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Abstract

This paper describes a global sensitivity analysis of a fractal-based turbulence-

induced flocculation model. The quantities of interest in this analysis are

related to the floc diameters in two different configurations. The input pa-

rameters with which the sensitivity analyses are performed are the floc ag-

gregation and breakup parameters, the fractal dimension and the diameter

of the primary particles. Two related versions of the flocculation model are

considered, evenly encountered in the literature: (i) using a dimensional floc

breakup parameter, and (ii) using a non-dimensional floc breakup parame-

ter. The main results of the sensitivity analyses are that only two parameters

of model (ii) are significant (aggregation and breakup parameters) and that

the relationships between parameter and quantity of interest remain sim-

ple. Contrarily, with model (i), all parameters have to be considered. When
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identifying model parameters based on measures of floc diameters, this anal-

ysis hence suggests the use of model (ii) rather than (i). Further, improved

models of the fractal dimension do not seem to be required when using the

non-dimensional model (ii).

Keywords: Flocculation, Sensitivity Analysis, Analysis of Variance,

Gravity Currents, Turbidity Currents.

1. Introduction

Flocculation is the property of small cohesive particles to form so-called

flocs under the action of electrostatical forces. The flocs are larger groups of

particles whose influence can be dramatic in many physical problems, such as

for turbidity currents (Thomas et al., 1999; Geyer et al., 2004; Jarvis et al.,

2005; Meiburg and Kneller, 2010). The study and modeling of these turbidity

currents (Cantero et al., 2006; Elias et al., 2008; Hiester et al., 2011; Nasr-

Azadani et al., 2013; Guerra et al., 2013; Espath et al., 2014) is particularly

difficult because the particle concentration, and hence the driving buoyancy

force, fluctuates with time and position along the current, as well as in the

vertical direction. The influence of flocculation is large in that case because

the settling velocity of mud flocs can be a few orders of magnitude larger

than that of the primary particles, so that its effect on particle concentration

is very important.

The flocculation process is influenced by sediment size, sediment con-

centration, turbulence intensity, temperature, and the presence of organic

matter. It is governed by three processes that drive particles to collide: (i)

brownian motion, (ii) differential settling of fast particles overtaking slower
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particles, and (iii) turbulent motion. In estuaries and coastal regions, the first

is arguably negligible (Winterwerp, 1998; Cuthbertson et al., 2010). Con-

cerning differential settling, which is likewise often disregarded, a model is

described in Lick et al. (1993) and experimental results are reported in Cuth-

bertson et al. (2010). About the effect of turbulent motion, more widely

studied, aggregation theory suggests that aggregation rates increase with the

turbulence intensity, due to the increased number of inter-particle encounters.

However, the same turbulent motions may generate shear stresses that can

limit the growth rate through floc disruption and break-up (disaggregation)

processes.

Following the pioneering work of von Smoluchowski (1917), who derived

the time variation of the concentration of a mono-disperse suspension due

to Brownian diffusion, most studies of flocculation in turbidity currents have

considered population balance equations along with empirical models of cre-

ation and disruption of flocs of different sizes (see for instance Thomas et al.

(1999); Son and Hsu (2008); Chao and Jia (2011) and references therein).

Many different population balance equations based on Lagrangian or Eulerian

formulations have been proposed (Friedlander, 1957; O’Melia, 1980; Spicer

and Pratsinis, 1996; Serra and Casamitjana, 1998; McAnally and Mehta,

2002; Rahmani et al., 2004), each taking into account different processes.

Winterwerp (1998) developed a model for the turbulence-induced floccula-

tion, a priori aimed at modeling flocculation in estuary and coastal areas.

Although initially considering the evolution of flocs of a single characteris-

tic diameter, this model was later extended to the poly-disperse case (Xu

et al., 2008). Some authors also extended the model to fractal dimensions
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dependent on the floc size (Maggi and Winterwerp, 2004; Khelifa and Hill,

2006; Vahedi and Gorczyca, 2011). All these models rely on several parame-

ters that have to be identified in experiments, and several parameterizations

sometimes exist for the same model.

The choice of parameterization influences the identifiability of models.

For instance, if a given quantity of interest (QoI) does not depend on one of

the model parameters, it means that this parameter can be chosen at will

without degrading the estimation of that QoI. Conversely, the sensitivity of

a QoI with respect to the parameters indicates the parameters that will be

polluted by noise and those that will be identified with more confidence. The

reason why a given QoI might be more or less sensitive to one or another

parameter is due, among other things, (i) to the particular form of the model

(the relation between parameters and QoI might be very non-linear), and

(ii) to differences of orders of magnitudes between the parameters. Sensitivity

analysis (Saltelli et al., 2000) is the study of these dependencies between

model parameters and QoIs. It hence allows to identify parameters that

should be the focus of more attention.

In the context of flocculation models, such sensitivity analyses have been

performed for two QoIs (floc diameter and settling velocity) and with re-

spect to some parameters in Khelifa and Hill (2006); Son and Hsu (2008);

Maerz et al. (2011). In particular, a major conclusion of the sensitivity study

in Maerz et al. (2011) points at the fractal dimension as the most influen-

tial parameter on the floc diameter, while its experimental identification is

generally difficult (Bushell et al., 2002). Among other things, this conclu-

sion motivates the use of refined models of that fractal dimension. In Mietta
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et al. (2008), the authors presented a sensitivity study with respect to the

breakup functions, that is to say with respect to different functional forms

of the breakup model. Note that all these analyses remained local, in the

sense that the influence of variations of the parameters (one at the time)

was observed around one reference model. Conclusions drawn from a local

sensitivity analysis (SA) around a given reference might be modified by the

consideration of another reference point.

