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Introduction

In this article, we introduce the level set formulation for a generalized motion by mean curvature with obstacles. More precisely, let M (t) = ∂E(t) be a family of n -1 submanifold in R n , we say that it evolves by mean curvature if for any x ∈ M (t), the velocity of M (t) at x is given by v(x) = -Hν(x) [START_REF] Almeida | Mean curvature flow with obstacles[END_REF] where H is the mean curvature of M (t) at x (nonnegative if E(t) is a convex set with boundary) and ν is the normal vector to M (t) pointing towards E(t) c . Motivated by recent works from Almeida, Chambolle and Novaga [START_REF] Almeida | Mean curvature flow with obstacles[END_REF] and Spadaro [START_REF] Spadaro | Mean-convex sets and minimal barriers[END_REF] about a discrete scheme for the mean curvature flow with obstacles, we want to constrain [START_REF] Almeida | Mean curvature flow with obstacles[END_REF] forcing

Ω -(t) ⊂ E(t) ⊂ Ω + (t) (2) 
where Ω ± are two open sets (which can depend on the time variable).

Mean curvature flow has been widely studied in the 30 past years for physical and biological purposes. For instance, one can mention [START_REF] Almeida | Stéphane Noselli, and[END_REF][START_REF] Almeida | A mathematical model for dorsal closure[END_REF] for a new model in biology (tissue repair) using this evolution. Concerning the mathematical study, one can in particular cite [START_REF] Brakke | The motion of a surface by its mean curvature[END_REF] for a first paper on this motion, [START_REF] Ecker | Interior estimates for hypersurfaces moving by mean curvature[END_REF] for a geometric study of (1) and [START_REF] Evans | Motion of level sets by mean curvature[END_REF] and [START_REF] Gang | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF] for a level-set formulation and the use of viscosity solutions. In the sequel we follow the last approach.

It is well known (see for example [START_REF] Evans | Motion of level sets by mean curvature[END_REF]) that if u : R n → R is a smooth function with a nonzero gradient at x 0 , the mean curvature of the level set {u = u(x 0 )} at x 0 is given by div Du |Du| (x 0 ). As a result, making this set (and every other level-set of u) evolve by mean curvature leads to the following equation for u:

u t = |Du| div Du |Du| . (3) 
In the whole paper, we will think of M (t) as the zero-level-set of u(•, t).

To add the constraint to (3), we define u ± (x, t) such that

Ω -(t) ⊂ E(t) ⊂ Ω + (t) ⇔ {u + < 0} ⊂ {u < 0} ⊂ {u -< 0}
and impose ∀x, t, u -(x, t) u(x, t) u + (x, t).

As in [START_REF] Evans | Motion of level sets by mean curvature[END_REF], [START_REF] Gang | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF], we study [START_REF] Almeida | A mathematical model for dorsal closure[END_REF] with constraint (4) using viscosity solutions. We first present a suitable viscosity framework and prove a uniqueness and existence result for bounded uniformly continuous initial data and obstacles and Lipschitz forcing term in the spirit of [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF]. Then, we link the regularity of the solution to the regularity of the initial data.

We also show that our level-set approach really defines a geometric flow: the α-level set of the solution depends only on the α-level set of the initial data and the obstacles. Nonetheless, as expected, there is no real geometrical uniqueness: level sets of the solution can develop non empty interiors because of the obstacles (even if the free evolution does not). In an upcoming paper with Matteo Novaga [START_REF] Mercier | Mean curvature flow with obstacles: existence, uniqueness and regularity of solutions[END_REF], we study the MCF with obstacles with a geometrical point of view (in the spirit of [START_REF] Ecker | Interior estimates for hypersurfaces moving by mean curvature[END_REF]), proving short time existence, uniqueness and regularity of solutions.

Finally, in Section 4, we compare the approach followed by [START_REF] Spadaro | Mean-convex sets and minimal barriers[END_REF] and [START_REF] Almeida | Mean curvature flow with obstacles[END_REF] (discrete minimizing scheme based on [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF]) to ours. More precisely, we show that the discrete scheme has a limit which is the viscosity solution to (3) with constraint (4). In addition, this variational approach gives monotonicity of the flow and therefore information on the long time behavior of the viscosity solution.

Notation

In what follows, we consider the equation (slightly more general than [START_REF] Almeida | A mathematical model for dorsal closure[END_REF], but the latter has to be kept in mind), for u : R n × R + → R ∀t 0, x ∈ R n , u t + F (Du, D2 u) + k|Du| = 0, [START_REF] Barles | Front propagation and phase field theory[END_REF] where k : R n × R + → R is a forcing term and F : R n × S n → R (S n is the set of symmetric matrices of dimension n) satisfies i)

F ∈ C (R n \ {0} × S n (R)) ,
ii) F is geometric : ∀λ > 0, σ ∈ R, F (λp, λX + σp ⊗ p) = λF (p, X),

iii) For X and Y symmetric matrices with X Y , F (p, X) F (p, Y ).

In the following, Du and D 2 u denote space derivatives only. We will denote by u ∧ v and u ∨ v the quantities min(u; v) and max(u; v).

We also introduce F * and F * which are respectively the upper semicontinuous and lower semicontinuous envelopes of u 1 (see Definition 1). To play the role of the obstacles, we consider u -and u + : R n × [0, +∞) → R, with u -u + . The function u will be forced to stay between u -and u + . Geometrically, the constraint reads {u + < s} ⊂ {u < s} ⊂ {u -< s}, where, given two functions u, v : R n × [0, ∞) → R, we will denote by

{u = v} := {(x, t) ∈ R n × [0, ∞) | u(x, t) = v(x, t)} and {u < v} := {(x, t) ∈ R n × [0, ∞) | u(x, t) < v(x, t)}.
To adapt the classical theory of viscosity solutions (we will use the same scheme of proof as in [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF]), the key point is to define correctly sub and super solutions of

u t + F (Du, D 2 u) + k|Du| = 0 with u -u u + . (6) 
This definition for two obstacles has been already given, for instance in [START_REF] Yamada | Viscosity solutions for a system of elliptic inequalities with bilateral obstacles[END_REF]. To state it, we fisrt need the following notation.

Definition 1. For f : R n → R, we denote by f * the upper semicontinuous envelope of f . More precisely

f * (x) = lim sup y→x f (y).
We define in a similar way the lower semicontinuous envelope of f .

f * (x) = lim inf y→x f (y).
Note that f * (resp. f * ) is the smallest (resp. largest) semicontinuous function g such that g f (resp. g f ).

We are now ready to give the main definition.

Definition 2. A function u : R n × R + → R is said to be a (viscosity) subsolution on [0, T ) of the motion equation with obstacles u + , u -and initial condition u 0 if

• u is upper semicontinous (usc),

• for all (x, t) ∈ R n × [0, T ), u -(x, t) u(x, t) u + (x, t),

• for all x ∈ R n , u(x, 0) u 0 (x),

• if ϕ is a C 2 function of x, t, if (x, t) ∈ R n × (0, T ) is a maximizer of u -ϕ and if u(x, t) > u -(x, t), then, at (x, t), ϕ t + F * (Dϕ, D 2 ϕ) + k|Dϕ| 0.
Similarly, u is said to be a (viscosity) supersolution of the motion equation with obstacles u + , u - and initial condition u 0 if

• u is lower semicontinous (lsc),

• for all

(x, t) ∈ R n × [0, T ), u -(x, t) u(x, t) u + (x, t),
• for all x ∈ R n , u(x, 0) u 0 (x),

• if ϕ is a C 2 function of x, t, if (x, t) ∈ R n ×(0, T ) is a minimizer of u-ϕ and if u(x, t) < u + (x, t), then at (x, t), ϕ t + F * (Dϕ, D 2 ϕ) + k|Dϕ| 0.
Finally, u is said to be a (viscosity) solution of the motion equation with obstacles u + , u -if u is both a super and a sub solution.

To simplify, we write

u t + F (Du, D 2 u) + k|Du| = 0 on {u -u u + }. (7) 
A supersolution (resp subsolution) of the motion equation with obstacles u + , u -will be called a supersolution (resp. subsolution) of [START_REF] Samuel Biton | Nonfattening condition for the generalized evolution by mean curvature and applications[END_REF].

Looking at the very definition, one can make the Remark 1. Let u be a subsolution with obstacles u -u + . Then, u is a subsolution with obstacles u -and v + for every v + u + . The obstacle u -is a subsolution whereas u + is a supersolution.

