
HAL Id: hal-01069101
https://hal.science/hal-01069101v1

Submitted on 29 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

AUTSEG: Automatic Test Set Generator for Embedded
Reactive Systems

Mariem Abdelmoula, Daniel Gaffé, Michel Auguin

To cite this version:
Mariem Abdelmoula, Daniel Gaffé, Michel Auguin. AUTSEG: Automatic Test Set Generator for
Embedded Reactive Systems. 26th IFIP International Conference on Testing Software and Systems
(ICTSS), Sep 2014, Madrid, Spain. pp.97-112, �10.1007/978-3-662-44857-1_7�. �hal-01069101�

https://hal.science/hal-01069101v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


AUTSEG: Automatic Test Set Generator for
Embedded Reactive Systems

Mariem Abdelmoula, Daniel Gaffe, and Michel Auguin

LEAT, University of Nice-Sophia Antipolis, CNRS
930 route des Colles, BP 145, 06903 Sophia Antipolis Cedex France

Mariem.Abdelmoula@unice.fr

Daniel.Gaffe@unice.fr

Michel.Auguin@unice.fr

Abstract. One of the biggest challenges in hardware and software de-
sign is to ensure that a system is error-free. Small errors in reactive
embedded systems can have disastrous and costly consequences for a
project. Preventing such errors by identifying the most probable cases of
erratic system behavior is quite challenging. In this paper, we introduce
an automatic test set generator called AUTSEG. Its input is a generic
model of the target system, generated using the synchronous approach.
Our tool finds the optimal preconditions for restricting the state space of
the model. It only works locally on significant subspaces. Our approach
exhibits a simpler and efficient quasi-flattening algorithm than existing
techniques and a useful compiled form to check security properties and
reduce the combinatorial explosion problem of state space. To illustrate
our approach, AUTSEG was applied to the case of a transportation con-
tactless card.

Keywords: AUTSEG, Test Sets, State Machines, States Space Covering, Se-
quences Generation, Contactless Smart Card, Specification, Synchronous Model.

1 Introduction

Verifying automatically and formally that a system is working correctly is not
trivial nowadays due to the increasing complexity of computer programs and
their strong interaction with the environment. An important class of systems
facing such problems are reactive systems. They continuously react and respond
to their environment. Reactive systems belong to the large family of FSMs (Fi-
nite State Machines). They are ubiquitous in everyday life, varying from simple
thermostats to the control of nuclear power plants, avionics, telesurgery, and
online payment. Security for these systems is critical; even minor errors are
unacceptable. In this paper, we focus on verification of embedded software con-
trolling the reactive system behavior. To illustrate our approach, we aim to verify
the implementation of the OS integrated in a contactless smart card for trans-
portation. We specifically target the verification of the card’s functionality and



security features. Smart Cards are ubiquitous, with more than 200 million used
across the globe for transportation, telephony, health insurance, banking, ID,
etc. Frauds are especially critical for banking cards, as counterfeiters are able to
exploit the vulnerabilities of coding systems.

Furthermore, the card’s complexity makes it difficult for a human to identify
all possible sensitive situations or to validate it by classical methods. We need
approximately 500 000 years to test the first 8 bytes if we consider a classical
Intel processor that generates 1000 test sets per second. As well, combinatorial
explosion of possible modes of operation makes it nearly impossible to attempt
a comprehensive simulation. The problem is exacerbated when the system in-
tegrates data processing, so results have significant effects on system behavior.
Thus, we strive for highly-automated testing techniques. We aim as well to de-
scribe with symbolic means the reachable state space model of the card specifi-
cation for a particular security property. Expertise in symbolic verification and
synchronous languages are required to automatically generate exhaustive test
sets that represent critical situations.

We hence focus on a set of techniques known as formal methods, based on
the Binary Decision Diagram BDD [1] that are used in computer science to
ensure correct system behavior. We propose in this paper, an automatic test
set generator called AUTSEG. Generating automatic test sets and covering all
transitions is not a new research area. However, we notably address in this paper
the state space explosion problem. We first generate a powerful quasi-flattening
algorithm which performs a simple and deterministic model, thus facilitating
code generation. We qualify by a second algorithm the correct behavior of the
global system, without requiring coverage of all system states and transitions.