Contrarily to local SA, global SA aims at investigating the functional

form of a model rather than the behavior around a particular design point.

The objectives of global SA are the same as in local SA, but the influence

of the parameters is considered jointly over the entire range of all the pa-

rameters. In particular, this means that non-linearities between parameters

and QoIs are explicitly considered, while local SA explore linearized models.

To the best of our knowledge, this paper presents the first global SA of floc-

culation models. We concentrate here on Winterwerp’s model (Winterwerp,

1998), for a unique characteristic diameter and constant fractal dimension,

and perform a Monte-Carlo based global SA (Helton et al., 2006; Saltelli

et al., 2008) with respect to four model parameters. Two of the parameters

we consider are common to all flocculation models (although sometimes pre-

sented in the form of efficiency parameters): the flocculation parameter kA

and the breakup parameter kB. Two parameters are particular to fractal-

based models: the fractal dimension nf and the primary particle diameter

DP . The QoIs that we consider are all related to floc diameters (average,

minima and maxima). This SA will be performed for two versions of the

model, equally encountered in the literature: (i) using a dimensional floc
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breakup parameter, and (ii) using a non-dimensional floc breakup param-

eter. The analysis allows to propose a clear recommendation on the most

appropriate parameterization. In particular, it will allow us to reconsider the

need for refined models of the fractal dimension parameter.

Section 2 recalls the main components of the two versions of Winterw-

erp’s model, along with their implementation in a coupled system of transport

equations and the definitions of equilibrium diameter and time. Section 3

describes a literature survey of ranges of variations of the flocculation param-

eters and proposes probabilistic descriptions of these parameters for use in

the SA. Section 4 describes the SA performed for the equilibrium diameter

with the two different parameterizations of Winterwerp’s model. Its con-

clusion is that the non-dimensional model should be used rather than the

dimensional one. Section 5 describes the SA performed for a 0D tidal exam-

ple taken from Maerz et al. (2011) that confirms the previous result. Finally,

some conclusions are presented in Section 6.

2. Turbulent flocculation model

In this section, which is mostly based onWinterwerp’s original paper (Win-

terwerp, 1998), we recall the flocculation model that will be considered

throughout. It is based on the hypothesis of fractal behavior of the floc

size. It proposes a flocculation source term in a population balance equation

for the number of flocs per unit volume N .

2.1. Self-similiar flocculation model

In this model, the aggregates are treated as self-similar entities (Kranen-

burg, 1994). The model therefore assumes that the flocs are composed of an
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ensemble of so-called primary particles, with diameter DP , which bond in a

very specific way. This assembly process induces a relation between the mass

concentration c, the number concentration N and the mass of one primary

particle mP

c = mPN

✓

D

DP

◆nf

, N =
c

mP

✓

DP

D

◆nf

, D = DP

✓

c

mPN

◆1/nf

, (1)

where nf is called the fractal dimension. Fractal dimension and primary

particle diameter are two parameters that have to be identified through ex-

periments. Typical values will be discussed in Sec. 3.2.

The flocculation model proposed in Winterwerp (1998) combines linearly

a literature model for the aggregation (Levich, 1962) and an original model

for the breakup of flocs. It describes the evolution of the number of flocs as:

δN = −kA
mP

ρs
G

✓

D

DP

◆3

N2 + kB

r

µ

Fy

G3/2D

✓

D

DP

− 1

◆3−nf

N, (2)

where ρs is the density of particles, kA is a dimensionless flocculation coeffi-

cient, kB is a dimensionless floc breakup parameter, Fy is the yield strength

of flocs, and µ is the dynamic viscosity of the fluid. Note that the model

presented here is slightly simplified from the original article (Winterwerp,

1998). In particular, processes of deposition and erosion, which are taken

into account through additional parameters, are here disregarded.

2.2. Coupled system of transport equation

The previous equation describes only the creation and destruction of flocs

through flocculation. The space and time evolution of flocs is controlled by

two coupled balance equations, for which the above model acts as a source

term. Assuming that the flocs are both convected by the flow of carrying
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fluid with a velocity w, and also naturally settle with a (vertical) velocity

ws, this transport equation is:

∂N

∂t
+r · ((w −ws)N −KNrN) = δN, (3)

where KN is a diffusion tensor (assumed given and diagonal). The settling

velocity of the flocs depends on their size. Assuming that the flocs are spher-

ical, and at low Reynolds number, the settling velocity can be modeled as:

ws(D) = −(ρs − ρw)gD
2
P

18µ

✓

D

DP

◆nf−1

ez (4)

= −(ρs − ρw)gD
2
P

18µ

✓

c

mPN

◆1−1/nf

ez, (5)

where ρw is the density of water, g is the acceleration of gravity, and ez is

the vertical unit vector pointing upward.

Finally the model is closed with a more classical transport equation for

the mass concentration c:

∂c

∂t
+r · ((w −ws)c−Kcrc) = 0, (6)

where Kc is a mixing tensor (assumed given and diagonal). Winterwerp’s

model therefore consists of a set of two transport equations (3)-(6) for the

two unknowns c and N . These two transport equations are coupled through

both the flocculation source term δN (2) and the settling velocity ws (4).

Rewriting the two equations as functions of c and N only, and with the

coupling terms on the right-hand sides, yields:

∂c

∂t
+r · (wc−Kcrc) = wP

∂

∂z

 

c

✓

c

mPN

◆1−1/nf
!

