Frank Vega
email: vega.frank@gmail.com

ONE-IN-THREE 3SAT is in P

Keywords: P, NP, NP-complete, 3SAT 2000 MSC: 68-XX, 68Qxx, 68Q15

ONE -IN -T HREE 3S

AT is the problem of deciding whether a given boolean formula φ in 3CNF has a truth assignment such that each clause in φ has exactly one true literal. This problem is NPcomplete. If any single NPcomplete problem can be solved in polynomial time, then P = NP. In this work, we prove ONE -IN -T HREE 3S AT ∈ P, and therefore, P = NP.

Introduction

The P versus NP problem is a major unsolved problem in computer science. It was introduced in 1971 by Stephen Cook [START_REF] Cook | The complexity of theorem proving procedures[END_REF]. Today is considered by many scientists as the most important open problem in this field [START_REF] Fortnow | The status of the P versus NP problem[END_REF].

Since the beginning of computation many tasks were done by computers, but sometimes some difficult and slow to resolve were not feasible for even the fastest computers. The only way to avoid the delay was to find a possible method that should not do the exhaustive search that was accompanied by "brute force". Even today, there are problems which have not a known method to solve easily yet.

If P = NP, then it would ensure there are hundreds of problems that have a feasible solution. This is largely derived from this result there will be a huge amount of problems that can be verified easily and have some practical solution at the same time [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. This so called P = NP question has been one of the deepest, most perplexing open research problems in theoretical computer science since it was posed in 1971.

The work is about an interesting class of problems, called the "NPcomplete" problems, whose status is unknown. No polynomial-time algorithm has yet been discovered for an NPcomplete problem [START_REF] Cormen | Introduction to Algorithms[END_REF]. Most theoretical computer scientists believe that the NPcomplete problems are intractable. The reason is that if any single NPcomplete problem can be solved in polynomial time, then P = NP [START_REF] Cormen | Introduction to Algorithms[END_REF]. In this work, we show a problem in NPcomplete is also in P, and thus, P = NP.

Theory

The argument made by Alan Turing in the twentieth century proves mathematically that for any computer program we can create an equivalent Turing Machine [START_REF] Turing | On computable numbers, with an application to the entscheidungsproblem[END_REF]. A deterministic Turing Machine is a Turing Machine that has only one next action for each step defined in the transition function [START_REF] Lewis | Elements of the theory of computation[END_REF]. However, a non-deterministic Turing Machine can contain more than one action defined for each step of the program, where this program was no longer a function but a relation [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [START_REF] Cormen | Introduction to Algorithms[END_REF]. There are two complexity classes that have a close relationship with the previous concepts and are represented as P and NP. In computational complexity theory, the class P contains the languages that are decided by a deterministic Turing Machine in polynomial time [START_REF] Lewis | Elements of the theory of computation[END_REF]. The class NP contains the languages that are decided by a nondeterministic Turing Machines in polynomial time [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF]. Moreover, a language L ∈ NP if there is a polynomial time decidable and polynomially balanced relation R L such that for all strings x: there is a string y with R L (x, y) if and only if x ∈ L [START_REF] Papadimitriou | Computational complexity[END_REF]. This string y is known as certificate.

On the other hand, there is a derived complexity class from NP that is the class NP-complete. Informally, the NP-complete problems are a set of problems to which any other NP problem can be reduced in polynomial time, but whose solution may still be verified in polynomial time. We say that a language L 1 is polynomial time reducible to a language L 2 , written L 1 ≤ p L 2 , if there exists a polynomial time computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * ,

x ∈ L 1 i f and only i f f (x) ∈ L 2 (1)
and a language L ⊆ {0, 1} * is NPcomplete if

• L ∈ NP, and

• L ≤ p L for every L ∈ NP. Furthermore, if L is a language such that L ≤ p L for some L ∈ NP -complete, then L is NP -hard [4]. Moreover, if L ∈ NP, then L ∈ NP -complete [4].
There is an important NPcomplete problem known as S AT [START_REF] Cormen | Introduction to Algorithms[END_REF]. We formulate the formula satisfiability problem in terms of the language S AT as follows. An instance of SAT is a boolean formula composed of • boolean variables: x 1 , x 2 , ;

• boolean connectives: any boolean function with one or two inputs and one output, such as ∧(AND), ∨(OR), (NOT), →(implication), ↔(if and only if); and

• parentheses.