Remark 2. It has to be noticed that using this definition, obstacles can depend on the time variable. Moreover, the contact zone {u + = u -} can be nonempty. We also want to point out that the obstacle problem can be defined using a modified F (see [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF], Example 1.7). For instance, let

G(x, t, u, u t , Du, D 2 u) = max min u t + F (Du, D 2 u), u -u -, u -u + . ( 8 
)
One can easily show that the (usual) viscosity solutions of G = 0 coincide with our definition above (the only difference is the subsolutions of G = 0 do not have to satisfy u u -, but must remain below u + ). Nonetheless ( 8) cannot be written of the form

u t + G(x, t, u, Du, D 2 u) = 0,
which is the usual form for parabolic equations, for which known results (see [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF][START_REF] Gang | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF]) could apply. Thus, despite of this convenient formulation, we have to check that the usual results still apply. That is why we decided to use the definition above with a standard function F but with (explicit) obstacles.

There is another equivalent definition of such solutions, which can be useful (see [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF]).

Definition 3. Let f : R n × (0, T ) → R. We said that (a, p, X) ∈ R × R n × S n (R) is a superjet for f at (x 0 , t 0 ) and we denote (a, p, X) ∈ P 2,+ f (x 0 , t 0 ) if, for (x, t) → (x 0 , t 0 ) in R n × (0, T ), f (x, t) f (x 0 , t 0 ) + a(t -t 0 ) + p , x -x 0 + 1 2 X(x -x 0 ) , x -x 0 + o(|t -t 0 | + |x -x 0 | 2 ).
We likewise say that (a, p, X) ∈ R × R n × S n (R) is a subjet for f at (x 0 , t 0 ) and we denote (a, p, X) ∈ P 2,-f (x 0 , t 0 ) if, for (x, t) → (x 0 , t 0 ),

f (x, t) f (x 0 , t 0 ) + a(t -t 0 ) + p , x -x 0 + 1 2 X(x -x 0 ) , x -x 0 + o(|t -t 0 | + |x -x 0 | 2 ).
Then, u is a subsolution of (7) if it satisfies the three first assumptions of the previous definition and if

∀(x, t) ∈ R n × (0, T ), (a, p, X) ∈ P 2,+ u(x, t), u(x, t) > u -(x, t) ⇒ a + F * (p, X) + k|p| 0.
Of course, u is a supersolution of (7) if the three assumptions of the first definition are satisfied and if

∀(x, t) ∈ R n × (0, T ), (a, p, X) ∈ P 2,-u(x, t), u(x, t) < u + (x, t) ⇒ a + F * (p, X) + k|p| 0.

Existence and uniqueness

The aim of this section is to show the Theorem 1. We assume that u -and u + are uniformly continuous and bounded and that k is Lipschitz. Then, if u 0 : R n → R is uniformly continuous and u -(x, 0) u 0 (x) u + (x, 0), (7) has an unique solution, which is uniformly continuous.

The structure of the proof is classical when dealing with viscosity solutions. A comparison principle will show uniqueness, and existence will follow by standard methods. In what follows, L is a Lipschitz constant of k and ω is a modulus of continuity for u 0 , u -and u + .

Uniqueness

We begin by proving a comparison principle, adapted from [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF], Theorem 8.2. It has to be noticed that the same result with no obstacles has been proved in [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF] (Th. 4.1) in a very general framework. We could adapt this result to the obstacle case but we prefer to present a simpler and self consistent proof based on [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF] (nonetheless, we will use some ideas of [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF]).

Proposition 1 (Comparison principle). We assume that u is a subsolution and v a supersolution of (7) on (0, T ), and that u(x, 0) v(x, 0). Then, u v in R n × (0, T ).

Proof. We proceed by contradiction. Since for every c sufficiently small, we can find η > 0 such that ũ = (u -η T -t ) ∨ u -is still a subsolution, but with

F (Dũ, D 2 ũ) + k|Dũ| -c < 0,
it is enough to prove the comparison principle with ũ and then pass to the limit (nonetheless, we still write u). Suppose that there exists x, t such that u(x, t) -v(x, t) 2δ > 0. One defines

Φ(x, y, t) = u(x, t) -v(y, t) - α 4 |x -y| 4 - ε 2 (|x| 2 + |y| 2 ).
If ε is sufficiently small, Φ(x, x, t) δ. Hence, M := max

x,y,t Φ(x, y, t) δ (the penalization at infinity

1 2 ε(|x| 2 + |y| 2 )
reduces searching for the maximum to a compact set). Let x, ŷ, t be a maximum point. Since u and v are bounded, there is C depending only on u ∞ and v ∞ such that

|x -ŷ| C α 1/4 .
First, let us show by contradiction that u(x, t) > u -(x, t) and v(ŷ, t) < u + (ŷ, t). Suppose for example that u(x, t) = u -(x, t). Then

0 < δ u -(x, t) -v(ŷ, t) u -(ŷ, t) + ω(|x -ŷ|) -v(ŷ, t) ω(|x -ŷ|) + 0 ω(Cα -1/4 ).
Hence, if α is sufficiently large (independently of ε), ω(Cα -1/4 ) δ/3. Contradiction (this shows moreover that t < T ). Similarly, v(ŷ, t) < u + (ŷ, t).

In what follows, α is fixed sufficiently big to satisfy these conclusions.

As M + α|x -y| 4 + ε 2 (|x| 2 + |y| 2 ) u(x, t) -v(y, t) (9) 
with equality in x, ŷ, t, we are able to apply Ishii's lemma [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF] to

u(x, t) -v(y, t) -Φ(x, y, t) where Φ(x, y, t) = M + α|x -y| 4 + ε 2 (|x| 2 + |y| 2 )
which provides, for every µ > 0, (a, b, X, Y ) such that (a, α|x -ŷ| 2 (x -ŷ)

=: p -εŷ, Y ) ∈ P 2,+ v(ŷ, t)
and (b, α|x -ŷ| 2 (x -ŷ) + εx, X) ∈ P 2,-u(x, t). It provides moreover a -b = 0 and

- 1 µ + A I 0 0 I X 0 0 -Y A + µA 2 ,
where

A = D 2 Φ(x, ŷ, t) = P -P -P P + ε I 0 0 I and P = 2α(x -ŷ) ⊗ (x -ŷ) + α|x -ŷ| 2 .
That shows in particular that X -Y ε 2 I and X , Y C 1 α|x -ŷ| 2 + ε . Since u and v are respectively subsolution and supersolution near (x, t) and (ŷ, t), one has

c a -b + F * (p -εŷ, Y -εI) -F * (p + εx, X + εI) + k(ŷ, t)|p -εy| -k(x, t)|p + εx|. One can write k(ŷ, t)|p + εŷ| -k(x, t)|p -εx| (k(ŷ, t) -k(x, t))|p + εŷ| + 2|k(x, t)|(|εŷ| + |εx|), which gives, with a -b = 0, c F * (p -εy, Y -εI) -F * (p + εx, X + εI) + L(|x -ŷ|)|p + εŷ| + 2 k ∞ (|εx| + |εŷ|).
Then, we want to let ε go to 0. Since M δ > 0, we have

δ + 1 4 α|x -ŷ| 4 + ε 2 (|x| 2 + |ŷ| 2 ) u(x, t) -v(ŷ, t) u ∞ + v ∞ ,
which implies that ε|x| 2 is bounded, hence εx → 0 (same for εŷ), whereas for i ∈ {2, 3, 4}, α|x -ŷ| i is bounded (so is p, X and Y ). Indeed, α is fixed here. Hence one can assume that p → p, X → X 0 , α|x -ŷ| 4 → µ α .

We now use a short lemma, which is an easy adaptation of [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF], Proposition 4.4 (see also Lemma 2.8 in the preprint of [START_REF] Forcadel | Dislocation dynamics with a mean curvature term: short time existence and uniqueness[END_REF], which has a form which is closer to ours) and whose proof is reproduced here for convenience.