, (7)
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∂N

∂t
+r · (wN −KNrN) =

wP
∂

∂z

 

c

mP

✓

mPN

c

◆1/nf
!

− qAN
2

✓

c

mPN

◆3/nf

+ qBN

✓

c

mPN

◆1/nf

 

✓

c

mPN

◆1/nf

− 1

!3−nf

, (8)

where we have introduced a volume flux of floc aggregation qA = kAmPG/ρs,

a number flux of floc breakup qB = kBDPG
p

µG/Fy and the settling ve-

locity of a primary particle (assumed spherical) wP = (ρs − ρw)gD
2
P/(18µ).

Boundary conditions for that transport model can be taken (for example) as

(wc+Kcrc) · ez = 0 and (wN +KNrN) · ez = 0 at the free surface and on

the bottom (assuming there is no erosion or deposition). The above system

of equations can be approximated by numerical techniques (see Section 5).

2.3. Stationary regime

Before considering the solution of this coupled system of transport equa-

tions, it is interesting to discuss the stationary situation in which flocs are

created and destroyed at the same rate, so that the floc population and size

remain constant. Considering δN = 0 in Eq. (2) yields the following implicit

definition for the floc equilibrium diameter D1:

D1

✓

1− DP

D1

◆3−nf

=
kAc

kBρs

s

Fy

µG
. (9)

In the limit D1 >> DP , which is often realized in practice, one obtains the

approximation

D1 ⇡ (3− nf )DP +
kAc

kBρs

s

Fy

µG
. (10)
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We will check in Sec. 4 the accuracy of that approximation. One can also

define a characteristic time scale when D1 >> DP as:

T1 =
nf

kBG

s

Fy

µG

1

D1

✓

DP

D1

◆3−nf

(11)

This characteristic flocculation time represents the order of magnitude of the

time required to reach the equilibrium diameter D1 when the system is out

of equilibrium. These two quantities D1 and T1 are useful to characterize

grossly the flocculation regimes, depending on the driving phenomena (see

Section 5 for an example in a tidal-controlled cyclic flocculation).

2.4. Alternative parameterization

Finally, it is important to note that another parameterization is used as

often in the literature as the one that was already presented. Instead of

defining a dimensionless floc breakup parameter, this alternative parameter-

ization is based on a floc breakup parameter k0

B = kB
p

(µ/Fy)/(nfD
3−nf

P ).

Although it might appear as an unimportant change of variables, it may have

a very important impact on the identifiability of the different parameters of

the model. This will be discussed in Section 4.

When considering this parameterization, the equilibrium diameter is then

given by

D1

✓

1− DP

D1

◆3−nf

=
kAc

k0

BnfρsD
3−nf

P

p
G
, (12)

and, in the limit D1 >> DP ,

D1 ⇡ (3− nf )DP +
kAc

k0

BnfρsD
3−nf

P

p
G
. (13)

The characteristic time for the alternative parameterization is

T1 =
1

k0

BG
3/2D

4−nf
1

. (14)
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It should be noted that the dimensional and non-dimensional parameters

are perfectly equivalent. Given the set of parameters including the non-

dimensional kB, one can define in a unique and equivalent way the dimen-

sional parameter k0

B. Likewise, given the set of parameters including the

dimensional k0

B, one can define in a unique and equivalent way the non-

dimensional parameter kB. However, this choice of parameterization mod-

ifies drastically the relationship between the parameters and the quantities

of interest (the equilibrium diameter for instance). This is particularly true

here, where the relationship between k0

B and kB involves two other parame-

ters nf and DP . Among other things this means that the sensitivity to errors

in the parameters might be modified for the two cases.

3. Description of the flocculation parameters

SA refers to the determination of the contributions of individual uncertain

inputs to the uncertainty in analysis results. A number of approaches have

been developed, including differential analysis, response surface methodolo-

gies, Monte Carlo analyses, and variance decomposition methods. We will

concentrate here on Monte Carlo analyses (Helton et al., 2006). The objec-

tive of the paper is to study the sensitivity of some QoIs with respect to

the parameters kA, kB, nf and DP . The first step of such a SA consists

in choosing appropriate probability density functions for the input param-

eters. The approach that is chosen here consists in considering a database

of experimentally-identified values of these parameters reported in the lit-

erature. From that database, average and variance are selected, and the

distribution is chosen based on the Maximum Entropy Principle (Shannon,
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1948; Jaynes, 1957), the known bounds on the parameters and the given

average and variance. Examples of construction of stochastic models using

this method can be found in Udwadia (1989); Soize (2000); Cottereau et al.

(2007); Adhikari and Friswell (2007).

3.1. Literature survey of flocculation parameters

Values of the four parameters of interest found in the literature are re-

ported in Table 1. In most of the corresponding papers, the authors do not

experimentally identify the value of nf , but rather choose it equal to 2 before

concentrating on identifying the values of kA and kB. The choice of nf = 2

has the advantage that the formulas of the flocculation model simplify so

that the identification becomes simpler.

Table 1: Literature values of flocculation parameters.

