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Abstract. We build a cartesian closed category, called Cho, based on event structures.
It allows an interpretation of higher-order stateful concurrent programs that is refined and
precise: on the one hand it is conservative with respect to standard Hyland-Ong games
when interpreting purely functional programs as innocent strategies, while on the other
hand it is much more expressive. The interpretation of programs constructs composition-
ally a representation of their execution that exhibits causal dependencies and remembers
the points of non-deterministic branching.

The construction is in two stages. First, we build a compact closed category Tcg.
It is a variant of Rideau and Winskel’s category CG, with the difference that games and
strategies in Tcg are equipped with symmetry to express that certain events are essentially
the same. This is analogous to the underlying category of AJM games enriching simple
games with an equivalence relations on plays. Building on this category, we construct the
cartesian closed category Cho as having as objects the standard arenas of Hyland-Ong
games, with strategies, represented by certain events structures, playing on games with
symmetry obtained as expanded forms of these arenas.

To illustrate and give an operational light on these constructions, we interpret (a close
variant of) Idealized Parallel Algol in Cho.

1. Introduction

In game semantics, computation is represented within a two-player game played between
the program and its execution environment – the program is often called Player and the
execution environment Opponent. The two players make moves corresponding to computa-
tional events: the program calling an external function is a Player move, and this function
returning is an Opponent move. Originally motivated by the very foundational quest of
understanding higher-order sequentiality [HO00, AJM00a], game semantics developed into
a rich subject, with a wide scope spanning logical aspects of computation, through the
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Curry-Howard correspondence, to the conception of new decision algorithms for equiva-
lence or verification problems on higher-order programs.

Game semantics often plays one of the two following roles in the literature.
(1) A syntax-free, compositional operational semantics. The strategy interpreting a

program is a syntax-free object – in essence it is a representation of the behaviour of the
program, with no information as to how this behaviour is written down in the syntax. In
particular, it abstracts cleanly from the bureaucratic aspects of the syntax and reduction
of the language under examination. It is by nature compositional, because the strategy
for a term is calculated by induction on its syntax tree, following the methodology of
denotational semantics. In particular, the application of one term to another is interpreted
as the composition of the corresponding strategies.

A compositional fine-grained description of the execution of higher-order programs is a
useful tool – for instance, it provides methodologies to study problems such as termination
or complexity in the abstract, in a syntax-free manner [CH10, Cla15]. Such a representa-
tion is also key to further program analysis. It can provide an invariant for compilation
[Ghi07, Sch14], or a compositional model construction on which to perform model-checking
[AGMO04]. Even in the purely functional case, it was recently proposed by Jones et al
[BJ16] as a convenient closure-free way to compute the partial evaluation of a term.

Although historically the focus on game semantics has often been on the second role
mentioned below, a good part of its recent developments have been indeed as a syntax-
free, compositional operational semantics. In this direction, it is to be compared with
various similar frameworks. Normal form bisimulations [LL07] are close relatives, as recently
emphasized by Levy and Staton [LS14]. Recent developments of the geometry of interaction
also pursue similar methods and objectives [HMH14, LFVY15]. Finally, Hirschowitz and
collaborators have provided a very general framework in which one can give syntax-free
descriptions of different kinds of programs [HP12, EHS15].

(2) An observational classification of effects. Beyond the use of game semantics as an
operational semantics, the separation of the observable behaviour of a term from its syntax
allowed researchers to study computational features of programs in terms of the observations
that they permitted. One of the most acclaimed achievements of early game semantics is
the identification of conditions on strategies (visibility, innocence, well-bracketing) in the
context of Hyland-Ong games, that characterize, not syntactically but observationally, the
behaviour of programs having access to certain effects. Indeed, innocent well-bracketed
strategies are essentially purely functional programs [HO00]: relaxing innocence to visibility
captures the use of ground state [AM96] while removing well-bracketing captures control
operators [Lai97]. Finally, removing visibility captures terms that have access to higher-
order references [AHM98]. This is known as the semantic cube or Abramsky cube.

Each combination of these conditions corresponds to a certain programming language,
for which the strategies have exactly the same observation power as programs. In many
cases the resulting model is fully abstract, without the need for a quotient. This allowed
researchers in game semantics, starting with Ghica and McCusker [GM03], to give decision
procedures for observational equivalence of programs in certain programming languages
where the fully abstract games model is algorithmically presented [MW08, CHMO15].

Despite this impressive flexibility, each game semantics model comes with its limita-
tions. The notion of play, which is at the heart of any game semantics model, specifies the
observational power of the execution environment. Whereas the capabilities of Player can
be adjusted to a certain extent via conditions on strategies, this cannot be pushed further
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than what is wired into the model construction. For instance in Hyland and Ong’s original
model, plays are well-bracketed and visible for both players – it follows that we only observe
parts of programs visible to an evaluation context with no access to higher-order state and
control operators. Clearly that can be solved; for instance by allowing more general plays
as in [AHM98]. Then again, the whole model has to be rethought if one wishes to allow
Opponent to be concurrent. The same line of thought led Ghica and Tzevelekos to define
system-level game semantics [GT12], in an effort to take as few assumptions as possible
as to the power of the execution environment. We advocate here another option, namely
causal models.

Causality. In causal game semantics, a program is not represented by an enumeration of all
its possible interactions with an Opponent of observational strength wired into the model.
Instead, it is represented by an abstract structure displaying information about the causal
choices behind the program’s actions. On the one hand, this means that the model is
more intensional and most likely further away from quotient-free full abstraction results.
On the other, the representation makes absolutely no assumption as to the computational
features available to the execution environment. This makes the model more modular, and
a finer representation: from the causal game semantics of a program, it is always possible
to recover – in an effective manner – the set of plays corresponding to an observation by
a certain kind of environment. The causal representation has other advantages. For in-
stance, as long advocated by Melliès, it allows us to get rid of artificialities in the standard
play-based composition mechanism for innocent strategies, making more explicit the fact
that it is relational (this is key to the full completeness results for fragments of linear logic
[AM99, Mel05]). Furthermore, the importance of causal representations for programs has
been advocated in the past for various purposes, ranging from error diagnostics [BFHJ03]
to the study of reversible aspects of computation [CKV13]. Last but not least, causal rep-
resentations display the evolution of a concurrent system with partial orders rather than
interleavings (it is “truly concurrent”). Such representations avoid the state explosion prob-
lem of interleaving-based ones [God96], leading to potential applications to the verification
of concurrent systems.

Contributions. Giving causal representations of the execution of programs is not a new
problem. Such models have been for various process languages, starting from CCS [Win86],
up to (recently) the full π-calculus [EHS15, CKV15]. There seem to exist few developments
on truly concurrent semantics of concurrent languages with shared state, with the notable
exception of a Petri net semantics for a simple imperative programming language [HW06].

