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Introduction

Assume that 𝜂 1 , ..., 𝜂 𝑛 is a sequence of independent and identically distributed (i.i.d.) centered real valued random variables satisfying the following Cramér condition : 𝔼 exp{𝑐 0 |𝜂 1 |} < ∞ for some 𝑐 0 > 0. Denote by 𝜎 2 = 𝔼𝜂 2 1 , 𝜉 𝑖 = 𝜂 𝑖 /( √ 𝑛𝜎) and 𝑋 𝑛 = ∑ 𝑛 𝑖=1 𝜉 𝑖 . Cramér [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF] has established the following asymptotic expansion of the tail probabilities of 𝑋 𝑛 , for all 0 ≤ 𝑥 = 𝑜(𝑛 1/6 ) as 𝑛 → ∞,

ℙ(𝑋 𝑛 > 𝑥) = ( 1 -Φ(𝑥) )( 1 + 𝑜(1) ) , (1) 
where

Φ(𝑥) = 1 √ 2𝜋 𝑥 ∫ -∞ exp { - 𝑡 2 2
} 𝑑𝑡 is the standard normal distribution function. More precise results can be found in Feller [START_REF] Feller | Generalization of a probability limit theorem of Cramér[END_REF], Petrov [START_REF] Petrov | A generalization of Cramér's limit theorem[END_REF][START_REF] Petrov | Sums of Independent Random Variables[END_REF], Saulis and Statulevičius [START_REF] Saulis | Limite theorems for large deviations[END_REF], Sakhanenko [START_REF] Sakhanenko | Berry-Esseen type bounds for large deviation probabilities[END_REF] and [START_REF] Fan | Sharp large deviations under Bernstein's condition[END_REF] among others. Let (𝜉 𝑖 , ℱ 𝑖 ) 𝑖=0,...,𝑛 be a sequence of martingale differences defined on some probability space (Ω, ℱ, ℙ), where 𝜉 0 = 0 and {∅, Ω} = ℱ 0 ⊆ ... ⊆ ℱ 𝑛 ⊆ ℱ are increasing 𝜎-fields. Set

𝑋 0 = 0, 𝑋 𝑘 = 𝑘 ∑ 𝑖=1 𝜉 𝑖 , 𝑘 = 1, ..., 𝑛. ( 2 
)
Denote by ⟨𝑋⟩ the quadratic characteristic of the martingale 𝑋 = (𝑋 𝑘 , ℱ 𝑘 ) 𝑘=0,...,𝑛 :

⟨𝑋⟩ 0 = 0, ⟨𝑋⟩ 𝑘 = 𝑘 ∑ 𝑖=1 𝔼(𝜉 2 𝑖 |ℱ 𝑖-1 ), 𝑘 = 1, ..., 𝑛. ( 3 
)
Consider the stationary case for simplicity. For the martingale differences having a (2 + 𝑝)th moment, i.e. ||𝜉 𝑖 || 2+𝑝 < ∞ for some 𝑝 ∈ (0, 1], expansions of the type (1) in the range 0 ≤ 𝑥 = 𝑜( √ log 𝑛) have been obtained by Haeusler and Joos [START_REF] Haeusler | A nonuniform bound on the rate of convergence in the martingale central limit theorem[END_REF], Grama [START_REF] Grama | On moderate deviations for martingales[END_REF] and Grama and Haeusler [START_REF] Grama | An asymptotic expansion for probabilities of moderate deviations for multivariate martingales[END_REF] 