Reference kA kB nf DP Data from

[-] [-] [-] [µm]

Winterwerp (1998) 0.31 3.5⇥10−5 2 4

Son and Hsu (2008) 0.33 1.1⇥10−5 2 15 Manning and Dyer (1999)

Son and Hsu (2008) 0.3 1.4⇥10−5 2 15 Manning and Dyer (1999)

Son and Hsu (2008) 0.008 4.3⇥10−5 2 15 Biggs and Lant (2000)

Son and Hsu (2008) 1.02 0.4⇥10−5 2 5 Bouyer et al. (2004)

Mietta et al. (2008) 0.46 24.0⇥10−5 2 6 Maggi et al. (2002)

Maerz et al. (2011) 0.18 2.9⇥10−5 1.9 4

Maerz et al. (2011) 0.4 11.5⇥10−5 1.9 4
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However, this (almost) constant value of nf = 2 throughout the reported

experiments does not reflect the variability that seems to arise in other sets

of experiments. We therefore performed a larger study of the literature,

concentrating on obtaining a relevant database for the fractal dimension.

The values are reported in Table 2. Note that it is possible to derive values

of the fractal dimension based on theoretical considerations of aggregation

mechanisms at the molecular scale (see for instance Meakin (1984); Thouy

and Jullien (1994); Vahedi and Gorczyca (2012)). However, these results

were not used here, because of a lack of knowledge about these mechanisms

for the situation we are considering.

Table 2: Ranges of the fractal dimension reported in the literature.

Ref. nf [-] Data from

Hsu et al. (2007) 2.15

Son and Hsu (2008) [1.35–2.3] Bouyer et al. (2004)

Vahedi and Gorczyca (2012) [2.55–2.99]

Maerz et al. (2011) [1.5–2.4] several databases

Khelifa and Hill (2006) [2–3] several databases

Finally, we consider the alternative parameterization described at the end

of Section 2 and present literature values for the dimensional floc breakup

coefficient k0

B in Table 3. In this table, the values of k0

B are reported with the

corresponding values of nf , DP , Fy and µ because these values are required

to go from kB to and from k0

B. Note that, in the papers reported in the left

column of Tables 1 and 3, it was either kB or k0

B that was originally used.
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When kB was given in the original paper, we computed the corresponding

k0

B and reported it in Table 3. When k0

B was given in the original paper, we

computed the corresponding kB and reported it in Table 1.

Table 3: Literature values for the alternative definition of the floc breakup parameter. See

Table 1 for the origin of the data.

Reference k0

B nf DP Fy µ

[s1/2/m2] [-] [µm] [kg.m/s2] [kg/m/s]

Winterwerp (1998) 14⇥103 2 4 10−10 10−3

Son and Hsu (2008) 1.2⇥103 2 15 10−10 10−3

Son and Hsu (2008) 1.5⇥103 2 15 10−10 10−3

Son and Hsu (2008) 4.6⇥103 2 15 10−10 10−3

Son and Hsu (2008) 1.2⇥103 2 5 10−10 10−3

Mietta et al. (2008) 63.2⇥103 2 6 10−10 10−3

Maerz et al. (2011) 12⇥103 1.9 4 10−10 10−3

Maerz et al. (2011) 48⇥103 1.9 4 10−10 10−3

3.2. Statistical description of flocculation parameters

The number of identification experiments reported in the literature is

rather limited. It is hence not reasonable to expect identifying full proba-

bility density functions from the databases reported above (see Berry et al.

(2012) for a more precise discussion). Rather, we will proceed in three steps:

(i) identify only the expectation and variance of the parameters kA, kB, nf ,

DP and k0

B from the literature values, (ii) identify the form of the first-

order marginal distribution using the Maximum Entropy Principle and the
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known bounds of the parameters, and (iii) identify the cross-correlations be-

tween the parameters. The first-order marginal densities are the probability

density functions of each random variable considered alone, discarding the

potential correlation or higher-order relations between these variables. In

this approach, and because of the limited information available in the liter-

ature, we only aim at constraining (i) the first-order marginal densities and

(ii) cross-correlations.

Concerning the first step, and based on the discussion above, the param-

eters kA, kB and DP are identified from the values in Table 1. The fractal

dimension nf is identified from the values in both Tables 1 and 2, consid-

ering only the middle value for the intervals. Finally, the dimensional floc

breakup parameter k0

B is identified from the values in Table 3. The statisti-

cal expectation and variance obtained for these five parameters are reported

in Table 4. The unbiased estimates for the expectation and variance are

used µX =
PN

i=1 xi/N and σ2
X =

PN
i=1 (xi − µX)

2/(N − 1), where the xi are

the N realizations of the random variable X. The correlation coefficient is

computed as ξX = σX/µX .

Table 4: Statistical estimates for the flocculation parameters (based on Tables 1 and 3).

kA [-] kB [-] nf [-] DP [µm] k0

B [s1/2/m2]

Expectation µ 0.38 6.2⇥10−5 2.2 8.5 18.2⇥103

Variance σ2 0.09 64.1⇥10−10 0.15 29.4 573⇥106

Correlation coefficient ξ 0.8 1.7 0.2 0.6 1.3
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We then turn to the choice of the first-order marginal density functions for

each of the parameters. The Maximum Entropy Principle (Shannon, 1948;

Jaynes, 1957) allows us to select the least informative distribution given a

series of constraints. In particular, in our case, we can consider the average

and variance identified above as constraints. Further, the parameters have

different supports that should be considered as constraints also. By nature,

the parameters kA, kB, DP , and k0

B are positive, while the fractal dimension

has bounded support 0 < nf < 3. Based on these constraints, the Maximum

Entropy Principle proposes to use truncated Gaussian distributions for all

the parameters (Udwadia, 1989). The first-order marginal distributions for

kA, kB, nf and DP are plotted in Fig. 1, with the appropriate choice of

expectation and variance.
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Figure 1: Probability distributions of the flocculation parameters.