In this paper, we give a general framework in which one can define such truly concurrent
models for higher-order concurrent languages, with various synchronization primitives. This
has the form of a cartesian closed category of arenas and concurrent strategies, which are
certain event structures. The approach is conservative over the category of Hyland-Ong
innocent strategies for PCF (and over the more recent work [TO15] in the non-deterministic
case), in the sense that a pure term is interpreted as its forest of P-views. In this paper, we
develop this category in detail, and illustrate it by spelling out the interpretation of Idealized
Parallel Algol (IPA), a higher-order concurrent programming language with shared state
and semaphores as synchronization primitives. The methodology is that of game semantics,
which provides a well-rooted hope that any of the many languages that one can model in
game semantics could be given a truly concurrent representation in this framework as well.
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Outline. In Section 2, we give some basic ideas behind the formalization of game semantics
on top of event structures, and introduce the key issues that we will have to solve in order
to push these ideas to a fully-fledged games model. In particular, we will show that we
need to move to a setting of event structures with symmetry, in order to handle uniformity
of strategies with respect to replicated resources. In Section 3, we introduce our basic
framework of games with symmetry, called thin concurrent games. This yields a category
Tcg of uniform strategies. The category Tcg is further examined in the following two
sections: first, strategies are consider up to isomorphism, ignoring symmetry in the game:
in Section 4 we show that Tcg is compact closed up to isomorphism of strategies. Then we
introduce weak isomorphism, that relates strategies that play the same moves only up to
symmetry. In Section 5 we address the challenging task of proving that this is preserved by
composition – from Section 4 we inherit the compact closure of Tcg up to weak isomorphism
also. Then, we apply Tcg. In Section 6, we use it to construct our cartesian closed category
Cho. Finally in Section 7, we illustrate Cho by describing the interpretation of IPA.

2. Arenas, concurrent strategies, and uniformity

This section will stay at a mostly informal level, and is best read with some basic familiarity
with Hyland-Ong games. It should be understandable without fluency in event structures
or the games based on them, but the reader interested in learning the details of the model
should certainly start with [CCRW].

2.1. Preliminaries on Idealized Parallel Algol. Before presenting our game semantics,
we fix a syntax (inspired by [GM08]) for Idealized Parallel Algol (IPA). It will not be exactly
the same language as in [GM08] – notably, it lacks semaphores. We do not need them
because we do not aim to prove any full abstraction result in this paper; and the language
is mostly here to fix notations and for providing examples and illustrations. Indeed, the
focus on the paper is on the model construction rather than its applications, which will
come later in companion papers.

The types of IPA are the following.

A,B ∶∶= com ∣ B ∣ N ∣ A → B ∣ ref

The type com is a type of commands, which returns no useful value (if it returns at
all, it returns skip), but may perform read/write operations on the memory. The types N
and B are types for expressions that (if they return) return respectively a natural number
or a boolean. Finally, ref is the type for integer variables. Note that we consider active
expressions, i.e. the evaluation of a term of type B or N can trigger side effects.

Raw terms of IPA are described as follows.

M,N ∶∶= x ∣MN ∣ λx.M ∣ Y ∣
tt ∣ ff ∣ ifMN1N2 ∣
n ∣ succM ∣ predM ∣ iszeroM ∣
skip ∣M ;N ∣M ∥N ∣
newref r inM ∣M ∶= N ∣!M ∣mkvar

The first three lines describe the syntax of PCF [Plo77]. The fourth line describes
commands and combinators for them. Finally, the fifth line gives the combinators for
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Γ ⊢M ∶ com Γ ⊢ N ∶ com

Γ ⊢M ∥N ∶ com

Γ ⊢M ∶ com Γ ⊢ N ∶ X

Γ ⊢M ;N ∶ X

Γ ⊢M ∶ ref Γ ⊢N ∶ N

Γ ⊢M ∶= N ∶ com

Γ, x ∶ ref ⊢M ∶ X

Γ ⊢ newref x inM ∶ X
Γ ⊢M ∶ B Γ ⊢ Ni ∶ X

Γ ⊢ ifMN1N2 ∶ X

Γ ⊢M ∶ N→ com Γ ⊢ N ∶ N

Γ ⊢mkvarMN ∶ ref

Figure 1. Typing rules of IPA

manipulating variables. We include the so-called bad variable constructor [AM96], but it
will only play a very minor role in our development.

These terms are subject to mostly standard typing rules. We give most of them in Figure
1, omitting the standard rules for the λ-calculus, the fixpoint combinator, and constants.
By convention, we use X to range over ground types: com,B,N. By abuse of notation, we
will also use N and B respectively for the sets of (total) natural numbers and booleans.

Although some of our typing rules seem restricted to output ground types, the full rules
can be derived as syntactic sugar. For instance, a version of if that eliminates to ref can
be obtained as:

Γ ⊢M ∶ B Γ ⊢Ni ∶ ref

Γ ⊢mkvar (λx. ifM (N1 ∶= x) (N2 ∶= x)) (ifM !N1 !N2) ∶ ref

It is an easy verification that the other rules can be generalized similarly.
The language can be equipped with standard (small-step) operational semantics, see

[GM08] for details. We omit it here since it will play no role in the technical development.

2.2. Partial orders and conflicts for strategies. We now start introducing our seman-
tics. In the remainder of this section we introduce gradually the main ideas behind our
model, relying as much as possible on examples. Our starting point will the standard
Hyland-Ong innocent semantics for PCF, which we will use to motivate concurrent games
on event structures. This section will culminate on the issues of replication and uniformity,
which will prompt the developments of Sections 3, 4 and 5.

2.2.1. Dialogue games. Hyland-Ong games formalize the intuition that a program is a strat-
egy having a dialogue with its execution environment. A possible dialogue on the type
B → B → B → B appears in Figure 2. The diagram is read from top to bottom. Each
move is either by Player or Opponent, and is either a Question or an Answer. Questions
correspond to variable calls, whereas Answers indicate a call terminating. The dashed lines
between moves (traditionally called justification pointers) convey information about thread
indexing; in this example they are redundant but become required at higher types – we will
see more on them later.

In natural language, this diagram would read: “The environment starts the evaluation
of a term of type B → B → B → B by interrogating its return type (−,Q). The evaluation
requires information on the first argument, so the term triggers its evaluation by playing
under the corresponding component of the type (+,Q). The evaluation of the argument
terminates with value tt (−,A). Knowing that its first argument is tt, the term now needs
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B → B → B → B

q (−,Q)

q
✐ ❣ ❢ ❞ ❜ ❛ ❴

(+,Q)

tt

✤

(−,A)

q
⑧

⑤
①

✉
r

♦ ♠

(+,Q)

tt

✤

(−,A)

tt
✘

✛
✢

✤
✦

★
✫

(+,A)

Figure 2. A dialogue on B→ B→ B→ B

information on its second argument (+,Q). This argument returns tt (−,A), and now
the term computes and returns tt at toplevel (+,A).” The reader should recognize here a
description of an execution of if .