has been firstly established by Račkauskas [START_REF] Račkauskas | On probabilities of large deviations for martingales[END_REF][START_REF] Račkauskas | Large deviations for martingales with some applications[END_REF] in the range 0 ≤ 𝑥 = 𝑜(𝑛 1/6 ), and then this range has been extended to a larger one 0 ≤ 𝑥 = 𝑜(𝑛 1/4 ) by Grama and Haeusler [START_REF] Grama | Large deviations for martingales via Cramér's method[END_REF] with a method based on change of probability measure. Recently, Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF] have generalized the result of Grama and Haeusler [START_REF] Grama | Large deviations for martingales via Cramér's method[END_REF] to a much larger range 0 ≤ 𝑥 = 𝑜(𝑛 1/2 ) for 𝜉 𝑖 satisfying the following conditional Bernstein condition : for a positive constant 𝐶,

|𝔼(𝜉 𝑘 𝑖 |ℱ 𝑖-1 )| ≤ 1 2 𝑘! ( 𝐶 √ 𝑛 ) 𝑘-2 𝔼(𝜉 2 𝑖 |ℱ 𝑖-1 ) for all 𝑘 ≥ 2 and all 1 ≤ 𝑖 ≤ 𝑛. ( 4 
)
It is worth noting that the conditional Bernstein condition does not imply that 𝜉 𝑖 's are bounded. The aim of this note is to extend the expansion of Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF] to the case of martingale differences satisfying the following conditional Cramér condition considered in Liu and Watbled [START_REF] Liu | Exponential ineqalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment[END_REF] :

sup 𝑖 𝔼(exp{𝐶 0 √ 𝑛|𝜉 𝑖 |}|ℱ 𝑖-1 ) ≤ 𝐶 1 , (5) 
where 𝐶 0 and 𝐶 1 are two positive constants. It is worth noting that, in general, condition [START_REF] Grama | On moderate deviations for martingales[END_REF] does not imply the conditional Bernstein condition (4), unless 𝑛𝔼(𝜉 2 𝑖 |ℱ 𝑖-1 ) are all bounded from below by a positive constant. Thus our result is not a consequence of Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF].

Throughout this paper, 𝑐 and 𝑐 𝛼 , probably supplied with some indices, denote respectively a generic positive absolute constant and a generic positive constant depending only on 𝛼. Moreover, 𝜃 stands for any value satisfying |𝜃| ≤ 1.

Main Results

The following theorem is our main result, which can be regarded as a parallel result of Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF] under the conditional Cramér condition :

(A1) sup 1≤𝑖≤𝑛 𝔼(exp{𝑐 0 𝑛 1/2 |𝜉 𝑖 |}|ℱ 𝑖-1 ) ≤ 𝑐 1 ; (A2) || ⟨𝑋⟩ 𝑛 -1|| ∞ ≤ 𝛿 2 𝑎.𝑠.
, where 𝛿 is nonnegative and usually depends on 𝑛.

Theorem 2.1 Assume conditions (A1) and (A2).

Then there exists a positive absolute constant 𝛼 0 , such that for all 0 ≤ 𝑥 ≤ 𝛼 0 𝑛 1/2 and 𝛿 ≤ 𝛼 0 , the following equalities hold

ℙ(𝑋 𝑛 > 𝑥) 1 -Φ (𝑥) = exp { 𝜃𝑐 𝛼0 ( 𝑥 3 √ 𝑛 + 𝑥 2 𝛿 2 + (1 + 𝑥) ( log 𝑛 √ 𝑛 + 𝛿 ) )} (6) 
and

ℙ(𝑋 𝑛 < -𝑥) Φ (-𝑥) = exp { 𝜃𝑐 𝛼0 ( 𝑥 3 √ 𝑛 + 𝑥 2 𝛿 2 + (1 + 𝑥) ( log 𝑛 √ 𝑛 + 𝛿 ) )} , ( 7 
)
where |𝜃| ≤ 1. In particular, for all 0

≤ 𝑥 = 𝑜 ( min{𝑛 1/6 , 𝛿 -1 } ) as min{𝑛, 𝛿 -1 } → ∞, ℙ(𝑋 𝑛 ≥ 𝑥) = ( 1 -Φ (𝑥) )( 1 + 𝑜(1) ) . ( 8 
)
From ( 6), we find that there is an absolute constant 𝛼 0 > 0 such that for all 0