A truth assignment for a boolean formula φ is a set of values for the variables of φ, and a satisfying assignment is a truth assignment that causes it to evaluate to true. A formula with a satisfying assignment is a satisfiable formula. The satisfiability problem asks whether a given boolean formula is satisfiable; in formal language terms,

S AT = {φ : φ is a satis f iable boolean f ormula} (2)
One convenient language is 3CNF satisfiability, or 3S AT [START_REF] Cormen | Introduction to Algorithms[END_REF]. We define 3CNF satisfiability using the following terms. A literal in a boolean formula is an occurrence of a variable or its negation. A boolean formula is in conjunctive normal form, or CNF, if it is expressed as an AND of clauses, each of which is the OR of one or more literals. A boolean formula is in 3-conjunctive normal form, or 3CNF, if each clause has exactly three distinct literals.

For example, the boolean formula

(x 1 ∨ x 1 ∨ x 2) ∧ (x 3 ∨ x 2 ∨ x 4) ∧ (x 1 ∨ x 3 ∨ x 4) (3)
is in 3CNF. The first of its three clauses is (x 1 ∨ x 1 ∨ x 2), which contains the three literals x 1 , x 1 , and x 2 . In 3S AT , we are asked whether a given boolean formula φ in 3CNF is satisfiable.

Many problems can be proved that belong to NPcomplete by a polynomial time reduction from 3S AT . For example, the problem ONE -IN -T HREE 3S AT which is the following: Given a boolean formula φ in 3CNF, is there a truth assignment such that each clause in φ has exactly one true literal?

3. Results Lemma 3.1. Given two clauses c 1 = (x ∨ y ∨ d 1) and c 2 = (x ∨ y ∨ d 2)
in a boolean formula φ in CNF where x is a boolean variable, y is a literal and d 1 and d 2 are two other clauses which could be empty, the clauses c 1 and c 2 have exactly one true literal for some truth assignment if and only if the literal y is false in this truth assignment. Therefore, we could remove the literal y in the clauses c 1 and c 2 in φ after the indicated evaluation of y in φ.

The literals x or x should be true for any truth assignment. Therefore, all the literals in (y ∨ d 1) or (y ∨ d 2) should be false and as the literal y is in both possibilities, then y should be false.

Lemma 3.2. Given one clause c 1 = y in a boolean formula φ in CNF where y is a literal and y is not contained in any other clause in φ, the clause c 1 has exactly one true literal if and only if y is true. Therefore, we could remove the clause c 1 in φ after the indicated evaluation of y in φ. This is a trivial result, because c 1 contains only one literal. Lemma 3.3. Given two clauses c 1 = y and c 2 = (y ∨ d 2) in a boolean formula φ in CNF where y is a literal and d 2 is other clause which could be empty, the clauses c 1 and c 2 have exactly one true literal for some truth assignment if and only if all the literals in d 2 are false or d 2 is empty and y is true in this truth assignment. Therefore, we could remove the clauses c 1 and c 2 in φ after the indicated evaluation of y and d 2 in φ.

The clause c 1 has exactly one true literal if and only if y is true. For that reason, all the literals in d 2 should be false when y is true if we want to guarantee that c 2 has exactly one true literal. Lemma 3.4. Given one clause c 1 = (x ∨ x ∨ d 1) in a boolean formula φ in CNF where x is a boolean variable and d 1 is other clause which could be empty and does not contain another boolean variable and its negation at the same time, the clause c 1 has exactly one true literal for some truth assignment if and only if all the literals in d 1 are false in this truth assignment or d 1 is empty. Therefore, we could remove the clause c 1 in φ after the indicated evaluation of d 1 in φ.