In Hyland-Ong games, Sequential innocent strategies consist of sets of dialogues as
above, where Opponent moves are justified by the preceding one – such dialogues are known
as P -views. A strategy for a term of PCF contains several such dialogues, specifying the
term entirely. The full strategy for if contains in total four maximal P-views, displayed in
Figure 3. Such non-empty sets of P-views (satisfying further conditions: determinism and

B → B → B → B

q (−,Q)

q
♣ ♠ ❥ ❣ ❞ ❜ ❴

(+,Q)

tt

✤

(−,A)

q
✍

☛

✂
①

t

(+,Q)

b

✤

(−,A)

b

✫
★

✦
✤
✢

✛
✘

(+,A)

B → B → B → B

q (−,Q)

q
♣ ❧ ❥ ❣ ❞ ❛ ❴

(+,Q)

ff

✤

(−,A)

q

✘

✏
✟

(+,Q)

b

✤

(−,A)

b
✘

✛
✢

✤
✦

★
✫

(+,A)

Figure 3. Maximal P -views for if

well-bracketing) are usually called well-bracketed innocent strategies. Because of their corre-
spondence with certain normal forms (PCF Böhm trees [Cur98]), they are the cornerstone
of Hyland-Ong games and of the full abstraction results they allowed.

2.2.2. Partially ordered dialogues. In Hyland-Ong games, every P-view is a total order,
meaning that the whole sequential innocent strategy is a tree. In our framework, we question
this premise. For instance, informally, the intuitive behaviour of the parallel composition
operation ∥∶ com → com → com of IPA is most elegantly represented as in Figure 4.

The diagram of Figure 4 is analogous to the previous ones, but is now partially ordered
rather than totally ordered. The relation _ denotes immediate causality; it was unnecessary
before, as it coincided with chronological contiguity. The justification pointers remain – we
will see more on their precise nature later. Note that in the standard game semantics for



CONCURRENT HYLAND-ONG GAMES 7

com → com → com

run

✴ss{ ♦♦♦♦♦♦♦

✬ppw ❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣ (−,Q)

run
❧

❥ ✐ ❣ ❡ ❝ ❜

❴���

run
✇

♦
❤

❴���

(+,Q)

done

✗ ''.❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲❲

✤

done

✎ ##+❖❖❖❖❖❖

✤

(−,A)

done
✘

✚
✢

✤
✦

✩
✫

(+,A)

Figure 4. A partially ordered dialogue

IPA [GM08], this partial order would be only implicit; and given by all the possible linear
orderings of the partial order above. Here instead, the partial order will be the first-class
object of interest. Strategies, in particular, will be partially ordered.

2.2.3. Non-determinism. Concurrent languages are, in general, non-deterministic. Note
that we do not mean non-deterministic in the sense that, as above, the execution admits
multiple distinct linear orderings. For us, non-determinism means that execution takes
irreconciliable routes, even up to permutation of independent events. We illustrate that by
the following two examples.

B

q

■��� ✠✠✠
✈�� 

✻✻✻
(−,Q)

tt /o/o/o

✠
✈

ff

✻

(+,A)

com → com

run

✬ppw ❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

✱rrz ❧❧❧❧❧❧❧❧❧ (−,Q)

run

❴���

❧
❥ ❤ ❣ ❡ ❝ ❜

/o/o/o run

❴���

✇
s ♣ ❧

❢

(+,Q)

done

✤

done

✤

✒ $$,❘❘❘❘❘❘❘❘ (−,A)

done
✘

✚
✢

✤
✦

✩
✫

(+,A)

Figure 5. Non-deterministic dialogues

In the above two diagrams, the wiggly line /o/o indicates immediate conflict. Two
moves/events related by immediate conflict are incompatible, and can never occur together
in an execution. Accordingly, the first example is a representation of our strategy for
the non-deterministic boolean, which answers either true or false. The second example
illustrates another key aspect of our model: we remember explicitly the point of non-
deterministic choice. Here, Player silently flips a coin. If the result is heads, they evaluate
the argument, then terminate. However, if the result is tails, they evaluate the argument,
then diverge. Typical play-based game semantics would forget the halting branch, which is
contained in the other. Instead, our model represents the two branches explicitly.

We now show how to make such diagrams formal.
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2.3. Prestrategies on arenas.

2.3.1. Event structures. Such a combination of causality and non-determinism is elegantly
expressed via Winskel’s event structures[Win86].

Definition 2.1. An event structure (es for short) is a tuple (E,≤E ,ConE) where E is a
set of events, ≤E is a partial order indicating causality and ConE is a set of finite subsets
of E, satisfying:

∀e ∈ E, [e]E = {e′ ∈ E ∣ e′ ≤E e} is finite
∀e ∈ E, {e} ∈ ConE
∀X ∈ ConE , ∀Y ⊆ Y, Y ∈ ConE
∀X ∈ ConE , ∀e ∈ E, ∀e

′ ∈X, e ≤E e
′ Ô⇒ X ∪ {e} ∈ ConE

The set ConE of consistent subsets specifies which events can occur together in an
execution of the system. The states of an event structure E, called the (finite) configura-
tions, are those finite sets x ⊆ E that are both consistent and down-closed (i.e. for all
e ∈ x, for all e′ ≤ e, then e′ ∈ x) – the set of configurations on E is written C (E), and is
partially ordered by inclusion. Configurations with a maximal element are called prime
configurations, they are those of the form [e] for e ∈ E (note that we drop the E in [e]E
whenever, as above, this is clear from the context). We will use the notation [e) = [e]∖{e}.
We write x

e
−Ð⊂ to mean that e /∈ x and x∪{e} ∈ C (E). Finally, when drawing event struc-

tures as above, we do not represent the full partial order ≤ but the immediate causality
generating it, defined as e _ e′ whenever e < e′ and for any e ≤ e′′ ≤ e′, either e = e′′ or
e′′ = e′. We will often omit the subscripts in ≤ or _ when they are clear from the context.

In this paper, most of the event structures we consider (such as those in the previous
subsection) have a simpler consistency structure.

Definition 2.2. An event structure with binary conflict is a triple (E,≤E , ♯E), where
≤E is a partial order and ♯E is an irreflexive symmetric binary relation on E, such that:

∀e ∈ E, [e]E is finite
∀e1 ♯E e2, ∀e2 ≤E e

′
2, e1 ♯E e

′
2

It is easy to check that an event structure with binary conflict is an event structure,
with ConE = {X ∈ Pf(E) ∣ ∀e1, e2 ∈ X, ¬(e1 ♯E e2)}. On the other hand, not every event
structure can be described via a binary conflict (take e.g. three events with any subset of
cardinal less than two being consistent). The strategies in the cartesian closed category we
aim to build will only have binary conflict, and accordingly in Section 6 we will restrict
to event structures with binary conflict. In the meantime, some aspects of the theoretical
development are smoother when carried out with arbirary consistency.