≤ 𝑥 ≤ 𝛼 0 𝑛 1/2 and 𝛿 ≤ 𝛼 0 , log ℙ(𝑋 𝑛 > 𝑥) 1 -Φ (𝑥) ≤ 𝑐 𝛼0 ( 𝑥 3 √ 𝑛 + 𝑥 2 𝛿 2 + (1 + 𝑥) ( log 𝑛 √ 𝑛 + 𝛿 ) ) . ( 9 
)
Note that this result can be regarded as a refinement of the moderate deviation principle (MDP) under conditions (A1) and (A2). Let 𝑎 𝑛 be any sequence of real numbers satisfying 𝑎 𝑛 → ∞ and 𝑎 𝑛 𝑛 -1/2 → 0 as 𝑛 → ∞. If 𝛿 → 0 as 𝑛 → ∞, then inequality (9) implies the MDP for 𝑋 𝑛 with the speed 𝑎 𝑛 and good rate function 𝑥 2 /2; for each Borel set 𝐵,

-inf 𝑥∈𝐵 𝑜 𝑥 2 2 ≤ lim inf 𝑛→∞ 1 𝑎 2 𝑛 log ℙ ( 1 
𝑎 𝑛 𝑋 𝑛 ∈ 𝐵 ) ≤ lim sup 𝑛→∞ 1 𝑎 2 𝑛 log ℙ ( 1 
𝑎 𝑛 𝑋 𝑛 ∈ 𝐵 ) ≤ -inf 𝑥∈𝐵 𝑥 2 2 ,
where 𝐵 𝑜 and 𝐵 denote the interior and the closure of 𝐵, respectively (see Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF] for details).

Sketch of the proof

Let (𝜉 𝑖 , ℱ 𝑖 ) 𝑖=0,...,𝑛 be a martingale differences satisfying the condition (A1). For any real number 𝜆 with |𝜆| ≤ 𝑐 0 𝑛 1/2 , define

𝑍 𝑘 (𝜆) = 𝑘 ∏ 𝑖=1 𝑒 𝜆𝜉𝑖 𝔼(𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 )
, 𝑘 = 1, ..., 𝑛, 𝑍 0 (𝜆) = 1.

Then 𝑍(𝜆) = (𝑍 𝑘 (𝜆), ℱ 𝑘 ) 𝑘=0,...,𝑛 is a positive martingale and for each real number 𝜆 with |𝜆| ≤ 𝑐 0 𝑛 1/2 and each 𝑘 = 1, ..., 𝑛, the random variable 𝑍 𝑘 (𝜆) is a probability density on (Ω, ℱ, ℙ). Thus we can define the conjugate probability measure ℙ 𝜆 on (Ω, ℱ), where

𝑑ℙ 𝜆 = 𝑍 𝑛 (𝜆)𝑑ℙ. ( 10 
)
Denote by 𝔼 𝜆 the expectation with respect to ℙ 𝜆 . Setting 𝑏 𝑖 (𝜆) = 𝔼 𝜆 (𝜉 𝑖 |ℱ 𝑖-1 ) and 𝜂 𝑖 (𝜆) = 𝜉 𝑖 -𝑏 𝑖 (𝜆) for 𝑖 = 1, ..., 𝑛, we obtain the decomposition of 𝑋 𝑛 similar to that of Grama and Haeusler [START_REF] Grama | Large deviations for martingales via Cramér's method[END_REF] :

𝑋 𝑛 = 𝐵 𝑛 (𝜆) + 𝑌 𝑛 (𝜆), (11) 
where

𝐵 𝑛 (𝜆) = 𝑛 ∑ 𝑖=1 𝑏 𝑖 (𝜆) and 𝑌 𝑛 (𝜆) = 𝑛 ∑ 𝑖=1 𝜂 𝑖 (𝜆).
Note that (𝑌 𝑘 (𝜆), ℱ 𝑘 ) 𝑘=1,...,𝑛 is also a sequence of martingale differences w.r.t. ℙ 𝜆 .

