) ω′

ndω
∗
ndβ 0

0 0 0 0






,

where ω∗
ndβ = (vecD(P

∗
βn1), . . . , vecD(P

∗
βnk∗)) and ωnds = (vecD(P

s
n1), . . . , vecD(P

s
n,kp

)). The Vn,21T =

(Vn,21∆PF )∆T is a 2× 3 block matrix. By (g), the (1, 1)th block of Vn,21T is 1
nσ

2
0ω

′
n vec(Wn); the (1, 2)th

block is 1
nσ

2
0ω

′
n vec(Mn); by (c) and (f), the (1, 3)th block is 0; by (d), the (2, 1)th block is 1

nF
′
ne

τ0MnWnXnβ0;

the (2, 2)th block is 0; by (e), the (2, 3)th block is − 1
nF

′
ne

τ0MnXn. Thus Vn,21T = Gn.

Furthermore, as g∗n(γ) is a special case of gn(γ), G∗
n = V ∗

n T . Then Λ∗
n = G∗′

n V ∗−1
n G∗

n = G∗′

n T =

(G∗′

n ∆PF )∆T = E
∂(g∗

′

n (γ0)∆PF )
∂γ0

∆T , which has the explicit expression in (15) by some computation. The

asymptotic distribution of γ̂∗
n follows by Proposition 6. �
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