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Abstract

This paper is devoted to present and study a specific continuous-time piecewise-
deterministic Markov process for describing the temporal evolution of exposure to a
given food contaminant. The quantity X of food contaminant present in the body
evolves through its accumulation after repeated dietary intakes on the one hand and
the pharmacokinetics behavior of the chemical on the other hand. In the dynamic mod-
eling considered here, the accumulation phenomenon is modeled by a simple marked
point process with positive i.i.d. marks and elimination in between intakes occurs at
a random linear rate θX, randomness of the coefficient θ accounting for the variability
of the elimination process due to metabolic factors. Via embedded chain analysis,
ergodic properties of this extension of the standard compound Poisson dam with (de-
terministic) linear release rate are investigated, the latter being of crucial importance
for describing the long-term behavior of the exposure process (Xt)t≥0 and assessing
values of quantities such as the proportion of time the body burden in contaminant
is over a certain threshold. We also highlight the fact that the exposure process is
generally not directly observable in practice and establish a validity framework for
simulation-based statistical methods by coupling analysis. Eventually, applications to
methyl mercury contamination data are considered.
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1 Introduction

Certain foods may contain varying amounts of chemicals such as methyl mercury (present
in seafood), dioxins (in poultry, meat) or mycotoxins (in cereals, dried fruits, etc.), which
may cause major health problems when accumulating inside the body in excessive doses.
Food safety is now a crucial stake as regards public health in many countries (as an exam-
ple, it is a thematic top priority of the 7th European Research Framework program, see
http://ec.europa.eu/research/fp7/). This topic naturally interfaces with various disci-
plines, such as biology, nutritional medicine, toxicology and of course applied mathematics
with the aim to develop rigorous methods for quantitative risk assessment. A scientific
literature devoted to probabilistic and statistical methods for the study of dietary expo-
sure to food contaminants is progressively carving out a place in applied probability and
statistics journals (see [58], [24], [30] or [9] for instance).
Static viewpoints for the probabilistic modeling of the quantity X of a given food contam-
inant ingested on a short period have been considered in recent works, mainly focusing on
the tail behavior of X and allowing for computation of the probability that X exceeds a
maximum tolerable dose (see [8], [57]). However, as highlighted in [62], such approaches
for food risk analysis do not take into account the accumulating and eliminating processes
occurring in the body, which naturally requires to introduce time as a crucial description
parameter of a comprehensive model (see also the discussion in [27]).

This paper aims at proposing a dynamic modeling of exposure to a certain food contam-
inant, incorporating important features of the phenomenon, in particular in a way that the
model may account for the contaminant pharmacokinetics in man following intakes. The
case of methyl mercury food contamination shall serve as a running illustration of the con-
cepts and methods studied in this article: mathematical modeling of the pharmacokinetics
behavior in man of methyl mercury (essentially present in seafoods) has received increasing
attention in the toxicology literature (see [45], [56] [55], [1] or [26]) and dose-response rela-
tionships have been extensively investigated for this contaminant, establishing clearly its
negative impact on human health (refer to [15], [18]). In our modeling the amount of con-
taminant present in the body evolves through its accumulation after repeated intakes (food
consumption) and according to the pharmacokinetics governing its elimination/excretion,
so that its temporal evolution is described by a piecewise-deterministic Markov process
(PDM process in abbreviated form): the accumulation process is modeled by a marked
point process in a standard fashion, while the elimination phenomenon is described by a
differential equation with random coefficients, randomness accounting for the variability
of the rate at which the total contaminant body burden decreases in between intakes due
to metabolic factors. Such a process slightly extends storage models with general release
rules widely used in operations research and engineering for dealing with problems such
as water storage in dams, in that one allows here the (content-dependent) release rate to
be random, as strongly advocated by biological modeling, and inter-intake times are not
required to be exponentially distributed (the choice of a memoryless distribution being
totally inadequate in the dietary context). Having practical use of the proposed exposure
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model for public health guidance in view (see [62]), we also discuss its relation to available
data in the present paper: as sample paths of the exposure process cannot be observed
in general, we set theoretical grounds for practical inference techniques based on inten-
sive computer simulation methods. A thorough statistical analysis of toxicological and
intake data based on the concepts and results developed in this article is carried out in a
forthcoming companion paper (see [7]).

The outline of the paper is as follows. In section 2 a class of stochastic models with a
reasonably simple (markovian) structure for describing the evolution through time of food
contaminant exposure is introduced. In the important case when the (random) elimination
rate is linear (such a feature being strongly motivated by previous works on kinetics mod-
eling), theoretical properties of the exposure process are thoroughly investigated in section
3. Turning to the problem of estimating the steady-state or time-dependent features of the
model that are relevant from the toxicology viewpoint and taking account of the fact that
the exposure process is not observable in practice, statistical procedures relying on simula-
tion methods are presented and studied in section 4. Finally, empirical studies related to
methyl mercury food contamination are carried out in section 5, with the aim to illustrate
the relevance of the modeling and the statistical methods studied in this paper. Technical
proofs are postponed to the Appendix.

2 Modeling the exposure to a food contaminant

Suppose that an exhaustive list of P types of food, indexed by p = 1, . . . , P, involved in
the alimentation of a given population and possibly contaminated by a certain chemical,
is drawn up. Regarding to the chemical of interest, each type of food p ∈ {1, . . . , P} is
contaminated in random ratio K(p), with probability distribution FK(p) on R+, the set of
positive real numbers (we shall denote by R∗+ the set of strictly positive real numbers).
Concerning this specific contaminant exposure, a meal may be viewed as a realization
of a r.v. Q = (Q(1), . . . , Q(P)) indicating the quantity of food of each type consumed,
normalized by the body weight. For a meal Q drawn from a distribution FQ on RP+,
cooked from foods of which toxicity is described by a contamination ratio vector K =

(K(1), . . . , K(P)) drawn from the tensor product of distributions FK = ⊗Pp=1FK(p) , the global
contaminant intake is

U =

p∑
p=1

K(p) ·Q(p) = 〈K,Q〉, (1)

denoting by 〈., .〉 the standard inner product on RP. Its probability distribution FU is the
image of FK⊗FQ by the inner product 〈., .〉, assuming that the quantities of food consumed
are independent from the contamination levels. Here and throughout, we suppose that
the contaminant intake distribution FU has a density fU with respect to λ, the Lebesgue
measure on R+.

By convention, T0 = 0 is chosen as time origin. The food contamination phenomenon
through time for an individual of the population of interest may be classically modeled by
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a marked point process {(Tn, Qn, Kn)}n≥1 on R+ × RP+ × RP+, the Tn’s being the successive
times at which the individual consumes foods among the list {1, . . . , P} and the marks
(Qn, Kn) being respectively the vector of food quantities and the vector of contamination
ratios related to the meal had at time Tn, n ≥ 1 (refer to [21] for a recent account of
the theory of point processes and of its numerous applications). The process {(Tn, Qn)}n≥1
describing dietary behavior is assumed independent from the sequence (Kn)n≥1 of chemical
contamination ratios. Although the modeling of dietary behaviors could certainly give rise
to a huge variety of models, depending on the dependence structure between (Tn, Qn) and
past values {(Tm, Qm)}m<n that one stipulates, we make here the simplifying assumption
that the marks Qn, n ≥ 1, form a sequence of independent and identically distributed
random variables (in the sequel we shall use the abbreviated form "i.i.d. r.v.’s"), with
common distribution FQ independent from the location times (Tn)n≥1. This assumption
is acceptable for chemicals present in a few types of food, such as methyl mercury, our
running example, but certainly not for all contaminants. For chemicals present in many
foods of everyday consumption such as Ochratoxin A (present in cereals, coffee, etc.),
it would be necessary to introduce additional autoregressive structure in the model for
capturing important features of any realistic diet (the consumption of certain food being
typically alternated for reasons related to taste or nutritional aspects). Such a modeling
task is beyond the scope of the present paper and is left for further investigation. Finally,
we suppose that the inter-intake times ∆Tn+1 = Tn+1 − Tn, n ≥ 1, are i.i.d. with common
probability distribution G(dt) = g(t)dt and finite expectation mG =

∫∞
t=0 tG(dt) < ∞,

the sequence (Tn)n≥1 of intake times being thus a pure renewal process.
Contamination sources other than dietary are neglected in the present study and we

denote by X(t) the total body burden in contaminant at time t ≥ 0. In between intakes,
we assume that the contamination exposure process X(t) is governed by the differential
equation

ẋ(t) = −r(x(t), θ), (2)

denoting x’s temporal derivative by ẋ(t) and θ being a random parameter, taking its values
in a set Θ ⊂ Rd with d ≥ 1 say, and accounting in the modeling for fluctuations of the
elimination rate due to metabolic factors at the intake times (the successive values θn,
n ∈ N, of θ are thus fixed at times T0, T1, . . ., see Remark 2 below). The function r(x, θ)
is assumed to be strictly positive and continuous on R∗+ × Θ, such that for all θ ∈ Θ,
r(0, θ) = 0 (so that when X(t) eventually reaches the level 0, the process stays at this level
until the next intake) and for all (ε, θ) ∈ (0, 1)×Θ:

inf
ε<x<ε−1

r(x, θ) > 0 and sup
0<x<ε−1

r(x, θ) <∞. (3)

Under these conditions, for any initial value x(0) ≥ 0 and metabolic parameter value θ ∈ Θ,
Eq. (2) has clearly a unique solution.