The literals x or x should be true for any truth assignment. Therefore, all the literals in d 1 should be false if d 1 is not empty. Lemma 3.5. Given one clause c 1 = (x ∨ x ∨ y ∨ y ∨ d 1) in a boolean formula φ in CNF where x and y are boolean variables and d 1 is other clause which could be empty, the clause c 1 has never exactly one true literal for any truth assignment.

In the clause (x ∨ x ∨ y ∨ y) there will be exactly two true literals. Therefore, the clause c 1 has never exactly one true literal for any truth assignment. Definition 3.6. We will call the algorithm DEPURAT ION -CNF for some boolean formula φ in CNF as the process of evaluating the literals to false or true, transforming and removing the clauses and literals in the cases of Lemma 3.1, 3.2, 3.3 and 3.4 for all the possible clauses. If DEPURAT ION -CNF makes at least one change in φ, then DEPURAT ION -CNF(φ) = φ where φ is the new boolean formula in CNF. If DEPURAT ION -CNF does not make any change in φ, then DEPURAT ION -CNF(φ) = φ. However, if DEPURAT ION -CNF evaluates to the same value a boolean variable and its negation in φ or in φ happens the case of Lemma 3.5, then DEPURAT ION -CNF(φ) = X ∧ X where X ∧ X will be a constant boolean formula. Moreover, if DEPURAT ION -CNF evaluates the boolean variables and removes the clauses in φ returning an empty formula as true and there is not any contradiction, then DEPURAT ION -CNF(φ) = X where X will be a constant boolean formula. The checking of all the pair of clauses in φ could be done in O(m 2) and any clause in φ in CNF could contain at most 2 × n literals. Besides, we assume the evaluation of the literals in phi would be at the end of the algorithm. x should be true for any truth assignment, then (d 1 ∨ d 2) has exactly one true literal when the clauses c 1 and c 2 have exactly one true literal. Definition 3.9. We will call the algorithm MATCHING -CNF for some boolean formula φ in CNF as the process of take two clauses c 1 and c 2 such that c 1 contains some boolean variable x and c 2 has its negation x, and thus, we apply the transformation of Lemma 3.8 with the clause c 1 and all the clauses c i that contains the variable x and c 2 with all the clauses c j that contains the variable x. The algorithm MATCHING -CNF(φ) returns a new boolean formula φ with m -1 clauses when φ contains m > 1 clauses.

Lemma 3.10. The order of MATCHING-CNF for a boolean formula φ in CNF with m clauses and n boolean variables is O(n × m).

The searching of c 1 and c 2 in φ could be done in O(m). The matching of c 1 with all c i and c 2 with all c j in φ could be done in O(m) where the clauses c i and c j have x and x respectively. Besides, any clause of φ in CNF could contain at most 2 × n literals.

• we create the boolean formula φ in CNF as φ ∧ d i ∧ d j ∧ ... where each d i is one of the formulas created in the previous step, but if there is not any boolean formula created in the previous step, then φ would be equal to φ.

The searching of all the literals y such that its negation is not in φ could be done in O(n × m). The creation of the boolean formulas d k and the joining with φ could be done in O(m + n). Therefore, the construction of φ is possible in O(n × m + m + n) order.

Every satisfying truth assignment of the boolean formulas d k has the property that all the clauses has exactly one true literal. Hence, This a consequence of Theorems 3.12 and 3.13 [START_REF] Cormen | Introduction to Algorithms[END_REF].

φ ∈ ONE -IN -T HREE 3S AT i f and only i f φ ∈ ONE -IN -ALL S AT (4
Theorem 3.15. P = NP.

This a direct consequence of Theorem 3.14 [START_REF] Cormen | Introduction to Algorithms[END_REF].

