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Introduction

In the theory of composite conductors (see, e.g., [START_REF] Milton | The Theory of Composites[END_REF]), we are naturally led to study periodic composites. The effective properties of a periodic composite are obtained by passing from a local Ohm's law j = σ e,

between a periodic divergence free current field j and a periodic electric field e, to an effective Ohm's law j = σ * e , with • the average over the period cell, (

where σ(y) is the local conductivity which is isotropic, and σ * is the (constant) effective conductivity of the composite which is in general anisotropic. In this context, it is natural to characterize the periodic current fields arising in the solution of these equations among all the divergence free fields. More precisely, the paper deals with the following question: Given a periodic regular divergence free field j from R 3 into R 3 , under which conditions j is an isotropically realizable current field, namely there exists an isotropic conductivity σ > 0 and a gradient field such that j = σ∇u? An additional motivation comes from the success of transformation optics (see, e.g., [START_REF] Pendry | Controlling Electromagnetic Fields[END_REF][START_REF] Pendry | Calculation of material properties and ray tracing in transformation media[END_REF]) where the objective is to choose moduli (in our case the conductivity σ) to achieve desired fields (in our case the prescribed current field j).

In [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF] we have studied the isotropic realizability of a given regular electric field e = ∇u in R d , for any d ≥ 2. The key ingredient of our approach was the associated gradient system X ′ (t, x) = ∇u X(t, x) , for t ∈ R, X(0, x) = x, (1.3) which allowed us to prove the following isotropic realizability result for a gradient field in the whole space and in the torus: satisfies the conductivity equation div (σ∇u) = 0 in R d . On the other hand, when ∇u is periodic, the conductivity σ can be chosen periodic if and only if there exists a constant C > 0 such that ˆτ(x) 0 ∆u X(t, x) dt ≤ C, ∀ x ∈ R d .

(1.7)

In the case of a gradient field, the local isotropic realizability which follows from the nonvanishing condition (1.4) thanks to the rectification theorem (see [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF], Theorem 2.2 i)), is thus equivalent to the global realizability given by the previous theorem. The case of a regular divergence free field j in R 3 is much more intricate. First of all, a necessary condition for the isotropic realizability is the orthogonality of j and curl j in R 3 . Conversely, if j is non-zero and orthogonal to curl j in R 3 , then Frobenius' theorem implies that j is isotropically realizable locally in R 3 (see Proposition 2.2). However, contrary to the case of a gradient field, these two conditions are not sufficient to ensure the global realizability (see Section 3.2 for a counter-example). This strictly local nature of Frobenius' theorem is strongly connected to cohomology which is outside the scope of this paper. On the other hand, we cannot use for a current field the properties of a gradient system which permits us in particular to define the time τ (x) satisfying (1.5).

Our approach concerning the isotropic realizability of a current field is still based on dynamical systems. But now, the procedure to construct an admissible conductivity associated with a given regular divergence free field j, uses a combination of three dynamical flows which are not of gradient type. To this end, we need that the three fields j, curl j and j × curl j make an orthogonal basis of R 3 , including in this way Frobenius' condition. Then, the method consists in flowing from a fixed point x 0 ∈ R 3 , first with the flow X 1 along the direction j/|j| during a time t 1 , next with the flow X 2 along the direction curl j/|curl j| during a time t 2 , finally with the flow X 3 along the direction j/|j| 2 × curl j during a time t 3 . So, we obtain the triple time dynamical flow

(t 1 , t 2 , t 3 ) → X 32 (t 3 , t 2 , t 1 ) = X 3 t 3 , X 2 (t 2 , X 1 (t 1 )) , with X 32 (0, 0, 0) = x 0 , (1.8)
which is assumed to be a C 1 -diffeomorphism onto R 3 . Under these assumptions we prove (see Theorem 2.4) that the field j is isotropically realizable with the conductivity σ defined by

σ X 32 (t 1 , t 2 , t 3 ) := exp ˆt3 0 |curl j| 2 |j| 2 X 32 (s, t 2 , t 1 ) ds , for (t 1 , t 2 , t 3 ) ∈ R 3 , (1.9) 
This result can be regarded as a global Frobenius' theorem, and is illustrated by the very simple current field j of Section 3.1, which yields an infinite set of (not obvious) admissible conductivities. Unfortunately, Section 3.3 shows that the approach with the triple time dynamical flow fails for a periodic regular field j of a particular form which is everywhere perpendicular to a constant vector, since curl j does vanish in R 3 (see Remark 3.3). However, in this case the divergence free field can be written as an orthogonal gradient, which allows us to apply Theorem 1.1 for a two-dimensional electric field.

When the field j is periodic, the isotropic realizability in the torus needs an extra assumption as in the case of a periodic electric field [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF] (Theorem 2.17). Under the former conditions which ensure the isotropic realizability of j in the whole space R 3 , we prove (see Corollary 2.9) that the field j is isotropically realizable in the torus, namely reads as σ∇u with both σ and ∇u periodic, if and only if

sup (t 1 ,t 2 )∈R 2 ˆ∞ -∞ |curl j| 2 |j| 2 X 32 (s, t 2 , t 1 ) ds < ∞, (1.10) 
which is equivalent to the boundedness from below and above of the conductivity (1.9) in R 3 . The sharpness of condition (1.10) is illustrated by Proposition 3.5 and Example 3.6 below. The paper is divided in two parts. In Section 2 we study the validity of the isotropic realizability of a regular divergence free field first in the whole space R 3 , then in the torus when the current field is assumed to be periodic. Section 3 is devoted to examples and counterexamples which illustrate the theoretical results of Section 2.

Notations

• Y := [0, 1] 3 and Y ′ := [0, 1] 2 . • • denotes the average over Y . • C k ♯ (Y ) denotes the space of k-continuously differentiable Y -periodic functions on R d . • L 2 ♯ (Y ) denotes the space of Y -periodic functions in L 2 (R d ), and H 1 ♯ (Y ) denotes the space of functions ϕ ∈ L 2 ♯ (Y ) such that ∇ϕ ∈ L 2 ♯ (Y ) d .
• For any open set Ω of R d , C ∞ c (Ω) denotes the space of smooth functions with compact support in Ω, and D ′ (Ω) the space of distributions on Ω.

2 Results of isotropic realizability

Realizability in the whole space

Let us start by the following definition: Definition 2.1. Let j be a divergence free field in L ∞ (R 3 ) 3 -j will be taken regular in the sequel -The field j is said to be isotropically realizable in R 3 as a current field, if there exist an isotropic conductivity σ > 0 with σ, σ -1 ∈ L ∞ (R 3 ), and a potential u ∈ W 1,∞ (R 3 ) 3 , such that j = σ∇u. Moreover, when j is Y -periodic, j is said to be isotropically realizable in the torus if σ and ∇u can be chosen Y -periodic.

First of all we have the following result which provides a criterion for the local isotropic realizability of a regular current field: Proposition 2.2. Let j be a vector-valued function such that j ∈ C 2 (R 3 ) 3 , j = 0 in R 3 , and div j = 0 in R 3 .

