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Abstract—In this paper, we show some results about 3D
urban scenes reconstruction using a fisheye stereovision
setup. We propose an analytical analysis of epipolar geometry
of the system and an analytical description of tools to
compute a 3D point cloud from matched pixels. The novelty
is that we do not rectify the images and that we match
points along 3D or 2D epipolar curves. The matching process
is based on a global dynamic programming algorithm that
we adapt to take into account continuous epipolar curve
equation. We show 3D point cloud in the case of synthetic
images.
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I. INTRODUCTION

This paper presents a work that aims to compute 3D
structure of an urban scene by using a stereo sensor
based on fisheye cameras. From application point of view,
the objective is to increase the accuracy of a satellite
based localization system by correcting errors due to the
multipath effects caused by reflection of satellite signals
on urban objects. For this, we need to gather the structure
information in a precise 3D model of the surrounding car
environment to calculate pseudorange errors.

We have to model all the buildings and streets around
the car. Thus, a wide field of view is required. An obvious
solution is to use several pinhole cameras. Other authors
have proposed more original sensors like catadioptric
sensors. A catadioptric system is a combination of lenses
and mirrors. Depending on the shape of the mirror,
deformations are different. These sensors are usually used
to obtain an omnidirectional view of the environment by
using spherical, parabolic or hyperbolic shapes for the
mirror.

In [1], Gonzalez-Barbosa develops an omnidirectional
stereovision system for the autonomous navigation
application of a robot in natural environments. He uses
parabolic catadioptric sensors.
Kawanishi et al. in [2] propose omnidirectional
stereovision from a mobile robot equipped with one
catadioptric hyperbolic camera. They are able to compute
3D distances and model the environment by matching the
images obtained at different positions with an estimation
of the robot’s movement. They track interest points and
automatically compute the essential matrix.
Ragot in [3] uses two hyperbolic mirror cameras. He
mainly proposes calibration method with specific test

patterns, and presents a volumetric way to reconstruct the
scene in 3D.

A fisheye camera delivers a wide field of view. It is
smaller and lighter than a catadioptric sensor and easier
to install.

Shah and Aggarwal in [4] present an autonomous
mobile robot navigation system in an indoor environment.
This system uses two fisheye sensors calibrated using
a polynomial distortion model. The robot can detect
walls and compute a 3D model of corridors, after images
rectification and lines extraction according to geometric
knowledge of the environment: horizontal and vertical
lines can easily be used to distinguish walls, floor and
ceiling.
Mičušı̀k et al. in [5] propose a 3D reconstruction of the
surrounding scene with two or more uncalibrated fisheye
images. They automatically detect point correspondences
to process an autocalibration.
Li in [6] and [7] defines and computes spherical disparity
maps, and draws 3D representations from the computed
3D distances. He calibrates his sensors and transforms
images to get horizontal epipolar lines in order to apply
existing standard matching points process. Considering
Li’s definition of spherical disparity, our paper clarifies
how to compute 3D points’ position.
Herrera et al. in [8] propose fisheye stereovision in forest
environments. The objective is to compute disparity
maps with no image rectification. They start by a
segmentation of images to separate textures of interest
and discard those that are not useful. Then, they match
trees by using fuzzy logic with some parameters and
smooth the results with a global neuronal network
based matching algorithm. A noticeable difference
between Herrera et al. and previously cited authors, is
that they place the cameras in direction of sky, not in
a frontal direction. This way, the whole surrounding
scene is really acquired, and most important information
are not in the center of images but at the periphery. By
the way, our work shares this feature with Herrera’s work.

In our work, we use fisheye lenses which optical axis
are vertical and mounted on cameras placed along the
longitudinal axis of the car. This stereo rig allows us to
reach 3D information 360 degrees around the vehicle by
applying a stereo matching algorithm on a single image
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Figure 1. Epipolar and point correspondence geometry. F and F ′ are
indicating the centers of the two cameras. The camera baseline FF ′ and
the point P form an epipolar plane. Epipolar lines are in the epipolar
plane and intersect the baseline FF ′ at the epipoles. p and p′ are the
corresponding image points of P . Figure issued from the Horaud and
Monga’s book [9].

pair. High resolution cameras are used to compensate for
the optical effect of the fisheye projection process.