Discussion

This constructive and efficient solution to ONE -IN -T HREE 3S AT problem will break most existing cryptosystems including public-key cryptography, a foundation for many modern security applications such as secure economic transactions over the Internet, and symmetric ciphers such as AES or 3DES, used for the encryption of communications data.

On the other hand, there are enormous positive consequences because many problems in operations research are NPcomplete, such as some types of integer programming, and the travelling salesman problem. Besides, many other important problems, such as some problems in protein structure prediction, are also NPcomplete, and so, this work implies a considerable advance in biology too.

In addition, this proof will transform mathematics by allowing a computer to find a formal proof of any theorem which has a proof of a reasonable length, since formal proofs can easily be recognized in polynomial time.

Conclusions

Many computer scientists have believed that P NP. A key reason for this belief is that after decades of studying these problems no one has been able to find a polynomial time algorithm for any of more than 3000 important known NPcomplete problems. Furthermore, the result P = NP would imply many other startling results that are currently believed to be false. This work shows the belief of almost all computer scientists was not a truly supposition.

Lemma 3 . 7 .

 37 The order of DEPURAT ION -CNF when DEPURAT ION -CNF searches and evaluates each case of Lemma 3.1, 3.2, 3.3, 3.4 and 3.5 in all the possible clauses of a boolean formula φ in CNF with m clauses and n boolean variables is O(n × m 2).

Lemma 3 . 8 .

 38 Given two clauses c 1 = (x ∨ d 1) and c 2 = (x ∨ d 2) in a boolean formula φ in CNF where x is a boolean variable and d 1 and d 2 are two other clauses which are not empty, the clauses c 1 and c 2 have exactly one true literal for some truth assignment if and only if the clause c 3 = (d 1 ∨ d 2) has exactly one true literal in this truth assignment. Therefore, we could remove the clauses c 1 and c 2 in φ and add the clause c 3 to φ. If x is true, then all the literals in d 1 are false and d 2 has exactly on true literal. If x is true, then all the literals in d 2 are false and d 1 has exactly on true literal. Therefore, as the literals x or

) and thus, ONE -IN -T HREE 3S AT ≤ p ONE -IN -ALL S AT . Theorem 3.14. ONE -IN -T HREE 3S AT ∈ P.

Acknowledgement

I thank my mother Iris Delgado for her support and confidence.

Definition 3.11. ONE -IN -ALL S AT is the problem of deciding whether a given boolean formula φ in CNF where φ contains all its boolean variables with their negations, has a truth assignment such that each clause in φ has exactly one true literal. Theorem 3.12. ONE -IN -ALL S AT ∈ P.

The algorithm of deciding whether a given boolean formula φ in CNF where φ contains all its boolean variables with their negations belongs to ONE -IN -ALL S AT is as follows:

This algorithm is polynomial, even thought of the line of WHILE (T RUE). Indeed, the line of φ = MATCHING -CNF(φ) could be executed at most the minimum between m and n times. The inner while line WHILE (φ <> φ) could be executed at most m + n times. As the order of DEPURAT ION -CNF and MATCHING -CNF is O(n × m 2) and O(n × m) respectively, then the total order of this algorithm will be O((n + m) × n × m 2)) assuming the comparison (φ <> φ) could be done by the reference address in memory.

This algorithm works, because the boolean formula φ contains all its boolean variables with their negations, and thus, in every cycle the formula φ is smaller in clauses or in boolean variables than the previous steps and if the original formula belongs to ONE -IN -ALL S AT , then the remaining formula after each cycle belongs to ONE -IN -ALL S AT too.

For any boolean formula φ in 3CNF with m clauses and n boolean variables, we could make the following transformation:

• for each literal y contained in some of the clauses of φ, if y is not contained inside of any clause in φ, then we create two new boolean variables y 1 and y 2 and the boolean formula d k = (y ∨ y 1) ∧ (y ∨ y 2) ∧ (y 1 ∨ y 2); and