Other approaches may be naturally adopted for describing the elimination phenomenon
occurring in between intakes. For instance, toxicokinetic models based on stochastic dif-
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ferential equations or decreasing jump processes (as in inventory modeling) could be per-
tinently considered for this purpose.

Remark 1 (On pharmacokinetics modeling) In toxicology, Eq. (2) is widely used
with r(x, θ) = θx for modeling the kinetics in man of certain contaminants following
intakes. As shown by many pharmacokinetics studies, there is considerable empirical
evidence that it properly describes the way the elimination rate depends on the total body
burden of the chemical in numerous cases (see [12], [54] or [29] for further details on linear
pharmacokinetics models, also referred to as first-order kinetics models). In this context,
the release parameter log 2/θ is known as the biological half-life of the contaminant (the
time required for X to decrease by half in the organism in absence of new contaminant
intake). For methyl mercury (MeHg), our running example in this paper, the half-life is
known to fluctuate around six weeks (see [56] and the references therein). For such dietary
contaminants, of which biological half-life is measured in weeks rather than days, it is
naturally essential to take account of the kinetics in man for successful modeling of the
exposure phenomenon.

Remark 2 (On modeling fluctuations in the metabolic rate) In a mathematical
model for the evolution of food contaminant exposure through time, incorporating a certain
amount of randomness in the elimination process due to possible metabolism changes
may certainly contribute to make the modeling more plausible. In this first attempt,
mainly motivated by the dietary methyl mercury case, we chose here to vary the metabolic
parameter at each intake time, on grounds of parsimony: indeed, data collected generally
consist of observed half-lives in a sample of individuals only (see [35, 28] for instance) and, to
our knowledge, no quantitative study of the frequency of changes in metabolism (regarding
chemical elimination) has been carried out yet. However, our marked point process based
model could be easily extended by considering competing risks between intake times and
times when the metabolism changes. As pointed out by the referee, another possible
approach for modeling the fluctuations of θ could consist in using a stochastic differential
equation (based on a geometric Brownian motion for instance).

We assume that (θn)n∈N is an i.i.d. sequence with common distribution H(dθ). For
a given value of the metabolic parameter θ ∈ Θ, the time necessary for the body burden
(without further intake) to decrease from x0 > 0 to x ∈ (0, x0) is given by

τθ(x0, x) =

∫x0
x

1

r(y, θ)
dy.

Under these assumptions, we clearly have that H({τθ(x0, x) <∞}) = 1 for all 0 < x ≤ x0.
The contaminant may be thus entirely eliminated from the body (the amount x reaching
then the level 0) with probability one in the sole case when the next condition holds.
Condition (C1): H({τθ(x0, 0) <∞}) = 1 for some x0 > 0.

In such a case we would also have H({τθ(x, 0) < ∞}) = 1 for all x ≥ 0. In this respect, it
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is noteworthy that, in the linear case mentioned in Remark 1, we have τθ(x, 0) = ∞ for
all θ > 0 and x > 0, meaning that the process cannot reach the level 0 in finite time (in
contrast with pharmacokinetics models based on affine rates r(x) = a+b ·x with a > 0 for
instance). However, determining whether the chemical may be entirely removed from the
body or not is purely a mathematical concern, due to existing limits of detection (LOD)
inherent to analytical measurement techniques (see [33]).

Hence, in between intake times and given the current value of the metabolic parameter
θ, the exposure process moves in a deterministic fashion according to (2), and has the same
(upward) jumps as the process of cumulative intakes

B(t) =

N(t)∑
n=1

Un,

with Un = 〈Kn, Qn〉, n ∈ N, and N(t) =
∑
n∈N I{Tn≤t} as the number of intakes until

time t, denoting by IE the indicator function of any event E . The exposure process X is
piecewise-deterministic with càd-làg1 trajectories (see a typical sample path in Fig. 2) and
satisfies the equation

X(t) = X(0) + B(t) −

N(t)+1∑
n=1

∫Tn∧t

Tn−1

r(X(s), θn)ds, (4)

X(0) denoting the total body burden in contaminant at initial time T0 = 0 and with
a ∧ b = min(a, b) for all (a, b) ∈ R2. For an account of such piecewise deterministic
processes, one may refer to [23] (see also [22] and ergodic results may be found in [17]).

For the continuous-time process thus defined to be markovian, one has to record the
current value θ(t) =

∑
n∈N θnI{t∈[Tn,Tn+1[} of the metabolic parameter as well as the back-

ward recurrence time A(t) = t − TN(t) (the time since the last intake). By construction,
the process (X(t), θ(t), A(t))t≥0 is strongly markovian with infinitesimal generator

Gφ(x, θ, t) = ζ(t)

∫∞
u=0

∫
θ′∈Θ

{φ(x+ u, θ′, 0) − φ(x, θ, t)}FU(du)H(dθ′)

− r(x, θ)∂xφ(x, θ, t) + ∂tφ(x, θ, t), (5)

denoting by ζ(t) = g(t)/
∫∞
s=t g(s)ds the hazard rate of the inter-intake times and provided

that φ(., θ, .) : (x, t) 7→ φ(x, θ, t) is a bounded function with bounded continuous first
derivatives in x and t for all θ ∈ Θ (one may refer to [2] for an account of key notions of
the theory of stochastic processes, oriented to biology applications).

In the above setting, the time origin T0 = 0 does not necessarily correspond to an
intake time. Given the time A(0) = a since the last intake at time t = 0, we let ∆T1 have

1Recall that any function x : R+ → R is said càd-làg if it is is everywhere right-continuous and has left
limits everywhere: for all t > 0, lims→t, s>t x(s) = x(t) and lims→t, s<t x(s) exists and is finite.
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Figure 1: Sample path of the exposure process X, modeling the evolution of the total body
burden of a given dietary contaminant through time.

the density ga(t) = g(a+ t)/
∫∞
s=a g(s)ds, making the renewal process (∆Tn)n∈N possibly

delayed, except naturally in the case when the inter-intake distribution G is exponential.
However, the choice of such a memoryless distribution in the dietary context is clearly not
pertinent, distributions with increasing hazard rate being much more adequate (see section
5). Here and throughout we denote by Px,a the probability measure on the underlying space
such that (X(0), A(0)) = (x, a) and θ(0) ∼ H, and by Ex,a[.] the Px,a-expectation for all
x ≥ 0 and a in supp(G), the support of the distribution G.
In the case when one neglects variability in the elimination process (i.e. when H is a Dirac
measure) and under the additional assumption that the renewal times are exponentially
distributed (making the process X itself markovian, which facilitates much the study but
is not relevant to our application as emphasized above), this modeling boils down to a
standard storage model with a general release rate (see [14] and [13] for instance). We refer
to Chapter XIV in [4] for an account of such processes, widely used in operations research
for modeling queuing/storage systems. Basic communication properties of the stochastic
process X = (X(t))t≥0 may be established in a fashion very similar to the ones of the latter
processes. They are summarized in the next result (of which proof is omitted since it is a
slight modification of the proof of Proposition 1.2 in chap. XIV of [4]).

Theorem 1 Suppose that G(dx) = g(x)dx has infinite tail (so that arbitrarily long inter-
intake times may happen with positive probability). Assume further that either g(x) > 0 on
]0, ε] for some ε > 0 or else that FU has infinite tail (i.e. with positive probability, either
intake times may be arbitrarily close together or else intakes may be arbitrarily large). Then
X reaches any state x > 0 in finite time with positive probability whatever the starting point,
i.e. for all x0 ≥ 0, a ∈ supp(G), we have

Px0,a(τx <∞) > 0, (6)
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with τx = inf{t ≥ 0 : Xt = x} as the (random) time needed for X to reach the level x.
Furthermore, if condition (C1) is fulfilled, then (6) still holds for x = 0. Besides, either X
”goes to infinity” with probability one, i.e. is such that Px0,a({X(t)→∞ , as t→∞}) = 1

for all x0 ≥ 0, or else X reaches any state x > 0 in finite time with probability one whatever
the starting point, i.e. for all x0 ≥ 0, a ∈ supp(G),

Px0,a(τx <∞}) = 1. (7)

If (C1) is satisfied, then (7) also holds for x = 0.