The paper is organized as follows. The section II
presents an analytical description of the epipolar geometry
for a calibrated fisheye stereovision system, and how to
retrieve 3D points coordinates from matched points. The
section III describes the matching algorithm we use to
compute 3D point cloud and presents some results on
synthetic images.

II. EPIPOLAR GEOMETRY

A. Generalities

Epipolar geometry is described by Hartley and Zisser-
man in [10] as the “intrinsic projective geometry between
two views”. Epipolar geometry for two pinhole cameras
is illustrated in figure 1. This property is very interesting
and largely exploited in most of the matching algorithms
to reduce the search space of homologous pixels in several
images. For an image pair, the homologous point of each
pixel in the first image is located on a line in the second
image. Often, a calibration and a rectification steps are
computed to make epipolar lines parallel and coincident
with the rows of the images. In this configuration, a scan-
line matching process can be used.

B. Fisheye case study

As illustrated in figure 2, fisheye projection model is
a spherical projection that has two epipoles e1 and e2,
contrary to conventional pinhole model. Many authors like
Li in [6] and Ramalingam in [11] show the main models
used for fisheye lens. Table I gives spherical projection
models that can be used to model fisheye lens. Each model
connects the angle of the incident ray and the radius of
the projected point’s position on the image plane. In this
table, θ is the colatitude angle, ρ is the radius on the image
plane and f is the focal length of the lens (see figure 2).
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Figure 2. Spherical projection of a fisheye lens mounted on a camera.
The point A corresponds to the intersection of the ray passing through
a viewed point of the scene and the optical center with the hemisphere’s
(lens) surface, and p its projection on the image plane.

Table I
MAIN FISHEYE PROJECTION MODELS.

Projection Expression of radius Expression of angle
ρ = projf (θ) θ = proj−1

f
(ρ)

Equidistant ρ = fθ θ = ρ
f

Orthographic ρ = f sin(θ) θ = arcsin( ρ
f
)

Equisolid ρ = 2f sin( θ
2
) θ = 2arcsin( ρ

2f
)

Stereographic ρ = 2f tan( θ
2
) θ = 2arctan( ρ

2f
)
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Figure 3. Calibrated fisheye stereo sensor. The point P of the scene
intersects left and right hemispheres respectively in Pl and Pr , and is
viewed as pl and pr in the recorded images of both cameras.

According to Arican and Frossard in [12], the principle
of epipolar geometry remains true for others projection
models like the fisheye projection model. In this case,
epipolar lines are transformed in 3D epipolar curves
described on the lens surface i.e. circle arcs. As in the
case of pinhole cameras, a calibration and a rectification
steps allow to make 3D epipolar curves identical for both
lenses.

In this configuration, illustrated in figure 3, the points
el1, Ol, el2, er1, Or and er2 lie on the same line



and the epipolar curves are the intersection of the
plane (Ol, P,Or) and both fisheye lenses. Both epipolar
curves are projected on the camera sensors using one of
the projection model presented in Table I to yield two
identical 2D epipolar curves which is possible to match
points using adapted scan-line techniques.

C. Epipolar curve calculation

Let pi be a pixel of the first image (in our case i can
be l for the left sensor or r for the right sensor) which
coordinates are (xi, yi) in the image centered coordinates
system. In the image centered polar reference frame,
coordinates of pi are given by:

pi

(
ρi =

√
x2i + y2i

ϕi = arctan( yixi
)

)
polar frame

The projection Pi of pi on the lens’ hemisphere is
obtained thanks to one of the projection models previously
described:

Pi

 R
θi = proj−1f (ρi)

ϕi


spherical frame

The conversion to 3D Cartesian coordinates gives:

Pi

 Xi = R sin(θi) cos(ϕi)
Yi = R sin(θi) sin(ϕi)

Zi = R cos(θi)


Cartesian frame

The 3D epipolar curve is described by the circle arc
passing through Pi and the epipoles ei1 and ei2 and which
center is the optical center of the image. Its equation is: R cos(γ)