Lemma 1. One has lim α→∞ lim ε→0 α|x -ŷ| 4 = 0. Proof. Let M h = sup |x-y| h t∈[0,T ) (u(x, t) -v(y, t))
and

(x n h , y n h , t n h ) such that u(x n h , t n h ) -v(y n h , t n h ) M h -1 n and |x n h -y n h | h. Then, M h - 1 n - αh 4 4 - ε 2 |x n h | 2 + |y n h | 2 M u(x, t) -v(ŷ, t).
As x n h and y n h do not depend on ε, one can let it go to zero (considering the liminf of the right term) to get

M h - 1 n - αh 4 4 lim inf ε→0 (u(x, t) -v(ŷ, t)).
Let h → 0 (We denote by M the decreasing limit of M h ). One obtains

M - 1 n lim inf ε→0 (u(x, t) -v(ŷ, t)).
Let α go to infinity:

M - 1 n lim inf α→∞ lim inf ε→0 (u(x, t) -v(ŷ, t)) lim sup α→∞     sup |x-y| Cα -1/4 t∈[0,T ) (u(x, t) -v(y, t))     lim sup h→0 sup |x-y| h (u(x, t) -v(y, t)) = M hence lim α→∞ lim ε→0 u(x, t) -v(ŷ, t) = M .
We prove similarly that lim α→∞ lim ε→0 M = M . As a matter of fact,

lim α→∞ lim ε→0 α|x -ŷ| 4 + ε 2 (|x| 2 + |ŷ| 2 ) = 0,
which proves the lemma.

One can now choose α such that lim ε→0 α|x -ŷ| 4 → µ α with µ α c/2L and pass to the liminf in

ε → 0. One gets (using X Y + ε 2 I), c 2 lim inf (F * (p, X) -F * (p, X)) .
To conclude, we distinguish two cases:

• if p = 0, then F * (p, X 0 ) = F * (p, X 0
) and we get the contradiction.

• if p = 0, we have α|x -ŷ| 2 (x -ŷ) -→ ε→0 0, so X 0 = 0 and F * (p, X 0 ) = F * (p, X 0 ) = 0 and we get the contradiction too.

Existence

We will build a solution using Perron's method. Since we know that the supersolutions of ( 7) remain larger than subsolutions, the solution, if it exists, must be the largest subsolution (or equivalently, the smallest supersolution). Hence we introduce W (x, t) = sup{w(x, t), w subsolution on [0, T )}.

We show that W is in fact the expected solution to [START_REF] Samuel Biton | Nonfattening condition for the generalized evolution by mean curvature and applications[END_REF].

Let us first state a straightforward but useful proposition.

Proposition 2. i) Let u be a subsolution of the motion without obstacles which satisfies u u + . Then, u ob := u ∨ u -is a subsolution of (7) with obstacles (the same happens for v u - supersolution and v ob = v ∧ u + ).

ii) More generally, if u is a solution of the motion with initial conditions u 0 and obstacles (u -, u + ) and if v -and v + are other obstacles which satisfy u - v - u + v + , then u ∨ v -is a subsolution of the equation with initial condition u 0 ∨ v -| t=0 and obstacles v -and u + . In addition, u is a subsolution of the equation with initial conditions u 0 and obstacles u -, v + .

Proof. The proof is quite simple: consider a smooth function ϕ and some x 0 , t 0 such that ϕ-u∨u - has a maximum at (x 0 , t 0 ). Then, using the definition of subsolutions, either u(x 0 , t 0 )∨u -(x 0 , t 0 ) = u -(x 0 , t 0 ) and nothing has to be done, or u(x 0 , t 0 ) > u -(x 0 , t 0 ). In the second alternative (x 0 , t 0 ) is in fact a maximum of u -ϕ. Since u is a viscosity subsolution of the motion, we have ϕ t + F * (Dϕ, D 2 ϕ) + k|Dϕ| 0, what was expected.

Let us now show the second part of the proposition. The initial condition u ∨ v -u 0 ∨ v -| t=0 is satisfied. Once again, we consider ϕ smooth and (x 0 , t 0 ) such that u ∨ v --ϕ has a maximum at (x 0 , t 0 ). Then, either u(x 0 , t 0 )∨v -(x 0 , t 0 ) = v -(x 0 , t 0 ) and nothing has to be checked, or u(x 0 , t 0 ) > v -(x 0 , t 0 ). The latter implies that u(x 0 , t 0 ) > u -(x 0 , t 0 ), so ϕ t + F * (Dϕ, D 2 ϕ) + k|Dϕ| 0, what was wanted.

Lemma 2. Let F be a family of subsolutions of (7) and define U (x, t) := sup{u(x, t)), u ∈ F}. Then, U * is a subsolution of (7).

To prove this lemma, we need the following proposition which will be useful later. Proposition 3. Let v be a upper semicontinuous function, (x, t) ∈ R n × R and (a, p, X) ∈ P 2,+ v(x, t). Assume there exists a sequence (v n ) of usc functions which satisfy i) There exists

(x n , t n ) such that (x n , t n , v n (x n , t n )) → (x, t, v(x, t)) ii) (z n , s n ) → (z, s) in R n × R implies lim sup v n (z n , s n ) v(z, s).
Then, there exists

(x n , tn ) ∈ R n × R, (a n , p n , X n ) ∈ P 2,+ v n (x n , tn ) such that (x n , tn , v n (x n , tn ), a n , p n , X n ) → (x, t, v(x, t), a, p, X).
The proof of the proposition and the lemma can be found in [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF], Lemma 4.2 and Proposition 4.3 (with obvious changes due to the parabolic situation and obstacles).

In our way to prove that W is the solution of ( 7), we need to show that it is a subsolution of [START_REF] Samuel Biton | Nonfattening condition for the generalized evolution by mean curvature and applications[END_REF]. Lemma 2 shows that W * is a subsolution of ( 7) with obstacles, but without taking the initial condition into account. Indeed even if for all subsolution, one has u(x, 0) u 0 (x), which implies W (x, 0) u 0 (x), taking the semicontinuous envelope could break this inequality. We thus need to build some continuous barriers which will force W * to remain below u 0 at time zero. More precisely, we build a continuous supersolution w + which gets the initial data u 0 . Then, by comparison principle, every subsolution u will satisfy u w + and W w + . Taking the envelope will yield W * (w + ) * = w + which will imply W * (x, 0) u 0 (x).

Similarly, we build a continuous subsolution w -which also gets the initial data. By the very definition of W , it gives W (x, 0) u 0 (x).

For technical reasons, we begin building the solution in the case where k = 0.

Construction of barriers in the non forcing case

Let us construct w -. Without a forcing term, we note that for all ξ ∈ R n and A, B with B sufficiently large relatively to A,

h(x, t) = -(A|x -ξ| 2 + Bt)
is a subsolution of ( 7) in a neighborhood of ξ but with neither initial conditions nor obstacles. We define

h(x, t) = h(x, t) ∨ u -(x, t).
Then, h is a subsolution (on the full domain, since as soon |x -ξ| u - ∞ /A, h(x, t) = u -(x, t)) of ( 7), for A sufficiently large uniformly in ξ. We then define

θ ξ (r) = inf{u 0 (y) | A|y -ξ| 2 + r 0}
The function θ ξ is bounded, non decreasing, continuous and satisfies θ ξ (0) = u 0 (ξ) and θ ξ (-A|x -

ξ| 2 -Bt) u 0 (x). As the equation is geometric, θ ξ (-A|x -ξ| 2 -Bt) ∨ u -(x, t) is also a subsolution. Let us then define φ(x, t) = sup ξ θ ξ (-A|x -ξ| 2 -Bt) ∨ u -(x, t) * .
Since θ ξ (-A|x -ξ| 2 -Bt) u 0 (x) and u 0 is continuous, we also have φ(x, t) u 0 . In addition, we can check that

φ(x, t) θ x (-A|x -x| 2 -Bt) = θ x (-Bt) u 0 (x) -ω( Bt A ). (10) 
Hence, φ(x, 0) = u 0 (x). Thanks to Lemma 2, φ is a subsolution with φ(x, 0) u 0 (x). We conclude this proof defining

w -(x, t) = (φ(x, t) -ω(t)) ∨ u -(x, t).
It is clear that w -is a subsolution with obstacles. Indeed, by definition, w - u -. Moreover, φ(x, t) -ω(t) u 0 (x) -ω(t) u + (x, 0) -ω(t) u + (x, t). Proposition 2 concludes the proof.

The other barrier w + is obtained similarly:

w + = inf ξ θ ξ (A|x -ξ| 2 + Bt) ∧ u + (x, t) * ∧ u + (x, t) with θ ξ (r) = sup{u 0 (y) | A|y -ξ| 2 -r 0}.