In an event structure with binary conflict, we can trace back conflicts to their original
cause. For e1 ♯E e2 we say that the conflict is minimal, written e /o/o

E e′, iff for all e′′ ≤ e
we have ¬(e′′ ♯E e′) and for all e′′ ≤ e′ we have ¬(e ♯E e′). As above, we will often drop the
subscripts in ♯ or /o/o when they are clear from the context. Following this notation, all the
diagrams of the previous subsection can be regarded as representations of event structures
with binary conflict (ignoring the dashed lines).
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2.3.2. Games and arenas. In game semantics, dialogues as in Subsection 2.2 obey the rules
of a game inherited from the type. In order to define it, let us first recall the following
notion from [CCRW].

Definition 2.3. An event structure with polarities (esp) is an event structure A along
with a polarity function

polA ∶ A → {−,+}
associating to any event a polarity, that is either − for Opponent or + for Player.

By a game, we simply mean an event structure with polarities.

Those games form the objects of the category CG of concurrent games of [CCRW].
However in this paper we are interested in reconstructing a version of Hyland-Ong games,
so we will eventually consider restricted games called arenas, imported from [HO00]. Since
we do not aim to prove full abstraction results in this paper, our arenas will not carry
Question/Answer labeling – and our strategies will not be assumed to be well-bracketed.

Definition 2.4. An arena is a conflict-free (all finite sets consistent) esp/game satisfying:

● Forest. if a1, a2 ≤ a ∈ A, then either a1 ≤ a2 or a2 ≤ a1.
● Alternation. if a1 _ a2, then pol(a1) ≠ pol(a2).

An arena A is negative if all its minimal events have negative polarity.

Arenas are close representations of types. Although formulated a bit differently, our
arenas are the same as in [HO00] (with the exception of the absence of the Question/Answer
labeling).

Example 2.5. Leaving for later the general interpretation of types, we have:

JBK

q−

✓
❆

✵
✩

tt+ ff+

JcomK

run−

✤
✤

done+

Jcom → comK

run−❧
✈

✄

❘
❍

❀

run+

✤
✤ done+

done−

Throughout this paper, we will often omit the semantic brackets on types when this
causes no confusion and simply refer to these arenas as B,com, etc.

By convention, we represent immediate causality in arenas by dashed lines ❴❴❴

rather than _. Events are annotated with their polarity and Question/Answer labeling. We
observe in the third example – and it will be a general fact once we give the formal definitions
– that each move in the arena Jcom → comK comes from a well-defined occurrence of a
base type com in com → com: run− and done+ come from the output com, and run+

and done− come from the input com. As usual in game semantics, this is used in the
representation of dialogues (as in Subsection 2.2): whenever possible, moves are placed
under the corresponding base type occurrence.
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2.3.3. Prestrategies. The dialogues of Subsection 2.2, and our notion of strategies (called
prestrategies for now – more conditions are to come), will be event structures labeled by
a game. In other words, a prestrategy will be an event stucture S along with a labeling
function σ ∶ S → A associating to each event in S an image in the game. These labeling
functions need to satisfy conditions corresponding to the notion of map of event structures.

Definition 2.6. Let E,F be event structures. A morphism (map) of event structures
f ∶ E → F is a function, satisfying:

● Preservation of configurations. For all x ∈ C (E), fx ∈ C (F ),
● Local injectivity. For all e, e′ ∈ x ∈ C (E), if fe = fe′ then e = e′.

Event structures and maps between then form a category E .
A prestrategy on a game A is a map of event structures σ ∶ S → A.

So a prestrategy σ ∶ S → A must only reach valid states of A, and behaves linearly : in
a configuration, each event of the game appears at most once. We note in passing that for
non-linear languages, this linearity assumption will be circumvented by creating duplicates
of events – more on that later.

If σ ∶ S → A is a prestrategy, then S automatically inherits from A a polarity function
that we write polS ∶ S → {−,+}, leaving the dependency on σ implicit. Of course, it would
be equivalent (as done in [RW11]) to require S to be explicitely equipped with polarities,
in a way preserved by σ.

2.3.4. Representations of prestrategies. We will only draw prestrategies with binary conflict.
When drawing such a σ ∶ S → A as in Subsection 2.2, we only draw S (more precisely, with
immediate causality _ and immediate conflict /o/o ), where each event is presented as its
image through A, and placed under the corresponding ground type occurrence in the type.
We use the dashed lines ❴❴❴ to represent the relation on S induced by immediate
causality on A. For instance, the second diagram of Figure 5 is a representation of the map
of event structures below.

σ ∶ S // Jcom → comK

s1
✫ ,,

✰rry ❦❦❦❦❦❦❦❦❦❦❦
❁yy� ⑤⑤⑤⑤

run

q
q

q
▼▼▼

s2 ✘ 22

❴���

/o/o/o s3 ✛ 11

❴���

run
✤
✤ done

s4 ✕ 44s5 ✗ 33

✄ ��&
❈❈❈❈ done

s6 ✚

99

As the reader can see, this explicit map notation is a bit cumbersome. Its representation
as in Figure 5 conveys the relevant information – the only thing lost is the “name” (s1, . . . , s6)
of moves in S. More formally, it should be clear to the reader that such a representation
displays a finite prestrategy σ ∶ S → A adequately up to isomorphism of prestrategies:

Definition 2.7. Let σ ∶ S → A and τ ∶ T → A be prestrategies. A morphism from σ to τ
is a map of event structures f ∶ S → T such that τ ○ f = σ.
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Accordingly, an isomorphism between σ and τ is given by (f, g), where f ∶ S → T and
g ∶ T → S are maps between σ and τ such that g ○f = idS and f ○g = idT . We write σ ≅ τ to
mean that σ and τ are isomorphic – in that case we might sometimes say that σ and τ are
strongly isomorphic to emphasize the distinction with weak isomorphisms, to be defined
in Definition 2.28.

2.4. Compositional structure. In order to obtain such representations of programs com-
positionally, the standard methodology of denotational semantics suggests to organize them
as a category. Rideau and Winskel [RW11] give the basic ingredients for the construction
of a (bi)category of games on event structures. We give here the main ideas and definitions,
but refer the reader to [CCRW] for a more in-depth discussion with proofs.

We start with the following simple definition.

Definition 2.8. The simple parallel composition E1 ∥ E2 of two event structures E1

and E2 has:

● Events. The disjoint union {1} ×E1 ∪ {2} ×E2,
● Causality. We have (i, e) ≤E1∥E2

(j, e′) iff i = j and e ≤Ei
e′,

● Consistency. For X = {1} ×X1 ⊎ {2} ×X2 (often written simply X1 ∥ X2) a finite
subset of E1 ∥ E2, we have X ∈ ConE1∥E2

iff X1 ∈ ConE1
and X2 ∈ ConE2

.

The simple parallel composition of event structures with binary conflict still has bi-
nary conflict. If A and B are games, so is A ∥ B, with polA∥B((1, a)) = polA(a) and
polA∥B((2, b)) = polB(b).