(2.1)

Then, a necessary and sufficient condition for the current field j to be locally isotropically realizable in R 3 with some positive C 1 conductivity σ is that

j • curl j = 0 in R 3 . (2.2)
Proof. If j is isotropically realizable with some conductivity σ ∈ C 1 (R 3 ), then j = σ∇u with σ ∈ C 1 (R 3 ), and

curl j = curl (σ∇u) = ∇σ × ∇u + σ curl (∇u) = ∇σ σ × j in R 3 , (2.3) 
which yields immediately (2.2). Conversely, if (2.1) and (2.2) are both satisfied, then by Frobenius' theorem (see, e.g., [START_REF] Cartan | Calcul Différentiel[END_REF], Theorem 6.6.2 and example p. 279) there exists locally a non-zero C 1 function σ and a C 1 function u, such that j = σ∇u. The function σ can be chosen positive by a continuity argument, which shows the isotropic realizability of j locally in R 3 . Actually, the divergence free condition is not necessary to obtain the local realizability.

Frobenius' condition (2.2) implies the local isotropic realizability for a current field j satisfying condition (2.1). However, contrary to the case [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF] of an electric field for which the local realizability and the global realizability turn out to be equivalent, these two conditions are not sufficient to ensure the global isotropic realizability of j, as shown by the counter-example of Section 3.2. To overcome this difficulty we will use an alternative approach based on the flows along the three orthogonal directions j, curl j and j × curl j under suitable assumptions which are detailed below:

Let j be a current field satisfying conditions (2.1). Beyond condition (2.2) we assume that j, curl j, j × curl j is an orthogonal basis of R 3 .

(2.4)

Then, for a fixed x 0 ∈ R 3 and for any (t 1 , t 2 , t 3 ) ∈ R 3 , consider the flows X 1 (t, x), X 2 (t, x), X 3 (t, x) along the orthogonal directions j/|j|, curl j/|curl j|, j/|j| 2 × curl j respectively, that is

                 ∂X 1 ∂t (t, x) = j |j| X 1 (t, x) , X 1 (0) = x, ∂X 2 ∂t (t, x) = curl j |curl j| X 2 (t, x) , X 2 (0) = x, ∂X 3 ∂t (t, x) = j × curl j |j| 2 X 3 (t, x) , X 3 (0, x) = x. for (t, x) ∈ R × R 3 . (2.5)
Note that the flows X 1 and X 2 are well defined in the whole set R × R 3 , since by (2.1) j/|j| and curl j/|curl j| belong to C 1 (R 3 ) and are bounded in R 3 (see, e.g., [START_REF] Arnold | Ordinary differential equations[END_REF], Chap. 2.6). In the sequel, we will assume that the flow X 3 is also defined in the whole set R × R 3 . That is the case if for example j ∈ C 2 ♯ (Y ) 3 .

Remark 2.3. In view of the normalization of the flows X 1 , X 2 , and to avoid the latter assumption, it seems a priori more logical to renormalize the flow X 3 with |j||curl j| rather than |j| 2 . The derivation of the isotropic realizability is quite similar in both cases (see Theorem 2.4 and Remark 2.5 just below). However, the normalization by |j| 2 arises naturally in the orthogonal decomposition (2.18) which is a key-ingredient for the construction of an admissible conductivity associated with the isotropic realizability of j. Moreover, it gives a necessary condition for the isotropic realizability in the torus without the need to assume that curl j does not vanish in R 3 (see the first part of Corollary 2.9 below). Actually, there are lots of examples where curl j vanishes somewhere (see Section 3.3 below), but the normalization of the flow X 3 by |j| 2 may be relevant in some cases (see Proposition 3.2 and Remark 3.3).

Next, denote for a fixed point

x 0 ∈ R 3 ,        X 1 (t 1 ) := X 1 (t 1 , x 0 ) X 23 (s 2 , s 3 , t 1 ) := X 2 s 2 , X 3 (s 3 , X 1 (t 1 , x 0 )) X 32 (t 3 , t 2 , t 1 ) := X 3 t 3 , X 2 (t 2 , X 1 (t 1 , x 0 )) , for (s 1 , s 2 , s 3 , t 1 , t 2 , t 3 ) ∈ R 6 . (2.6)
So, the dynamical flow X 32 is obtained by flowing from the point x 0 along the direction j/|j| during the time t 1 , then from the point X 1 (t 1 ) along the direction curl j/|curl j| during the time t 2 , finally from the point X 2 (t 2 , X 1 (t 1 )) along the direction (j/|j| 2 ) × curl j during the time t 3 . The end point is thus X 32 (t 3 , t 2 , t 1 ). A similar construction holds for X 23 (t 2 , t 3 , t 1 ) by commuting the flows X 2 and X 3 . Now, the main assumption is that any point x in R 3 can be attained by the composition of the three flows, so that x can be represented in a unique way by the system of coordinates (t 1 , t 2 , t 3 ), that is

(t 1 , t 2 , t 3 ) → X 32 (t 3 , t 2 , t 1 ) is a C 1 -diffeomorphism onto R 3 . (2.7)
Then, we have the following sufficient condition for the global isotropic realizability in R 3 :

Theorem 2.4. Let j be a field in R 3 satisfying (2.1) and (2.4). Also assume that condition (2.7) holds true. Then, the field j is isotropically realizable in R 3 with the conductivity e w ∈ C 1 (R 3 ), where the function w is defined by

w(x) = w X 32 (t 3 , t 2 , t 1 ) := ˆt3 0 |curl j| 2 |j| 2 X 32 (s, t 2 , t 1 ) ds, for (t 1 , t 2 , t 3 ) ∈ R 3 . (2.8) Remark 2.5.
In view of Remark 2.3, if we renormalize the flow X 3 by |j||curl j|, it is replaced by the flow X3 defined by

∂ X3 ∂t (t, x) = j × curl j |j||curl j| X3 (t, x) , X3 (0, x) = x, (2.9) 
which by condition (2.4) is defined in R × R 3 . Then, similarly to (2.7), assuming that the triple flow X32 :

(t 1 , t 2 , t 3 ) → X3 t 3 , X 2 (t 2 , X 1 (t 1 , x 0 ) (2.10) is a C 1 -diffeomorphism onto R 3
, we obtain that the field j is isotropically realizable in R 3 with the conductivity e w ∈ C 1 (R 3 ), where

w(x) = w X32 (t 3 , t 2 , t 1 ) := ˆt3 0 |curl j| |j| X32 (s, t 2 , t 1 ) ds, for (t 1 , t 2 , t 3 ) ∈ R 3 . (2.11)
The proof is quite similar to the proof of Theorem 2.4 replacing formula (2.12) by

∇ w • j × curl j |j||curl j| = |curl j| |j| = j × curl j |j| 2 • j × curl j |j||curl j| in R 3 .
(2.12)

Remark 2.6. Alternatively, we can replace the diffeomorphism condition (2.7) by

(t 1 , t 2 , t 3 ) → X 32 (t 3 , t 2 , t 1 ) is a homeomorphism onto R 3 of class C 1 , (2.13)
so that the Jacobian of X 32 may vanish somewhere. In compensation we have to assume that the function w of (2.8) belongs to C 1 (R 3 ). See the application to the example of Section 3.1.

Remark 2.7. Condition (2.7) is not sharp to ensure the isotropic realizability of the current field. Indeed, the planar example of Proposition 3.2 below shows that the isotropic realizability can be satisfied while condition (2.4) is violated. See also Example 3.6 below.