Perron's method

We have just seen that, thanks to the barriers, W * is a subsolution of [START_REF] Samuel Biton | Nonfattening condition for the generalized evolution by mean curvature and applications[END_REF]. We now want to show that W is actually a subsolution and that it is also a supersolution. First, we show uniform continuity of the function W , which shows that W * = W and therefore, that Remark 3. If k(x, t) = 0, then W is ω-uniformly continuous in space. In time, W is uniformly continuous with modulus ω : r → max(ω(r), ω( Br A )), where B is the constant introduced when constructing the barriers. Indeed, the proof is contained in the following lemma. Lemma 3. Let u(x, t) be a subsolution of [START_REF] Samuel Biton | Nonfattening condition for the generalized evolution by mean curvature and applications[END_REF] with no forcing term (and u 0 , u -, u + ω-uniformly continuous in space and time). Then, for t > 0 and z ∈ R n ,

u z,δ (x, t) = (u(x + z, t + δ) -ω(|z|) -ω(|δ|)) ∨ u -(x, t)
is also a subsolution. Proof. To begin, we notice that u(x + z, t + δ) -ω(|z|) -ω(|δ|) u + (x, t). Now, let ϕ be a smooth function with ∀x, t, u z,δ (x, t) ϕ(x, t) with equality at (x, t). Then, either u z,δ (x, t) = u -(x, t), and nothing has to be done, or u z,δ (x, t) > u -(x, t). In the second alternative, we have

u(x + z, t + δ) -ω(|z|) -ω(δ) > u -(x, t) = u -(x + z, t + δ) + (u -(x, t) -u -(x + z, t + δ)) hence u(x + z, t + δ) > u -(x + z, t + δ) + (u -(x, t) -u -(x + z, t + δ) + ω(|z|) + ω(|δ|)) 0 u -(x + z, t + δ).
As u is a subsolution at (x + z, t + δ) and u(x + z, t + δ) ϕ(x, t) + ω(|z|) + ω(|δ|) with equality at (x + z, t + δ), one can write, with y = x + z, s = t + δ, u(y, s) ϕ(y -z, s -δ) + ω(|z|) + ω(|δ|) =: φ(y, s), equality at (y, s) (with y := x + z and s = t + δ), and deduce that φ t + F * (Dφ(y, s), D 2 φ(y, s)) 0. Since Dφ(y, s) = Dϕ(x, t) (so are the time and spatial second derivatives), we get

ϕ t + F * (Dϕ(x, t), D 2 ϕ(x, t)) 0,
what was expected.

Concerning the initial conditions, we have (we use [START_REF] Gang | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF] and the comparison principle Proposition 1 between u and w + )

u(x + z, 0 + δ) -ω(|z|) -ω(δ) w + (x + z, δ) -ω(|z|) -ω(|δ|) u 0 (x + z) -ω(|z|) u 0 (x). Applying this lemma to W shows (x, t) → W (x + z, t + δ) -ω(|z|) -ω(|δ|) ∨ u -(x + z, t) is a subsolution. By definition of W , one can write W (x, t) (W (x + z, t + δ) -ω(|z|) -ω(δ)) ∨ u -(x + z, t) W (x + z, t + δ) -ω(|z|) -ω(δ)
which shows exactly that W is uniformly continuous.

We now want to show that W is in fact a supersolution of [START_REF] Samuel Biton | Nonfattening condition for the generalized evolution by mean curvature and applications[END_REF]. We need the following lemma which is adapted from [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF], Lemma 4.4.

Lemma 4. Let u be a subsolution of [START_REF] Samuel Biton | Nonfattening condition for the generalized evolution by mean curvature and applications[END_REF]. If u * fails to be a solution of u t +F * (Du, D 2 u)+k|Du| 0 at some (x, t) (there exists (a, p, X) ∈ P 2,-u * (x, t) such that a + F * (p, X) + k|p| < 0), then for all sufficiently small κ, there exists a solution

u κ of u t + F * (Du, D 2 u) + k|Du| 0 satisfying u κ (x, t) u(x, t), sup R n (u κ -u) > 0, u κ (x, t) u + (x, t
) and such that u and u κ coincide for all |x -x|, |t -t| κ.

Proof. We can suppose that u * fails to be a supersolution at (0, 1) (this implies in particular u * (0, 1) < u + (0, 1)). We get (a, p, X) ∈ P 2,-u * (0, 1) such that a + F * (p, X) + k(0, 1)|p| < 0. We introduce for γ, δ, r > 0,

u δ,γ (x, t) = u * (0, 1) + δ + p , x + a(t -1) + 1 2 Xx , x -γ(|x| 2 + t -1)
.

By upper semicontinuity of F * , u δ,γ is a subsolution of u t + F * (Du, D 2 u) + k|Du| 0 on B r ((0, 1)) for γ, δ, r sufficiently small. Since

u(x, t) u * (x, t) u * (0, 1) + a(t -1) + p , x + 1 2 Xx , x + o(|x| 2 ) + o(|t -1|),
choosing δ = γ r 2 +r 8 , we get u(x, t) > u δ,γ (x, t) for r 2 |x|, |t -1| r and r sufficiently small. Moreover, we can reduce r again to have u δ,γ u + on B r (Choosing r sufficiently small, one has δ sufficiently small and u δ,γ (0, 1) -u * (0, 1) = δ < u + (0, 1) -u * (0, 1). By continuity, one can find a smaller r such that u δ,γ (x, t) < u + (x, t) for all r 2 |x|, |t -1| r.). Thanks to Lemma 2, the function

ũ(x, t) = max(u(x, t), u δ,γ (x, t)) if |x, t -1| < r u(x, t) otherwise
is a subsolution of (7) (with initial conditions if r is small enough). Now, we saw that W is a subsolution of (7) (in particular, W u + ). If it is not a supersolution at a point x, t , Lemma 4 provides W κ W subsolutions of (7) (with initial condition, even if we have to reduce r again, to make t stay far from zero), which is a contradiction with the definition of W . Finally, W is the expected solution of [START_REF] Samuel Biton | Nonfattening condition for the generalized evolution by mean curvature and applications[END_REF].

Proof. First, it is well known that one can choose ω to be continuous and nondecreasing. Since u and v are bounded, ω ∧ ( u ∞ + v ∞ ) is a modulus too. In the following, we use this new modulus, still denoted by ω.

Then, let ρ n be a C ∞ nondecreasing function on [0, ∞[ such that 0 ρ n -ω, for all r > n + 1, ρ n (r) = 2N + 1, and for all r ∈ [0, n], ρ n (r) -ω(r)

1 n . We define ω n (r) = ρ n + r n 2 .
It's clear that ω n (r) -→ n→∞ ω(r). Moreover, for a fixed n, ω n (r) is bounded and remains far from zero. In what follows, we work with ω n .

We will proceed as in Proposition 1. Let φ(x, y, t) = ω n (e Lt |x -y|). We will show by contradiction that u(x, t) -u(y, t) φ(x, y, t). Assume that

M := sup (x,y,t)∈R n ×R n ×[0,T ) u(x, t) -u(y, t) -φ(x, y, t) > 0.
As before, we introduce

M = sup x,y,t T u(x, t) -u(y, t) -φ(x, y, t) - α 2 (|x| 2 + |y| 2 ) - γ T -t .
For sufficiently small γ, α, M remains positive and is attained (at x, y, t < T ). As u 0 is ω-uniformly continuous, t > 0. Moreover, since u is continuous, |x-y| is bounded away from zero, independently of α and γ.

By assumption,

u -(x, t) u -(y, t) + ω(|x -y|) u -(y, t) + ω n (|x -y|) u(y, t) + φ(x, y, t) so 0 M < u(x, t) -u(ŷ, t) -φ(x, ŷ, t) forces u(x, t) > u -(x, t).
Similarly, u(y, t) < u + (y, t). Applying Ishii's lemma ( [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF], Th. and

A = D 2 φ = Z -Z -Z Z ,
we get the following. For all β such that βA < I, there exists

τ 1 , τ 2 ∈ R, X, Y ∈ S n such that τ 1 -τ 2 = γ (T -t) 2 + Le Lt |x -y|ω n (e Lt |x -y|), (τ 1 , p + αx, X + αI) ∈ P 2,+ u(x, t), (τ 2 , p -αy, Y -αI) ∈ P 2,-u(y, t), -1 β I 0 0 I X 0 0 -Y (I -βA) -1 A.
In particular, the last equation provides X Y . As u is a subsolution and a supersolution, one has

τ 1 + k(x, t)|p + αx| + F * (p + αx, X + αI) 0, (11) 
τ 2 -k(y, t)|p -αy| + F * (p -αy, Y -αI) 0.
X Y in the last equation gives

-τ 2 + k(y, t)|p -αy| -F * (p -αy, X -αI) 0. (12) 
Adding ( 12) to [START_REF] Michael | User's guide to viscosity solutions of second order partial differential equations[END_REF] Let α go to zero. p and X are bounded: one assume they converge and still denote by p, X their limit. As |p|

1 n 2 (ρ n is nondecrasing), F * (p, H) = F * (p, H) for all H ∈ S n . Moreover, αx, αy → 0 and k is bounded, hence γ (T -t) 2 0,
which is a contradiction. So u(x, t) -u(y, t) ω n (e Lt |x -y|).