In other words, the two event structures are put side by side, without any interaction.
If A is a game, then there is also its dual A⊥, defined as having the same events, causality,
consistency as A, but reversed polarity: polA⊥(a) = −polA(a). Both operations − ∥ − and(−)⊥ are defined on all games, but preserve arenas.

2.4.1. Morphisms. Given games A and B, a prestrategy from A to B is a prestrategy:

σ ∶ S → A⊥ ∥ B

We will sometimes write σ ∶ A + //B to keep the S anonymous. The basic example of a
prestrategy from A to A is the copycat strategy.

Definition 2.9. Let A be a game. We define an event structure CCA as having:

● Events. Those of A⊥ ∥ A,
● Causality. The transitive closure of the relation:

{((1, a), (1, a′)) ∣ a ≤A⊥ a′} ∪ {((2, a), (2, a′)) ∣ a ≤A a′}∪{((1, a), (2, a)) ∣ polA(a) = +} ∪ {((2, a), (1, a)) ∣ polA(a) = −}
● Consistency. For X a finite subset of CCA, we have X ∈ ConCCA

iff [X]CCA
∈ ConA⊥∥A.

In particular, if A is an arena, then CCA is conflict-free.
The copycat prestrategy is the identity function, which is a map of es:

ccA ∶ CCA → A⊥ ∥ A



12 SIMON CASTELLAN, PIERRE CLAIRAMBAULT, AND GLYNN WINSKEL

Example 2.10. The copycat prestrategy from Jcom → comK to itself is:

Jcom → comK⊥ ∥ Jcom → comK

run−

✫oov ❢❢❢❢❢❢❢❢❢❢❢❢❢

run+
✱rrz ❧❧❧❧ ❴���

run−

✘ ((/❳❳❳❳❳❳❳❳❳❳❳❳❳
✈

❧

done−

✘ ((/❳❳❳❳❳❳❳❳❳❳❳❳

✤

run+
❴���

✏
✌

✠
✆

✁
⑤

done+
✙

✤

✪

done−

✫oov ❢❢❢❢❢❢❢❢❢❢❢❢

✤

done+

✪

✤
✙

Note that the partial order above is a tree, whose branches are exactly the P-views of
the usual corresponding copycat strategy in Hyland-Ong games.

2.4.2. Interaction. As usual in game semantics, composition is obtained by a two-step pro-
cess: parallel interaction, plus hiding. The main difficulty in defining the composition of
prestrategies is parallel interaction – we first explain how it is done on a closed interaction
between σ ∶ S → A and τ ∶ T → A⊥. The interaction of σ and τ , written σ ∧ τ ∶ S ∧ T → A,
will be a labeled event structure describing the behaviours accepted by both σ and τ .

Its construction is done in several stages. Firstly, its states should correspond to certain
pairings between matching states of σ and states of τ , i.e. pairs (x, y) ∈ C (S) ×C (T ) such
that σx = τy. Note that in such a case, the local injectivity assumption on σ and τ

induces a bijection ϕx,y between x and y – in fact matching pairs (x, y) are in one-to-one
correspondence with bijections ϕ ∶ x ≃ y between configurations of S and T such that for
all s ∈ x, τ (ϕs) = σ s, indicating which events synchronise with each other. However, not
all such bijections represent valid states of the interaction, as σ and τ might not agree on
the order in which to play events in x, y. This is addressed by requiring bijections to be
secured, as below.

Definition 2.11. Let σ ∶ S → A and τ ∶ T → A⊥ be prestrategies. A secured bijection
between x ∈ C (S) and y ∈ C (T ) is a bijection

ϕ ∶ x ≃ y

such that for all s ∈ x we have τ (ϕs) = σ s, and which is secured, in the sense that the
reflexive transitive closure of

(s, t) ⊲ (s′, t′) ⇔ s <S s
′ ∨ t <T t

′

is a partial order written ≤ϕ on (the graph of) ϕ, making (ϕ,≤ϕ) a poset. We write B
sec
σ,τ

the set of secured bijections between σ and τ .

Example 2.12. In the diagram below are represented two prestrategies σ on com ∥ com,
and τ on (com ∥ com)⊥.

com ∥ com (com ∥ com)⊥
run−

❴���
run−

✯qqx ❥❥❥❥❥ run+
❴���

done+
✤

done−
✤

✕ &&-❯❯❯❯❯❯

run+



CONCURRENT HYLAND-ONG GAMES 13

The dotted line is the only pair in the unique maximal secured bijection in B
sec
σ,τ . The

maximum configurations of σ and τ are matching, but not in a secured way.

This gives a notion of state of the interaction, but we expected to build a labeled event
structure. Hence we wish to present B

sec
σ,τ (up to isomorphism) as the set of configurations

of an event structure S ∧ T . This is done via the prime construction. Say that a secured
bijection (ϕ,≤ϕ) is a prime when it has exactly one maximal element (sϕ, tϕ). In other
words, a prime secured bijection is the data of one synchronisation (sϕ, tϕ), plus a causally
valid history for it. We now form:

Definition 2.13. The event structure S ∧ T is obtained as follows:

● Events. Prime secured bijections ϕ ∈ B
sec
σ,τ .

● Causal order. Inclusion of secured bijections.
● Consistency. For X a finite subset of B

sec
σ,τ of prime secured bijections, we have

X ∈ ConS∧T iff ∪X ∈ B
sec
σ,τ .

There is a map of es σ ∧ τ ∶ S ∧ T → A, given by (σ ∧ τ)ϕ = σ sϕ = τ tϕ.
In passing, we note that if σ ∶ S → A and τ ∶ T → A⊥ have binary conflict (meaning

S and T have binary conflict), then so does σ ∧ τ ∶ S ∧ T → A, with ¬(ϕ1 ♯S∧T ϕ2) iff
ϕ1 ∪ϕ2 ∈ B

sec
σ,τ – this easily boils down to the lemma below.

Lemma 2.14. Assume σ, τ have binary conflict, and let X be a finite subset of B
sec
σ,τ . Then

the two following statements are equivalent.

(1) We have ∪X ∈ B
sec
σ,τ ,

(2) For all ϕ,ψ ∈ X, ¬(ϕ ♯ ψ).
Proof. (1) ⇒ (2). Obvious, since ϕ ∪ ψ is a down-closed subset of ∪X.

(2) ⇒ (1). First we note that for ϕ,ψ ∈ B
sec
σ,τ , if ϕ ∪ ψ is still a bijection between

configurations, then it is automatically in B
sec
σ,τ – indeed both ϕ and ψ are down-closed

sets in a common partial order of synchronised events. But then, we note that ∪X is a
bijection between configurations. Indeed, if (c, d) ∈ ϕ ∈ X and (c, d′) ∈ ψ ∈ X then d = d′

since ϕ ∪ ψ ∈ B
sec
σ,τ .

It will also be useful later to have a concrete understanding of how minimal conflict
arises in an interaction; hence we prove the following lemma.