R cos(ηi) sin(γ)
R sin(ηi) sin(γ)


Cartesian frame

where R is the radius of the hemisphere, η is the rotation
angle around the x axis, γ is varying in [0;π] and

cos(ηi) =
sin(θi) sin(ϕi)√

1− sin(θi)2 cos(ϕi)2
(1)

and sin(ηi) =
cos(θi)√

1− sin(θi)2 cos(ϕi)2
(2)

In the spherical coordinates system, the equation is
given by: R

Θ = arccos(sin(ηi) sin(γ))

Φ = ± arccos( cos(γ)√
1−(sin(ηi) sin(γ))2

)


spherical frame

Finally, the equation of the epipolar curves projected on
the camera plane is given by following expression:(

projf (Θ)

Φ

)
polar
frame

=

(
xi = projf (Θ). cos(Φ)

yi = projf (Θ). sin(Φ)

)
centered

frame

Note that in the calibrated case illustrated in figure 3,
ηi are the same angle. In the following, ηi = η for all i
values.

Figure 4. The colored half-spheres represent the two fisheye lenses.
Two straight lines issued from the optical centers and passing through
the projection of the scene point on the hemisphere are merging in the
exact position of the observed scene point. This figure has been obtained
by applying the described principles in a mathematics software.

D. Position of points in space

This section describes two solutions to compute a 3D
point cloud knowing the points pairs matched along the
epipolar curves, which equations are given in the previous
section.

1) From the projections on both hemispheres: As it is
illustrated in figure 4, the projected straight lines of a
pair of corresponding points on both hemispheres cross
themselves in the position of the original scene’s point in
space. The coordinates of P , in the left camera Cartesian
frame (Ol, xl, yl, zl), can be expressed in terms of the co-
ordinates of its projections Pl(R, θl, ϕl) and Pr(R, θr, ϕr)
(see figure 3).

In the left camera frame (Ol, xl, yl, zl), the coordinates
of optical centers are:

Ol

 0
0
0


left frame

and Or

 bx
0
0


left frame

where bx is the baseline of the stereo system i.e. the
distance between optical centers.

The OlP and OrP are given by:

OlP

 t sin(θl) cos(ϕl)
t sin(θl) sin(ϕl)

t cos(θl)


left frame

with t ∈ [0; +∞[

OrP

 bx + t′ sin(θr) cos(ϕr)
t′ sin(θr) sin(ϕr)

t′ cos(θr)


left frame

with t′ ∈ [0; +∞[

P is the intersection of OlP and OrP and its coordi-
nates are given by replacing t or t′ by:

t =
bx

sin(θl) cos(ϕl)− cos(θl) tan(θr) cos(ϕr)

or:

t′ =
bx

cos(θr) tan(θl) cos(ϕl)− sin(θr) cos(ϕr)



2) From αi angles: In [7], Li proposes to compute
spherical disparities (spherical normalized disparity is de-
fined as αr − αl), and the distance between the point P
and the center of both hemispheres. Let ll and lr be these
two distances respectively from the center of the left and
right lens. As illustrated in the figure 3, by applying the
sine law, we get (see figure 3):

ll =
bx sin(αr)

sin(αr − αl)
and lr =

bx sin(αl)

sin(αr − αl)
Hence, one can exploit and extend these results to

compute coordinates of scene’s points. αi values can be
obtained by two ways:
• with the relation αi = arccos(sin(θi) cos(ϕi)),
• or by using γ; in fact α and γ are the same angles, and

when we look through the epipolar curve by varying
γ, we obtain the α of a specific point.

Finally, the coordinates of P in the left reference frame
are defined by:

P

 ll cos(αl)
ll sin(αl) cos(η)
ll sin(αl) sin(η)


left frame

III. EXPERIMENTAL RESULTS

In this section, we present 3D point cloud obtained on
a synthetic image sequence. Figure 5 present an image
pair of the sequence. The height and the width of the
images are respectively 1235 pixels and 1235 pixels. The
fisheye cameras cover a 180 degree field of view. The
baseline is equal to 2 meters.