In the remainder of this paper, we give an overview of related work in Section
2. We present in Section 3 our global approach for test generation. AUTSEG
and details on its capabilities are presented in Section 4. Section 5 presents the
application of our generator to a specific contactless card for transportation.
Experimental results are shown in Section 6. Finally, Section 7 concludes the
paper with some directions for future work.

2 Related Work

Lutess V2 [2] is a test environment, written in Lustre, for synchronous reactive
systems. It automatically generates tests that dynamically feed the program un-
der test from the formal description of the program environment and properties.
This version of Lutess deals with numeric inputs and outputs unlike the first
version [3]. Lutess V2 is based on Constraint Logic Programming (CLP) and
allows the introduction of hypotheses to the program under test. Due to CLP
solvers’ capabilities, it is possible to associate occurrence probabilities to any
Boolean expression. However, this tool requires the conversion of tested models
to the Lustre format, which may cause a few issues in our tests.

B.Blanc presents in [4] a structural testing tool called GATeL, also based on
CLP. GATeL aims to find a sequence that satisfies both the invariant and the

2



test purpose by solving the constraints problem on program variables. Contrary
to Lutess, GATeL interprets the Lustre code and starts from the final state and
ends with the first one. This technique relies on human intervention, which is
stringently averted in our paper.

C.Jard and T.Jeron, present TGV (Test Generation with Verification tech-
nology) in [5], a powerful tool for test generation from various specifications of
reactive systems. It takes as inputs a specification and a test purpose in IOLTS
(Input Output Labeled Transition System) format and generates test cases in
IOLTS format as well. TGV allows three basic types of operations: 1. It iden-
tifies sequences of the specification accepted by a test purpose, based on the
synchronous product; 2. It then computes visible actions from abstraction and
determinization; 3. Finally, it selects test cases by computation of reachable
states from initial states and co-reachable states from accepting states. A limi-
tation lies in the non-symbolic (enumerative) dealing with data. The resulting
test cases can be big and therefore relatively difficult to understand.

D.Clarke extends this work in [6], presenting a symbolic test generation tool
called STG. It adds the symbolic treatment of data by using OMEGA tool capa-
bilities. Test cases are therefore smaller and more readable than those done with
enumerative approaches in TGV. STG produces the test cases from an IOSTS
specification (Input Output Symbolic Transition System) and a test purpose.
Despite its effectiveness, this tool is no longer maintained.

[7] describes STS (Symbolic Transition Systems), quite often used in sys-
tems testing. STS enhances readability and abstraction of behavioral descrip-
tions compared to formalisms with limited data types. STS also addresses the
state explosion problem through the use of guards and typed parameters related
to the transitions. At the moment, STS hierarchy does not appear very enlighten-
ing outside the world of timed/hybrid systems or well-structured systems. Such
systems are outside of the scope of this paper.

ISTA (Integration and System Test Automation) [8] is an interesting tool for
automated test code generation from High-Level Petri Nets. ISTA generates exe-
cutable test code from MID (Model Implementation Description) specifications.
Petri net elements are then mapped to implementation constructs. ISTA can
be efficient for security testing when Petri nets generate threat sequences. How-
ever, it focuses solely on liveness properties checking, while we focus on security
properties checking.

J.Burnim presents in [9], a testing tool for C called CREST. It inserts instru-
mentation code using CIL (C Intermediate Language) into a target program.
Symbolic execution is therefore performed concurrently with the concrete exe-
cution. Path constraints are then solved using the YICES solver. CREST cur-
rently reasons symbolically only about linear, integer arithmetic. Closely related
to CREST, KLOVER [10] is a symbolic execution and automatic test genera-
tion tool for C++ programs. It basically presents an efficient and usable tool to
handle industrial applications. Both KLOVER and CREST cannot be adopted
in our approach, as they accommodate tests on real systems, whereas we target
tests on systems still being designed.