Finally, the consideration of appropriate correlation between the input pa-

rameters is particularly important in sensitivity analyses. We therefore com-

pute, again using the values from Table 1, the correlation between the four pa-

rameters. The unbiased estimate of the correlation is σ2
XX0 =

PN
i=1 (xi − µX)(x

0

i − µ0

X)/(N − 1),

where the xi and x0

i are the N realizations of the random variables X and X 0,

respectively. The correlation between the fractal dimension and the other pa-

rameters cannot be estimated, because its distribution is determined from a
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different database. In that case, the Maximum Entropy Principle states that

the fractal dimension should be considered as independent from the other

parameters. The matrix of correlation coefficients R between the different

parameters (in the order kA, kB, nf , DP ) is therefore:

R =

2

6

6

6

6

6

6

4

1 0 0 −0.4

0 1 0 −0.3

0 0 1 0

−0.4 −0.3 0 1

3

7

7

7

7

7

7

5

(15)

Note that the lack of correlation between the aggregation and breakup pa-

rameters kA and kB arises from the data analyzed and has not been assumed

as vanishing. We denote, for later use, the non-zero extra-diagonal values of

the matrix as RAD = −0.4 and RBD = −0.3. When considering k0

B instead

of kB (and using the values in Table 3), one obtains RB0D = −0.46, and the

rest of the matrix remains unchanged.

The generation of realizations of the flocculation parameters following

the identified first-order marginal laws (Fig. 1), and correlation matrix R

is discussed in Appendix A. This concludes the construction of appropri-

ate probability distributions for the flocculation parameters. The next two

sections report two sensitivity analyses for different QoIs.

4. Sensitivity analysis for equilibrium diameter

We now turn to the first SA. We want to analyze the influence of the

flocculation parameters on the equilibrium diameter defined by Eq. (9), and

approximated by Eq. (10). At least two reasons make this quantity impor-

tant in applications: (i) it is directly measurable in identification experiments
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(through direct image analysis, or through diffraction patterns (Bushell et al.,

2002)), and (ii) it has a strong influence on the settling velocity, which is an-

other measurable quantity, and one of the most important QoIs for industrial

applications.

All the computations in this section are done with G = 10 s−1 and c =

1 g/L. They were repeated with different pairs of values with no qualitative

influence on the results (except for very large values of G or very small

values of c that induce D1 ⇡ DP ). The other numerical parameters are

Fy = 10−10 kg.m/s2, µ = 10−3 kg/m/s and ρs = 2650 kg/m3.

4.1. 1D and 2D histograms

We first propagate the probability laws of kA, kB, nf and DP through

the formula of Eq. (9). We use the Monte Carlo approach, with 107 samples

and approximate the solution of Eq. (9) for each sample using the bisection

method. We obtain an approximation of the first-order marginal density of

the equilibrium diameter, that is represented in Figure 2(a). Note that this

histogram is obtained considering homogeneous intervals in log-scale. With

that choice, log-normal variables have densities that look gaussian. This

choice makes visualization easier for distributions considered here. It will be

followed in this paper for all variables, except the fractal dimension nf , for

which homogeneous intervals will be considered in true scale. The probability

density obtained for the approximation of the equilibrium diameter given by

Eq. (10) is also shown in Figure 2(a). As expected, the true value and

its approximation only differ when the equilibrium diameter D1 is of the

same order of magnitude as the primary diameter DP , in which case the

approximation formula is not valid.
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Figure 2: Probability density function of the equilibrium diameter D1 given by Eq. (9)

(solid line), and of its approximation, given at Eq. (10) (dashed line).

We plot second-order marginal densities between the QoI and each of the

input parameters in turn on Figure 3. As before, densities are estimated

for kA, kB, DP and D1 using intervals homogeneous in log-scale, while the

density with respect to nf is estimated using homogeneous intervals in true

scale. Visually, it seems that D1 is uncorrelated with nf as the second-

order marginal density appears as a tensorization of the first-order marginal

densities. The particle diameter seems only slightly correlated while the two

flocculation parameters kA and kB seem to be more correlated.

4.2. Sensitivity indices

We now turn to quantitative measures of sensitivity. Correlation provides

a measure of the strength of the linear relationship between the output D1

and one of the input parameters, one after the other. The Pearson correlation
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Figure 3: Second-order marginal densities of equilibrium diameterD1 (considering the pa-

rameterization with non-dimensional kB) with each of the input parameters. The contour

lines correspond to the successive 10% quantiles.
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coefficient between D1 and a parameter X is defined by:

CCX =
1

σ1σX

N
X

i=1

(D1,i − µ1)(xi − µX), (16)

where µ1 =
PN

i=1 D1,i/N and σ2
1

=
PN

i=1 (D1,i − µ1)2/(N − 1), D1,i

are the samples of the equilibrium diameter and N =107 in that case. A

vanishing correlation only indicates the absence of a linear relation between

D1 and the considered parameter. It does not preclude the existence of

a well-defined nonlinear relationship between them. Values of the Pearson

correlation coefficient for our SA are reported in Table 5 (first line). The

correlation coefficients do not seem to provide any particular insight in the

example we consider here.

When the relationship between the input and the output is non-linear, but

monotonic, rank transformations may provide interesting insights into input-

output relationship. Rank transformation consists in replacing the values of

the parameters and output by their respective ranks in the data set of values.

Hence, any non-linear monotonic relationship becomes a straight line. The

computation of correlation coefficients for these rank-transformed parameters

and outputs yields the so-called Rank Correlation Coefficient (RCC), that

is reported in Table 5 (second line). Those parameters are more interesting

here as there is clear evidence of correlation between kA (positive correlation)

and kB (negative correlation) and the equilibrium diameter. On the other

hand, these coefficients confirm the lack of correlation between nf or DP and

the equilibrium diameter.

