
HAL Id: hal-01068829
https://hal.science/hal-01068829v1

Submitted on 26 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-core software architecture for the scalable HEVC
decoder

Wassim Hamidouche, Mickaël Raulet, Olivier Deforges

To cite this version:
Wassim Hamidouche, Mickaël Raulet, Olivier Deforges. Multi-core software architecture for the scal-
able HEVC decoder. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International
Conference on, May 2014, Florence, Italy. pp.7545-7549. �hal-01068829�

https://hal.science/hal-01068829v1
https://hal.archives-ouvertes.fr

MULTI-CORE SOFTWARE ARCHITECTURE FOR THE SCALABLE HEVC DECODER

Wassim Hamidouche, Mickael Raulet and Olivier Déforges

IETR-INSA, UEB, UMR 6164
Rennes, 35708, FRANCE

ABSTRACT

The scalable high efficiency video coding (SHVC) standard
aims to provide features of temporal, spatial and quality scal-
ability. In this paper we investigate a pipeline and parallel
software architecture for the SHVC decoder. The proposed
architecture is based on the OpenHEVC software which im-
plements the high efficiency video coding (HEVC) decoder.
The architecture of the SHVC decoder enables two levels of
parallelism. The first level decodes the base layer and the en-
hancement layers in parallel. The second level of parallelism
performs the decoding of both the base layer and enhance-
ment layers in parallel through the HEVC high level parallel
processing solutions, including tile and wavefront. Up to the
best of our knowledge, it is the first real time and parallel soft-
ware implementation of the SHVC decoder. On an Intel Xeon
processor running at 3.2 GHz, the SHVC decoder reaches the
decoding of 1600p enhancement layer at 40 fps for x1.5 spa-
tial scalability with using six concurent threads.

Index Terms— HEVC, Scalable HEVC, High level par-
allel processing and wavefront parallel processing.

1. INTRODUCTION

The high efficiency video coding (HEVC) standard was fi-
nalized in January 2013 by the Joint Collaborative Team on
Video Coding (JCT-VC) as joint effort between ITU-T and
ISO/IEC [1]. HEVC standard can reach the same subjective
video quality as its predecessor H.264/AVC at about a half bi-
trate [2]. This gain is obtained thanks to new tools adopted in
the HEVC standard, such as quadtree-based block partition-
ing, large transform and prediction blocks, accurate intra/inter
predictions and the in-loop sample adaptive offset (SAO) fil-
ter. Moreover, HEVC standard was designed with a particular
attention to complexity, where several steps can be easily pe-
formed in parallel [3, 4]. These tools allow to leverage multi-
core processors and achieve a real time encoding/decoding of
high resolution videos (HD, 4K2K and 8K4K). The JCT-VC
is currently developing the scalable extension of the HEVC
standard (SHVC). The objective behind SHVC is to provide
features of temporal, spatial and quality (SNR) scalability
with a simple and efficient coding architecture [5]. Since the
temporal scalability is enabled in HEVC with a hierarchical

temporal prediction structure, SHVC concentrates on spatial
and SNR scalability. Several scalable solutions [6, 7, 8, 9]
were proposed as a response to the SHVC call for proposal
[5]. The approved approach is based on multi-loop decoding
structure (i.e. all intermediate layers need to be decoded) and
uses the same technologies of HEVC with an inter-layer pre-
diction to improve the coding efficiency. This solution allows
a gain of 15%-30% in terms of rate-distortion compared to a
simulcast coding solution. The HEVC standard defines three
main concepts, including tile, slice and wavefront, that enable
a high level parallel processing of both encoding and decod-
ing [3]. Tile and slice concepts break at their boundaries the
dependencies of both intra predictions and the probabilities
of the context-adaptive binary arithmetic coding (CABAC).
This allows to encode/decode slices or tiles of one frame on
separate cores. However, the intra prediction limitation and
the initialization of the CABAC context decrease the coding
performance in terms of rate distortion, especially for large
number of tiles/slices per frame. Moreover, the in-loop filters
cannot be performed in parallel at the tile/slice edges with-
out extra control mecanisme. The wavefront parallel process-
ing (WPP) solution was proposed to the HEVC standard in
[10]. The WPP concept enables the decoding of several cod-
ing tree block (CTB) rows in parallel. This is possible by
the initialization of the CABAC context at the start of each
CTB row. The overhead caused by this initialization is lim-
ited since the CABAC context at each CTB row is initialized
by the CABAC context state at the second CTB of the previ-
ous CTB row. Therefore, the decoding of each CTU row can
be carried out on separate threads with a minimum delay of
two CTBs between adjacent CTB rows. Authors in [11] pro-
posed a real time and parallel implementation of the SHVC
decoder. This decoder is CTB groups based parallelism and
performs a real time decoding of 1080p50 enhancement layer
(EL) for x1.5 spatial scalability on an Intel i7 processor with
using 8 concurent threads.
In this paper we propose a pipeline and parallel architecture
for the SHVC decoder [12]. This architecture enables two
levels of parallelism where the base layer (BL) and the EL
frames are decoded in parallel thanks to the pipeline architec-
ture. The parallel architecture, as a a second level of paral-
lelism, performs the decoding of each frame in parallel with
WPP solution. The SHVC decoder is based on the Open-