We use the global dynamic programming algorithm
proposed in Forstmann’s work in [13] to find dense
correspondences. It takes advantage of epipolar constraint
described in the previous section to match points along
epipolar curves.
Dynamic programming is a graph-based method. We
compute a graph for each couple of epipolar curves. Most
of the existing works ( [4], [7] ) transform the spherical
images to yield rectified images where epipolar lines are
horizontals in order to apply a standard and well-known
matching points algorithm. We do not choose to follow
the same approach, because rectification generally induce
a loss of information due to interpolation steps of the
rectification process. We propose to scan epipolar curves
by varying γ in range [0;π].

To get curves passing through all the pictures’ pixels,
we could compute curves for each pixel. It is unnecessary
because a pixel can be crossed by many curves, and
we would compute several times same curves. To avoid
a major part of unnecessary computation, we compute
curves by choosing specific reference points. The solution
is to compute curves for each points of the vertical line
in the middle of the projected image disc. By this way,
we are sure to get a maximum number of points crossed

(a) Left image (back).

(b) Right image (front).

Figure 5. Examples of a pair of synthetic fisheye images. (a) and (b) are
the viewed images. The red cross at position (387,233) shows a chosen
point, used to calculate the epipolar curve drawn in white. In a calibrated
configuration, the curve is the same on both images and passes through
the same points.

by at least one curve (in practice, few points are missing
but the impact is negligible), and we compute only as
many curves as the number of pixels of the image disc’s
diameter. We can note that points near epipoles will be
part of more curves than the others.
Each epipolar curve does not pass through the same
number of pixels in the pictures. The longest curves are
these which pass at the edge of projected image disc, and
the shortest are lines between both epipoles.
For practical reasons, we choose to set the same pixel
length to all indexed curves. That means that shorter
epipolar curves will contain many successive times same
points in their indexed version. It is not an issue if
we ensure that these points correspond exactly to same
angles, hence, correspondences are not altered. In fact,



(a) Longitude disparity map.

(b) Colatitude disparity map.

(c) Spherical disparity map.

Figure 6. Examples of disparity maps issued from the couple of
synthetic fisheye images shown in figure 5. (a) is the longitude disparity
map (ϕ angles), (b) the colatitude disparity map (θ angles) and (c) the
spherical disparity map (α angles).

we set the pixel length of indexed curves at π
2 times the

pixel diameter of the image disc rounded up, this value
corresponds to the length of the half perimeter of the
disc.
Knowing the total pixel length, we can do varying γ
with a step of π

indexed curve’s pixel length to get indexed curves
from epipolar curves (π being the total variation of
γ). Then, for each obtained curves’ point, we apply a

specific sampling. We want to get values for positions
centered in pixels, so the sampling consists of taking
the entire part of computed coordinates and to add 0.5.
We use these subpixel coordinates for the computation
of points’ associated angles (longitude ϕ and colatitude θ).

To illustrate the results, we compute longitude (based
on ϕ angles), colatitude (based on θ angles) and spherical
(based on α angles) normalized disparities, which is the
difference between right and left angles for a given point
in space (angles are drawn in figure 3). Disparity maps
in figure 6 take about 50 seconds to compute with our
algorithm run in a desktop computer equipped with a
Core i3-2120 CPU. The proposed approach is different
from Li’s approach in [7], who defines and uses only the
spherical disparity.

Figures 7a, 7b and 7c show the 3D point cloud we
obtained by applying equations described in section II-D
and by mapping the texture extracted from the images.

IV. CONCLUSION

This paper deals with 3D point cloud computation of
urban areas using a fisheye stereovision system. After a
brief state of the art of the domain, we propose an ana-
lytical study of the epipolar geometry for fisheye stereo.
Matching process is based on the adaptation of the global
dynamic programming algorithm proposed by Forstmann
in [13]. Image pairs are not rectified and epipolar curves
are not the rows of the images. We show results on
synthetic images. In future works, we will focus on 3D
cloud generation from fisheye images acquired in real
conditions and on VRML model computation.
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