Proof of Theorem 2.4.

First step: Construction of an admissible conductivity.

Let j be a field satisfying (2.1). Assume that j is isotropically realizable in R 3 , namely there exists u, w ∈ C 1 (R 3 ) such that j = e w ∇u in R 3 .

(2.14)

It seems that we can choose the potential u arbitrarily along the trajectory X 1 (t), provided ∇u does not vanish along this trajectory. So, define u X 1 (t) := ˆt 0 j X 1 (s) ds, for t ∈ R.

(2.15)

Taking the derivative with respect to t of (2.15) and using (2.5), (2.14), we get that

∂ ∂t u X 1 (t) = j X 1 (t) = ∇u X 1 (t) • ∂ ∂t X 1 (t) = e -w(X 1 (t)) j • j |j| X 1 (t) , (2.16) 
which implies that w X 1 (t) = 0, for t ∈ R.

(2.17)

Next, taking the curl of (2.14) we get that curl j = ∇w × j, hence

j × curl j |j| 2 = ∇w -Π j (∇w) in R 3 , (2.18)
where Π j is the orthogonal projection on the subspace Rj. Hence, integrating (2.18) along the trajectory X 3 , we have

w X 32 (t 3 , t 2 , t 1 ) -w X 32 (0, t 2 , t 1 ) = w X 32 (t 3 , t 2 , t 1 ) -w X 2 (t 2 , X 1 (t 1 )) = ˆt3 0 ∇w X 32 (s, t 2 , t 1 ) • ∂X 32 ∂s (s, t 2 , t 1 ) ds = ˆt3 0 j × curl j |j| 2 2 X 32 (s, t 2 , t 1 ) ds = ˆt3 0 |curl j| 2 |j| 2 X 32 (s, t 2 , t 1 ) ds.
Then, integrating (2.18) along the trajectory X 2 and using (2.2), we get that

w X 2 (t 2 , X 1 (t 1 )) -w X 2 (0, X 1 (t 1 )) = w X 2 (t 2 , X 1 (t 1 )) -w X 1 (t 1 ) = ˆt2 0 ∇w X 2 (s, t 1 ) • ∂X 2 ∂s (s, t 1 ) ds = ˆt2 0 ∇w X 2 (s, t 1 ) • curl j |curl j| X 2 (s, t 1 ) ds = 0.
The two previous equalities combined with (2.17) yield the desired expression (2.8).

Second step: Construction of a grid on the surface {t 1 = c 1 }, generated by the flows X 2 , X 3 . Let us prove that for any (c 1 , t ′ 2 , t 2 , t 3 ) ∈ R 4 , the flows X 2 and X 3 generate on the regular surface {t 1 = c 1 }, a thin grid whose:

• step is of small enough size ν > 0,

• horizontal lines are trajectories along the flow X 2 ,

• vertical lines are trajectories along the flow X 3 ,

• two opposite vertices are the points

x ′ := X 2 (t ′ 2 , X 1 (c 1 )) and x := X 3 (t 3 , X 2 (t 2 , x ′ )) = X 32 (t 3 , t ′ 2 + t 2 , c 1 ). (2.19)
First, we divide the flows in small time steps, as shown the diagram

x  •  •  •  x ′ -→ • -→ • -→ • -→ • -→ • (2.20)
where the horizontal arrows represent the flow X 2 , and the vertical ones the flow X 3 . Then, we commute step by step the flows X 2 and X 3 , while remaining on the surface {t 1 = c 1 }, as shown the commutation diagram

• • • q • X 2 -→ q . . .  X 3 =⇒ X 3   X 3 p -→ X 2 • p -→ X 2 • (2.21)
to finally obtain the desired grid

y ′ -→ • -→ • -→ • -→ • -→ x       • -→ • -→ • -→ • -→ • -→ •       • -→ • -→ • -→ • -→ • -→ •       • -→ • -→ • -→ • -→ • -→ •       x ′ -→ • -→ • -→ • -→ • -→ y (2.22)
where by (2.19) there exists (s 2 , s 3 ) ∈ R 2 such that

x ′ := X 2 (t ′ 2 , X 1 (c 1 )), y ′ = X 3 (s 3 , x ′ ), y := X 2 (t 2 , x ′ ), x = X 3 (t 3 , y) = X 2 (s 2 , y ′ ). (2.
23) The vertices x ′ , y ′ , y, x of the grid (2.22) satisfy the commutative diagram

y ′ = X 3 (s 3 , x ′ ) X 2 -→ X 2 (s 2 , y ′ ) = X 3 (t 3 , y) = x X 3   X 3 x ′ = X 2 (t ′ 2 , X 1 (c 1 )) -→ X 2 X 2 (t 2 , x ′ ) = y.
(2.24)

Note that the grid (2.22) is schematic. A more realistic grid is represented in figure 1 below.

Frobenius' theorem will allow us to make the local switching (2.21) thanks to a potential u satisfying j = σ∇u. To this end, we proceed by induction on the number n of switchings, for an appropriate time step ν > 0 which will be chosen later. The induction hypothesis, for a given n ∈ N, consists in the existence of a partial grid G n (ν), with n switchings, represented by the diagram x

 •  • • • q -→ • -→ • . . .    • -→ • -→ p -→ • -→ • -→ •       x ′ -→ • -→ • -→ • -→ • -→ • (2.25)
which lies on the surface {t 1 = c 1 }.

First, the result holds for n = 0. Indeed, the points x ′ and x defined by (2.19) clearly belong to the surface {t 1 = c 1 }, so does the initial diagram (2.20) for any time step τ .

Next, assume that after a number n of switchings, we are led to the grid G n (ν) (2.25) which, by the induction hypothesis, lies on the surface {t 1 = c 1 }. By virtue of Frobenius' theorem there exist an open neighborhood V of p, and a potential u ∈ C 1 (V ) such that j = σ∇u in V . Then, we may chose τ > 0 small enough so that

q ∈ S 32 (p, τ ) := X 3 (δ 3 , X 2 (δ 2 , p)) : |δ 2 | + |δ 3 | < τ ⊂ V S 23 (p, τ ) := X 2 (δ 2 , X 3 (δ 3 , p)) : |δ 2 | + |δ 3 | < τ ⊂ V, (2.26) 
independently of the point p in a given compact set of R 3 . Since the potential u is constant along the flows X 2 and X 3 , we have for any point r ∈ S 32 (p, τ ),

u(r) = u X 3 (δ 3 , X 2 (δ 2 , p)) = u X 3 (0, X 2 (δ 2 , p)) = u X 2 (δ 2 , p) = u X 2 (0, p) = u(p).
The same equality holds for any point r ∈ S 23 (p, τ ), hence

q ∈ S 32 (p, τ ) ⊂ u = u(p) ∩ V and S 23 (p, τ ) ⊂ u = u(p) ∩ V. (2.27)
Moreover, since the trajectory along the flow X 2 , passing through the point p in diagram (2.25) lies on the surface {t 1 = c 1 } (by the induction hypothesis), thanks to the semi-group property satisfied by the flow X 3 , we have that for any

|δ 2 | + |δ 3 | < t, there exists (t 2 , t 3 ) ∈ R 2 such that X 3 δ 3 , X 2 (δ 2 , p) = X 3 δ 3 , X 32 (t 3 , t 2 , c 1 ) = X 32 (δ 3 + t 3 , t 2 , c 1 ) ∈ t 1 = c 1 . (2.28)
Hence, by the definition (2.26) of S 32 (p, τ ), we get that