In the sequel, we establish some auxiliary lemmas which will be used in the proof of Theorem 2.1. We first give upper bounds for the conditional moments.

Lemma 3.1 Assume condition (A1). Then

𝔼(|𝜉 𝑖 | 𝑘 |ℱ 𝑖-1 ) ≤ 𝑘! (𝑐 0 𝑛 1/2 ) -𝑘 𝑐 1 , 𝑘 ≥ 3.
Proof. Applying the elementary inequality 𝑥 𝑘 /𝑘! ≤ 𝑒 𝑥 to 𝑥 = 𝑐 0 |𝑛 1/2 𝜉 𝑖 |, we have, for 𝑘 ≥ 3,

|𝜉 𝑖 | 𝑘 ≤ 𝑘! (𝑐 0 𝑛 1/2 ) -𝑘 exp{𝑐 0 |𝑛 1/2 𝜉 𝑖 |}. ( 12 
)
Taking conditional expectations on both sides of the last inequality, by condition (A1), we obtain the desired inequality. □ Remark 1 It is worth noting that both condition (A1) and the conditional Bernstein condition ( 4) imply the following hypothesis.

(A1 ′ ) There exists 𝜖 > 0, usually depends on 𝑛, such that

𝔼(|𝜉 𝑖 | 𝑘 |ℱ 𝑖-1 ) ≤ 𝑐 1 𝑘! 𝜖 𝑘 for all 𝑘 ≥ 2 and all 1 ≤ 𝑖 ≤ 𝑛.
When 𝜖 = 𝑐 2 / √ 𝑛, condition (A1 ′ ), together (A2), yields Theorem 2.1.

Using Lemma 3.1, we obtain the following two technical lemmas. Their proofs are similar to the arguments of Lemmas 4.2 and 4.3 of Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF].

Lemma 3.2 Assume conditions (A1) and (A2). Then, for all

0 ≤ 𝜆 ≤ 1 4 𝑐 0 𝑛 1/2 , |𝐵 𝑛 (𝜆) -𝜆| ≤ 𝑐 (𝜆𝛿 2 + 𝜆 2 𝑛 -1/2 ). ( 13 
)

Lemma 3.3 Assume conditions (A1) and (A2). Then, for all

0 ≤ 𝜆 ≤ 1 4 𝑐 0 𝑛 1/2 , Ψ 𝑛 (𝜆) - 𝜆 2 2 ≤ 𝑐 (𝜆 2 𝛿 2 + 𝜆 3 𝑛 -1/2 ),
where

Ψ 𝑛 (𝜆) = 𝑛 ∑ 𝑖=1 log 𝔼(𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 ).
The following lemma gives the rate of convergence in the central limit theorem for the conjugate martingale (𝑌 𝑖 (𝜆), ℱ 𝑖 ) under the probability measure ℙ 𝜆 . Its proof is similar to that of Lemma 3.1 of Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF] by noting the fact that 𝔼(𝜉 2 𝑖 |ℱ 𝑖-1 ) ≤ 𝑐/𝑛.

Lemma 3.4 Assume conditions (A1) and (A2). Then, for all

0 ≤ 𝜆 ≤ 1 4 𝑐 0 𝑛 1/2 , sup 𝑥 ℙ 𝜆 ( 𝑌 𝑛 (𝜆) ≤ 𝑥) -Φ(𝑥) ≤ 𝑐 ( 𝜆 1 √ 𝑛 + log 𝑛 √ 𝑛 + 𝛿
) .