An important task is to find conditions ensuring that the limiting behavior of the
exposure process X is represented by a stationary probability measure µ describing the
equilibrium state to which the process settles as time goes to infinity. In particular, time
averages over long periods, such as the mean time spent by the exposure process X over
a possibly critical threshold u > 0, T−1

∫T
0 I{Xt≥u}dt, for instance, are then asymptotically

described by the distribution µ. Computing/estimating steady-state quantities would be
then relevant for summarizing the exposure phenomenon in the long run and assessing the
long-term toxicological risk. Beyond stochastic stability properties, determining the tail
behavior of the steady-state distribution and evaluating the rate at which the exposure
process converges to the stationary state is also of critical importance in practice. These
questions are thoroughly investigated for linear pharmacokinetics models in the next sec-
tion.

3 Probabilistic study in the ’linear kinetics’ case

We now focus on the ergodicity properties of the exposure process X(t) in the specific case
when for a given metabolic state described by a real parameter θ, the elimination rate is
proportional to the total body burden in contaminant, i.e. r(x, θ) = θx.
Here we suppose that Θ is a subset of R∗+, ensuring that (3) is satisfied. As mentioned
before, the linear case is of crucial importance in toxicology, insofar as it suitably models
the pharmacokinetics behavior in man of numerous chemicals (see [29]). We shall show
that studying the long-term behavior of X boils down to investigating the properties of the
embedded Markov chain X̃ = (Xn)n≥1 of which values correspond to the ones taken by the
exposure process just after intake times : Xn = X(Tn) for all n ≥ 1. By construction, the
chain X̃ satisfies the following autoregressive equation with random coefficients

Xn+1 = e−θn∆Tn+1Xn +Un+1, for all n ≥ 1, (8)

and has transition probability Π(x, dy) = π(x, y)dy with transition density

π(x, y) =

∫
θ∈Θ

∫∞
t= 1
θ
log(1∨ x

y
)
fU(y− xe−θt)G(dt)H(dθ), (9)
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for all (x, y) ∈ R∗2+ , where a∨b = max(a, b). Ergodicity of such real-valued Markov chains
Y, defined through stochastic recurrence equations of the form Yn+1 = αnYn + βn, where
{(αn, βn)}n∈N is a sequence of i.i.d. pairs of positive r.v.’s, has been extensively studied in
the literature, such models being widely used in financial or insurance mathematics (see
section 8.4 in [25] for instance). Specialized to our setting, well known results related to
such processes enable to show that the embedded chains X̃ is positive recurrent2 under the
assumption that log(1∨U1) has finite expectation (which is a very plausible hypothesis in
the dietary context), as stated in the next theorem, and then to specify the tail behavior of
the limiting probability distribution. Furthermore, the simple autoregressive form of Eq.
(8) makes Foster-Lyapunov conditions easily verifiable for such Markov chains, in order to
refine their stochastic stability analysis (we refer to [44] for an account of such key notions
of the Markov chain theory).

Theorem 2 Under the assumptions of Theorem 1, the chain X̃ is λ- irreducible3. More-
over, suppose that the following condition holds.

(H1) E[log(1∨U1)] <∞.

Then X̃ is positive recurrent with stationary probability distribution µ̃.
If one assume further that fU is continuous and strictly positive on R+ and:

(H2) there exists some γ ≥ 1 such that E[U
γ
1 ] <∞,

then X̃ is geometrically ergodic, µ̃ has finite moment of order γ and there exist constants
R <∞ and r > 1 such that, for all n ≥ 1, x > 0,

sup
{ψ,|ψ(z)|≤1+zγ}

∣∣∣∣ ∫∞
y=0

ψ(y)Πn(x, dy) − µ̃(ψ)

∣∣∣∣ ≤ R(1+ xγ)r−n, (10)

denoting by Πn the n-th iterate of Π and with µ̃(ψ) =
∫∞
y=0ψ(y)µ̃(dy) for any µ̃-integrable

function ψ.
Suppose finally that the condition (H1) and the next one simultaneously hold,

(H3) The r.v. U1 is regularly varying with index κ > 0 (i.e. for all t > 0, (1−FU(tx))/(1−

FU(x)) ∼ t−κ as x→∞).

Then the stationary law µ̃ has regularly varying tail with index κ.
2Recall that a Markov chain Y = (Yn)n∈N with state space (E, E) is positive recurrent if there ex-

ists a unique probability distribution µ on E that is invariant for its transition kernel Π (i.e µ(dy) =∫
x∈E µ(dx)Π(x, dy)), making then Y stationary (µ is then referred to as Y’s stationary distribution).

3A Markov chain Y = (Yn)n∈N with state space (E, E) and transition Π(x, dy) is said ψ-irreducible, ψ
being a σ-finite measure on E, if, for all A ∈ E weighted by ψ, Y visits the subset A in finite time with
positive probability whatever its starting point, i.e.

∑
n≥1 Π(x,A) > 0 for all x ∈ E.
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Remark 3 (On the tail behavior assumption for the intake distribution)
The relevance of the regular variation assumption for modeling the tail behavior of dietary
contaminant intakes related to certain chemicals is strongly supported in [57] and [8]. In
these works, various estimation strategies for tail distribution features such as the Pareto
index κ involved in (H3) are also proposed and implemented on several food contamination
and consumption data sets. We refer to [25] for an excellent account of such notions arising
in extreme values theory and techniques for modeling extremal events.

As pointed out in [43], stochastic stability analysis based on drift criteria in the
continuous-time setting is not as straightforward as in the discrete-time case, generally
due to the complex form of the generator and of candidate test functions. Fortunately,
given the explicit relationship between X and the embedded discrete-time chain X̃ in our
specific case, ergodicity of the continuous-time model and tail properties of its limiting
distribution may be investigated based on the results established above for X̃ under mild
conditions. However, under more restrictive moment conditions for the inter-intake distri-
bution, as the one stated below, a simple test function for which the generator (5) is shown
to satisfy a geometric drift condition, may be nevertheless exhibited, so as to establish
geometric ergodicity for the Markov process {(X(t), θ(t), A(t))}t≥0.

(H4) There exists η > 0 such that E[exp(η∆T2)] <∞.

Theorem 3 Under the assumptions of Theorem 1 and supposing that (H1) is fulfilled,
X(t) has an absolutely continuous limiting probability distribution µ given by

µ([u,∞[) = m−1
G

∫∞
x=u

∫∞
t=0

∫
θ∈Θ

t∧
log(x/u)

θ
µ̃(dx)G(dt)H(dθ), (11)

in the sense that T−1
∫T
0 I{Xt≤u}dt → µ([0, u]), Px0,a-a.s., as t → ∞ for all x0 ≥ 0 and

a ∈ supp(G). Furthermore,

• if (H3) holds and the set Θ is bounded, then µ is regularly varying with the same
index as FU,

• and if (H2) and (H4) hold, then {(X(t), θ(t), A(t))}t≥0 is geometrically recurrent. In
particular, µ has finite moment of order γ and for all (x, a) ∈ R∗+ × supp(G), there
exist constants β ∈]0, 1[, Ba <∞ such that

sup
ψ(z)≤1+zγ

|Ex,a[ψ(Xt)] − µ(ψ)| ≤ Ba(1+ xγ)βt. (12)

Remark 4 (On the tail behavior of the stationary distribution) When the
Un’s are heavy-tailed, and under the assumption that the ∆Tn’s are exponentially dis-
tributed (making B(t) a time-homogeneous Lévy process), the fact that the stationary
distribution µ inherits its tail behavior from FU has been established in [3] for determin-
istic release rates. Besides, when assuming G exponential and θ fixed, one may exactly
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identify the limit distribution µ in some specific cases (see section 8 in [13] or section 2 in
Chap. XIV of [4]) using basic level crossing arguments (X being itself markovian in this
case). If FU is also exponential for instance, µ is a Gamma distribution.