∀ t > 0, S 32 (p, t) ⊂ t 1 = c 1 .
(2.29) However, thanks to the condition (2.4) which yields ∇u = 0 in V , the sets S 32 (p, τ ), S 23 (p, τ ) and {u = u(p)} ∩V are regular open surfaces in V . Hence, from the inclusions (2.27) we deduce that the surfaces S 32 (p, τ ) and S 23 (p, τ ) actually agree with the equipotential {u = u(p)} in some neighborhood of p containing q, but independent of p in a given compact set K of R 3 . This combined with the condition (2.29) (which does not depend on time), implies that the time step ν < τ may be chosen small enough, but independently of the point p in K, so that

q ∈ S 23 (p, ν) ⊂ t 1 = c 1 .
(2.30)

Therefore, the following grid G n+1 (ν) which completes (2.25)

x  •  • -→ q -→ • -→ •     • -→ • -→ p -→ • -→ • -→ •       x ′ -→ • -→ • -→ • -→ • -→ • (2.31)
also lies on the surface {t 1 = c 1 }. The induction proof is thus done, which establishes the existence of the grid (2.22).

Third step: Proof of the isotropic realizability with the conductivity e w . Let us prove that the function w defined by (2.8) combined with condition (2.7) satisfies the equality (2.18). This yields the global isotropic realizability of j, since by (2.1), (2.2) and (2.18) we have curl (e -w j) = e -w (curl j -∇w × j) = e -w curl j -

(j × curl j) × j |j| 2 = 0. (2.32)
On the one hand, taking the derivative of (2.8) with respect to t 3 , we have

∇w • j × curl j |j| 2 X 32 (t 3 , t 2 , t 1 ) = |curl j| 2 |j| 2 X 32 (t 3 , t 2 , t 1 ) , ∀ (t 1 , t 2 , t 3 ) ∈ R 3 , (2.33) 
which together with condition (2.7) implies that

∇w • j × curl j |j| 2 = |curl j| 2 |j| 2 = j × curl j |j| 2 2 in R 3 . (2.34)
Moreover, taking the derivative of (2.8) with respect to t 2 for t 3 = 0, we get that

0 = ∇w X 32 (0, t 2 , t 1 ) • ∂X 32 ∂t 2 (0, t 2 , t 1 ) = ∇w X 2 (t 2 , X 1 (t 1 )) • ∂X 2 ∂s (t 2 , X 1 (t 1 )) = ∇w X 2 (t 2 , X 1 (t 1 )) • curl j |curl j| X 2 (t 2 , X 1 (t 1 )) , Figure 1: The square Q split in small squares Q k on the surface {t 1 = c 1 } which yields ∇w • curl j = 0 on X 2 (t 2 , X 1 (t 1 )) : (t 1 , t 2 ) ∈ R 2 . (2.35)
On the other hand, for a constant c 1 ∈ R, consider on the surface {t 1 = c 1 } the curvilinear integral over ∂Q defined by

ˆ ∂Q ω := ˆt3 0 |curl j| 2 |j| 2 (X 3 (s, y) ds - ˆs3 0 |curl j| 2 |j| 2 X 3 (s, x ′ ) ds, (2.36) 
where Q = Q x ′ ,y ′ ,y,x , with x ′ , y ′ , y, x defined by (2.23), is the "square" lying on the surface {t 1 = c 1 }, whose:

• horizontal sides are trajectories associated with the flow X 2 along curl j/|curl j|,

• vertical sides are trajectories associated with the flow X 3 along j/|j| 2 × curl j,

• vertices x ′ , y ′ , y, x make the loop (2.24). Now, consider the thin grid on Q, associated with the grid (2.22), whose lines are parallel to the trajectories along curl j/|curl j| and (j/|j| 2 ) × curl j, and which splits Q in small squares Q k , as shown in figure 1. According to the second step of the proof, we may choose the time step of the grid so that Frobenius' theorem applies in some open neighborhood V k of R 3 , containing the closed square Q k . Namely, there exists

w k ∈ C 1 (V k ) such that curl (e -w k j) = 0 in V k ,
which implies formulas (2.18) and (2.34) for w k . Using the loops induced by the boundaries ∂Q k , the contributions of the interior vertical lines (along j/|j| 2 × curl j) two by two cancel (see figure 1), which leads to

ˆ ∂Q ω = k ˆ ∂Q k ω.
(2.37) However, since

∇w k • curl j = 0 in V k ⊃ Q k ,
the curvilinear integrals of dw k on the two horizontal lines of ∂Q k (along curl j/|curl j|) are equal to 0, while by putting (2.34) in (2.36) the curvilinear integrals of dw k on the two vertical lines of ∂Q k (along j/|j| 2 × curl j) agree with the curvilinear integral of ω over ∂Q k , which yields

ˆ ∂Q k ω = ˆ ∂Q k dw k = 0. (2.38)
The last equality is due to the fact that dw k is an exact differential on the closed loop ∂Q k . Hence, from (2.37) and (2.38) we deduce that

ˆ ∂Q ω = 0. (2.39)
Next, consider the function w defined by (2.8). Taking the loop (2.24) in the anti-clockwise direction, the contributions of the vertical lines (along (j/|j| 2 )×curl j) of the curvilinear integral of dw over ∂Q in the anti-clockwise direction, read as, in view of (2.34) and (2.36),

ˆt3 0 ∇w • j × curl j |j| 2 X 3 (s, y) ds - ˆs3 0 ∇w • j × curl j |j| 2 X 3 (s, x ′ ) ds = ˆ ∂Q ω. (2.40)
Moreover, again by (2.24) the contributions of the horizontal lines (along curl j/|curl j|) of the curvilinear integral of dw over ∂Q in the anti-clockwise direction, read as 

ˆt2 0 ∇w • curl j |curl j| X 2 (t 2 , x ′ ) ds - ˆs2 0 ∇w • curl j |curl j| X 2 (s, y ′ ) ds. ( 2 
ˆs2 0 ∇w • curl j |curl j| X 2 (s, X 3 (s 3 , x ′ )) ds = 0, where x ′ = X 2 (t ′ 2 , X 1 (c 1 )). (2.43)
Then, making t 2 → 0 -which, by the continuity of the flows in the diagram (2.24), implies that s 2 → 0 and X 3 (s 3 , x ′ ) → X 3 (t 3 , x ′ ) -and using the continuity of the integrand in the left-hand side of (2.43), we get that

∇w • curl j X 32 (t 3 , t ′ 2 , c 1 ) = ∇w • curl j X 3 (t 3 , x ′ ) = 0, ∀ (c 1 , t ′ 2 , t 3 ) ∈ R 3 . (2.44)
This combined with the diffeomorphism condition (2.7) leads to

∇w • curl j = 0 in R 3 . (2.45)
Finally, combining the equalities (2.45) and (2.34) with (2.4), we derive the formula (2.18). Therefore, thanks to (2.32) we may conclude that the current field j is isotropically realizable with the conductivity e w defined by (2.8), which concludes the proof of Theorem 2.4.