Proof of Theorem 2.1. The proof of Theorem 2.1 is similar to the arguments of Theorems 2.1 and 2.2 in Fan et al. [START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF] with 𝜖 = 𝑐0 )

. ( 14 
)
Using Lemma 3.1, we obtain

𝑛 ∑ 𝑖=1 +∞ ∑ 𝑘=2 𝔼 ( 𝜉 𝑖 (𝜆𝜉 𝑖 ) 𝑘 𝑘! ℱ 𝑖-1
)

≤ 𝑛 ∑ 𝑖=1 +∞ ∑ 𝑘=2 |𝔼 ( 𝜉 𝑘+1 𝑖 |ℱ 𝑖-1 ) | 𝜆 𝑘 𝑘! ≤ 𝑛 ∑ 𝑖=1 +∞ ∑ 𝑘=2 𝑐 1 (𝑘 + 1)𝜆 𝑘 (𝑐 0 𝑛 1/2 ) -𝑘-1 ≤ 𝑐 2 𝜆 2 𝑛 -1/2 . ( 15 
)
Condition (A2) together with ( 14) and ( 15) imply the upper bound of 𝐵 𝑛 (𝜆):

𝐵 𝑛 (𝜆) ≤ 𝜆 + 𝜆𝛿 2 + 𝑐 2 𝜆 2 𝑛 -1/2 .
Using Lemma 3.1, we have

𝔼 ( 𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 ) ≤ 1 + +∞ ∑ 𝑘=2 𝔼 ( (𝜆𝜉 𝑖 ) 𝑘 𝑘! ℱ 𝑖-1 ) ≤ 1 + +∞ ∑ 𝑘=2 𝑐 1 𝜆 𝑘 ( 𝑐 0 𝑛 1/2 ) -𝑘 ≤ 1 + 𝑐 3 𝜆 2 𝑛 -1 . ( 16 
)
This inequality together with [START_REF] Saulis | Limite theorems for large deviations[END_REF] and condition (A2) imply the lower bound of 𝐵 𝑛 (𝜆):

𝐵 𝑛 (𝜆) ≥ ( 𝑛 ∑ 𝑖=1 𝔼(𝜉 𝑖 𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 )
) (

1 + 𝑐 3 𝜆 2 𝑛 -1 ) -1 ≥ ( 𝜆⟨𝑋⟩ 𝑛 - 𝑛 ∑ 𝑖=1 +∞ ∑ 𝑘=2 𝔼 ( 𝜉 𝑖 (𝜆𝜉 𝑖 ) 𝑘 𝑘! ℱ 𝑖-1
) ) ( .

1 + 𝑐 3 𝜆 2 𝑛 -1 ) -1 ≥ ( 𝜆 -𝜆𝛿 2 -𝑐 2 𝜆 2 𝑛 -1/2 )( 1 + 𝑐 3 𝜆 2 𝑛 -1 ) -1 ≥ 𝜆 -𝜆𝛿 2 -𝑐 4 𝜆 2 𝑛 -1/2
In the same way as in the proof of Lemma 3.2, by Lemma 3.1, we have

Ψ 𝑛 (𝜆) - 𝜆 2 2 ⟨𝑋⟩ 𝑛 ≤ 𝑐 3 𝜆 3 𝑛 -1/2 .
Combining this inequality with condition (A2), we obtain the desired inequality. □

  . If the martingale differences are bounded |𝜉

𝑖 | ≤ 𝐶/ √ 𝑛 and satisfy || ⟨𝑋⟩ 𝑛 -1|| ∞ ≤ 𝐿 2 /𝑛 𝑎.𝑠. for two positive constants 𝐶 and 𝐿, expansion