Remark 5 (On practical relevance of steady-state features) Now that it is
established that the exposure process settles to an equilibrium regime after a ’certain
time’, the question of specifying precisely what is meant by ’certain time’ naturally arises.
It would be pertinent to describe the long run behavior of the exposure process and assess
the long-term toxicological risk by computing steady-state characteristics solely if the time
necessary to reach the equilibrium state approximately may be considered as a reasonable
horizon at the human scale. As an illustration, the amount of time needed to be roughly
in steady-state from a collection of datasets related to dietary MeHg contamination is
evaluated through simulation in Section 5.

In order to exhibit connections between the exposure process X = (X(t))t≥0 and possible
negative effects of the chemical on human health, it is appropriate to consider simple
characteristics of the process X, easily interpretable from an epidemiology viewpoint. In
this respect, the mean exposure over a long time period T−1

∫T
t=0 X(t)dt is one of the most

relevant features. Its asymptotic behavior is refined in the next result.

Proposition 4 Under the assumptions of Theorem 1 and supposing that (H2) is fulfilled
for γ = 1, we have for all (x0, a) ∈ R+ × supp(G)

X̄T =
1

T

∫T
t=0

X(t)dt→ mµ, Px0,a-a.s., (13)

as T → ∞ with mµ =
∫∞
x=0 xµ(dx). Moreover, if (H2) is fulfilled with γ ≥ 2, then there

exists a constant 0 < σ2 < ∞ s.t. for all (x0, a) ∈ R+ × supp(G) we have the following
convergence in Px0,a-distribution

√
T(X̄T −mµ)⇒ N (0, σ2) as T →∞. (14)

Remark 6 (On the limiting variance of the sample mean exposure value) As
will be shown in the proof below, the asymptotic variance σ2 in (14) may be related to the
limiting behavior of a certain additive functional of the Markov chain ((Xn, θn, ∆Tn+1))n≥1.
In [5] (see also [6]), an estimator of the asymptotic variance of such functionals based
on pseudo-renewal properties of the underlying chain (namely, on renewal properties of a
Nummelin extension of the chain) has been proposed and a detailed study of its asymptotic
properties has been carried out.

Beyond the asymptotic exposure mean or the asymptotic mean time spent by X above
a certain threshold, other summary characteristics of the exposure process could be per-
tinently considered from an epidemiology viewpoint, among which the asymptotic tail
conditional expectation Eµ[X | X > u], denoting by Eµ[.] the expectation with respect to
µ, after the fashion of risk evaluation in mathematical finance or insurance (see also [62]).
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4 Simulation-based statistical inference

We now consider the statistical issues one faces when attempting to estimate certain fea-
tures of linear rate exposure models. The main difficulty lies in the fact that the exposure
process X is generally unobservable. Food consumption data (quantities of consumed food
and consumption times) related to a single individual over long time periods are scarcely
available in practice. Performing measurements at all consumption times so as to record
the food contamination levels appears as not easily realizable. Instead, practitioners have
at their disposal some massive databases, in which information related to the dietary habits
of large population samples over short periods of time is gathered. Besides, some contam-
ination data concerning certain chemicals and types of food are stored in data warehouses
and available for statistical purposes. Finally, experiments for assessing models accounting
for the pharmacokinetics behavior in man of various chemicals have been carried out. Data
permitting to fit values or probability distributions on the parameters of these models are
consequently available.

Estimation of steady-state or time-dependent features of the law LX of the process X
given the starting point (X(0), A(0)) = (x0, a) ∈ R+ × supp(G) could thus be based on
preliminary computation of consistent estimates Ĝ, F̂U and Ĥ of the unknown distribution
functions G, FU and H. Hence, when no closed form analytic expression for the quantity
of interest is available from (G, FU, H), ruling out the possibility of computing plug-in
estimates, a feasible method could consist in simulating sample paths starting from (x0, a)

of the approximate process X̂ with law LX̂ corresponding to the estimated distribution
functions (Ĝ, F̂U, Ĥ) and construct estimators based on the trajectories thus obtained.

Beyond stochastic modeling of the exposure phenomenon, the main goal of this paper is
to provide theoretical grounds for the application of such statistical methods in toxicological
risk evaluation. This leads up to investigate the stability of the stochastic model described
in section 2 with respect toG, FU andH (stability analysis may be viewed as the counterpart
of sensitivity analysis in a probabilistic framework, refer to [46] for an account of this topic),
and consider the continuity problem consisting in evaluating a measure of closeness between
LX and LX̂ making the mapping LX 7→ Q(X) continuous, Q being the functional of the
trajectory of interest, a certain mapping defined on the Skorohod’s space, i.e. the set of
càd-làg functions x : R+ → R. Hence, convergence preservation results may be obtained
via the continuous-mapping approach as described in [63], where it is applied to establish
stochastic-process limits for queuing systems. For simplicity’s sake, we take a = 0 in
the following study and do not consider the stability issue related to the approximation
of the starting point (X(0), A(0)), straightforward modifications of the argument below
permitting to deal with the latter problem. For notational convenience, we omit to index
by (x0, 0) the probabilities and expectations considered in the sequel.

Let 0 < T <∞. Considering the geometry of the (càd-làg) sample paths of the exposure
process X (see Fig. 2), we use theM2 topology on the Skorohod’s space DT = D([0, T ],R)

induced by the Hausdorff distance on the space of completed graphs (the completed graph
of x ∈ DT being obtained by connecting (t, x(t)) to (t, x(t−))) with a line segment for all
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discontinuity points), allowing trajectories to be eventually close even if their jumps do not
exactly match (the J2 topology would be actually sufficient for our purpose, refer to [36]
or [63] for an account on topological concepts for sets of stochastic processes). In order to
evaluate how close the approximating and true laws are, we shall establish an upper bound
for the L1-Wasserstein Kantorovich distance between the distributions LX(T) and LX̂(T) of
X(T) = (X(t))t∈[0,T ] and X̂(T) = (X̂(t))t∈[0,T ], which metric on the space of probability laws
on DT is defined as follows (refer to [47], [10]):

W(T)
1 (L,L′) = inf

Z′ ∼ L′, Z ∼ L
E[m

(T)
M2

(Z′, Z)],

where the infimum is taken over all pairs (Z′, Z) with marginals L′ and L andm(T)
M2

(Z′, Z) =

m
(T)
H (ΓZ′ , ΓZ), denoting by ΓZ′ and ΓZ the completed graphs of Z′ and Z and by m(T)

H the
Hausdorff metric on the set of all compact subsets of [0, T ] × R related to the distance
m((t1, x1), (t2, x2)) = |t1 − t2| + |x1 − x2| on [0, T ] × R. It is well-known that this metric
implies weak convergence (see [10]).

As claimed in the next theorem, the law LX̂(T) gets closer and closer to LX(T) as the
distribution functions Ĝ, F̂U and Ĥ respectively tend to G, FU and H in the Mallows sense.
For p ∈ [1,∞), we denote by Mp(F1, F2) = (

∫1
0

∣∣F−1
1 (t) − F−1

2 (t)
∣∣p dt)1/p the Lp-Mallows

distance between two distribution functions F1 and F2 on the real line.

Theorem 5 Let (G, FU, H) (respectively, (Ĝ(n), F̂
(n)
U , Ĥ(n)) for n ∈ N) be a triplet of dis-

tribution functions on R+ defining a linear exposure process X (respectively, X̂(n)) starting
from x0 ≥ 0 and fulfilling Theorem 1’s assumptions and (H2) with γ = 1. Suppose that
(Ĝ(n), F̂

(n)
U , Ĥ(n)) tends to (G, FU, H) in the L1-Mallows distance as n → ∞. Assume fur-

ther that G (respectively, Ĝ(n)) has finite variance σ2G (resp., σ2
Ĝ(n)) and H (resp., Ĥ(n))

has finite mean, mH. If σ2Ĝ(n) remains bounded, then:

sup
T>0

T−2W(T)
1 (LX(T) ,LX̂(T))→ 0, as n→∞. (15)

And for all T > 0 we have the weak convergence:

X̂
(T)
(n) ⇒ X(T) in DT , as n→∞. (16)

Remark 7 Before showing how this theoretical result applies to the problem of approxi-
mating/estimating general functionals of the exposure process, a few remarks are in order.

• We point out that similar results hold for the Lp-Wasserstein Kantorovich distance
with p ∈ [1,∞) under suitable moment conditions.

• It may also be convenient to consider the function space D∞ = D([0,∞),R) in which
X has its sample paths and on which the metric

m
(∞)
M2

(x, x′) =

∫∞
t=0

2−tm
(t)
M2

({x(s)}s∈[0,t], {x
′(s)}s∈[0,t])dt
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for (x, x′) ∈ D2∞ may be considered. It is noteworthy that (15) also immediately
provides a control of the L1-Wasserstein distanceW(∞)

1 corresponding to that metric
between LX and LX̂.