It remains to let n go to +∞ to conclude.

The motion is geometric

In all this subsection, a solution u of the motion with initial data u 0 and obstacles u -and u + will be denoted by u = [u 0 , u -, u + ]. The corresponding equation will be denoted by (u 0 , u -, u + ).

To agree with the geometric motion, we have to check that the zero level-set of the solution depends only on the zero level sets of the initial condition u 0 and of the obstacles u + and u -.

Lemma 5. Let u = [u 0 , u -, u + ] and v = [v 0 , v -, v + ]. We assume that u 0 v 0 , u - v -and u + v + . Then, u v.
Proof. This proposition is obvious thanks to Remark 1. Indeed, u is a subsolution of (u 0 , u -, u + ) so is a subsolution of (u 0 , u -, v + ) whereas v is a supersolution of (v 0 , v -, v + ), so of (u 0 , u -, v + ). The comparison principle implies u v.

Proposition 5. Let u be the solution of (5) with obstacles u + and u -, and let φ be a continuous nondecreasing function [-u -, u + ] → R such that {φ = 0} = {0}. Then, the solutions

[u 0 ∧ (φ(u + ) ∨ u -)| t=0 , u -, φ(u + ) ∨ u -], (u 0 ∨ (φ(u -) ∧ u + )| t=0 , φ(u -) ∨ u + , u + ] and [(φ(u 0 ) ∧ u + | t=0 ) ∨ u -| t=0 , u -, u + ]
have the same zero level set as u.

Proof. We will prove that

u φ = [u 0 ∧ (φ(u + ) ∨ u -)| t=0 , u -, φ(u + ) ∨ u -]
has the same zero set as u. All the other equalities can be prove with a similar strategy. We begin the proof assuming φ(x) x. Then, u φ = [u 0 , u -, φ(u + )]. First, let us notice that the classical invariance for geometric equations proves immediately that φ(u) is the solution [φ(u 0 ), φ(u -), φ(u + )]. In addition, thanks to Lemma 5 u φ u and u φ φ(u). As a result, since {φ(u) = 0} = {u = 0}, we conclude that {u = 0} = {u φ = 0}, what was expected.

Assume now that φ(x) x. The same arguments shows that φ(u) u φ u, which leads to the same conclusion.

To conclude the proof for a general φ, just introduce f (x) = min(x, φ(x)) and g(x) = max(x, φ(x)) and notice that since φ is nondecreasing, φ = f • g. So,

{u = 0} = {u f = 0} = {(u g ) f = 0} = {u f •g = 0} = {u φ = 0}.
Now, to be able to define a real geometrical evolution, we want a more general independence, which is contained in the following

Theorem 2. Let u = [u 0 , u -, u + ]. Then, {u = 0} = {v = 0} with v = [v 0 , v -, v + ] under the (only) assumptions that {u 0 = 0} = {v 0 = 0}, {u -= 0} = {v -= 0} and {u + = 0} = {v + = 0}.
Proof. This proof is based on the independence with no obstacles which is proved in [START_REF] Evans | Motion of level sets by mean curvature[END_REF], Theorem 5.1. We assume first that u -= v -and u + = v + . As in [START_REF] Evans | Motion of level sets by mean curvature[END_REF], we define

∀k ∈ Z \ {0}, E k = x ∈ R n u 0 (x) 1 k and a k = max R n \E k v 0 .
It is easy to see that

∀k > 0, a 1 a 2 • • • → 0 and a -1 a -2 • • • → 0. Let us introduce φ : [-N, N ] → [-N, N ] (with N u ± ∞ , piecewise affine, by φ(±N ) = ±N, φ 1 k = a k and φ(0) = 0.
Then, by definition, φ(u 0 ) v 0 , {φ = 0} = {0} and φ is nondecreasing continuous. Thanks to Proposition 5, the solution u φ := [φ(u 0 ) ∧ u + , u -, u + ] has the same zero level-set as u, and is bigger than v by comparison principle. Hence

{v 0} ⊂ {u φ 0} = {u 0}.
We prove the reverse inclusion switching u 0 and v 0 . Now, we assume that u 0 = v 0 , u -= v -and u + v + . Then, by Lemma 5, u v. We have just seen that there exists φ :

[-N, N ] → [-N, N ] nondecreasing continuous such that φ(u + ) v + and {φ = 0} = {0}. Let u φ = [u 0 , u -, φ(u + ) ∨ u -].
We saw that u φ has the same zero set as u. In addition, by comparison, u φ v. As a matter of fact,

{u = 0} = {v = 0} = {u φ = 0}.
If we drop the assumption u + v + , notice that [u 0 , u -, u + ] and [u 0 , u -, u + ∧ v + ] have the same zero level-set, so do [u 0 , u -, v + ] and [u 0 , u -, u

+ ∧ v + ]. Hence [u 0 , u -, u + ] and [u 0 , u -, v + ]
have the same zero level-set.

Of course, changing only u -leads to the same result.

To show the general case, juste note that that [u 0 , u -, u + ] and [u 0 , u -, v + ] have the same zero level-set, so do [u 0 , u -, v + ] and [u 0 , v -, v + ], and [u 0 , v -, v + ] and [v 0 , v -, v + ] , and the first and the last ones.

Obstacles create fattening

Although the fattening phenomenon may already occur without any obstacle (see [START_REF] Bellettini | An example of three dimensional fattening for linked space curves evolving by curvature[END_REF] for examples and [START_REF] Barles | Front propagation and phase field theory[END_REF][START_REF] Samuel Biton | Nonfattening condition for the generalized evolution by mean curvature and applications[END_REF] for a more general discussion), obstacles will easily generate fattening whereas the free evolution is smooth. Consider A a set of three points in R 2 spanning an equilateral triangle and S a circle enclosing it, centered on the triangle's center. Let

u -= -1, u + = dist(•, A), u 0 = dist(•, S) and F (Du, D 2 u) = -|Du| div Du |Du| .
It is possible to show (see next section) that the level sets {u(•, t) α} are minimizing hulls, hence are convex. So, the level set {u 0} contains the equilateral triangle. On the other hand, the level sets {u -δ} behave as if there were no obstacles at all (in Proposition 2, one can take u + ≡ 1 which has the same -δ-set as d(•, A)), so they disappear in finite time. As a result, u = 0 in the whole triangle, and {u = 0} develops non empty interior.

Comparison with a variational discrete scheme and longtime behavior

In this section, we study the behavior of the mean curvature flow only 2 with no forcing term and time independent obstacles, in large times. We assume moreover that Ω + = R n so that the obstacle is only from inside. For simplicity, we write Ω instead of Ω -. In particular, we show that for relevant initial conditions (E 0 is assumed to be a minimizing hull, see Definition 4), the flow has a limit. In order to get some monotonicity properties of the flow, we will link our approach to a variational discrete flow built in [START_REF] Spadaro | Mean-convex sets and minimal barriers[END_REF] and [START_REF] Almeida | Mean curvature flow with obstacles[END_REF] and inspired by [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF]. Starting from a set E and an obstacle Ω ⊂ E, these two papers introduce the following energy

E h (E) = min F ⊃Ω Per(F ) + 1 h F d E . ( 15 
)
In the previous energy, Per(E) denotes the perimeter of the finite perimeter set E (see [START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF] for an introduction to finite perimeter sets) and d E is the signed distance function to the set E (positive outside E, negative inside). One can see that it provides the same minimizers as [START_REF] Forcadel | Dislocation dynamics with a mean curvature term: short time existence and uniqueness[END_REF] (not the same minimum, though). Indeed, one can write

Per(F ) + 1 h F ∆E dist(x, ∂E)dx = Per(F ) + 1 h F \E dist(x, ∂E)dx + 1 h E\F dist(x, ∂E)
whereas

Per(F ) + 1 h F d E = Per(F ) + 1 h F \E dist(x, ∂E)dx - 1 h F ∩E dist(x, ∂E)dx.
Then, we can realize that the difference between the two energies is

1 h E\F dist(x, ∂E) + 1 h F ∩E dist(x, ∂E)dx = 1 h E dist(x, ∂E)dx
which does not depend on F . Therefore, the two energies have the same minimizers.