4 √

 4 𝑛 . However, instead of using Lemmas 4.2, 4.3 and 3.1 of[START_REF] Fan | Cramér large deviation expansions for martingales under Bernstein's condition[END_REF], we shall make use ofLemmas 3.2, 3.3 and 3.4 respectively. □ The proofs of Lemmas 3.2 and 3.3 are given below. Proof of Lemma 3.2. Recall that 0 ≤ 𝜆 ≤ 1 4 𝑐 0 𝑛 1/2 . By the relation between 𝔼 and 𝔼 𝜆 on ℱ 𝑖 , we have 𝑏 𝑖 (𝜆) = 𝔼(𝜉 𝑖 𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 ) 𝔼(𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 ) , 𝑖 = 1, ..., 𝑛. Jensen's inequality and 𝔼(𝜉 𝑖 |ℱ 𝑖-1 ) = 0 imply that 𝔼(𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 ) ≥ 1. Since 𝑖 𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 ) = 𝜆⟨𝑋⟩ 𝑛 +

	𝔼(𝜉 𝑖 𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 ) = 𝔼	(	𝜉 𝑖 (𝑒 𝜆𝜉𝑖 -1)|ℱ 𝑖-1	)	≥ 0,
	by Taylor's expansion for 𝑒 𝑥 , we find that			
	𝐵 𝑛 (𝜆) ≤	𝑛 ∑ 𝑖=1	𝔼(𝜉 𝑛 ∑ 𝑖=1	+∞ ∑ 𝑘=2	𝔼	(	𝜉 𝑖 (𝜆𝜉 𝑖 ) 𝑘 𝑘!	ℱ 𝑖-1

  .Proof ofLemma 3.3. Recall that 0 ≤ 𝜆 ≤ 1 4 𝑐 0 𝑛 1/2 . Since 𝔼(𝜉 𝑖 |ℱ 𝑖-1 ) = 0, it is easy to see that Ψ 𝑛 (𝜆) = 𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 ) -𝜆𝔼(𝜉 𝑖 |ℱ 𝑖-1 ) -𝜆𝜉𝑖 |ℱ 𝑖-1 ) -1 -𝜆𝔼(𝜉 𝑖 |ℱ 𝑖-1 ) -Since 𝔼(𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1) ≥ 1, we find that

	𝑛 ∑ 𝑖=1	( log 𝔼(𝜆 2 2	𝔼(𝜉 2 𝑖 |ℱ 𝑖-1 ) )	+	𝜆 2 2	⟨𝑋⟩ 𝑛 .
	Using a two-term Taylor's expansion of log(1 + 𝑥), 𝑥 ≥ 0, we obtain
	Ψ 𝑛 (𝜆) -	𝜆 2 2	⟨𝑋⟩ 𝑛 =	𝑛 ∑ 𝑖=1	(	2 𝔼(𝑒 𝜆 2	𝔼(𝜉 2 𝑖 |ℱ 𝑖-1 )	)
					-	2	(	1 + |𝜃|	1 𝔼(𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 ) -1 ( ) ) 2	𝑖=1 𝑛 ∑	(	𝔼(𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 ) -1	) 2	.
	Ψ 𝑛 (𝜆) -	𝜆 2 2		⟨𝑋⟩ 𝑛 ≤						𝜆 2 2	𝔼(𝜉 2 𝑖 |ℱ 𝑖-1 )
				≤	+ 𝑛 1 2 ∑ 𝑖=1	𝑛 ∑ 𝑖=1 +∞ ∑ 𝑘=3	( 𝜆 𝑘 𝔼(𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 ) -1 ) 2 𝑘! |𝔼(𝜉 𝑘 𝑖 |ℱ 𝑖-1 )| + 1 2 ∑ 𝑛 𝑖=1	( +∞ ∑ 𝑘=2	𝑘! 𝜆 𝑘	|𝔼(𝜉 𝑘 𝑖 |ℱ 𝑖-1 )|	) 2
	The proof of Lemma 3.2 is finished. □

𝑛 ∑ 𝑖=1 𝔼(𝑒 𝜆𝜉𝑖 |ℱ 𝑖-1 ) -1 -𝜆𝔼(𝜉 𝑖 |ℱ 𝑖-1 ) -
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