• In statistical applications, one is led to consider random estimates Ĝ(n), F̂
(n)
U , Ĥ(n).

Clearly, if both the convergence (Ĝ(n), F̂
(n)
U , Ĥ(n))→ (G, FU, H) (i.e. ’L1-consistency’

of the distribution estimates) and the boundedness of σ2
Ĝ(n) hold almost surely, then

the results of the preceding theorem (and those stated in the next corollary) also
hold almost surely.

By showing that good approximations/estimations of the distributions H, G and FU
also induces good approximation/estimation of general functionals of the exposure process,
the next result establishes the asymptotic validity of simulation estimators under general
conditions. Roughly speaking, provided that the instrumental distribution estimates at
our disposal are accurate enough, we may treat simulated sample paths as if they were
really exposure trajectories of individuals in the population of interest.

Corollary 6 Let (G, FU, H) (respectively (Ĝ(n), F̂
(n)
U , Ĥ(n)) for n ∈ N) be a triplet of dis-

tribution functions on R+ defining a linear exposure process X (respectively X̂(n)) starting
from x0 ≥ 0 and fulfilling the assumptions of Theorem 5. Let 0 < T ≤∞.

(i) Let Q be a measurable function mapping DT into some metric space (S, D) with
Disc(Q) as set of discontinuity points and such that P(X(T) ∈ Disc(Q)) = 0. Then
we have the convergence in distribution

Q(X̂
(T)
(n))⇒ Q(X(T)) in (S, D).

(ii) For any Lipschitz function φ : (DT ,m
(T)
M2

)→ R, we have

E
[
φ(X̂

(T)
(n))
]→ E

[
φ(X(T))

]
as n→∞.

proof. The first assertion derives from Theorem 5 and the convergence (in distribution)
preservation result stated in Theorem 3.4.3 of [63], while the second one is an immediate
consequence of the first assertion of Theorem 5 (see also [10]).

We conclude this section by giving several examples, illustrating how the results above
apply to certain functionals of the exposure process in practice. Among the time-dependent
features of the exposure process, the following quantities are of considerable importance
to practitioners in the field of risk assessment of chemicals in food and diet (see [50] and
the references therein).
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Maximum exposure value. The mapping that assigns to any finite length trajectory
{x(t)}0≤t≤T ∈ DT its maximum value sup0≤t≤T x(t) is Lipschitz with respect to the Haus-
dorff distancem(T)

M2
(see Theorem 13.4.1 in [63]). Under the assumptions of Theorem 5, the

expected supremum is finite and, given consistent estimates Ĝ(n), F̂(n)
U and Ĥ(n) of G, FU

and H, one may thus construct a consistent estimate of E[sup0≤t≤T X(t)] by implementing a
standard Monte-Carlo procedure for approximating the expectation E[sup0≤t≤T X̂(n)(t)dt].

Mean exposure value. The function {x(t)}t∈[0,T ] ∈ DT 7→ T−1
∫T
t=0 x(t)dt being contin-

uous with respect toM2-topology, we have T−1
∫T
t=0 X̂

(n)(t)dt⇒ T−1
∫T
t=0 X(t)dt as soon

as X̂(T)
(n) ⇒ X(T) in DT . By straightforward uniform integrability arguments, it may be seen

that convergence in mean also holds, so that the mean exposure value E[T−1
∫T
t=0 X(t)dt]

may be consistently estimated by Monte-Carlo simulations.

Average time spent over a critical threshold. Let u > 0 be some critical level. In a
very similar fashion, it follows from the continuity of {x(t)}t∈[0,T ] ∈ DT 7→ T−1

∫T
t=0 I{x(t)≥u}dt,

that a Monte-Carlo procedure also allows to estimate the expectation of the average time
spent by the exposure process above the threshold value u, namely E[T−1

∫T
t=0 I{X(t)≥u}dt].

First passage times. Given the starting point x0 of the exposure process X, the distribu-
tion of the first passage time beyond a certain (possibly critical) level x ≥ 0, i.e. the hitting
time τ+

x = inf{t ≥ 0, X(t) ≥ x}, is also a characteristic of crucial interest for toxicologists.
The mapping X ∈ D((0,∞),R) 7→ τ+

x being continuous w.r.t. the M2-topology (refer to
Theorem 13.6.4 in [63]), we have τ̂+

x = inf{t ≥ 0, X̂(t) ≥ x}⇒ τ+
x as soon as X̂⇒ X.

In practice, one is also concerned with steady-state characteristics, describing the long
term behavior of the exposure process. For instance, the steady-state mean exposure
mµ or the limiting time average spent above a given critical value u > 0, µ([u,∞[) =

limT→∞ T−1
∫T
t=0 IX(t)≥udt, can be pertinently used as quantitative indicators for chronic

risk characterization (see also [62]). As shall be seen below, such quantities may be con-
sistently estimated in a specific asymptotic framework stipulating that both T and n tend
to infinity. As a matter of fact, one may naturally write

E
[
T−1

∫T
t=0

X̂(n)(t)dt

]
−mµ =

{
E
[
T−1

∫T
t=0

X̂(n)(t)dt

]
− E

[
T−1

∫T
t=0

X(t)dt

]}
+

{
E
[
T−1

∫T
t=0

X(t)dt

]
−mµ

}
. (17)

And the term between brackets on the left hand side of (17) tends to 0 as T → ∞ by
virtue of Theorem 3, while it follows from the coupling argument of Theorem 5 (see A4
in the Appendix) that the term on the right hand side is less than T ×M1(F̂

(n)
U , FU) +
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T2 × (M1(Ĝ
(n), G) + M1(Ĥ

(n), H)) up to a multiplicative constant. Hence, if T and n
simultaneously tend to infinity in a way that the latter quantity converges to 0, consistency
of E

[
T−1
∫T
t=0 X̂(n)(t)dt

]
as an estimator of mµ is clearly established.

Besides, with regard to statistical applications, Theorem 5 paves the way for studying
the asymptotic validity of bootstrap procedures in order to construct accurate confidence
intervals (based on sample paths simulated from bootstrapped versions of the estimates
Ĝ(n), F̂

(n)
U and Ĥ(n)). This is beyond the scope of the present paper but will be the subject

of further investigation.

5 Application to methyl mercury data

As an illustration of the mathematical toxicological model analyzed above, some numerical
results related to dietary methyl mercury (MeHg) contamination are now exhibited. As
previously mentioned, this chemical is present in seafoods quasi-solely and a clear indication
of its adverse effects on human heath has been given by observational epidemiological
studies (see [60], [15] [20] and [31] and references therein), leading recently regulatory
authorities to develop seafood standards for protecting the safety of the consumer.
At present, dietary risk assessment is conducted from a static viewpoint, comparing the
weekly intakes to a reference dose called Provisional Tolerable Weekly Intake (PTWI),
which is considered to represent the contaminant dose an individual can ingest each week
over all his life without appreciable risk. For methyl mercury, the PTWI has been set to
1.6 micrograms per kilogram of body weight per week (µg/kgbw/w in abbreviated form)
by the international expert committee of FAO/WHO (see [28]). Another reference dose of
0.7 µg/kgbw/w, established from a previous evaluation by the (U.S.) National Research
Council [61], is sometimes used from a more conservative perspective. Hence, in a dynamic
approach, a deterministic exposure process of reference for risk assessment could be built
by considering weekly intakes exactly equal to one of these static reference doses (d = 1.6 or
0.7) and a fixed mean half-life HL expressed in weeks. In this case, the body burden at the
nth intake is given by the (affine) recurrence relation Xn = exp(− log(2)/HL× 1)Xn−1+d.
The dynamic reference dose is obtained by taking the limit as n tends to infinity: Xref,d =

d/(1 − 2−1/HL). Numerically, this yields Xref,0.7 = 6.42 µg/kgbw and Xref,1.6 = 14.67

µg/kgbw when MeHg biological half-life is fixed to 6 weeks as estimated in [56].

Datasets and empirical estimates of distributions FU, G and H. Food contami-
nation data related to fish and other seafoods available on the French market have been
collected by accredited laboratories from official national surveys performed between 1994
and 2003 by the French Ministry of Agriculture and Fisheries [40] and the French Research
Institute for Exploitation of the Sea [34]. Our dataset comprises of 2832 analytical data.