Finally, we perform an analysis of variance on this model, through the

computation of Sobol Indices (Sobol, 2001). These indices predict the influ-
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Table 5: Correlations, rank-correlations, and sensitivity indices of the equilibrium diameter

D1 with respect to flocculation parameters, considering the parameterization with non-

dimensional kB (upper half of the table) or with dimensional k0B (lower half of the table).

The second-order Sobol indices that are not indicated are close to zero.

kA kB nf DP

Pearson Correlation Coefficients (CC) 0.02 -0.02 -0.00 0.02

Rank Correlation Coefficient (RCC) 0.61 -0.74 -0.03 0.00

Sobol First-Order Sensitivity Indices (SI) 0.00 0.60 0.00 0.00

Sobol Second-Order Sensitivity Indices kA-kB : 0.36 - -

Sobol Third-Order Sensitivity Indices 0.60 0.00 0.97 0.97

Correlation Coefficients (CC) 0.00 0.00 -0.00 -0.00

Rank Correlation Coefficient (RCC) 0.12 -0.19 -0.93 0.08

Sobol First-Order Sensitivity Indices (SI) 0.00 0.01 0.00 0.00

Sobol Second-Order Sensitivity Indices
- k0

B-nf : 0.45 -

- - nf -DP : -0.01

Sobol Third-Order Sensitivity Indices 0.03 0.00 0.03 0.64
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ence of the variance of each of the input parameters onto the variance of the

output, either alone (first-order Sobol indices) or in combinations (higher-

order Sobol indices). These indices are listed in Table 5. They indicate that

the most influential parameter for the variance of the output is kB (highest

first-order Sobol index and lowest third-order Sobol index). The parameter

kA is also influential, but only through its influence coupled together with

kB. Note that, contrarily to the case of independent parameters, the Sobol

indices do not sum to one when input parameters are correlated (as is the

case here). Note also that third-order indices in Table 5 are reported in the

columns of the one parameter (out of the four) which is not considered for the

computation of that particular index. Hence, vanishing values in a column

indicate the most influential parameters.

4.3. Choice of parameterization

As discussed in the introduction, one of the main interests of SA lies

in its ability to potentially help in the choice of a parameterization in the

view of experimental identification. We therefore complete the above sensi-

tivity study with the corresponding analysis based on the alternative param-

eterization based on the dimensional breakup function k0

B. The first-order

marginal density of DP is presented in Figure 2(b), the sensitivity indices

and correlation coefficients are presented in the lower part of Table 5, and

the second-order marginal densities are presented in Figure 4. Both the first-

and second-order marginal densities appear as more complex than the coun-

terparts obtained with the parameterization with the non-dimensional kB.

This suggests that the influence is more widely spread over the different pa-

rameters. It is confirmed by the values of the coefficients in Table 5. No
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Figure 4: Second-order marginal densities of equilibrium diameter D1 (considering the

parameterization with dimensional k0B) with each of the input parameters. The contour

lines correspond to the successive 10% quantiles.
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parameter is notably correlated with D1, while the rank correlation coeffi-

cients are non-zero for all the parameters. In terms of variance analysis, It

is noticeable that three of them have third-order parameters close to zero.

4.4. Discussion

The differences observed between the dimensional and non-dimensional

approaches are the following: (i) the general structure of the second-order

marginal densities to the tensorization of first-order marginal densities in

the non-dimensional case, (ii) fewer parameters are correlated significantly

with the equilibrium diameter in the non-dimensional case, and (iii) fewer

parameters have influence on the variance of the equilibrium diameter in the

non-dimensional case. All these (in particular the last point) mean that the

identification of kB (or kA to a lesser extent) could be well constrained using

equilibrium diameter measures and the non-dimensional model. For this

identification procedure, and as they are very little influential, it also means

that the values of nf and DP could be chosen quite freely. As the situation

is not so simple with the dimensional model, the identification process would

have to involve more variables (althoughDP could probably be left aside) and

hence become more difficult. Finally, it should be noted that in the case of

non-dimensional models, the recent improved model of the fractal dimension

(see Maerz et al. (2011)) seem unnecessary as nf has little influence on this

particular QoI. This will be discussed further in Section 5.

4.5. Additional correlation between fractal dimension and flocculation param-

eters
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The Maximum Entropy approach used in Section 3.2 indicates that the

rational choice when there is no evidence of dependency between random

variables is independence. In order to give more weight to the conclusions of

this paper, we nevertheless investigate in this section the possibility that nf

be correlated to the other flocculation parameters. To do this, we modify the

correlation matrix in Eq. (15) by adding a correlation coefficient RAn = −0.5

between nf and kA (both in the dimensional and non-dimensional cases)

and correlations coefficient RBn = RB0n = 0.5 between nf and kB and nf

and k0

B, respectively. We have no argument for choosing these values rather

than others, except that they verify the expected sign. Their amplitude is

also large enough to test our hypothesis that the conclusions of the paper

still hold when correlation with the fractal dimension is considered. The

correlation and sensitivity indices in both these cases are reported in Table 6.

Although the indices in the dimensional case seem harder to analyze than

without correlation, this is not so in the non-dimensional case, where results

are not significantly modified. This suggests that the conclusions we put

forward in this paper are really due to the simplicity of the parameter-QoI

relationship in the non-dimensional case rather than some particular case of

independence of parameters.