HEVC software [13] which implements a conforming HEVC
decoder. On an Intel Xeon processor running at 3.2 GHz,
the SHVC decoder reaches the decoding of 1600p EL at 40
frames per second (fps) for x1.5 spatial scalability with using
6 concurent threads.
This paper is organized as follows. Section 2 describes the
architecture of the OpenHEVC decoder enabling wavefront
parallel processing solution. The pipeline and parallel archi-
tecture of the SHVC decoder is investigated in Section 3. The
performance of the SHVC decoder is assessed and discussed
in Section 4, and finally Section 5 concludes this paper.

2. PARALLEL SINGLE LAYER HEVC DECODER

2.1. WPP solution under the OpenHEVC decoder

The architecture of the OpenHEVC software is quite simple
and is based on a coding tree unit (CTU) decoding. The pro-
posed WPP implementation performs all decoding steps at the
level of the CTU in a single pass. Figure 1 shows an overview
of the OpenHEVC architecture. The hls decode row function
decodes all CTUs of one row in the slice. It browses in raster
scan the CTUs within the row and calls the recursive func-
tion hls coding tree to decode each CTU. There are specific
functions that handle the prediction and the transform of the
prediction and the transform units, namely hls prediction unit
and hls transform unit, respectively. Once all coding units
(CU) within a CTU are decoded, the deblocking filter (DF)
and then the SAO filter are performed on the decoded CTU.
However, when performing the DF of the current CTB, the
right and the down CTB neighborhoods are not available (ie.
not yet decoded). Therefore, the right and down edges of the
current CTB are filtered when its right and down CTBs are
being filtered, respectively. In this solution, the DF and the
SAO filters are delayed with one CTU and one CTU row for
only the right and the down edges of a CTB, respectively.
The WPP extension in the OpenHEVC architecture is straight
forward. This is possible by running the hls decode row func-
tion on separate threads to decode several adjacent CTU rows
in parallel. The delay in terms of CTU, noted d, required
by the wavefront solution between two adjacent CTU rows is
managed by an integer type array shared by all threads. The
ith value of the array is used to count the number of decoded
CTUs within the ith CTU row. Thus, the hls decode row
function increments the related array value for each decoded
CTU and decodes a new CTU only if the d next CTUs of the
previous CTU row are decoded.

2.2. Analytical performance of the WPP solution

The analytical speedup of the WPP solution represents the
upper bound of its experimental performance. It also gives
an idea on the parameters that control the performance of the
wavefront solution. Let us consider x the number of CTB
columns, y the number of CTB rows and d the delay in terms

hls_coding_tree

hls_sao_filter_ctb

hls_deblocking_filter_ctb

hls_transform_tree

hls_prediction_unit

hls_transform_unit

hls_coding_unit

Yes

No

Is SAO filter

enabled ?

No

Yes

No

No

Is a CTU ?

is a TTU ?

Row decoded

Decode a row

Is the CTU

decoded ?
Yes

hls_decode_row

Yes

Yes

No

More CTU

in the row ?
Yes

Is deblocking

filter enabled ?