The national individual consumption survey INCA (see [19]) provides the quantity
consumed of an extensive list of foods over a week, among which fish and seafoods, as well
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as the time when consumption occurred with at least the information about the type of meal
(breakfast, lunch, dinner or snack). The survey is composed of two samples: 1985 adults
aged 15 years or over and 1018 children aged between 3 to 14 years. However, as shown by
the hazard characterization step (see [28]), the group that is the most critically exposed
to neuro-developmental adverse effects of MeHg are foetus: the MeHg in the mother’s fish
diet can pass into the developping foetus and cause irreversible brain damage. Here we
thus focus on women of childbearing age (between 15 and 45).

For simplicity, MeHg intakes are computed at each observed meal through a determin-
istic procedure currently used in national and international risk assessments. From the
INCA food list, 92 different fish or seafood species are determined and a mean level of
contamination is computed from the contamination data, as in [20, 59]. Intakes are then
obtained by applying relation (1). For comparability sake, all consumptions are divided
by the associated individual body weight, also provided in the INCA survey.

After the work of [57], the intake distribution FU is modeled by a heavy-tailed distri-
bution, namely the Burr distribution (of which cumulative distribution function is of the
form (1 − (1 + xc)−k), with c > 0 and k > 0). It is noteworthy that it fulfills assumption
H3 (see Remark 3). It is fitted here by means of standard maximum likelihood techniques
(see Fig. 2(a) below for a probabilty plot illustrating the goodness of the fit).

The times of consumption available from the INCA survey allow us to compute the
inter-intake times or at least produce right censored values (providing then the informa-
tion that some durations between successive intakes are larger than a certain time). A
Gamma distribution (which has increasing hazard rate) is retained for modeling the inter-
intake distribution G: its parameters are fitted using a right censored maximum likelihood
procedure. As shown by the probability plot displayed in Fig. 2(b), the chosen distribution
(Gamma) provides a good fit for the left (uncensored) part of the distribution.

The pharmacokinetics in man of MeHg has been thoroughly investigated in several
studies (see [49], [55], [56] and [35] for instance), almost all coming to the conclusion that
the half-life of methyl mercury in man (see Remark 1) fluctuates around six weeks. As
we could not dispose of any raw data related to MeHg half-life in the human body, based
on the most documented study (in which collected half-life data (in days) are indicated
to range from 36 to 65 and correspond to a sample mean of 44, refer to [56] and [35]),
a Gamma distribution with mean 44 days and 5th percentile 36 days is chosen here for
modeling the variability of the biological half-life log 2/θ.

Table 1 sums up the characteristics of the three input distributions, with the convention
that a Gamma distribution with parameter α and β has density Γ(α)−1β−αxα−1 exp(−x/β)

and mean αβ. Recall that the tail index of the Burr distribution is given by κ = (ck)−1

and its moment of order r is finite if ck > r, it is then given by Γ(k−r/c)×Γ(1+r/c)/Γ(k).

Time to steady-state. As underlined in Remark 5, the question of determining how
much time is needed for the exposure process to be roughly at equilibrium is crucial for
assessing the practical relevance of steady-state characteristics. In order to evaluate the
time to steady-state, Monte-Carlo simulations have been carried out: using the instrumen-
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Table 1: Parameters of the intake and inter-intake distributions for the Adult Female
(15-45) subpopulation, fitted by maximum likelihood.

Intake distribution FU (Unit: µg/kgbw/meal)
Sample size n 1088
Burr Parameters c 0.95

k 4.93
Tail index κ 0.214
Mean Intake mFU 0.243
Inter-intake time distribution G (Unit: hour)
Sample size n 1214
Proportion of censored data 47.4%
Gamma Parameters α 1.07

β 117.21
Mean inter-intake time mG 125
Half-Life distribution (Unit: hour)
Gamma Parameters α 13.6

β 77.4
Mean half-life 44× 24

tal distributions described above, M = 1000 trajectories have been started from different
initial values x0. For each path, the (temporal) mean exposure over the time interval
[0, T ] is computed and individual results have been averaged. In Figure 3(a), the resulting
estimates for the Adult Female (15-45) subpopulation are displayed, as time T grows: as
expected, all empirical mean exposures converge to the same quantity (namely mµ) and
the relative error is lower than 10% after 29 half-lives (3.5 years approximately), whatever
the starting value x0.

The same procedure is used for the mean time spent beyond the reference threshold
u = Xref,0.7: as shown by Figure 3(b), the limit is approximately reached after 70 half-lives
(about 8.5 years), whatever the initial state x0. The convergence is slower in this case,
since the quantity of interest is related to an event of relatively small probability (see also
Remark 10).

Naturally, the time to steady-state strongly depends on the initial value x0 and of the
functional of interest. However, on the basis of these simulation results, it may be stated
that, for realistic initial values, the time to steady-state for basic quantities as the ones
considered here fluctuates between 3 and 10 years, which is, anyhow, a reasonable horizon
at the human scale.

Remark 8 (Convergence rate bounds) The problem of determining computable
bounds on the convergence rate of ergodic Markov processes has recently received much
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(a) Intake distribution (b) Inter-intake time distribution

Figure 2: Probability plots for the distribution fitting (Adult Female 15-45)

attention in the applied probability literature (see [42], [53], [39], [51] or [52]). Using
suitably calibrated parameters of the drift and minorization conditions (Equations (18),
(19), (23), and (22)) established along the proofs of theorems 2 and 3 in the Appendix,
rough numerical estimates of the constants involved in rate bounds (10) and (12) can be
computed from Theorem 2.2 in [52] (in the discrete-time case) and Theorem 4.1 in [52] (in
the continuous-time setup). Explicit computations based on these theoretical results shall
be carried out in a forthcoming paper (see [7]). However, as such computable bounds are
quite loose in general and are, furthermore, related to the total variation norm (whereas
one rather focuses on specific functional of interest in practice), the problem is handled
here by exploiting the simulation approach.

Estimation by computer simulation. We now focus on estimating certain relevant
time-dependent and steady-state quantities among those enumerated in the previous sec-
tion via the simulation approach studied in Section 4 from our MeHg datasets. Estimates
of the quantities of interest are computed by averaging over M = 1000 replicated trajec-
tories on [0, T ], taking T equal to 5 years. In order to ensure that the retained trajecto-
ries are approximately stationary, a burn-in period of 5 years is used (see the preceding
paragraph). Numerical results related to the estimation of the steady-state mean exposure
(mµ), the probability to exceed the dynamic reference doses in steady-state (µ([Xref,0.7,∞[)

and µ([Xref,1.6,∞[), the mean time to run over the lowest reference dose (Eµ[τXref,0.7 ]) and
the expected maximum exposure over 5 and 10 years (Eµ[maxt≤5/10 years X(t)]) are dis-
played in Table 2.

We observe that the average time spent over the EU-based threshold (Xref,1.6) or the
US-based one (Xref,0.7) are close to zero in the Adult Female (15-45) subpopulation, resp.
0.003% and 0.575%. Regarding the time required to reach such threshold levels, further
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(a) Mean exposure versus time (b) Average time spent over u versus time (u =

Xref,0.7 = 6.42 µg/kgbw)

Figure 3: Convergence to steady-state (Adult Female (15-45), x0 = 0, 1.2, 2.4, 3.6, 4.8, 6.)

simulations have been conducted using the estimated stationary mean as the initial point
(namely, x0 = 2.92). Only the distribution of the time to reach the US-based threshold
(Xref,0.7) has been estimated using a standard Monte-Carlo procedure As explained in
Remark 10 below, estimating the distribution of the time required to run over level Xref,1.6
involves computing rare event probabilities and thus requires the use of more sophisticated
simulation methods. Over M = 1000 trajectories, the mean (respectively, the median)
of τ+

Xref,0.7
is 7.23 years (resp. 5.05 years). Figure 4 displays the (highly skewed) Monte-

Carlo distribution estimate (obtained by a kernel estimation built over the M = 1000

simulated values using a standard procedure) of the time to run beyond Xref,0.7 for the
studied subpopulation.

Table 2: Estimated features of the exposure processes - Adult female (15-45)

Parameter Unit Estimate
mµ (µg/kgbw) 2.92
µ([Xref, 0.7,∞[) (%) 0.575%
µ([Xref, 1.6,∞[) (%) 0.003%
Eµ[maxt≤5 years X(t)] (µg/kgbw) 6.63
Eµ[maxt≤5 years X(t)] (µg/kgbw) 7.41

Remark 9 (Sensitivity to the choice of the instrumental distributions) The
distribution models used here for the governing probability measures FU and G have been
chosen because they provide a good overall fit to the data (and may be easily seen to

20



Figure 4: Monte-Carlo distribution for the time to run over u for the Adult female (15-45)
subpopulation (u = Xref,0.7 = 6.42 µg/kgbw, with x0 = 2.92).

satisfy all the assumptions required in the ergodicity and stability analyses). According
to our own practical experience, the numerical results displayed here would not have been
significantly different, if one had chosen to model G by a Weibull distribution for instance.
However, in a future study (see [7]) special attention shall be given to the statistical issues
of validating the mathematical toxicological model, by investigating how sensitive the latter
is to changes with respect to the estimation method chosen (considering also the use of
nonparametric approaches).