Lemma 2.15. Let σ ∶ S → A and τ ∶ T → A⊥ be prestrategies, and ϕ ∈ B
sec
σ,τ . Then if

ϕ ∶ x ≃ y extends in B
sec
σ,τ with (s1, t1) and (s2, t2) but ϕ ∪ {(s1, t1), (s2, t2)} /∈ B

sec
σ,τ . Then,

either x ∪ {s1, s2} /∈ C (S) or y ∪ {t1, t2} /∈ C (T ).
In particular, if S,T have binary conflict and ϕ,ψ are events in S∧T such that ϕ /o/o ψ,

then sϕ /o/o sψ or tϕ /o/o tψ.

Proof. If x∪{s1, s2} ∈ C (S), y∪{t1, t2} ∈ C (T ), and s1, s2 and t1, t2 are distinct, then clearly
ϕ∪{(s1, t1), (s2, t2)} ∈ B

sec
σ,τ . However if e.g. s1 = s2, then τ t1 = τ t2, hence y∪{t1, t2} /∈ C (T )

by local injectivity – and similarly if t1 = t2.
The second part of the statement follows easily.

In fact, what we have described above is the pullback construction in E . There are maps
of event structures:

Π1 ∶ S ∧ T → S Π2 ∶ S ∧ T → T

ϕ ↦ sϕ ϕ ↦ tϕ
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making the following square commute, and a pullback (from Lemma 2.11 of [CCRW]):

S ∧ T
Π1

{{✈✈✈✈✈ Π2

$$❍❍❍❍❍
❄⑧

S

σ ##❍❍❍❍❍ T

τzz✈✈✈✈✈

A

We motivated the pullback by asking for an es whose configurations are secured bijec-
tions. And indeed, those are in a very close correspondence.

Proposition 2.16. For any x ∈ C (S ∧ T ), we have ϕx = ∪x ∶ Π1x ≃ Π2x. Moreover, the
assignment:

C (S ∧ T ) → B
sec
σ,τ

x ↦ ϕx

is an order-isormorhism (with both sets ordered by inclusion). Finally, there is a family of
order-isomorphisms:

νx ∶ x ≅ ϕx
ψ ↦ (sψ, tψ)

that is natural in x.

Proof. Direct extension of Lemma 2.9 in [CCRW].

This allows us, when reasoning on configurations of a pullback, to manipulate directly
secured bijections rather than compatible sets of prime secured bijections. Likewise, when
reasoning on events of the pullback in an ambiant configuration, we can directly apply ν and
reason on synchronised pairs. In the proofs, we will often use this proposition implicitely
and transfer silently between the different representations.

Finally, we are in position to define the parallel interaction of two prestrategies σ ∶ S →
A⊥ ∥ B and τ ∶ T → B⊥ ∥ C. We simply form the pullback:

(σ ∥ C) ∧ (A ∥ τ)
Π1

ww♣♣♣♣♣♣♣ Π2

''◆◆◆◆◆◆◆❄⑧

S ∥ C

σ∥C ''◆◆◆◆◆◆◆
A ∥ T

A∥τww♣♣♣♣♣♣♣

A ∥ B ∥ C

We write T ⊛ S = (σ ∥ C) ∧ (A ∥ τ) for the interaction, and τ ⊛ σ ∶ T ⊛ S → A ∥ B ∥ C
for either side of the pullback square. Hence we get the interaction of σ and τ , τ ⊛ σ, as a
labeled event structure.

Example 2.17. Consider the following prestrategies σ ∶ S → Jcom → comK and τ ∶ T →
Jcom → comK⊥ ∥ JcomK (note that to match the definition of interaction above, we can
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consider σ ∶ S → 1⊥ ∥ Jcom → comK, where 1 is the empty arena).

σ ∶ Jcom → comK τ ∶ Jcom → comK⊥ ∥ com

run−
✲ssz ♠♠♠

run−
✲ssz ♠♠♠

run+
①

♠

❴���
run+

✇
♠

✯qqx ❥❥❥❥❥❥ ❴���
done−

✤

✑ $$,◗◗◗ run−
r

❥ ❝

✷uu} rr ✟ ��(
❍❍ done−

✤

✑ $$,◗◗◗

done+
✙

✤

✪

done+
r

/o/o/o/o done+

❍

done+
✙

✤

✪

We display below a representation of the interaction:

τ ⊛ σ ∶ T ⊛ S → (com → com) ∥ com

We only display polarities for the moves in the right hand side com. Indeed events on
the left hand side (synchronised) part of the interaction have no well-defined polarity, as
the two strategies disagree on them.

τ ⊛ σ ∶ (com → com) ∥ com

run−
★nnt ❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝

run★nnt ❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝
run

❣ ❡ ❝ ❛ ❴

✰rry ✓ %%,
done

❦
/o/o/o/o

✛ **0❬❬❬❬❬❬❬❬❬❬❬❬❬❬ done

❙

✚ ))0❩❩❩❩❩❩❩❩❩❩❩❩❩

done
✍

✄
✈

✚ ))0❩❩❩❩❩❩❩❩❩❩❩❩❩ done

✵
❀

❍

✛ **0❬❬❬❬❬❬❬❬❬❬❬❬❬❬

done+
✗

✔
✑

✍
☛

✞
✄

done+
✬

✯
✲

✵
✸

✼
❀

We leave it to the reader to check that each event in this diagram corresponds uniquely
to a configuration in S ∥ com and a matching configuration in T such that the induced
bijection is secured.

2.4.3. Hiding. Once we have performed the interaction, it is fairly simple to obtain the
composition by ignoring the synchronised events, i.e. those that map to B. This is an
instance of the following projection operation.

Definition 2.18. Let E be an event structure, and V ⊆ E a set of events of E. The
projection of E to V , written E ↓ V , has components:

● Events. V .
● Causality. The order ≤E restricted to V .
● Consistency. The sets X ∈ ConE such that X ⊆ V .

This gives an event structure – it is clear that a hiding of an event structure with binary
conflict still has binary conflict. Note as well the unique witness property reminiscent of that
used in studying the composition of deterministic strategies in standard game semantics:
for any x ∈ C (E ↓ V ), there exists a unique [x]E = {e ∈ E ∣ ∃e′ ∈ x, e ≤E e′} ∈ C (E) such
that [x]E ∩ V = x, and whose maximal events are those of x.

Finally, we define composition. From σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C, first compute
the interaction τ ⊛ σ ∶ T ⊛ S → A ∥ B ∥ C. Then, set V ⊆ T ⊛ S to comprise all ϕ ∈ T ⊛ S
such that (τ ⊛ σ)ϕ ∈ B. Writing T ⊙ S = T ⊛ S ↓ V , the composition of σ and τ is:

τ ⊙ σ ∶ T ⊙ S → A⊥ ∥ C
ϕ ↦ (τ ⊛ σ)ϕ
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From the fact that interaction and hiding preserve binary conflict, it follows that for
σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C, if S,T,A,C have binary conflict, then so does T ⊙ S.