It has to be noticed that minimizers of these energies are not unique. To establish the comparison between these two approaches, we introduce

• u 0 : R n → [-1, 1]
a uniformly continuous function such that {u 0 0} = E 0 (we make more assumptions later)

• u + : R n → [-1, 1] a uniformly continuous function such that {u + 0} = Ω and u + u 0 . • u -= -1.
In what follows, we will be interested in the 0-level-set of the solution u to

u t = |Du| div Du |Du|
with obstacles u ± and initial condition u 0 . More precisely, we want to show that for suitable E 0 , the 0-level-set of the solution {u = 0} converges to a minimal surface with obstacles. We recall that thanks to Theorem 2, any choice of u 0 , u + satisfying the assumptions above will lead to the same evolution of the zero level-set of the solution.

The discrete flow for sets

Following [START_REF] Spadaro | Mean-convex sets and minimal barriers[END_REF], we define Definition 4. E is said to be a minimizing hull if |∂E| = 0 (this is not assumed in the definition in [START_REF] Spadaro | Mean-convex sets and minimal barriers[END_REF], but is assumed stating minimizing hull properties) and

Per(E) Per(F ), ∀F ⊃ E with F \ E compact.
Spadaro then shows the Proposition 6. Let E be a minimizing hull. Then

• For every h > 0, one can define a (unique) maximal (with respect to ⊂) minimizer in [START_REF] Forcadel | Dislocation dynamics with a mean curvature term: short time existence and uniqueness[END_REF], denoted in what follows by T h (E) (for every other minimizer F of (15), one has F ⊂ T h (E)),

• T h (E) ⊂ E and T h (E) is still a minimizing hull (the measure of the boundary remains zero thanks to the classical regularity of minimizers (see for example Appendix B in [START_REF] Spadaro | Mean-convex sets and minimal barriers[END_REF])

• If F is another minimizing hull and F ⊂ E, then T h (F ) ⊂ T h (E).
Then, he defines the following scheme

E h (t) := T t/h h (E 0 ). (16) 
Let us state a couple of properties of the flow which will allow us to pass to the limit in h.

Proposition 7. Let E be a minimizing hull and h > h. Then, T h (E) ⊂ T h(E) almost everywhere.

Proof. Indeed, Let F := T h (E) and

F := T h(E). Since E is a minimizing hull, F, F ⊂ E so d E 0 on F ∪ F .
Using the very definition of F and F , one can write

Per(F ∩ F ) + 1 h F ∩ F d E Per(F ) + 1 h F d E Per(F ∪ F ) + 1 h F ∪ F d E Per F + 1 h F d E .
Summing, we get

Per(F ∩ F ) + Per(F ∪ F ) + 1 h F ∩ F d E + 1 h F ∪ F d E Per(F ) + Per F + 1 h F d E + 1 h F d E .
Since Per(F ∩ F ) + Per(F ∪ F ) Per(F ) + Per F , one has

1 h F ∩ F d E + 1 h F ∪ F d E 1 h F d E + 1 h F d E , which means 1 h F \ F d E 1 h F \ F d E , hence F \ F d E 1 h - 1 h 0.
Then, since |∂E| = 0, |F \ F | = 0.

To pass to the limit in h, we will want to control the "motion speed" (see Proposition 10). To do so, we will need the two following propositions. First, we compare the constrained and the free motions.

Proposition 8. Let E be a minimizing hull containing Ω. Let E f be the free evolution of E (E f = T h (E) with Ω = ∅) and E c the regular evolution (E c is the maximal minimizer of (15)).

Then,

E f ∪ Ω ⊂ E c .
Proof. Using the definition of E f and E c , one can write

Per(E f ∩ E c ) + E f ∩E c d E h Per(E f ) + E f d E h (17) 
Per

(E f ∪ E c ) + E f ∪E c d E h Per(E c ) + E c d E h . (18) 
Summing and using Per(E ∩ F ) + Per(E ∪ F ) Per(E) + Per(F ), we get

E c ∩E f d E h + E c ∪E f d E h E f d E h + E c d E h ,
which is an equality. We conclude that ( 17) and ( 18) are equalities. In particular,

Per(E f ∪ E c ) + E f ∪E c d E h = Per(E c ) + E c d E h ,
which shows that E f ∪ E c is a minimizer of [START_REF] Forcadel | Dislocation dynamics with a mean curvature term: short time existence and uniqueness[END_REF]. Since E c is the maximal minimizer, one has

E f ⊂ E c .
One can also notice that by definition,

Ω ⊂ T h (E c ) so T h (E f ) ∪ Ω ⊂ T h (E c ).
Then, it is easy to see that

• A ball B R (x 0 ) is a minimizing hull, • For h R 2 4n , we have T h (B R (x 0 )) = B r (x 0 ) with r = R+ √ R 2 -4nh 2 
.

Let us now show that T h preserves inclusion.

Proposition 9.

Let Ω 1 ⊂ Ω 2 be two obstacles and E 1 ⊂ E 2 be two minimizing hulls containing respectively Ω 1 and Ω 2 . For i ∈ {1, 2}, we introduce

E i h := arg min E⊃Ω i Per(E) + 1 h E d E i ,
where we choose E i h to be maximal. Then,

E 1 h ⊂ E 2 h .
Proof. Use the definition to write

Per(E 1 h ∩ E 2 h ) + E 1 h ∩E 2 h d E 1 h Per(E 1 h ) + E 1 h d E 1 h , (19) 
Per(E 1 h ∪ E 2 h ) + E 1 h ∪E 2 h d E 2 h Per(E 2 h ) + E 2 h d E 2 h , (20) 
Summing and simplifying, we get

E 1 h ∩E 2 h d E 1 h + E 1 h ∪E 2 h d E 2 h E h 1 d E 1 h + E h 2 d E 2 h
which can be read

E 1 h \E 2 h d E 2 h E 1 h \E 2 h d E 1 h
or again

E 1 h \E 2 h d E 1 -d E 2 h 0.
Since E 1 ⊂ E 2 , one has d E2 d E1 which shows that the last inequality must in fact be an equality. As above, we conclude that showing as above that [START_REF] Mercier | Continuity results for tv-minimizers[END_REF] and [START_REF] Mercier | Mean curvature flow with obstacles: existence, uniqueness and regularity of solutions[END_REF] are equalities, which proves that

E 1 h ⊂ E 2 h .
Thanks to Propositions 8 and 9, one can conclude that the evolution E h of a minimizing hull E 0 contains the free evolution of every ball inside E 0 .

Passing to the limit

Now, we want to define a similar iterative scheme but for the whole u 0 . We assume that every level-set of u 0 is a minimizing hull (E 0 is assumed to be one and one can choose the other level sets of u as we like to get this property).

Remark 5. Starting from a minimizing hull E 0 , it is easy to construct such a u 0 . Let ũ0 be the signed distance function to E 0 truncated to [-1, 1]. Let us define u 0 by replacing the level sets of ũ0 Ẽs := {ũ 0 s} by E s the smallest (with respect to the inclusion) minimizer of Per among the sets containing Ẽs . By definition, such sets must be minimizing hulls and the inclusion of the level sets is preserved so we can define u 0 by setting {u 0 s} := E s .

We now have to show that such a u 0 is continuous. If it were not, then there would exist s < t and x ∈ E 0 s ∩ (E 0 t ) c (which reads formally x ∈ ∂E 0 s ∩ E 0 t ). Since ũ0 is continuous, the subset of such x must be compact in E s \ Ẽs and E s \ Ẽt . On the other hand the free boundaries ∂E σ \ Ẽσ for σ ∈ [-1, 1) have variational curvature zero (every small variation is admissible for the constraint E σ ⊃ Ẽσ ). We can then apply a cut and paste argument (see Th. 11 of [START_REF] Mercier | Continuity results for tv-minimizers[END_REF] for a detailed proof) to show that this is not possible, and u 0 is therefore continuous.