Fig. 1. Blocks diagram of the OpenHEVC decoder

in CTB between two adjacent CTB rows required by the
wavefront solution. The effective number of threads n used
in the wavefront solution is given as follows:

n = min
(
nb cpu threads,

⌊x
d

⌋)
(1)

where d ∈ N+ and nb cpu threads is the number of threads
selected to decode the video sequence.
The analytical speedup γ is derived as follows:

γ =

xy

xy
n +d(n−1) , if y mod n = 0

xy

xd y
ne+d((x mod n)−1)

, if y mod n 6= 0
(2)

where x, y, n ∈ N+.
We can notice from Equation 2 that the analytical speedup
depends on three main parameters: the video resolution (x
and y), the effective number of threads (n) and the CTB delay
between two adjacent CTB rows (d). In addition, a large divi-
sion remainder between the number of CTB rows and the ef-
fective number of threads (y mod n) also decreases the per-
formance of the wavefront solution. The division remainder
corresponds to the inactive threads waiting for the decoding
of the last CTB rows of the frame.

3. PIPELINE AND PARALLEL SHVC DECODER

3.1. Overview of the SHVC standard

In the case of spatial scalability with two layers, the SHVC
encoder consists of two encoders, one for each layer. The
BL HEVC encoder encodes the downsampled version of the
original video and feeds the second encoder with the decoded
picture and the corresponding motion vectors (MVs). The EL

Upsample BL picture & scale its MVs

m threadsCTB row 1 CTB row 2 CTB row m

Decode EL frame with WPP solution

m threads
CTB row 1 CTB row 2 CTB row m

EL picture

Decode BL frame with WPP solution

n threads
CTB row 1 CTB row 2 CTB row n

BL picture

Upsampled BL picture

HEVC BL decoder

HEVC EL decoder

BL thread EL threadMain thread

Parse a frame

Is base layer ? WaitWait
NoYes

Wait

SHVC bitstream

Signal

decoded BL

Decode

BL frame

Decode

 EL frame

Fig. 2. Pipeline and parallel architecture of the SHVC de-
coder for spatial scalability with two layers

SHVC encoder encodes the original video with using the up-
sampled BL picture and its upscaled MVs for inter-layer pre-
diction. Concerning the SNR scalability, the encoding pro-
cess remains unchanged except that the BL picture and its
MVs are not upsampled and upscaled, respectively, at the EL
encoder. The SHVC standard also supports a BL coded with
H.264/AVC encoder. In this case, only the decoded BL, with-
out its MVs, is provided to the SHVC EL encoder.

3.2. Real time and pipeline SHVC decoder

In this section we introduce a pipeline and parallel architec-
ture for the SHVC decoder. The first step consists in extend-
ing the OpenHEVC software to support the new operations
introduced in the SHVC standard, namely upsampling of the
decoded BL frame, scaling its MVs and managing the upsam-
pled BL picture as an additional reference picture in the EL
decoder. Thus, the SHVC decoder consists of l instances of
the OpenHEVC decoder, one HEVC decoder for each layer,
with l = 1, ..., L the number of layers.
The SHVC decoder enables two levels of parallelism. The
first level performs the decoding of the BL and the EL frames
simultaneously on separate threads. For each decoder, the
second level of parallelism carries out the decoding of both
the BL and the EL frames in parallel through the HEVC high
level parallel processing solutions. Moreover, the upsampling
of the BL and the upscaling its MVs are also carried out in
parallel. In fact, when parallel decoding of the EL frame is en-
abled, the CTB rows of the BL picture and the corresponding

System Software
Processor Intel Xeon Compiler GCC-4.6

E5-1650 OS Ubuntu 12.04
ISA X86-64 Kernel 3.5.0-34
Clock frequency 3.2 GHz OpenHEVC cff4b48a94
Level 3 cache 12 MB release (based on HM11.0)
Cores 6

Table 1. Configuration of the experiments

MVs are upsampled and upscaled in parallel. Figure 2 sum-
marizes the proposed pipeline and parallel architecture of the
SHVC decoder for spatial scalability with two layers (l = 2).
As illustrated in Figure 2, two instances of OpenHEVC de-
coder are created and run on separate threads. These two de-
coders correspond to the HEVC BL decoder and SHVC EL
decoder, respectively. The parser running on the main thread
parses the SHVC bitstream and feeds the two decoders with
the corresponding frame (access units). For the first decoded
frame, the EL decoder waits until the BL frame has been de-
coded and then the EL frame i is simultaneously decoded with
the next BL frame (frame i+1). To limit the BL buffer to one
frame, the BL decoder might not decode the frame i+2 since
the EL frame i has not yet been decoded.