Example 2.19. Consider the interaction of Example 2.17. After hiding, the resulting com-
position is:

com

run−✶tt} qq ✌ !!*▼▼

done+
q

/o/o/o/o done+

▼

Note that the conflict between the two maximal events, although it was inherited in the
interaction, becomes minimal after projection as its original cause has been hidden away.

Composition is associative up to isomorphism [CCRW]. However, copycat is not neutral
for composition with respect to prestrategies – it is only the case for strategies (see [CCRW]
for details):

Definition 2.20. A prestrategy σ ∶ S → A on a game A is a strategy if it is:

● Receptive. For all x ∈ C (S), if σx a−

−Ð⊂ , then there exists a unique s ∈ S such that

x
s

−Ð⊂ and σ s = a.
● Courteous. If s1 _S s2 and pol(s1) = + or pol(s2) = −, then σ s1 _A σ s2.

Putting everything together, we get [CCRW]:

Theorem 2.21. There is a compact closed category CG of games and strategies up to
isomorphism.

2.5. Interpreting programs and replication. The category CG is a general framework
for composing concurrent strategies. We can rely on it to build a model of an affine variant
of IPA: that involves restricting to negative arenas, and interpreting function space in IPA
via the usual arrow arena construction. We refrain from giving the details here, since we will
give them in the non-affine case later on. However, before going on to handling replication,
we will give examples in the affine case and try to convey further intuition as to what the
model computes. Then we will present the expanded arenas used to handle replication, and
we will introduce the issue of uniformity.

2.5.1. Concurrent strategies and view functions. As the reader familiar with Hyland-Ong
games may have noticed, our examples before showed how to represent as concurrent strate-
gies, view functions rather than expanded strategies – or, in Curien’s terminology [Cur98],
meager rather than fat innocent strategies. And indeed, in our framework it is the case
that a pure program will be interpreted directly as its view function, never constructing the
full set of plays. For illustration, the interpretation of the affine pure program:

λfB→com.f tt ∶ (B→ com)→ com
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will be the strategy:

(B → com) → com

run−
✱rrz ❧❧❧❧

run+
✈

❧

✵tt| ♣♣♣♣ ❴���
q−

⑥
♣

❴���
done−

✑ $$,◗◗◗

✤

tt+
✤

done+
✙

✤

✪

which the reader can match against the tree of P -views for the corresponding Hyland-Ong
innocent strategy. The composition of such strategies is computed directly using pullbacks
in E , never constructing the expanded plays. In other words, we never work with full
Hyland-Ong strategies, but always with their causal representations: the view functions.

But the usual strategies for stateful programs [AM96] are not generalizations of meager
innocent strategies, but of fat ones: the behaviour of programs must be observed not only
on P-views but on general plays. Hence, the reader may wonder if evading them causes
us to lose that ability. Fortunately it is not the case, and strategies for stateful programs
can be represented causally just as innocent strategies. For instance, consider the following
example.

Example 2.22. Consider the following term of IA.

newref b in λfcom→com. f (b ∶= tt); !b ∶ (com → com)→ B

Following (the affine variant of) the interpretation of Section 7, the corresponding strategy
is: (com → com) → B

q−

✲ssz ♠♠♠♠♠♠♠

run+

❴���

✉
♠

❢

✭ppw ❤❤❤❤❤❤❤❤❤❤❤

run−

✸uu~ ssss
☛   )❑❑❑❑

✘ ((/❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳
♠ ❦ ❤ ❢ ❞

done−

✟ ��(
❍❍❍❍

✕ &&-❯❯❯❯❯❯❯❯❯❯❯

✤

✷uu} rrrr

done+ /o/o/o/o/o/o
�

s

,l ,l ,l -m -m -m -m .n .n .n .n /o /o /o /o /o 0p 0p 0p 0p 1q 1q
1q 1q 2r 2r

2r 2rdone+ /o/o/o/o/o/o

❃
❑

tt+ /o/o/o
✜

✚
✗

✕
✒

✎
☞

ff+
✧

✩
✬

✮
✱

✴
✷

The done+ to the left is duplicated, witnessing the two outcomes of the race in the mem-
ory that happens if the argument does not respect the evaluation stack, and concurrently
returns done− and asks for its argument. The reader familiar with the game semantics for
Idealized Algol [AM96] can check that taking the set of (well-bracketed) alternating linear
orderings of configurations of this event structure yields the expected set of plays.

2.5.2. Replication. But so far, we have only seen affine programs and strategies, i.e. that
call each resource at most once. As it stands, the local injectivity condition in Definition
2.6 forbids us from having two compatible events corresponding to the same move in the
game. It is natural to consider dropping it, but then we lose access to the nice structural
properties of E (such as pullbacks). It is unclear to us how one would do about defining
composition of strategies in such a setting, let alone proving that it forms a category; in
particular if one insists of remembering the point of non-deterministic branching.
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Instead, our solution takes inspiration from AJM games [AJM00b] and from the re-
construction of HO games in [HHM07] : we explicitly duplicate moves in arenas. Rather
than playing directly on an arena A, our strategies will play in !A, a variant of A where all
events have been duplicated a countably infinite amount of times, in depth. More formally,
we define:

Definition 2.23. Let A be an arena, and a ∈ A. An indexing function for a is a function:

α ∶ [a]→ ω

which associates, to a and its dependencies, a copy index. From α ∶ [a] → ω, we write
lblα = a for its label, and indα = α (lblα) for the copy index of a.

Indexing functions will be the events of !A. Its full structure will be:

Definition 2.24. From an arena A, we build a new arena !A, comprising:

● Events. indexing functions α ∶ [a] → ω,
● Causal order. for α ∶ [a] → ω and β ∶ [b] → ω, we have α ≤!A β iff a ≤A b and for all
a′ ≤A a, α(a′) = β(a′).

● Polarity. For α ∈ !A, pol!A(α) = polA(lblα).
Moves in !A have a rather complex structure. However, note that just as A – which was

required to be an arena rather than a general game – !A is a forest. For each α ∶ [a] → ω,
either a is minimal and then so is α, or there is a unique a′ _A a – in which case the
restriction of α to [a′] gives a unique α′ such that α′ _!A α. In other words, α is entirely
determined by the data of lblα = a, indα = α(a), and its immediate predecessor α′, called
its justifier just(α). Using this decomposition inductively, we can unambiguously draw
configurations of !A by annotating each event by its copy index, and its justifier.