3



3 Global Process

Let us start with a description of the global architecture we have designed for our
test. Fig.1 shows 4 main operations explained in detail in the following sections.

Fig. 1. Global process structure

1. Generic model: it presents the principal input of our test. The global
architecture is composed of hierarchical and parallel concurrent FSM based on
the synchronous approach. It should conform to the specification of the system
under test.

2. Quasi-flattening process: we flatten only hierarchical automata, the rest
of automata remaining parallel. This offers a simple model and brings more
flexibility to identify all possible evolutions of the system.

3. Compilation process: it generates an implicit automaton represented by a
Mealy machine from an explicit automaton. This process compiles the model,
checks the determinism of all automata and ensures the persistence of the system
behavior.

4. SSG (Sequences Symbolic Generator): it extracts necessary preconditions
which lead to specific, significant states of the system from generated sequences.

3.1 Quasi-flattening process

The straightforward way to analyze a hierarchical machine is to flatten it (re-
cursively substitute in a hierarchical FSM each super state with its associated
FSM), then apply as an example a model-checking tool on the resulting FSM.
Let’s consider the model shown in Fig.2, which shows automata interacting and
communicating between each other. Most of them are sequential, hierarchical

4



Fig. 2. Model Design

automata (e.g. automata 1 and 2), while others are parallel automata (e.g. au-
tomata 6 and 8). We note in this architecture 13122 (3 × 6 × 3 × 3 × 3 × 3 ×
3 × 3) possible states derived from parallel executions (graphs product) while
there are many fewer active states at once. Indeed, this model is designed by
the graphical formalism SyncChart [11]. A classical analysis is to transform this
hierarchical structure to the synchronous language Esterel [12]. Such transfor-
mation is not quite optimized. Furthermore, Esterel is not able to realize that
there is only one active state at once. In practice, compiling such structure by Es-
terel generates 83 registers making roughly 9.6 ×1024 states. Hence, the behoof
of our process. Opting for a quasi-flattening, we have flattened only hierarchi-
cal automata. Thus, state 2 of automaton 1 is substituted by the set of states
4,5,6,7,8,9 of automaton 2 and so on. Required transitions are rewritten there-
after. Parallel automata are acting as observers that manage the model’s control
flags. Flattening parallel FSMs explodes usually in number of states. Thus there
is no need to flatten them, as we can compile them separately, then concatenate
them with the flat model retrieved at the end of the compilation process.

Algorithm 1 details our quasi-flattening operation. We denote downstream
the initial state of a transition and upstream the final one. This algorithm im-
plements three main operations. Overall, It replaces each macro state with a
corresponding FSM. It first interconnects the internal initial states. It then re-

5



Algorithm 1 Flattening operation

St ← State; SL ← State List of FSM; t ← transition in FSM
while SL 6= empty do

Consider each St from SL
if (St is associated to a sub-FSM) then

mark the deletion of St
load all sub-St from sub-FSM (particularly init-sub-St)
for (all t of FSM) do

if (upstream(t) == St) then
upstream(t) ← init-sub-St // illustration in Fig.3 (t0, t1, t2 relinking)

for (all t of FSM) do
if (downstream(t) == St) then

if (t is a normal-term transition) then
// illustration in Fig.5
for (all sub-St of sub-FSM) do

if (sub-St is associated to a sub-sub-FSM) then
create t′ (sub-St, upstream(t)) // Keep recursion

if (sub-St is final) then
for (all t′′ of sub-FSM) do

if (upstream(t′′) == sub-St) then
upstream(t′′) ← upstream(t)
merge effect(t) to effect(t′′)

mark the deletion of sub-St
else

// normal transition: illustration in Fig.3
// For example t3 is less prior than t6 and replaced by t6.t3 and t6
for (all sub-St of sub-FSM) do

create t′(sub-St,upstream(t),trigger(t),effect(t))
for (all sub-t of sub-FSM) do

turn-down the sub-t priority (or turn up t′ priority)
delete t

add and rename all sub-t transitions from subFSM to SL
add and rename all sub-St state from subFSM to SL
cancel marked states

Fig. 3. Initial and Normal Transition Linking

places normal 1 terminations with internal transitions in a recursive manner.
Finally, it interconnects all states of the internal FSM.