4. RESULTS AND DISCUSSIONS

4.1. Experimental configuration

We run the SHVC decoder on a computer fitted with 6 cores
Intel Xeon processor. Table 1 summarizes the system and
software configurations used to carry out the experiments.
Concerning the video coding configuration, the common test
conditions defined in the HEVC standard [14] were consid-
ered. In order to show the performance for larger resolution
video, we added to the set of conformance video sequences
two 3840×2160 video sequences from the STV High Defini-
tion Multi Format Test Set. All the selected video sequences
were encoded with SHVC reference software [15] in two lay-
ers (l = 2) and two scalability configurations were consid-
ered: x2 and x1.5. The SHVC video sequences were coded
in low delay coding configuration with enabling the wave-
front feature where the delay d = 2. The quantization pa-
rameter (QP) of the BL was set to 27 and 32, while the QP
of the EL is equal to the BL QP minus 2. The performance
of the proposed pipeline and parallel SHVC decoder is com-
pared to the sequential SHVC decoder: the decoding of the
BL and the EL frames are carried out in sequential order.
The number of threads used to decode the BL and the EL
are noted n and m, respectively. In addition to the single
thread configuration (m = n = 1), the number of threads in
the sequential SHVC decoding configuration is set as follows
n ∈ {2, 3, 4, 5, 6} with m = n. The corresponding decoding
configuration in the pipeline SHVC architecture is the follow-

1 2 3 4 5 6
1

2

3

4

5

6

Number of threads

S
p

e
e

d
u

p

Exp. 1920×1080

Exp. 2560×1600

Exp. 3840×2160

Upper bound 1920×1080

Upper bound 2560×1600

Upper bound 3840×2160

Fig. 3. Speedup performance of the WPP solution (QP=32)

ing (n,m) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 4)}.

4.2. Results

Figure 3 illustrates the speedup of the WPP implementation
under the single layer OpenHEVC decoder for different video
resolutions. The experimental speedup is compared to the up-
per bound performance of the wavefront solution computed
with Equation 2. We can notice that the experimental speedup
is close to the optimal speedup, especially when the number
of threads is below 5. With using 6 threads, the performance
of the proposed implementation decreases and reaches an ac-
celerating factor of 4.5 for 3840x2160 resolution videos, in-
stead of the upper bound value of 5.5. This is because we use
the maximum number of CPU cores including the one used
by the operating system. Figure 4 shows the performance of
the pipeline SHVC architecture in terms of decoding time per
frame for the three main decoding steps: BL decoding, up-
sampling the BL picture and the EL decoding. We can notice
that the decoding time of the three steps remain constant with
using one thread and two threads (two decoders in parallel and
n = m = 1). In these two decoding configurations each decod-
ing step is performed on a single thread. However, the whole
decoding time, in the later configuration, decreases by the BL
decoding time since the decoding of the BL and the EL are
performed in parallel in the pipeline architecture. For num-
ber of threads between 3 and 5, we only increases the number
of threads for the EL, since the decoding time of the EL is
higher than the decoding time of the BL and the WPP solu-
tion is more efficient with large video resolutions. Figures 5
compares the performance of sequential and pipeline SHVC
decoders in terms of decoding frame rate for different video
resolutions. We can notice that the pipeline architecture is
more efficient for videos of low resolutions (EL 1080p). In
fact, the pipeline parallelism enables adjusting the number of
threads for each layer by providing more threads to the EL for
which the WPP solution is more efficient. However, for high
resolution videos (EL 1600p and 2160p) the performance of
the pipeline and sequential architecture is similar. The perfor-
mance of the pipeline architecture decreases when the num-

Fig. 4. Decoding time performance of the SHVC decoder

ber threads is equal to 2 (1,1). Indeed, the decoding time of
the EL including the upsampling is much higher than the de-
coding time of the BL. Therefore, running in parallel the BL
and the EL decoders both on a single thread is less efficient
than the WPP with 2 threads for each step in sequence. The
pipeline solution could provide better performance for SHVC
bitstreams with more than one EL since the decoding time of
the ELs is similar.