Isotropic realizability in the torus

As in the case of an electric field [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF] the isotropic realizability of a periodic current field in R 3 does not imply in general the isotropic realizability in the torus, as shown in Example 3.6 below.

First of all, we have the following criterion of isotropic realizability in the torus:

Proposition 2.8. Let j be a Y -periodic divergence free field in L ∞ ♯ (Y ) 3 . Then, the field j is isotropically realizable in the torus with a conductivity σ > 0 satisfying σ, σ -1 ∈ L ∞ ♯ (Y ), if and only if there exists w ∈ L ∞ (R) such that curl (e -w j) = 0 in R 3 .

(2.46)

Proof. Assume that j is isotropically realizable in the torus with a conductivity σ > 0 satisfying σ, σ -1 ∈ L ∞ ♯ (Y ). Then, defining w := ln σ ∈ L ∞ (R 3 ), the function e -w j is a gradient, which implies (2.46).

Conversely, assume that (2.46) holds with w ∈ L ∞ (R). Then, there exists u ∈ W 1,∞ (R 3 ) such that e -w j = ∇u, or equivalently j = e w ∇u in R 3 . It is not clear that e w is periodic. However, we can construct a suitable periodic conductivity by adapting the average argument of [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF] (proof of Theorem 2.17). To this end, define the sequence (w n ) n∈N\{0} , by

w n (x) := 1 (2n + 1) 3 k∈Z 3 , |k|∞≤n w(x + k), for x ∈ R 3 , where |k| ∞ := max (|k 1 |, |k 2 |, |k 3 |) .
Since w is in L ∞ (R 3 ), the sequence w n is bounded in L ∞ (R), and thus converges weakly- * to some function w ♯ in L ∞ (R 3 ). It is easy to check that w ♯ is Y -periodic. Moreover, by the periodicity of j we have curl (e -wn j) = 1 (2n + 1) 3

k∈Z 3 , |k|∞≤n curl e -w(•+k) j(• + k) = 1 (2n + 1) 3 k∈Z 3 , |k|∞≤n curl ∇u(• + k) = 0.
As e -wn j converges weakly- * to e -w ♯ j in L ∞ (R 3 ) 3 , the previous equality leads to curl (e -w ♯ j) = 0 in D ′ (R 3 ) 3 .

Therefore, e -w ♯ j is a periodic gradient and j is isotropically realizable in the torus with the conductivity e w ♯ .

As a consequence of Proposition 2.8 and Theorem 2.4, we have the following result: Corollary 2.9. Let j be a Y -periodic current field satisfying conditions (2.1) and (2.2). i) Assume that the field j is isotropically realizable in the torus with a positive conductivity σ ∈ C 1 ♯ (Y ). Then, there exists a constant C > 0 such that

ˆ∞ -∞ |curl j| 2 |j| 2 X 3 (s, x) ds ≤ C, ∀ x ∈ R 3 , (2.47)
where the flow X 3 is defined by (2.5).

ii) Alternatively, assume that the conditions (2.4) and (2.7) are satisfied. Then, the field j is isotropically realizable in the torus if and only if estimate (2.47) holds true.

Remark 2.10. Corollary 2.9 with the boundedness condition (2.47) is illustrated in Proposition 3.5 below.

Proof of Corollary 2.9. Proof of i). Denoting σ = e w ∈ C 1 (R 3 ), we have j = e w ∇u, with ∇u ∈ C 1 (R 3 ) 3 . Then, from (2.18) we deduce that

∂ ∂t w X 3 (t, x) = |curl j| 2 |j| 2 X 3 (t, x) , ∀ (t, x) ∈ R × R 3 , which yields w X 3 (t, x) -w(x) = ˆt 0 |curl j| 2 |j| 2 X 3 (s, x) ds, ∀ (t, x) ∈ R × R 3 . (2.48)
Therefore, due to the boundedness of w ∈ C 1 ♯ (Y ), the estimate (2.47) holds. Proof of ii). By Theorem 2.4 we already know that j is isotropically realizable with the conductivity σ = e w ∈ C 1 (R 3 ) defined by (2.8). If the field j is isotropically realizable in the torus, then by i) the estimate (2.47) holds. Conversely, in view of the estimate (2.47) combined with the definition (2.6) of X 32 , the function w defined by (2.8) clearly belongs to L ∞ (R 3 ). Therefore, applying Proposition 2.8 with the conductivity e w , we get that j is isotropically realizable in the torus.

Examples and counter-examples

In this section a point of R 3 is denoted by the coordinates (x, y, z), and (e x , e y , e z ) denotes the canonical basis of R 3 .

Example of global realizability in the space

We will illustrate the construction of Theorem 2.4 with the current field j(x, y, z)

:=   1 sinh x 0   , for (x, y, z) ∈ R 3 , (3.1)
which is clearly non-zero and divergence free in R 3 . We have curl j(x, y, z) :=

  0 0 cosh x   and j × curl j(x, y, z) =   sinh x cosh x -cosh x 0   , (3.2) 
so that the field j satisfies (2.1) and Frobenius' condition (2.2).

Noting that |j| = |curl j| = | cosh x|, and using the solutions to one-dimensional first-order odes, the flows X 1 , X 2 , X 3 of (2.5) associated with the field j are given by

X 1 (t) =    argsinh t + sinh (x 1 (0)) 1 + t + sinh (x 1 (0)) 2 + y 1 (0) -cosh(x 1 (0)) z 1 (0)    , X 2 (t) =   x 2 (0) y 2 (0) t + z 2 (0)   , X 3 (t) =      argsinh e t sinh (x 3 (0)) - ˆt 0 ds 1 + e 2s sinh 2 (x 3 (0)) + y 3 (0) z 3 (0)      . (3.3)
Hence, starting from the point x 0 = (0, 1, 0), the composed flows X 32 , X 23 of (2.6) are given by

X 32 (t 3 , t 2 , t 1 ) =     argsinh t 1 e t 3 - ˆt3 0 ds 1 + e 2s t 2 1 + 1 + t 2 1 t 2     , for (t 1 , t 2 , t 3 ) ∈ R 3 . (3.4)
Making classical changes of variables in the integral term, formula (3.4) can be written

X 32 (t 3 , t 2 , t 1 ) =                            0 1 -t 3 t 2   if t 1 = 0      argsinh t 1 e t 3 argtanh 1 1 + t 2 1 e 2t 3 + f (t 1 ) t 2      if t 1 = 0, (3.5) 
where

f (t) := -argtanh 1 √ 1 + t 2 + √ 1 + t 2 , for t = 0. (3.6)
The function f satisfies

f (t) = ln |t| + 1 -ln 2 + o(1) and f ′ (t) = √ 1 + t 2 t = 1 t + o(1), (3.7) 
and is a C 1 -diffeomorphism from (0, ∞) onto R, and from (-∞, 0) onto R. Hence, we have

∀ (x, y) ∈ R \ {0} × R, ∃ ! t 1 ∈ R, x t 1 > 0 and y -argtanh 1 cosh x = f (t 1 ), (3.8)
which together with (3.5) implies that for this t 1 ,

(x, y, z) = X 32 (t 3 , t 2 , t 1 ) ⇔                         x = 0 y = 1 -t 3 z = t 2 if t 1 = 0        sinh x = t 1 e t 3 y -argtanh 1 cosh x = f (t 1 ) z = t 2 .
if t 1 = 0.