1 Refers to SyncCharts ”normal termination” transition [11]

6



Fig. 4. Flat Model

Flattening the hierarchical model of Fig.2 results in a flat structure shown
in Fig.3.1. As the activation of state 2 is a trigger for state 4, these two states
will be merged, just as state 6 will be merged to state 10, etc. Automata 6 and
8 (observers) remain parallel in the expanded automaton; they are small and do
not increase the computational complexity. The model in Fig.3.1 contains now
only 144 (16 × 3 × 3) state combinations. In practice, compiling this model
according to our process generates merely 8 registers, equivalent to 256 states.

Our flattening differs substantially from those of [13] and [14]. We assume
that a transition, unlike the case of statecharts, cannot exit different hierarchi-
cal levels. Several operations are thus executed locally, not on the global system.
This yields a simpler algorithm and faster compilation. To this end, we have
integrated the following assumptions in our algorithm:
-Normal termination. Fig.5 shows an example of normal termination carried
when a final internal state is reached. It allows a unique possible interpretation
and facilitates code generation.
-Strong preemption. Unlike classical preemption, internal outputs of the pre-
empted state are lost during the transition.

Fig. 5. Terminal Transition Linking

7



3.2 Compilation process

We proceed in our approach to a symbolic compilation of the model into a Mealy
machine, implicitly represented by a set of Boolean equations (circuit of logic
gates and registers presenting the state of the system). Compiling an explicit
automaton into an implicit one is a well-known process in hardware design. Clas-
sical works use the one-hot representation [15], while our compilation requires
only log2(nbstates) registers. Actually, concurrent automata and flat automata
are compiled separately. Compilation results of these automata are concatenated
at the end of this process. They are represented by an union of sorted equations
rather than a Cartesian product of graphs to support the synchronous parallel
operation and instantaneous signals diffusion. Accordingly, we note a substantial
reduction on the size of tested system.

3.3 SSG (Sequences Symbolic Generator)

Fig. 6. Classical Sequences Generation

We explain in this section the process we follow to automatically generate
symbolic sequences of test sets. As mentioned before, we seek to restrict the
states space and confine only to significant states. The model of Fig.6 presents all
possible sequences of commands describing the system behavior. It is a classical

8



representation of the dynamic system evolutions. It shows a very large tree or
even infinite tree. Thus, exploring all possible program executions is not feasible.
We will show in section 6 the weakness of this classical approach. If we consider
the representation of the system by a sequence of commands executed iteratively,
the previous sequences tree becomes a repetition of the same subspace pattern
as shown in Fig.7. We will focus in our approach only on this subspace. This
represents a specific system command which can be repeated through possible
generated sequences.

Fig. 7. Model Representation

Each state in the subspace is specified by the symbolic values of the program
variables, the path condition and the command parameters (next byte-code to
be executed). The path condition represents constraints that should be satis-
fied by the symbolic values to progress the execution of the current path. It
defines the preconditions to successfully follow that path. Our work targets ex-
tracting these preconditions from the subspace check. Indeed, we have applied
BDD-analysis from the local initial state to local final states of the specified
subspace. For each combination of registers, BDD manipulations allow the ex-
traction of the next awaited variables, that lead to the next state and required

9



preconditions. Outputs are then pushed into a stack, in conjunction with result-
ing preconditions. Finally, sequence generation pops the constructed stack. Once
the necessary preconditions are extracted, a next step is to backtrack the tree
until finding the initial sequence fulfilling these preconditions. The backtrack
operation is ensured by the compilation process which kept enough knowledge
to find later the previous states.

Contrary to the classical sequence generator, our tool constantly generates a
tree of pure future states, thus preventing loops from occurring. In other words,
previous states always converge to the global initial state. This approach easily
favors backtrack execution.