Remark 10 (Naive Monte-Carlo simulation and high threshold) From the per-
spective of public health guidance practice, it is of prime importance to evaluate the prob-
ability of occurrence of rare (extremely risky) events, the probability to exceed a large
threshold u such as u = Xref,1.6 for instance. In this respect, we point out that the naive
Monte-Carlo simulation proposed here leads to estimate this probability by zero (see Ta-
ble 2), so seldom this threshold is reached on a time interval [0, T ] of reasonable length.
Treading in the steps of [16], it is shown in [7] that one may remedy to this problem by
implementing a suitable particle filtering algorithm.

A Appendix - Technical proofs

A.1 Proof of Theorem 2

From conditions required by Theorem 1, aperiodicity and irreducibility properties are im-
mediately established for the discrete-time chain X̃. Besides, under mild irreducibility
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conditions, the stability of the random coefficients autoregressive model on Rd

Yn+1 = αnYn + βn,

where (αn, βn), n = 1, . . . are i.i.d. r.v.’s on R∗+ × Rd, has been investigated in detail
since the seminal contribution of [37] (see [48] and the references therein). Under the
assumption that E[log(1 ∨ ‖β1‖)] < ∞ and E[log(1 ∨ α1)] < ∞, it is well known that a
sufficient and necessary condition for the chain X to have a (unique) probability measure is
that E[log(α1)] < 0 (see Corollary 2.7 in [11] for instance). Based on this result, it is then
straightforward that, under the assumptions of Theorem 1 and (H1), the chain X̃ is positive
recurrent with absolutely continuous stationary probability distribution µ̃(dx) = f̃(x)dx.
In the discrete-time context, analysis of the stability of Markov models (Yn)n∈N may be
carried out by establishing suitable conditions for the ’drift’ ∆V(y) = E[V(Y1) | Y0 =

y]−V(y) for appropriate non-negative test functions V(y). Such ’Foster-Lyapunov’ criteria
stipulate the existence of a ’small set’ S (i.e. an accessible set S to which the chain returns
in a given number of steps with positive probability, uniformly bounded by below, see
section 5.2 in [44]) toward which the chain drifts in the sense that:

∆V(x) ≤ −f(x) + bI{x∈S}, (18)

for some ’norm-like’ function f(x) ≥ 1 and b < ∞. Now for the chain X̃, any compact
interval [0, s] with s > 0 is small. Indeed, it follows from (9) that for all x ∈ [0, s], the
minorization condition below holds:

Π(x, .) ≥ δs · Us(.), (19)

with δs = s× infy∈[0,s] fU(y) > 0 and denoting by Us(.) the uniform probability distri-
bution on [0, s]. When γ = 1 for instance, take V(x) = 1+ x. The affine drift related to X̃
is given by

∆V(x) = −cx+ E[U1],

with c = 1 − E[e−θ1∆T2 ] > 0. Choosing S = [0, s] with s ≥ 1 + 2E[U1/c], (18) is fulfilled
with f(x) = cV(x)/2 and b = E[U1] + c/2. Applying Theorem 15.0.1 in [44], we thus get
that X̃ is geometrically ergodic with invariant probability measure µ̃ such that µ̃(V) =∫∞
x=0 V(x)µ̃(dx) < ∞. In particular, µ̃ has finite expectation and there exist constants
r > 1, R <∞ such that for all x > 0:

∞∑
n=0

rn ‖Πn(x, .) − µ̃‖V ≤ RV(x), (20)

with ‖ν‖V = supψ:|ψ|≤V
∣∣∫ψ(x)ν(dx)

∣∣ for all bounded measure ν on the real line. When
V ≡ 1, ‖.‖V coincides with the total variation norm ‖.‖TV . For γ > 1, the results is proved
in a similar fashion by taking V(x) = 1+ xγ.
Finally, the last assertion of Theorem 2 immediately derives from Theorem 1 in [32].
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A.2 Proof of Theorem 3

Set X0 = X(0). Observe that for all t > 0, X(t) = XN(t)e
−θN(t)A(t), so that X(t) ≤ XN(t).

Hence we naturally have {X(t)→∞} ⊂ {Xn →∞}. Therefore, under (H1), we know that X̃
is positive recurrent with stationary distribution µ̃, so that in particular P(Xn →∞) = 0.
Furthermore, observe that for all t > 0, u ≥ 0:∫ t

s=0
I{X(s)≥u}ds =

N(t)∑
k=1

∫Tk
s=Tk−1

I{X(s)≥u}ds+

∫ t
s=TN(t)

I{X(s)≥u}ds.

Therefore, for all k ∈ N,
∫Tk+1

s=Tk
I{X(s)≥u}ds = I{Xk≥u} · ∆Tk+1 ∧

log(Xk/u)
θk

.

Now, applying the strong law of large number (SLLN) to the positive recurrent chain
((Xn, θn, ∆Tn+1))n∈N with invariant probability distribution µ̃(dx) ⊗ H(dθ) ⊗ G(dt), we
get that

n−1
n∑
k=1

∫Tk+1

s=Tk

I{X(s)≥u}ds→ ∫∞
x=u

∫
θ∈Θ

∫∞
t=0

t∧
log(x/u)

θ
µ̃(dx)H(dθ)G(dt). (21)

As we assumed mG = E(∆Tk) < ∞ for k ≥ 2, we have the following convergence for
the delayed renewal process: N(t)/t → m−1

G as t → ∞. Combined with (21), this yields
t−1
∫t
s=0 I{X(s)≥u}ds→ µ([u,∞[) as t→∞, with µ given by (11).

We thus proved that X(t) has a limiting probability distribution µ, which has density f(y)
given by

f(y) = m−1
G

∫
θ∈Θ

∫∞
t=0

f̃(yeθt)eθtḠ(t)dtH(dθ),

denoting by Ḡ = 1−G the inter-intake survival function.
Besides, if supΘ <∞, from (11), we immediately have that, for all u > 0, t > 0,

t∧ log 2
mG supΘ

Ḡ(t)µ̃([2u,∞[) ≤ µ([u,∞[) ≤ µ̃([u,∞[).

The distributions µ and µ̃ have thus exactly the same right tail behavior.

Assuming now that (H2) and (H4) are both fulfilled, we turn to the study of the trivari-
ate process {(X(t), θ(t), A(t))}t≥0. It may be easily seen as λ⊗H⊗G-irreducible and any
compact set [0, s] × [0, θ̄] × [0, a], with s > 0, θ̄ > 0, a > 0 is a ’petite set’ for the latter
(see [43] for an account of stochastic stability concepts related to continuous-time Markov
processes). Indeed, denote by Qt(. | (x0, θ0, a0)) the distribution of (X(t), θ(t), A(t)) con-
ditioned upon (X(0), θ(0), A(0)) = (x0, θ0, a0). One may easily check that its trace on
the event {N(t) = 1} has density fU(eθax − x0e

−θ0(t−a))eθaḠ(a)ga0(t − a) with respect
to λ(dx) ⊗ H(dθ) ⊗ λ(da). Hence, for all (x0, θ0, a0) ∈ [0, s] × [0, θ̄] × [0, a], we have the
minorization condition:

Qt(. | (x0, θ0, a0)) ≥ δ(s, θ̄, a) · Us ⊗H(. ∩ [0, θ̄])⊗ Ua, (22)
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with δ(s, θ̄, a) = (s×H([0, θ̄])× a) · inf
x∈[0,seθ̄a]

fU(x) · infv∈[t−a,t] ·g(v)Ḡ(a).
Following [38] (see Theorem 4.1 therein), let η, δ be such that 0 < η < δ and

consider the Lyapounov function V(x, θ, t) = (1 + xγ)(1 + θ)W(t) on R3+ with W(t) =

1+G(t)e−ηt
[
1+
∫∞
x=t e

δx G(x)

G(t)
dx
]
(notice that, under (H4),W(t)→∞ as t→∞). It may

be easily seen that the test function V belongs to the domain of the infinitesimal generator
G (see Eq. (5)) and that GV(x, θ, t) = −ηV(x, θ, t) + b(x, θ, t), where

b(x, θ, t) = (1+ xγ) (1+ θ) [z(t) − θγxγW(t)]

− ζ(t) [(1+ xγ)(1+ θ) − (1+ E [θ]) (1+ E [(x+U)γ])] ,

z(t) = η+
g(t)

Ḡ(t)
e−ηt

(
1− 2G(t) +

∫∞
u=t

eδuḠ(u)du

)
−G(t)e(δ−η)t.