5. Sensitivity analysis in a tidal forcing experiment

We now turn to a more advanced example of tidal flocculation, already

described in Maerz et al. (2011), with comparison with experiments. In this

example, the evolution of the diameter of flocs in a turbulence-controlled 0D

system under cyclic loading is observed. The loading parameter G follows
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Table 6: Correlations, rank-correlations, and sensitivity indices of the equilibrium diameter

D1 with respect to flocculation parameters considering dependent fractal dimension nf ,

and considering the parameterization with non-dimensional kB (upper half of the table)

or with dimensional k0B (lower half of the table). The second-order Sobol indices that are

not indicated are close to zero.

kA kB nf DP

Pearson Correlation Coefficients (CC) 0.02 -0.02 -0.04 0.02

Rank Correlation Coefficient (RCC) 0.62 -0.74 -0.74 0.00

Sobol First-Order Sensitivity Indices (SI) 0.00 0.63 0.00 0.00

Sobol Second-Order Sensitivity Indices kA-kB : 0.38 - -

Sobol Third-Order Sensitivity Indices 0.63 0.00 1.00 1.00

Correlation Coefficients (CC) 0.00 -0.00 -0.00 -0.00

Rank Correlation Coefficient (RCC) 0.50 -0.60 -0.96 0.12

Sobol First-Order Sensitivity Indices (SI) 0.00 0.00 0.00 0.00

Sobol Second-Order Sensitivity Indices - k0

B-nf : 5.84 -

Sobol Third-Order Sensitivity Indices 0.03 0.00 0.03 0.64
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a cycle that reproduces what is observed in coastal waters during a tidal

cycle. It is varied from 0 s−1 to 12 s−1 on a six-hour time-scale, and is

shown in Figure 5. A 0D version (with |w| = |ws| = 0) of Eq. (8) is solved,

with a constant mass concentration c = 93 mg/L, to obtain the evolution

of the volume concentration N as a function of time. Eq. (1) then provides

the evolution of the diameter of the flocs as a function of time. The other

numerical parameters are Fy = 10−10 kg.m/s2, µ = 10−3 kg/m/s and ρs =

2650 kg/m3. The initial diameter is equal to the equilibrium diameter D1

corresponding to the initial turbulence parameter G = 1 s−1.
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Figure 5: Tidal forcing experiment: (upper figure) evolution of the forcing turbulence

parameter; and (lower figure) evolution of the floc diameters (solid lines) and equilibrium

diameters (dash-dotted lines) as a function of time, for three realizations of the input

parameters.

A previous (local) SA performed on this example (Maerz et al., 2011)

stated the fractal dimension as the most influential parameter of the floc-

culation model for the average diameter. The authors used a model with a

dimensional floc-breakup parameter k0

B. This statement is therefore coherent

with the results of the (global) analysis performed in the previous section.
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The objective of this section is to check whether the statement is conserved

when we consider the flocculation model with a non-dimensional parame-

ter kB. This statement has important implications because it is one of the

reasons why several authors proposed to refine the modeling of the fractal

dimension and consider it to depend on diameter.

We therefore consider in the following the flocculation model with non-

dimensional breakup parameter kB. We then perform a SA with respect to

the amplitude of the fluctuations of the diameter, the difference between the

minimum and maximum diameters over one tidal cycle, namely over the pe-

riod T = [9−15] h. We use the Monte Carlo approach, with 105 samples and

approximate the solution of Eq. (8) for each sample using a Crank-Nicholson

scheme for the time discretization. Note that, because of the inertia of the

system, these extremal diameters are not equal to the equilibrium diame-

ters corresponding to G = 12 s−1 and G = 1 s−1, respectively. Indeed, the

differences in the dynamic behavior of three different samples of the input

parameters can be observed on Figure 5. For some samples, the evolution

of the diameter (solid lines) follows very closely the evolution of the equilib-

rium diameter (dashed-dotted lines), while for other samples, the diameter is

almost constant throughout. This is related to the value of the equilibrium

time T1, defined in Eq (11).

We plot on Figure 6 the first-order marginal densities of the minimum and

maximum densities, as well as that of the amplitude of fluctuations. On Fig-

ure 7, the second-order marginal densities for the amplitude of fluctuations

with respect to the input parameters are plotted. Although they are not as

simple as in the previous example (in particular, one appears bi-modal), the
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general shapes of the second-order marginal densities do not seem to show

any kind of prominence of the fractal dimension with respect to the other

parameters. This is confirmed by the correlation and sensitivity indices re-

ported in Table 7. The fractal dimension nf does appear in the sensitivity

indices, but only in conjunction with the parameter kB. The QoI is exactly

as sensitive to nf as it is to kA, and certainly less than kB. The diameter of

primary particles is still unimportant for the variance of the output.

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

D [µm]

d
e
n
s
it
y

(a) extreme diameters Dmin, Dmax

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

D
max

−D
min

 [µm]

d
e
n
s
it
y

(b) amplitude of fluctuation Dmax −
Dmin

Figure 6: Tidal forcing experiment: first-order marginal distributions of minimum and

maximum diameters (left figure, solid and dashed lines, respectively), and of the amplitude

of fluctuations Dmax −Dmin (right figure).

We now turn back to the conclusions of the (local) SA in Maerz et al.