Let’s consider the example of Fig.7. Starting from the local initial donated
state ”LI”, we generated all possible paths of tested subspace to reach the final
local states using BDDs. Taking into account ”LF” (local final state) as a critical
final state of the tested system, we executed a backtrack from the ”LI” state until
covering the sequence that satisfies the extracted preconditions. Assuming state
”I” as the final result of this backtrack, the sequence from ”I” to ”LF” is an
example of a good test set. However, considering the representation of Fig.6, a
test set from ”I” to ”LF” will be performed by generating all paths of the tree.
Such a test becomes unfeasible if the number of steps to reach ”LF” is greatly
increased.

4 AUTSEG Description

In this section, we present our testing tool called AUTSEG that implements
the approach introduced in the previous section. AUTSEG is particularly used
in this paper to test models of various smart cards. Generated automatic test

Fig. 8. AUTSEG structure

sets typically must differ according to system input parameters, for example the
adopted smart card technology: contact versus contactless. Changing card pa-
rameters requires recompiling each new specification separately and re-running
the tests. This approach is unrealistic, because this can take many hours or even

10



days to compile. In addition, this would generate as many models as system
types, which can highly limit the legibility and increase the risk of specifica-
tion bugs. Hence, we have generated a single appropriate global model for all
card types and applications, The model’s explicit test sets are to be filtered
thereafter by AUTSEG. To this end, AUTSEG will query via predefined sig-
nals a configuration file specific to each system application. As shown in Fig.8,
AUTSEG operation is carried by 5 main entities: (1) The generic model, (2)
Quasi-flattening, (3) Compilation, (4) SSG and (5) The configuration file.

After quasi-flattening the hierarchical structure by the ”autom-expand” [16]
tool implemented according to Algorithm 1, the expanded automaton is compiled
separately and linked later with other compiled parallel automata, as shown in
Fig.9.

Fig. 9. Model Tool chain

Compilation process is carried out by the ”autom2circuit” tool [16], explained
in section 3.2. The execution of ”autom2circuit” generates a blif file [17] as shown
in Fig.9. A blif file is a compact format to express a netlist and is well-suited
to represent Boolean equation systems. Using the ”merge-blif” tool [16], the
generated blif files are concatenated at the end of the compilation process to
produce the final global blif file (SSG input file).

In fact, AUTSEG defines two types of preconditions: (1) preconditions related
to command parameters as described in section 3.3 and (2) preconditions defined
by the configuration file. For a particular test generation, AUTSEG will extract
the basic characteristics of the system from the configuration file unit. They are
presented as Boolean variables, characterizing the preconditions of the system
execution. If preconditions are not satisfied , the tested model will be refined,
thus reducing the combinatorial explosion problem during sequence generation.

11



5 Use case

To illustrate our approach, we studied the case of a contactless smart card de-
signed for the transportation sector. We aim to verify the correct and secure
behavior of this card using AUTSEG.

5.1 Smart Card Model

The generic model of the studied smart card is designed from a given transport
standard called Calypso. This standard defines 33 commands. The succession of
these commands (e.g. Open Session, SV Debit, Get Data, Change Pin) presents
possible scenarios of the card operation. All commands have been modeled with
the Galaxy tool[16].

Fig. 10. Calypso smart card model

Galaxy is an automata editor of finite state machines, able to generate four
types of automata: simple (basic automata), parallel automata, hierarchical
(light Esterel [18]) and syncChart. We chose to use light Esterel (a light version of
SyncChart), a synchronous graphical model that integrates high-level concepts
of synchronous languages in an expressive graphical formalism. The resulting
model presents 52 interconnected automata including 765 states. Forty-three of
them form a hierarchical structure. The remaining automata operate in parallel
and act as observers for control data of the hierarchical automaton. Fig.10 shows
a small part of our model introducing the beginning of card scenarios. Applying

12



”autom-expand” to the hierarchical automata shows in Fig.11 a flattened struc-
ture running in parallel with the observers. Due to ”autom-expand”, we moved
from 477 registers to only 22.