Observe that b(x, θ, t)→ −∞ as (x, θ, t) tends to infinity. Hence, there exist s > 0, θ̄ > 0
and a > 0 large enough and b <∞ such that the following drift condition holds:

GV(x, θ, t) ≤ −ηV(x, θ, t) + bI{(x,θ,t)∈[0,s]×[0,θ̄]×[0,a]}. (23)

Then, (12) directly follows from Theorem 5.3 in [41].

A.3 Proof of Proposition 4

Given (X(0), A(0)) = (x0, a), we have for all T > 0,

X̄T = T−1

∫T1
t=0

X(t)dt+ T−1

N(T)−1∑
k=1

∫Tk+1

t=Tk

X(t)dt+ T−1

∫T
TN(T)

X(t)dt. (24)

The first term in the right-hand side of (24) being bounded by x0T1/T , it almost surely
converges to 0 as T →∞. Besides we have for all k ≥ 1,∫Tk+1

t=Tk

X(t)dt =
Xk

θk
(1− e−θk∆Tk+1).

Furthermore, by virtue of Theorem 2, assumption (H2) with γ = 1 ensures that mµ̃ =∫∞
x=0 xµ̃(dx) <∞ and consequently that

m̃ =

∫∞
x=0

∫∞
t=0

∫
θ∈Θ

x(1− e−θt)

θ
µ̃(dx)H(dθ)G(dt) <∞,

making the SLLN for the positive recurrent chain ((Xn, θn, ∆Tn+1))n≥1 applicable to∑
n≥1(1 − exp(θn∆Tn+1))Xn/θn (refer to Theorem 17.3.2 in [44] for instance). We thus

have that

N−1
N∑
k=1

Xk

θk
(1− e−θk∆Tk+1)→ mµ̃

∫∞
t=0

∫
θ∈Θ

1− e−θt

θ
H(dθ)G(dt) a.s., (25)
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as N → ∞. Combining (25) with N(T)/T → m−1
G a.s. as T → ∞, this entails that

the third term in (24) tends to 0 as T → ∞ and establishes (13). Notice that mµ =∫∞
t=0

∫
θ∈Θ(1− exp(−θt))/θH(dθ)G(dt)mµ̃/mG.

We now turn to the proof of the Central Limit Theorem (CLT). Using again Theorem 2,
we have that

∫
x2µ̃(dx) <∞ when (H2) holds for some γ ≥ 2, so that∫∞

x=0

∫∞
t=0

∫
θ∈Θ

x2(1− e−θt)2

θ2
µ̃(dx)H(dθ)G(dt) <∞.

By virtue of the CLT for positive recurrent chains (see Theorem 17.0.1 in [44]), we have that
N−1/2

∑N
k=1{(1− e−θk∆Tk+1)Xk/θk − m̃} converges in distribution to N (0, σ̃2) as N→∞,

with σ̃2 = Eµ[(X1(1−e
−θ1∆T2 )
θ1

−m̃)2]+2
∑∞
k=2 Eµ[(X1(1−e

−θ1∆T2 )
θ1

−m̃)(
Xk(1−e−θk∆Tk+1 )

θk
−m̃)].

One may then easily deduce (14) from (24) with σ2 = σ̃2/mG.

A.4 Proof of Theorem 5

Observe first that (16) immediately follows from (15) by virtue of standard properties of
Wasserstein metrics. In order to prove (15), we construct a specific coupling of the laws
LX̂(T) and LX(T) . Let (Vk)n∈N, (V ′k)k∈N and (V ′′k)k∈N be three independent sequences of
i.i.d. r.v.’s, uniformly distributed on [0, 1]. For all (n, k) ∈ N2, set

∆Tk = G−1(Vk), Uk = F−1
U (V ′k), θk = H−1(V ′′k),

∆T̂
(n)
k = Ĝ(n)−1

(Vk), Û
(n)
k = F̂

(n)−1

U (V ′k), θ̂
(n)
k = Ĥ(n)−1

(V ′′k),

and define recursively for k ∈ N, Xk+1 = Xke
−θk∆Tk+1+Uk+1 and X̂

(n)
k+1 = X̂

(n)
k e−θ̂

(n)
k ∆T̂

(n)
k+1+

Û
(n)
k+1 with X0 = X̂

(n)
0 = x0, as well as Tk+1 = ∆Tk+1 + Tk and T̂ (n)

k+1 = ∆T̂
(n)
k+1 + T̂

(n)
k with

T0 = T̂
(n)
0 = 0. For notational convenience, the superscript (n) is omitted in the sequel.

Using in particular the fact that x ≥ 0 7→ e−x is 1-Lipschitz, straightforward computations
yield

∣∣X̂k − Xk
∣∣ ≤ x0{ k∑

i=1

θi
∣∣∆Ti+1 − ∆T̂i+1

∣∣+ k∑
i=1

∆T̂i+1
∣∣θi − θ̂i∣∣}

+

k∑
i=1

Ui(

k−1∑
j=i

θj
∣∣∆Tj+1 − ∆T̂j+1

∣∣+ k−1∑
j=i

∆T̂j+1
∣∣θj − θ̂j∣∣) +

k∑
i=1

∣∣Ûi −Ui∣∣ (26)

Turning now to the coupling construction in continuous time, defineN(t) =
∑
k≥1 I{Tk≤t}

and N̂(t) =
∑
k≥1 I

{bTk≤t}, as well as X(t) = XN(t)exp(−θN(t)(t − TN(t))) and X̂(t) =

X̂N̂(t)exp(−θ̂N̂(t)(t − T̂N̂(t))) for t ≥ 0. Set also T+
k = Tk ∨ T̂k and T−

k = Tk ∧ T̂k for all
k ∈ N and observe that

mH(ΓX̂(T) , ΓX(T)) ≤ max
0≤k≤N(T)∨N̂(T)

Mk, (27)
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where

Mk = sup
T+
k ≤t<T

−
k+1

∣∣X(t− (T̂k − Tk)+) − X̂(t− (Tk − T̂k)+)
∣∣+ ∣∣Tk − T̂k

∣∣
+ sup
T−
k+1≤t<T

+
k+1

∣∣X(t− (t− Tk+1)+) − X̂(t− (t− T̂k+1)+)
∣∣+ ∣∣Tk+1 − T̂k+1

∣∣ ,
denoting by x+ = 0 ∨ x the positive part of any x ∈ R. It follows from easy calculations
that

Mk ≤
∣∣Xk − X̂k

∣∣+ Xk(∆Tk+1 ∧ ∆T̂k+1)
∣∣θk − θ̂k

∣∣+ k∑
i=1

∣∣∆Ti − ∆T̂i∣∣
+
∣∣Xk+1 − X̂k+1

∣∣+ ∣∣Uk+1 − Ûk+1
∣∣+ k+1∑

i=1

∣∣∆Ti − ∆T̂i∣∣ .
By taking the expectation in (27) and then using the bounds Xk ≤ x0 +

∑
1≤i≤kUi and

(26) combined with Wald’s lemma, straightforward computations yield

E[m
(T)
M2

(X̂(T), X(T))] ≤ (1+ E[N(T) ∨ N̂(T)]){2x0(mHM1(G, Ĝ) +mĜM1(H, Ĥ)

+ 3M1(FU, F̂U) + 2M1(G, Ĝ) + (x0 +mFU)(T +mG +mĜ)

×M1(H, Ĥ)} + E[(1+N(T) ∨ N̂(T))2]mFU(mHM1(G, Ĝ)

+mĜM1(H, Ĥ)),

denoting bymF (resp. mF̂) the mean of the distribution function F (resp. of the estimate F̂),
F being any of the distribution functions G, FU or H (notice that mF̂ ≤ vF+mF). Besides,
there exist constants C, C′ <∞ s.t. E(N(T))∨E(N̂(T)) ≤ CT and E(N(T)2)∨E(N̂(T)2) ≤
C′T2 (refer to Propositions 6.1 and 6.3 of chap. V in [4] for instance). Observe that the
constants C and C′ may be chosen independent from the integer n indexing the sequence Ĝ,
since by assumption the sequences mĜ and σ2

Ĝ
are bounded. This establishes the desired

result (15).
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