(2011). When using the flocculation model with dimensional floc-breakup

parameter (as Maerz et al. (2011) do), it seems reasonable to refine the

modeling of the fractal dimension parameter. The conclusions of our previous

global SA (although for a different QoI) seem to confirm the importance of the

fractal dimension observed by Maerz et al. (2011). However, the analysis also
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Figure 7: Tidal forcing experiment: second-order marginal densities of the amplitude of

fluctuations Dmax −Dmin. The contour lines correspond to the successive 10% quantiles.
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Table 7: Correlations, rank-correlations, and sensitivity indices of the amplitude of fluc-

tuations Dmax −Dmin. The second-order Sobol indices that are not indicated are close to

zero.

kA kB nf DP

Correlation Coefficients (CC) 0.01 -0.01 0.01 0.00

Rank Correlation Coefficient (RCC) 0.65 -0.54 -0.07 -0.10

Sobol First-Order Sensitivity Indices (SI) 0.00 0.18 0.00 0.00

Sobol Second-Order Sensitivity Indices kA-kB : 0.32 - -

- kB-nf : 0.34 -

- kB-DP : 0.01

Sobol Third-Order Sensitivity Indices 0.45 0.00 0.57 1.25

seems to suggest that using the flocculation model with a non-dimensional

parameter attenuates strongly the influence of the fractal dimension. In that

case, the fractal dimension would not need to be modeled more precisely,

as Maerz et al. (2011) and others do, for instance by considering it to be

a function of floc diameter. As it is much simpler to use the model based

on a non-dimensional parameter rather than to make the fractal dimension

dependent on the floc diameter, it is advisable to follow the former approach.

6. Conclusion

We have reported in this paper a global SA for two different parameter-

izations of a fractal-based turbulence-induced flocculation model. Using the

equilibrium diameter as first QoI, we have shown that the two parameteriza-

tions yielded very different results in terms of parameter-QoI correlations and
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sensitivities. Namely, the parameterization in terms of a non-dimensional floc

breakup parameter showed strong sensitivity with respect to two parameters

only (floc breakup and aggregation parameters), while the parameterization

in terms of the dimensional floc breakup parameter presented a more widely

distributed sensitivity and more complex correlation patterns. The conclu-

sion of this analysis is that the former parameterization is probably much

better suited for an identification experiment based on the measure of floc

diameter, provided the fractal dimension and diameter of the primary par-

ticle can be measured through other experiments. It also indicates that the

equilibrium diameter can be approximated very well by a function of only

the corresponding two parameters.

A second SA considered a 0D experiment reproducing a tidal flocculation

process, taken from Maerz et al. (2011). A previous SA by these authors

on the characteristic diameter suggested that the fractal dimension was ex-

tremely important for this experiment. Our analysis observes that this is

only true for the parameterization with dimensional floc breakup parame-

ter. Using the non-dimensional parameterization, as recommended by our

previous analysis, the diameter fluctuations appears more sensitive to the

floc breakup parameters. The results of Maerz et al. (2011) motivated in

particular the introduction of more complex models of the fractal dimension,

varying with the diameter. Our analysis seems to indicate that this might be

unnecessary, provided that the appropriate parameterization of the model is

chosen.

Finally, it should be noted that other QoIs could be considered, and might

lead to different conclusions. In particular, Verney et al. (2011) report local
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sensitivity analyses focused on the settling velocity that seem to indicate that

the primary diameter DP might be more important for this QoI than in the

SA reported here.

Appendix A. Generation of samples of flocculation parameters

We describe here a method for generating samples of the flocculation

parameters with the chosen first-order marginal distributions and correlation.

We consider a generic random vector of dimension 4, with given first-order

marginal distributions for each of its coordinates, and a given correlation

matrix. The cumulative distributions are denoted Φi, for 1  i  4, and the

correlation matrix is denoted R.

We start with 4 independent unit centered gaussian random variables Gi

grouped in a vector G, and a correlation matrix R⇤ (the value of which will

be discussed below). We then construct the 4-dimensional correlated random

vector U = G
p
R⇤, where

p
R⇤ comes from the Choleski decomposition of

R⇤. Finally, we transform each of the random variables in the vector U into

the appropriate first-order marginal distribution using the classical transfor-

mation Ki = Φ−1
i (Φ0(Ui)), where Φ0 is the cumulative density function of

a unit centered gaussian random variable. By doing this last transforma-

tion, we unfortunately modify the correlation structure of U (which was by

definition R⇤) into something else.

The proposed approach is therefore iterative. We start from an initial

guess of R⇤ (the obvious choice being R⇤ = R), compute numerically the

resulting correlation for K and iterate until that correlation is close to R.

Using this approach and the statistical parameters and laws discussed in
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Section 3.2, we converged to the following correlation matrices:

• for the non-dimensional model (and nf independent of the other pa-

rameters)

R⇤ =

2

6

6

6

6

6

6

4

1 0 0 −0.44

0 1.08 0 −0.35

0 0 1 0

−0.44 −0.55 0 1

3

7

7

7

7

7

7

5

(A.1)

• for the dimensional model (and nf independent of the other parame-

ters)

R⇤ =

2

6

6

6

6

6

6

4

1 0 0 −0.44

0 1.08 0 −0.55

0 0 1 0
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(A.2)

• for the non-dimensional model (and nf dependent on the other param-

eters)

R⇤ =

2

6

6

6

6

6

6

4

1 0 −0.52 −0.44

0 1.08 0.57 −0.35

−0.52 0.57 1 0
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7

7
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(A.3)

• for the dimensional model (and nf dependent on the other parameters)

R⇤ =

2

6

6

6

6

6
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4

1 0 −0.53 −0.44

0 1.08 0.55 −0.53
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(A.4)
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Using these matrices to correlate the gaussian germs allows to generate sam-

ples of the parameters following the chosen first-order marginal laws as well

as having the right correlation structure.
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