(3.9)

As a consequence of (3.5), (3.6), the first equality of (3.7), (3.8) and (3.9), the mapping X 32 define a homeomorphism onto R 3 , which is of class C 1 by (3.4). Unhappily, we can check that the Jacobian of X 23 vanishes (exclusively) on the line {t 1 = 0}. However, taking into account the equality sinh x = t 1 e t 3 , X 23 does establish a C 1 -diffeomorphism from the half-spaces {± t 1 > 0} onto the half-spaces {± x > 0}. Therefore, condition (2.7) holds true restricting ourselves on these half-spaces. On the other hand, since |j| = |curl j|, the function w defined by (2.8) reads as

w(x, y, z) = t 3 =      1 -y if x = 0 ln sinh x t if x = 0, where x t > 0, y -argtanh 1 cosh x = f (t).
(3.10)

It is easy to check that the asymptotic expansions (3.7) satisfied by f imply that w ∈ C 1 (R 3 ). Hence, the conditions of Theorem 2.4 are fulfilled in the two half-spaces {± x > 0}. Therefore, the field j defined by (3.1) is isotropically realizable in the half-spaces {± x > 0}, with the conductivity σ ∈ C 1 (R 3 ) given by σ(x, y, z) :=

     e 1-y if x = 0 sinh x t if x = 0, where x t > 0, y -argtanh 1 cosh x = f (t). (3.11) 
Finally, the C 1 -regularity of j and σ ensure the isotropic realizability in the whole space R 3 . Since X 32 is a homeomorphism onto R 3 of class C 1 and the function w of (3.10) is in C 1 (R 3 ), we can also conclude thanks to Remark 2.6.

Remark 3.1. The previous example allows us to show that there exists an infinite set of admissible conductivities which cannot be derived from a multiple of the conductivity (3.11) defined with the function (3.6). To this end, consider any function f : R \ {0} → R which is a C 1 -diffeomorphism from (0, ∞) onto R and from (-∞, 0) onto R, which satisfies the following asymptotic expansions around 0:

f (t) = ln |t| + c + o(1) and f ′ (t) = 1 t + c ′ + o(1), for some c, c ′ ∈ R. (3.12) 
Then, define the conductivity σ f by

σ f (x, y, z) :=      2 e c-y if x = 0 sinh x t if x = 0, where x t > 0, y -argtanh 1 cosh x = f (t). (3.13) 
Thanks to (3.6), (3.7) and (3.12) the function σ f belongs to C 1 (R). Moreover, we have for any

(x, y) ∈ R \ {0} × R, curl σ -1 f j = curl    t sinh x t 0    =     0 0 ∂t ∂x - 1 sinh x ∂t ∂y     . (3.14) This combined with - ∂ ∂x argtanh 1 cosh x = 1 sinh x = ∂t ∂x f ′ (t) and 1 = ∂t ∂y f ′ (t), (3.15) 
yields that curl (σ -1 f j) = 0 in R \ {0} × R. Since σ f is in C 1 (R)
, the equality holds in R 2 . Therefore, the field j defined by (3.1) is isotropically realizable in R 3 with any conductivity σ f defined by (3.13) and (3.12).

Example of non-global realizability under Frobenius' condition

The following example shows that condition (2.2) is not sufficient to derive a global realizability result in accordance with the local character of Frobenius' theorem. This example is an extension to a divergence free non-vanishing field in R 3 of the counterexample of [START_REF] Boyling | Carathéodory's principle and the global existence of an integrating factor[END_REF] obtained for a non-vanishing field in R 2 .

Define the function j in R 3 by j(x, y, z) :=

  f (x) f ′ (x) -z f ′ (x)   , where f (x) := 8 x 3 -6 x 4 -1, (3.16) 
which satisfies condition (2.1). We have

curl j(x, y, z) =   0 z f ′′ (x) f ′′ (x)   ,
so that Frobenius' condition (2.2) holds, but not (2.4) since f ′′ ( 2/3) = 0. Now, assume that j can be written σ∇u for some positive continuous function σ in the closed strip {0 ≤ x ≤ 1}. We have for any x ∈ (0, 1), f ′ (x) = 0 and

       f (x) = σ ∂u ∂x f ′ (x) = σ ∂u ∂y , hence ∂u ∂x = f (x) f ′ (x) ∂u ∂y . (3.17) 
Then, the method of characteristics implies that for a fixed z ∈ R, there exists a function

g z in C 1 (R) such that u(x, y, z) = g z y + F (x) , ∀ (x, y) ∈ (0, 1) × R, (3.18) 
where F is the primitive of f /f ′ on (0, 1) defined by

F (x) := x 2 8 - x 12 - ln(1 -x) 24 - ln x 24 + 1 24x
, for x ∈ (0,

As x → 0, x > 0, we have by (3.19)

t := y + F (x) ∼ x→0 1 24 x .
This combined with (3.16), (3.17), (3.18) yields

g ′ z (t) = 1 σ(x, y, z) f ′ (x) ∼ t→∞ 1 24 σ(0, y, z) 1 t 2 . As x → 1, x > 1, we have by (3.19) t = y + F (x) = y + 1 12 - ln(1 -x) 24 + o(1), hence 1 -x ∼ t→∞ e 24y+2 e -24t ,
which implies that

g ′ z (t) = 1 σ(x, y, z) f ′ (x) ∼ t→∞ 24 e 24y+2 σ(1, y, z) e -24t .
Therefore, the two asymptotic expansions of g z (t) as t → ∞, lead to a contradiction.

3.3

The case where the current field lies in a fixed plane Consider a periodic field j in C 2 ♯ (Y ) 3 satisfying (2.1) and (2.2) which remains perpendicular to a fixed direction. By an orthogonal change of variables we may assume that j lies in the plane {z = 0}, namely j = (j x , j y , 0). From now on, any vector of R 2 will be identified to a vector of R 3 with zero z-coordinate. Hence, we deduce that

j • curl j = 0 ⇔ ∂ z j j in R 3 .
(3.20)

Then, using the representation of a divergence-free field by an orthogonal gradient in R 2 , the most general expression for a divergence free field j satisfying (3.20) is

j(x, y, z) = α(x, y, z) ∇ ⊥ v(x, y) = α(x, y, z)   -∂ y v(x, y) ∂ x v(x, y) 0   for (x, y, z) ∈ R 3 , with ∂ x α ∂ y v -∂ y α ∂ x v = 0 in R 3 , (3.21) 
where α ∈ C 2 ♯ (Y ′ ), α > 0, and v ∈ C 3 (R 2 ) 2 , with ∇v Y ′ -periodic. For the sake of simplicity, we assume from now on that the function α only depends on the coordinate z. Therefore, we are led to j(x, y, z) = α(z) ∇ ⊥ v(x, y), for (x, y, z

) ∈ R 3 , (3.22) 
where α ∈ C 2 ♯ ([0, 1]), α > 0, and v ∈ C 3 (R 2 ) 2 , with ∇v Y ′ -periodic and ∇v = 0 in R 2 by (2.1). Following the isotropic realizability procedure for a gradient field [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF], consider the gradient system Z ′ (t, x, y) = ∇v Z(t, x, y) , for t ∈ R, satisfies the conductivity equation div (e -wv ∇v) = 0 in R 2 .