5. CONCLUSION

In this paper we proposed a multiple threads architecture for
the SHVC decoder. This decoder enables two levels of par-
allelism where the decoding of the SHVC layers is pipelined,
and each layer is decoded in parallel based on the HEVC high
level parallel processing solutions. The first end-to-end video
demonstration using the proposed real time SHVC decoder
within the GPAC player was presented in the 106th MPEG
meeting [16].

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

Number of threads

D
e

c
o

d
in

g
 f

ra
m

e
 r

a
te

 (
fp

s
)

 Sequential EL 1080

Sequential EL 1600p

Sequential EL 2160p

Pipeline EL 1080p

Pipeline EL 1600p

Pipeline EL 2160p

Fig. 5. Decoding frame rate performance of the SHVC de-
coder (QP=32)

6. REFERENCES

[1] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand,
“Overview of the high efficiency video coding stan-
dard,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 22, pp. 1648–1667, December
2012.

[2] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and
T. Wiegand, “Comparaison of the Coding Efficiency
of Video Coding standards including High Efficiency
Video coding (HEVC),” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 22, pp. 1969–
1684, December 2012.

[3] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare,
F. Henry, S. Pateux, and T. Schier, “Parallel Scalability
and Efficiency of HEVC Parallelization Approaches,”
IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, pp. 1827–1838, December 2012.

[4] J. F. Bossen, B. Bross, K. Suhring, and D. Flynn, “Hevc
complexity and implemnation analysis,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol.
22, pp. 1685–1696, December 2012.

[5] ISO/IEC-JTC1/SC29/WG11 and ITU-T-SG16, “Joint
Call for Proposals on Scalable Video Coding Extensions
of High Efficiency Video Coding (HEVC),” in ISO/IEC
JTC 1/SC 29/WG11 (MPEG) Doc. N12957 or ITU-T SG
16 Doc. VCEG-AS90. Stockholm, Sweden, July 2012.

[6] Z. Shi, X. Sun, and F. Wu, “Spatially Scalable Video
Coding for HEVC,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 12, pp. 1813–
1826, December 2012.

[7] P. Helle, H. Lakshman, M. Siekmann, J. Stegemann,
T. Hinz, H. Schwarz, D. Marpe, and T. Wiegand, “A
Scalable Video Coding Extension of HEVC,” in IEEE
Conference on Data Compression, March 2013, pp.
201–210.

[8] J. Chen, K. Rapaka, X. Li, V. Seregin, L. Guo, M. Kar-
czewicz, G. V. Auwera, J. Sole, X. Wang, C. Tu,
Y. Chen, and R. Joshi, “Scalable Video Coding Exten-
sion for HEVC,” in IEEE Conference on Data Compres-
sion, March 2013, pp. 191–200.

[9] Z. Zhao, J. Si, J. Ostermann, and W. Li, “Inter-layer In-
tra Mode Coding for the Scalable Extension of HEVC,”
in IEEE International Symposium on Circuits and Sys-
tems, May 2013, pp. 1636–1639.

[10] G. Clare, F. Henry, and S. Pateux, “Wavefront parel-
lel processing for HEVC Encoding and Decoding,” in
document JCTVC-F274. Torino, Italy, Jully 2011.

[11] S. Gudumasu, Y. He, Y. Ye, and Y. He, “Real time
SHVC software decoding with multi-threaded paral-
lel processing,” in document JCTVC-O0165. Geneva,
Switzerland, October 2013.

[12] W. Hamidouche, M. Raulet, and O. Deforges, “Pipeline
and parallel architecture for the SHVC decoder,” in
document JCTVC-O0115. Geneva, Switzerland, Octo-
ber 2013.

[13] “Open source HEVC decoder (OpenHEVC),” in
https:://github.com/OpenHEVC.

[14] F. Bossen, “Scalable high efficiency video coding test
model 3 (SHM 3),” in document JCTVC-H1100. 8th
Meeting: San Jose, CA, USA, February 2012.

[15] “SHVC Reference Software (SHM):
https://hevc.hhi.fraunhofer.de/svn/svn SHVCSoftware/,”
.

[16] W. Hamidouche, J. Le Feuvre, and M. Raulet, “A scal-
able HEVC demonstration within GPAC player,” in doc-
ument MPEG-m31397. Geneva, Switzerland, October
2013.

[17] “H2B2VS project: http://h2b2vs.epfl.ch,” .