We define an evolution u

h : R n × [0, T [→ [-1, 1] by setting for all s ∈ [-1, 1], E s := {u 0 s} and {u h (t) s} = (E s ) h (t).
This is well defined (in particular, {u h (t) s} ⊂ {u h (t) s } if s s ) thanks to Proposition 9.

One can easily notice that Proposition 9 gives the following monotonicity. If u 0 ũ0 are two functions whose level sets are minimizing hulls, v ṽ two obstacle functions, then u h ũh . Now, we want to pass to the limit in h in the construction above. We will use the Proposition 10. If u 0 and u + are uniformly continuous (with modulus ω), then the family (u h ) is equicontinuous in space (with modulus ω) and time.

Proof. The arguments are standard and use the translation invariance of the scheme as well as the comparison principle.

• Space continuity. The space continuity is easy to deduce. By continuity and translation invariance, ũ0 (x) := u 0 (x + z) u 0 (x) + ω(|z|) and ũ+ = u + (• + z) u + + ω(|z|) so ũh u h + ω(|z|), which was expected • Time continuity. Let (x, t) ∈ R n × R + . Let r > 0. By uniform continuity in space, on B r (x), u h (•, t) u h (x, t)+ω(r), which means that A r := {u h (•, t) u h (x, t)+ω(r)} contains B r (x 0 ). Thanks to Proposition 8, the time evolution of A r contains the free evolution of B r (x 0 ), as long as the latter exists. That means u h (x, t + s) u h (x, t) + ω(r) for s T r , extinction time of B r (x 0 ). It is easy to see that this time is controlled, for a sufficiently small h, by r 2 √ 16h . We proved that for h small enough, u h is continuous in time with modulus ω(T r ) ω(r).

Corollary 1. Up to a subsequence, the collection (u h ) h has a limit which is uniformly continuous in space and time.

Let us denote it by u (we will see that this limit does not depend on the subsequence).

We are now able to show the main proposition of this section.

Proposition 11. The function u is the viscosity solution of (7). Proof. This result is already known with no obstacles (one can directly apply [START_REF] Chambolle | A nonlocal mean curvature flow and its semi-implicit time-discrete approximation[END_REF], Th. 4.6 or, with a setting closer to ours, [START_REF] Thouroude | Homogénéisation et analyse numérique d'équations elliptiques et paraboliques dégénérées[END_REF], Th 3.6.1. See also [START_REF] Eto | An area minimizing scheme for anisotropic mean curvature flow[END_REF].) and could easily be adapted. Nonetheless, since our framework is simpler than [START_REF] Chambolle | A nonlocal mean curvature flow and its semi-implicit time-discrete approximation[END_REF], we give the whole proof here. We have just seen that u is uniformly continuous in space and time. In addition, u(t = 0) = u 0 by construction and the initial conditions are satisfied. We only have to check the fourth point of the definition (we only deal with the supersolution thing, the subsolution one can be treated similarly but is simpler because there is no real lower obstacle here). Let (x, t) ∈ R n . Either u(x, t) = u + (x, t) and nothing has to be done, or u(x, t) < u + (x, t). We proceed by contradiction and assume that there exists a smooth function ϕ and (x, t) such that u -ϕ reaches a minimum at (x, t) and that

ϕ t -F * (Dϕ, D 2 ϕ) (x, t) < 0. (21) 
One can assume that the minimum is strict and that u -ϕ(x, t) = 0. First, we also assume that ∇ϕ(x, t) = 0.

Thanks to an analogous of Proposition 3, one can find, for h sufficiently small, (x h , t h ) → (x, t) such that u h -ϕ reaches a minimum at (x h , t h ), ∇ϕ(x h , t h ) = 0, u h (x h , t h ) < u + (x h , t h ) and ϕ t -F (Dϕ, D 2 ϕ) (x h , t h ) < 0. Since u h -ϕ is minimal at (x h , t h ), we have

E h := {x | u h (x, t h ) u h (x h , th )} ⊂ {x | ϕ(x, t h ) ϕ(x h , t h )} =: F.
Thanks to the minimum condition and continuity of u h and ϕ, we must have x h ∈ ∂E h ∩ ∂F . In addition, ∇ϕ(x h , t h ) = 0 so ∂F is a C 1 graph around x h . Recall finally that by construction, E h is some E n h := T n h (E 0 ) with n = [t h /h] and therefore, minimizes

Per(E) + 1 h E∆E n-1 h d E n-1 h .
Let ν F = ∇ϕ |∇ϕ| (x h , t h ) be the unit vector normal to F toward F c and consider

F ε := F -εν
with ε sufficiently small such that E h ∩ F ε is a compact perturbation of E h (from inside, see Figure 1). This is possible since the minimum is strict. The minimizing property of E h can be written as

Per(E n h ) + 1 h E n h ∆E n-1 h d E n-1 h Per(E h ∩ F ε ) + 1 h (E h ∩F ε )∆E n-1 h d E n-1 h .
Thus we have, recalling that the flow is monotone since we are dealing with minimizing hulls,

E n-1 h \E n h d E n-1 h - E n-1 h \(E h ∩F ε ) d E n-1 h h(Per(E h ∩ F ε ) -Per(E h )).
Now, let us notice that since F ε is a smooth set, we have

Per(E h ∩ F ε ) = Per(E h ; F ε ) + Per(F ε ; E h ) so we can rewrite - E h \F ε d E n-1 h h(Per(F ε ; E h ) -Per(E h ; (F ε ) c )). (22) 
Finally, we get

E h \F ε d E n-1 h h(Per(E h ; (F ε ) c ) -Per(F ε ; E h )).
Observing that if ν ε is the outer normal vector to F ε ,

Per(F ε ; E h ) = ∂F ε ∩E h 1 dH n-1 = ∂F ε ∩E h ∇ϕ |∇ϕ| • ν ε dH n-1
and if ν h is the outer normal to E h and ∂ * E h its reduced boundary, we have

Per(E h ; (F ε ) c ) = ∂ * E h ∩(F ε ) c 1 dH n-1 ∂ * E h ∩(F ε ) c ∇ϕ |∇ϕ| • ν h dH n-1 .
Plugging into [START_REF] Thouroude | Homogénéisation et analyse numérique d'équations elliptiques et paraboliques dégénérées[END_REF] and denoting by ν the outer normal vector to E h \ F ε (ν = ν h on ∂E h and ν = -ν ε on ∂F ε ) we have

E h \F ε d E n-1 h h ∂ * (E h \F ε ) ∇ϕ |∇ϕ| • ν dH n-1 ,
which, applying Green's formula, gives

E h \F ε d E n-1 h E h \F ε h div ∇ϕ |∇ϕ| .
Letting ε go to zero, we get, at (x h , t h ),

d E n-1 h h div ∇ϕ |∇ϕ| . (23) 
Now, let y h ∈ ∂E n-1 h which realizes the distance between x h and (E n-1 h ) c . By construction, we have

u h (y h , t h -h) = u h (x h , t h ) So, since (x h , t h ) realizes the minimum of u h -ϕ, we have ϕ(y h , t h -h) ϕ(x h , t h ).
Then, let us write

ϕ(y h , t h -h) = ϕ(x h , t h ) -hϕ t (x h , t h ) + ∇ϕ(x h , t h ) • (y h -x h ) + o(h + x h -y h ), we get -hϕ t (x h , t h ) + ∇ϕ(x h , t h ) • (y h -x h ) + o(h + x h -y h ) 0.
Since the level sets of u h are minimizing hulls, u h is non decreasing, which implies ϕ t 0. On the other hand, ∇ϕ(x h , t h ) must point outside E h so ∇ϕ(x h , t h ) • (y h -x h ) 0. This implies

|∇ϕ(x h , t h )| d E n-1 h hϕ t .
Replacing that into (23), we obtain, at (x h , t h ),

ϕ t |∇ϕ| div ∇ϕ |∇ϕ| .
Since ϕ is smooth and ∇ϕ(x, t) = 0; we can pass to the limit in h and get a contradiction.