Z(0, x, y) = (x, y) ∈ R 2 . ( 3 
We have the following isotropic realizability result:

Proposition 3.2. If the function w v of (3.25) is in L ∞ (R 2
), then the field j defined by (3.22) is isotropically realizable in the torus. Conversely, if j is isotropic realizable in the torus with a positive conductivity σ ∈ C 1 ♯ (Y ), then the function w v is in L ∞ (R 2 ). On the other hand, if w v belongs to L ∞ (R 2 ), then condition (2.47) holds.

Remark 3.3. The criterion for the isotropic realizability of j in the torus given in Proposition 3.2, that is the boundedness of w v , implies condition (2.47). The converse is not clear. The reason is that the field j defined by (3.22) does not satisfy condition (2.4). More precisely, the curl of j curl j(x, y, z) = -α ′ (z) ∇v(x, y) + α(z) ∆v(x, y) e z , for (x, y, z) ∈ R 3 , (3.26) does vanish in R 3 . Indeed, due to the periodicity of α and ∇v we have

ˆ1 0 α ′ (z) dz = ˆY ′ ∆v(x, y) dxdy = 0.
This combined with the continuity of α ′ and ∆v implies the existence of a point (x, y, z) ∈ R 3 such that α ′ (z) = ∆v(x, y) = 0. Therefore, we cannot use Theorem 2.4.

Proof of Proposition 3.2. Assume that the function w v of (3.25) is in L ∞ (R 2 ). Then, by Theorem 1.1 the gradient field ∇v is isotropically realizable in the torus, namely there exists a periodic positive conductivity σ, with σ, σ -1 ∈ L ∞ ♯ (Y ′ ), such that div (σ∇v) = 0 in R 2 . Hence, there exists a stream function u, with ∇u ∈ L 2 ♯ (Y ′ ) 2 , such that σ∇v = -∇ ⊥ u in R 2 . Therefore, by (3.22) j = α σ -1 ∇u is isotropically realizable in the torus.

Conversely, assume that j is isotropically realizable in the torus with a positive conductivity σ ∈ C 1 ♯ (Y ). Then, since j z = 0, we have j = σ∇u in R 3 , with ∇u ∈ C 1 ♯ (Y ′ ) 2 . Equating this equality with (3.22) at z = 0, we get that

α(0) σ(x, y, 0) ∇v(x, y) = -∇ ⊥ u(x, y), for (x, y) ∈ R 2 .
Thus, ∇v is isotropically realizable in the torus with the conductivity α(0) σ -1 (•, 0) ∈ C 1 ♯ (Y ′ ), which by virtue of Theorem 1.1 implies that w v belongs to L ∞ (R 2 ). Now, assume that w v is in L ∞ (R 2 ). By (2.5), (3.22) and (3.26) we have

∂X 3 ∂t = j × curl j |j| 2 (X 3 ) = ∆v(X 3 ) |∇v(X 3 )| 2 ∇v(X 3 ) + α ′ (X 3 • e z ) α(X 3 • e z ) e z .
Moreover, by (3.25) we have div (e wv ∇v) = 0 in R 2 , or equivalently ∆v = -∇w w • ∇v in R 2 , hence

∂X 3 ∂t = -Π ∇v (∇w v )(X 3 ) + α ′ (X 3 • e z ) α(X 3 • e z ) e z , (3.27) 
where Π ∇v denotes the orthogonal projection on R∇v. However, since ∇w v -Π ∇v (∇w v ) is parallel to j by (3.22) and thus orthogonal to ∂ t X 3 by (2.5), we get that

∂X 3 ∂t 2 = -Π ∇v (∇w v )(X 3 ) • ∂X 3 ∂t + α ′ (X 3 • e z ) α(X 3 • e z ) ∂X 3 ∂t • e z = -∇w v (X 3 ) • ∂X 3 ∂t + α ′ (X 3 • e z ) α(X 3 • e z ) ∂X 3 ∂t • e z = ∂ ∂t -w(X 3 ) + ln α(X 3 • e z )
It follows that for any (t, x, y, z) ∈ R 4 ,

ˆt 0 ∂X 3 ∂s (s, x, y, z) 2 ds = w v (x, y, z) -w v X 3 (t, x, y, z) + ln α X 3 (t, x, y, z) • e z α(z) . (3.28)
The function ln α is periodic and continuous in R, hence it is bounded. Therefore, equality (3.28) shows that the boundedness of w v implies condition (2.47).

Remark 3.4. Note that the field current j defined by (3.1) has a zero z-coordinate, and

j = ∇ ⊥ v with v(x, y) := cosh x -y, (3.29) 
so that we could a priori use the above method. However, in this case the solution of the gradient system (3.23) is given by Z(t, x, y) = 2 argtanh e t tanh (x/2) -t + y , (3.30) which is clearly not a global solution. Therefore, the present two-dimensional approach does not work for the very simple current field (3.1).

A particular class of current fields

Let f, g, h ∈ C 2 (R) be three 1-periodic functions such that f has only isolated roots in R which are not roots of f ′ , while g, h do not vanish in R. Then, the following isotropic realizability result holds:

Proposition 3.5. The Y -periodic field j defined by

j(x, y, z) :=   g(y) h(z) f (x) h(z) f (x) h(z)   , for (x, y, z) ∈ R 3 , (3.31) 
satisfies the conditions (2.1) and (2.2). On the other hand, consider the following assertions:

(i) the function f does not vanish in R 3 , (ii) the field j is isotropically realizable in the torus with a positive conductivity σ ∈ C 1 ♯ (Y ), (iii) condition (2.47) holds.

Then, (i) and (ii) are equivalent conditions and they imply assertion (iii). Moreover, when g = h = 1 all three assertions (i), (ii) and (iii) are equivalent.

Proof. Condition (2.1) clearly holds. We have

curl j =   f (x) g ′ (y) -h ′ (z) g(y) h ′ (z) -f ′ (x) h(z) f ′ (x) -g ′ (y)   , for (x, y, z) ∈ R 3 , (3.32) 
hence condition (2.2) is also satisfied. However, note that condition (2.7) does not hold.

(i) ⇒ (ii). If f does not vanish in R, we can write

j(x, y, z) = f (x) g(y) h(z) ∇u(x, y, z), with u(x, y, z) := ˆx 0 dt f (t) + ˆy 0 dt g(t) + ˆz 0 dt h(t) . (3.33)
Therefore, j is isotropically realizable in the torus with the conductivity σ(x, y, z) := f (x) g(y) h(z) > 0, which belongs to C 1 ♯ (Y ). (ii) ⇒ (i). More precisely, we will prove that if f vanishes in R, then j is not isotropically realizable with any positive continuous conductivity σ(x, y, z) which is Y ′ -periodic with respect to (y, z).

To this end, assume by contradiction that both f vanishes in R and j is isotropically realizable with a positive continuous conductivity σ(x, y, z) which is Y ′ -periodic with respect to (y, z), Y ′ = [0, 1] 2 . Let a < b be such that f (a) = 0 and f (b) = 0. Starting from the equality curl (σ -1 j) = 0, integrating by parts over the cube [a, b] × Y ′ , and denoting by n the outside normal, we have 0 (ii) ⇒ (iii). This is a straightforward consequence of Corollary 2.9 i).