Fig. 11. Calypso Flat Model

5.2 Configuration and Tests

According to the Calypso standard, several types and configurations of the card
are defined (contact/contactless, maximum buffer size, etc.). We present these
characteristics as preconditions of the system execution (AUTSEG Contact Mode,
AUTSEG ch1 Selected, etc). The remaining preconditions are established dur-
ing the execution of Calypso commands. They inform about system status, for
instance, AUTSEG V Select F ile is true if the command ”Select File” is exe-
cuted normally, generating the output code SW9000.

6 Experimental Results

In this section, we show experimental results of applying AUTSEG to the con-
tactless transportation card. We intend to test the security of all possible combi-
nations of 33 commands of the Calypso standard. Each command in the Calypso
standard is encoded on a minimum of 8 bytes. We conducted our experiments
on a PC with Intel Dual Core Processor, 2 GHz and 8 GB RAM. A classical
test of this card can be achieved by browsing all possible paths of the model as
represented in Fig.6.

13



Fig. 12. Combinatorial explosion of classical tests

Such a test shows in Fig.12 an exponential evolution of the number of se-
quences versus the number of tested bytes. We are not even able to test more
than 2 commands of the model. Our model explodes by 13 bytes generating
3,993,854,132 possible sequences.

A second test applies AUTSEG on the card model represented in the same
manner as Fig.7. Results show that our approach enables coverage of the global
model in a substantially short time. It allows separately testing 33 commands
(all the system commands) in only 10 steps, generating a total of 1784 paths.
These results are highlighted in Fig.12 by a comparison of our approach to the
classical generation method. We note from the AUTSEG curve a lower evolution
that stabilizes at 10 steps and 1784 paths, allowing for coverage of all states of
the tested model. Covering all states in only 10 steps, our results demonstrate
that we test seperately one command (8 bytes) at once in our approach. Few
additional bytes (2 bytes in our case) are required to test system preconditions.

We show below an excerpt of generated sequences presenting the two last
paths. We observe the extraction of necessary preconditions that should be sat-
isfied for each sequence. AUTSEG Contact Mode and AUTSEG ch1 Selected
are preconditions from the configuration file. They serve to specify the execu-
tion context and thus possible resulting sequences. The remaining preconditions
(AUTSEG V Select F ile, AUTSEG V erif Always DF , etc) will be used to
play iteratively the backtrack (e.g, check Setlect File command) until the source
sequence is found. We notice the END of sequence generations by 1784 paths,
thus covering the entire system execution.

14



AUTSEG TEST SET
-----------------------------------------------
PATH: 1

...

-----------------------------------------------
PATH: 1783
PRECONDITIONS:
AUTSEG_Contact_Mode
AUTSEG_CH1_Selected
AUTSEG_Verif_Always_DF and AUTSEG_V_Select_File
not AUTSEG_Too_many_modifications_In_session
SEQUENCE:
- h00
- h04
- h00 ---> SW9000 Next_command
-----------------------------------------------
PATH: 1784
PRECONDITIONS:
AUTSEG_CH1_Selected
AUTSEG_Verif_Always_DF and AUTSEG_V_Select_File
AUTSEG_Too_many_modifications_In_session
SEQUENCE:
- h00
- h04
- h00 ---> SW6400 Next_command
-----------------------------------------------

EXPLORATION END FINDING 1784 PATHS...

7 Conclusion

We have proposed AUTSEG, an Automatic Test Set Generator for embedded
reactive systems. We particularly focused in this paper on systems executing
iterative commands. Our tool is able to handle large models, where the risk of
combinatorial explosion of states space is important. This has been achieved
by essentially (1) providing an algorithm to quasi-flatten hierarchical FSM and
reduce the states space, and (2) focusing on pertinent subspaces and restricting
the tests. This enables coverage of the global system behavior and generates the
list of all possible system evolutions according to the configuration file. Since our
tool ensures communication with an interactive specification block, this approach
can be adapted to process in parallel several types of system specifications.