Let us now deal with the case ∇ϕ(x, t) = 0 and consider the sequence (x h , t h ) constructed as before. Then, either one can find a subsequence (x h k , t h k ) → (x, t) such that ∇ϕ(x h k , t h k ) = 0 or we have for every h sufficiently small, ∇ϕ(x h , t h ) = 0. In the first alternative, note that what we have just done still applies with minor changes. Indeed, we just have to get the contradiction taking the limsup instead of the full limit. The definition of F * ensures we keep the inequality. On the other hand, if ∇ϕ(x h , t h ) = 0. for every small h, then we add a term |x -x| α (we denote by φ the sum), with α > 2, to ϕ. The first and second derivative of ϕ do not change. If one can find α such that u h -φ has a maximum at some (x h α , t h α ) with ∇ φ(x hn α , t hn α ) = 0 for a subsequence h n → 0, then we get the same contradiction. If not, that means that

∀α > 2, ∇ϕ(x h α , t h α ) = αx h α |x h α -x 0 | α-2
for all h sufficiently small, which imposes that ϕ, which is smooth, must have a non zero derivative of order k α -1 at (x, t). This is not possible.

The time-limit is locally minimal

We saw that since u 0 has minimizing hull level sets, so does u h (•, t) and u is therefore nondecreasing in time (this is true for u h ). As u is uniformly equicontinuous on each compact set, letting t go to +∞ we have a locally uniform convergence to a limit u ∞ which is a viscosity solution of

|Du| div Du |Du| = 0
with obstacles u + , u -, thanks to classical theory of viscosity solutions.

Thanks to [START_REF] Ilmanen | Equilibrium solutions to generalized motion by mean curvature[END_REF], Theorem 3.10, one has the following result.

Proposition 12. Let us assume that H n-1 ({u = 0}) < ∞. Then, there exists a relatively open set U ⊂ u -1 (s) with H n-8-α (u -1 (0) \ U ) = 0 for all α > 0, such that u -1 (0) \ Ω is an analytic minimal surface in a neighborhood of each point of U . Moreover, it is stable and stationary in the varifold sense (classically on U ).

Note in particular that non empty interior of u -1 (s) can occur for only countable many s.

Comparison with mean convex hull

In [START_REF] Spadaro | Mean-convex sets and minimal barriers[END_REF], E. Spadaro is interested in the long time behavior of the discrete scheme ( 16) but with a step h which remains fixed. In this short subsection, we prove that if {u = 0} does not fatten, then our approach and Spadaro's build the same surface. The dimension of the ambient space n is assumed to be less or equal to 7. Here are the theorems he gets:

Theorem 3 (Spadaro, [START_REF] Spadaro | Mean-convex sets and minimal barriers[END_REF]). Let Ω ⊂ R n , n 7, be a C 1,1 closed set and E 0 ⊃ Ω a minimizing hull. Then, for a fixed h, the iterative scheme (16) converges in time to some limit E h ∞ . In addition, the E h ∞ converge monotonically to some E ∞ which satisfies

• E ∞ is C 1,1 ,
• E ∞ is a minimizing hull,

• ∂E ∞ \ Ω is a (smooth) minimal surface.

In addition, Spadaro uses this construction starting from E 0 with obstacles Ω ε := {x ∈ R n | d(x, Ω) ε} to build a limit E ε ∞ .

Theorem 4 (Spadaro). The set

Ω mc := ε>0 E ε ∞
is the mean convex hull of Ω. That means

Ω mc = Ω⊂Θ∈A Θ
where A is the family of Θ ∈ R n such that for every minimal surface Σ such that ∂Σ ⊂ Θ, we have Σ ⊂ Θ.

Let us show that Ω mc agrees with our limit {u ∞ = 0}. Since Spadaro's work is in low dimension, the open set U in Proposition 12 is the whole u -1 (0). Let us assume that u -1 ∞ (0) does not fatten. Hence, ∂{u ∞ 0} = {u ∞ = 0} and {u ∞ = 0} \ Ω is a minimal hypersurface with boundary in Ω.

Using the very definition of the global barrier, we deduce that {u 0} ⊂ Ω mc . Now, recalling that Ω mc is a minimizing hull, it is in particular mean-convex, so if v is the truncated signed distance function to Ω mc , it is a stationary subsolution of [START_REF] Barles | Front propagation and phase field theory[END_REF]. Let us prove that it is also a supersolution. We know that ∂Ω mc is a minimal surface out of the obstacle, so v satisfies -|∇v| div ∇v |∇v| = 0 in the classical sense whenever v < u + . That is exactly saying that v is a supersolution of (5). Then, the comparison principle (Proposition 1) implies, since v u 0 , that v u and then {u 0} ⊃ Ω mc .

Finally, {u 0} = Ω mc and both approaches coincide.

  8.3) to ũ(x, t) = u(x, t) -α 2 |x| 2 and ṽ(y, t) = u(y, t) + α 2 |y| 2 where p = D x φ = x -y |x -y| e Lt ω n (e Lt |x -y|) = -D y φ = 0, Z = D 2 x φ = e Lt |x -y| ω n (e Lt |x -y|)I + (x -y) ⊗ (x -y) |x -y| 3 e Lt ω n (e Lt |x -y|) + (x -y) ⊗ (x -y) |x -y| 2 e 2Lt ω n (e Lt |x -y|).

Remark 4 .2

 4 Note that Spadaro introduces the energy Ẽh (E) := min Ω⊂F Per(F ) + 1 h F ∆E dist(x, ∂E)dx . That means ut = |Du| div Du |Du| .

Figure 1 :

 1 Figure 1: Proof of Proposition 11

  leads to γ (T -t) 2 + Le Lt |x -y|ω n (e Lt |x -y|) -k(x, t)|p + αx| + k(y, t)|p -αy| + F * (p + αx, X + αI) -F * (p -αy, X -αI) 0. (13) Notice that Le Lt |x -y|ω n (e Lt |x -y|) -k(x, t)|p| + k(y, t)|p| Le Lt |x -y|ω n (e Lt |x -y|) -L|x -y|e Lt ω n (e Lt |x -y|) 0. (14)

	Then, (13) becomes
	γ (T -t) 2 +(|p| -|p + αx|) k(x, t)-(|p| -|p -αy|) k(y, t)+F

* (p+αx, X+αI)-F * (p-αy, X-αI) 0.

This quantity is useful to make the following results apply for the mean curvature motion, whereF (p, X) = -Tr I -p ⊗ p

|p| 2 X .
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With forcing term

1. We assume at this point only that u -, u + and u 0 are K-Lipschitz in space. Then, thanks to Remark 3, there exists a K-Lipschitz (in space) solution ψ of the non forcing term equation.

As a consequence, w -is a continuous subsolution of (7) (with forcing term) satisfying w -(x, 0) = u 0 (x). It is a barrier as in 3.2.1. We build w + in a similar way and apply Perron's method to see that W is a solution.

2. Here, u + , u -and u 0 are only ω-uniformly continuous. For all K > 0, let u 0 K = min

These three new function are K-Lipschitz in space and converge uniformly (in space) to u 0 , u + and u - when K → ∞. Moreover, as u 0 , u + , u -are ω-uniformly continuous, so are they. Thanks to the previous point, for every K, there exists a solution u K of ( 7) with obstacles u + K , u - K and with initial data u 0 K , which is (thanks to the following proposition 4, which is admitted for a little time) uniformly continuous with same moduli on [0, T ] for every T . One can define, thanks to Ascoli's theorem

The function u is continuous. We have to check that it is the solution of the motion with obstacles u ± .

It is clear that u - u u + . Let ϕ be a smooth function and (x, t) a maximum point of u -ϕ such that u(x, t) -u -(x, t) =: η > 0. One can assume that the maximum is strict. We then choose ε such that

It is positive (since the maximum is strict, possibly reducing ε). We choose n 0 such that

Then, for every n n 0 , u Kn -ϕ has a maximum (x n , t n ) on B ε reached out of u - Kn . It is easy to show that (x n , t n ) → (x, t). Since u Kn is a viscosity subsolution, one can write, at

By smoothness of ϕ and semicontinuity of F * , we get the same inequality at (x, t).

We prove that u is a supersolution using the same arguments.

Let us conclude this section by an estimation of the solution's regularity, which is essentially [START_REF] Forcadel | Dislocation dynamics with a mean curvature term: short time existence and uniqueness[END_REF], Lemma 2.15 (except that the solution here is only uniformly continuous). Proposition 4. Let u be the unique solution of [START_REF] Samuel Biton | Nonfattening condition for the generalized evolution by mean curvature and applications[END_REF]. Then u is uniformly continuous in space. moreover, one as ∀(x, y, t), |u(x, t) -u(y, t)| ω(e Lt |x -y|).