= ˆ[a,b]×Y ′ curl (σ -1 j) • e y dx dy dz = ˆ∂([a,b]×Y ′ ) (n × σ -1 j) • e y ds = ˆ{a,b}×Y ′ (n × σ -1 j) • e y ds + ˆ[a,b]×∂Y ′ (n × σ -1 j) • e y ds.
(iii) ⇒ (i), when g = h = 1. Assume by contradiction that f vanishes at some point a ∈ R. Since f ′ (a) = 0, we may assume that, for instance, there exists a real number b > a such that f > 0 in (a, b] and f ′ > 0 in [a, b]. By (3.31) and (3.32) we have

j × curl j =   2f (x)f ′ (x) -f ′ (x) -f ′ (x)   , for x ∈ R,
hence the flow X 3 of (2.5) reads as Therefore, the L 2 (R)-norm of t → ∂ t X 3 (t, x, y, z) is infinite for any x ∈ (a, b]. This proves the implication (iii) ⇒ (i), when g = h = 1.

                 x ′ (t) = 2f (x(t))f ′ (x(t)) 2f 2 (x(t)) + 1 , x(0) = x y ′ (t) = - f ′ (x(t)) 2f 2 (x(t)) + 1 , y(0) = y z ′ (t) = - f ′ (x(t))
Example 3.6. Consider the particular case of (3.31) where g = h = 1. When the function f vanishes in R, the field j ∈ C 2 ♯ (Y ) 3 still satisfies conditions (2.1) and (2.2). Since condition (2.4) does not hold, Theorem 2.4 does not apply. However, the field j is actually isotropically realizable in the whole space R 3 , but not in the torus due to Proposition 3.5.

It is not obvious how to derive an explicit conductivity associated with j, but we now proceed to do so. To this end, we may assume that f ∈ C 2 (R) is a 1-periodic function satisfying f (0) = 0, f ′ (0) = 0, and f > 0 in (0, 1). Then, j lies in the plane {j y = j z }, so that we can apply the procedure of Section 3.3 based on the representation of two-dimensional divergence-free functions by orthogonal gradients. This combined with the approach of [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF] (Proposition 2.11) allows us to construct a conductivity σ ∈ C 1 (R 3 ) such that curl (σ -1 j) = 0 in R 3 , as follows:

Let F be the function defined in (0, 1) by F (x) := ˆx 1 2 ds f (s) , for x ∈ (0, 1).

(3.38)

The function F is a C 1 -diffeomorphism from (0, 1) onto R. Then, denoting by F -1 its reciprocal, an admissible conductivity σ is given by σ(x, y, z) :=

     f (x) f F -1 (y + z + F (x -n)) if x ∈ (n, n + 1) e -f ′ (0)(y+z) if x = n, for n ∈ Z, (3.39) 
which is 1-periodic with respect to x. Let us prove that σ ∈ C 1 (R 3 ), and curl (σ -1 j) = 0 in R 3 . For x ∈ (0, 1) and (y, z) ∈ R 2 , set t := F -1 (y + z + F (x)) ∈ (0, 1). Since f ′ (0) = 0 and f ∈ C 2 (R), we have for n = 0, 1, or equivalently, curl (e -w j) = 0 in R 3 . Therefore, the current field j = 1, f (x), f (x) is isotropically realizable with the conductivity σ ∈ C 1 (R 3 ) defined by (3.38) and (3.39). Note that the function σ is 1-periodic with respect to x, but is not periodic with respect to (y, z) in accordance with Proposition 3.5. Finally, the isotropic realizability of j in R 3 can be written

y + z - 1 f ′ (0) ln t -n x -n = F (t) -F (x) - 1 f ′ (0) ln t -n x -n = ˆt x 1 f (s) - 1 f ′ (0)(s -n) ds ≤ C |t -x|,
  1 f (x) f (x)   = σ(x, y, z) ∇ x + ˆy+z 0 f F -1 (s + F (x -n)) ds , for x ∈ (n, n + 1), n ∈ Z,
where the conductivity σ is defined by (3.39).
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 114 [START_REF] Briane | Which electric fields are realizable in conducting materials?[END_REF], Theorems 2.15 & 2.17). Let u be a function in C 3 (R d ) satisfying the non-Then, there exists a unique function τ ∈ C 1 (R d ) such that for any x ∈ R d , the trajectory t → X(t, x) meets the equipotential {u = 0} at the times τ (x), namely u X(τ (x), x) = 0.(1.5)Moreover, the positive function σ defined in R d by σ(x) := exp ˆτ(x) 0 ∆u X(s, x) ds , for x ∈ R d , (1.6)

  .23) Then, by virtue of Theorem 1.1 there exists a unique function τ v ∈ C 1 (R 2 ) such that v Z(τ v (x, y), x, y) = 0, for any (x, y) ∈ R 2 , (3.24) and the function w v defined by w v (x, y) := -ˆτv(x,y) 0 ∆v Z(s, x, y) ds, for (x, y) ∈ R 2 , (3.25)

( 3 .

 3 34)The integral over [a, b] × ∂Y ′ in (3.34) is equal to zero due to the Y ′ -periodicity of σ -1 j with respect to (y, z). Hence, using that f (a) = 0 and (e x × j) • e y = -j z = -f (x) g(y), it follows that the integral over {a, b} × Y ′ in (3.34) satisfies0 = -ˆY ′ f (b) g(y) σ -1 (b, y, z) dy dz.(3.35)This leads to a contradiction, since the function (y, z) → f (b) g(y) σ -1 (b, y, z) is continuous and has a constant sign in Y ′ .

  2f 2 (x(t)) + 1 , z(0) = z, for (x, y, z) ∈ R 3 . (3.36) Define the function F in (a, b] byF (x) := ˆx b 2f 2 (s) + 1 2f (s)f ′ (s) ds, for x ∈ (a, b].The function F is an increasing bijection from (a, b] onto (-∞, 0], and the solution of the first equation of (3.36) is given byx(t) = F -1 t + F (x) , for t ≤ 0,where F -1 denotes the reciprocal of F . Making the change of variables r = x(s), we have for any t ≤ 0, x(t) tends to a as t → -∞ and f (r) ∼ a f ′ (a) (r -a), we get thatˆ0 -∞ ∂X 3 ∂s (s, x, y, z) 2 ds ≥ -lim t→-∞ ˆt 0 y ′ (s) 2 ds = -ˆa x f ′ (r) 2f (r) 2f2 (r) + 1 dr = ∞. (3.37)

  x -n = e f ′ (0)(y+z) , for n = 0, 1.(3.41)This shows the continuity of the function σ. Moreover, we have for any x ∈ (0, 1),∂σ ∂x = f ′ (x) -f ′ (t)(3.41) implies that ∇σ has finite limits as x → 0 or 1. Therefore, the function σ belongs to C 1 (R 3 ).Set w := ln σ. By (3.39) and (3.42) we have for any x ∈ (0, 1), 31) and (3.32) with g = h ≡ 1, equations (3.43) lead to the equation curl j -∇w × j = 0 in R 3 ,
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