In the near future, we will integrate data evaluation during the test process.
We aim to use the Linear Decision Diagram LDD [19] to accomplish this. LDD
allows the characterization and expression of the given preconditions by numer-
ical constraints. It checks several constraints and concludes about the feasibility
of the corresponding sequence. For example, if the union of constraints is un-
successful by LDD, then we can confirm that tested sequence is impossible and
remove it. With this approach, we can reduce the states space and avoid large
calculations.

15



References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
transaction on Computers C-35(8) (1986) 677–691

2. Seljimi, B., Parissis, I.: Automatic generation of test data generators for syn-
chronous programs: Lutess v2. In: Workshop on Domain specific approaches to
software test automation: in conjunction with the 6th ESEC/FSE joint meeting.
DOSTA ’07, New York, NY, USA, ACM (2007) 8–12

3. DuBousquet, L., Zuanon, N.: An overview of lutess: A specification-based tool for
testing synchronous software. In: ASE. (1999) 208–215

4. Blanc, B., Junke, C., Marre, B., Le Gall, P., Andrieu, O.: Handling state-machines
specifications with gatel. Electron. Notes Theor. Comput. Sci. 264(3) (2010) 3–17

5. Calam, J.R.: Specification-Based Test Generation With TGV. CWI Technical
Report SEN-R 0508, CWI (2005)

6. Clarke, D., Jéron, T., Rusu, V., Zinovieva, E.: Stg: A symbolic test generation
tool. In: TACAS. (2002) 470–475

7. Bentakouk, L., Poizat, P., Zäıdi, F.: A formal framework for service orchestration
testing based on symbolic transition systems. Testing of Software and Communi-
cation Systems (2009)

8. Xu, D.: A tool for automated test code generation from high-level petri nets. In:
Proceedings of the 32nd international conference on Applications and theory of
Petri Nets. PETRI NETS’11, Berlin, Heidelberg, Springer-Verlag (2011) 308–317

9. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: Pro-
ceedings of the 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering. ASE ’08, Washington, DC, USA, IEEE Computer Society
(2008) 443–446

10. Li, G., Ghosh, I., Rajan, S.P.: Klover: a symbolic execution and automatic test
generation tool for c++ programs. In: Proceedings of the 23rd international confer-
ence on Computer aided verification. CAV’11, Berlin, Heidelberg, Springer-Verlag
(2011) 609–615

11. André, C.: Representation and analysis of reactive behaviors: A synchronous ap-
proach. In: Computational Engineering in Systems Applications (CESA), Lille (F),
IEEE-SMC (July 1996) 19–29

12. Berry, G., Gonthier, G.: The esterel synchronous programming language: Design,
semantics, implementation. Sci. Comput. Program. 19(2) (November 1992) 87–152

13. Paiva, A.C.R., Tillmann, N., Faria, J.C.P., Vidal, R.F.A.M.: Modeling and testing
hierarchical guis. In: Proc.ASM05. Universite de Paris 12. (2005) 8–11

14. Wasowski, A.: Flattening statecharts without explosions. SIGPLAN Not. 39(7)
(Jun 2004) 257–266

15. Chiuchisan I., Potorac A.D., G.A.: Finite state machine design and vhdl coding
techniques. In: 10th International Conference on development and application sys-
tems, Suceava, Romania, Faculty of Electrical Engineering and Computer Science
(2010) 273–278

16. Gaffé, D.: Research web site. http://sites.unice.fr/dgaffe/recherche/research.html
17. Berkeley University: Berkeley logic interchange format (blif). (1998)
18. Ressouche, A., Gaffé, D., Roy, V.: Modular compilation of a synchronous language.

In Lee, R., ed.: Soft. Eng. Research, Management and Applications, best 17 pa-
per selection of the SERA’08 conference. Volume 150., Prague, Springer-Verlag
(August 2008) 157–171

19. Chaki, S., Gurfinkel, A., Strichman, O.: Decision diagrams for linear arithmetic.
In: FMCAD, IEEE (2009) 53–60

16