Example 2.25. The following is a representation of a configuration of !B:

q0 q3

tt1
✌

⑥
♦

tt4
✶

❆❖

tt1
☞

⑤
♦

ff2 ff6

❇P

where, for instance, the two events labeled tt1 respectively denote {q ↦ 0, tt ↦ 1} and{q ↦ 3, tt ↦ 1}.
Using the additional space granted by !A, we can now represent programs evaluating

their arguments multiple times. For instance, a valid strategy σ ∶ S → !J(B → B) → B → BK
for the term λfB→BxB. f (f x) could contain, for i, j ∈ ω and injective function ⟨−,−⟩ ∶ ω2 → ω,
a configuration:

(B → B) → B → B

q−,i

✫oov ❢❢❢❢❢❢❢❢❢❢❢❢❢

q+,0
❥ ❤ ❢ ❝ ❛

✲ssz ♠♠♠

q−,j
♠

✑ $$,◗◗

q+,j+1

①
✈

s
♣

♥
❧

✳ss{ ♥♥
q−,k

♥

✘ ((/❳❳❳❳❳❳❳❳❳❳❳

q+,⟨j,k⟩

☞
✍

✑
✓

✕
✗
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This diagram exploits the representation introduced just above for configurations of
!A: each event is specified through its label and copy index. The full strategy σ would
comprise such configurations for all i, j ∈ ω. For each positive event, σ must provide a copy
index – this choice must be made globally, in a way that avoids collisions to maintain local
injectivity of σ.

2.5.3. Uniformity. Using the composition mechanism introduced before, one may define an
interpretation of terms of IPA as concurrent strategies on expanded arenas. However, as
observed above, such strategies not only carry information about the events they play and
their causal history, but also the data of specific copy indices that seem largely irrelevant
– e.g., as above, the choice of an injection ⟨−,−⟩. In fact, for reasons familiar from AJM
games [AJM00b], strategies will not satisfy the laws of cartesian closed categories unless we
consider them up to their specific choice of copy indices. Let us observe that on an example.

Example 2.26. Consider the term M to be f ∶ B → B → B ⊢ λxB. f xx ∶ B → B. Its
interpretation could contain:

!JB → B → BK →∣ !J B → BK

q−,i

✪oou ❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

q+,i

✯qqx ❥❥❥❥❥❥❥❥✼ww� ✇✇

q−,j1
q

❥ ❞

✘ ((/❳❳❳❳❳❳❳❳❳❳❳❳❳❳ q−,j2

✇

✘ ((/❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

q+,2j1
☎

✁
⑦

④
①

✉

q+,2j2+1
✖

✓
✏

✌
✡

✞

Because of the contraction, the Opponent events of indices j1 and j2 corresponding to
different events in the arena trigger Player events corresponding to the same event in the
arena. To ensure local injectivity, we exploit that the functions 2n and 2n + 1 have disjoint
codomain.

Likewise, consider two terms, with chosen configurations of their strategies:

JλxByB. xK ∶ !JB→ B → BK

q−,i

✳ss{ ♥♥♥♥♥

q+,0
①

♥ ❢

JλxByB. yK ∶ !JB → B → BK

q−,i
✽ww� ①①

q+,0
①

Then we have:

JMK⊙ JλxByB. xK ∶ !JB → BK

q−,i
✽ww� ①①

q+,0
①

JMK⊙ JλxByB. yK ∶ !JB → BK

q−,i
✽ww� ①①

q+,1
①

But these are required to be the same by the laws of cartesian closed categories, since we
have (λf.M) (λxy.x) =β (λf.M) (λxy. y). However, they are not isomorphic as strategies
on !A.

In order to solve this mismatch, we first need to formalize what it means for two
configurations of !A to be the same up to the choice of copy indices.
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Definition 2.27. Let x, y ∈ C (!A). A reindexing iso between x and y is an order-
isomorphism:

θ ∶ x ≅ y

which preserves labels: for all α ∈ x, lblα = lbl (θ α).
A reindexing iso θ ∶ x ≅ y is positive iff it preserves the copy index of negative events,

i.e. for all α− ∈ x, indα = ind (θ α). Negative reindexing isos are defined dually.

Intuitively, two configurations of C (!A) related by a reindexing iso are distinct specific
representations of one thick subtree of A in the sense of Boudes [Bou09], i.e. a subtree
of the arena with duplicated sub-arenas. Two strategies are to be identified iff they are
isomorphic, with the commuting triangle to !A being weakened to a commutation up to
reindexing iso – in fact, it turns out to be simpler to strengthen that to positive reindexing
isos. Altogether:

Definition 2.28. Let σ ∶ S → !A, τ ∶ T → !A be two strategies. A weak morphism from
σ to τ is f ∶ S → T , such that the triangle

S

f
))

σ
  ❇❇ T

τ
}}⑤⑤

!A

commutes up to positive symmetry, in the sense that for all x ∈ C (S), the set:

{(σ s, τ (f s)) ∣ s ∈ x}
is a positive reindexing iso. If f ∶ S → T , g ∶ T → S are two weak morphisms such that
g ○ f = idS and f ○ g = idT , we say that (f, g) is a weak isomorphism, and write σ ≈ τ to
mean that σ and τ are weakly isomorphic.

The two strategies of Example 2.26 are weakly isomorphic. And in fact, a consequence
of the developments of this paper is that the natural interpretation of terms ⊢M ∶ A of PCF
as strategies on !A hinted at here is sound and computationally adequate (it is reasonable to
expect the same statement for IPA to be true as well, but it does not follow from the results
in this paper). However, proving it bumps into a significant difficulty: without further
contraints on strategies, weak isomorphism is not a congruence. Indeed, strategies can
behave differently depending on Opponent’s choice of copy indices. For instance, composing
the two weakly isomorphic strategies JMK ⊙ JλxByB. xK and JMK ⊙ JλxByB. yK of Example
2.26 with

J B → BK →∣ JB → BK

q−,i

✯qqx ❥❥❥❥❥❥❥❥❥❥

q+,i

✫oov ❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢
✯qqx ❥❥❥❥❥❥❥❥❥

✺vv� ✉✉

q−,0

✚ ))0❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩
❥ ❤ ❢ ❞ ❜ ❛

q−,1
♣ ♠ ❥ ❣ ❞

q−,i

✉

q+,0
✗

✕
✒

✎
☞

✟

yields, in the one hand, a strategy that calls its argument, and on the other, one that
does not. Clearly, they are not weakly isomorphic. This is because the strategy above is
not uniform: its behaviour not only depends on Opponent’s moves, but also on their copy
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index. A useful analogy is that of a program that looks up the address where it is loaded
in memory, and uses that information to specify its behaviour.

In AJM games [AJM00b], uniformity is ensured by equipping games with an equivalence
relation on plays not unlike our reindexing isomorphisms, and then requiring strategies to
satisfy closure properties with respect to it. Here, since our strategies have considerably
more structure than sets of plays, the endeavour proved considerably more subtle. One
solution, presented in [CCW14], was analogous to the AJM games of [BDER97]: require
strategies to be saturated, and to play non-deterministically all available copy indices. The
next section develops the dual approach, already used in [CCW15], that we call thin con-
current games. It is reminiscent of Melliès’ notion of strategies bi-invariant under group
actions [Mel03] in the setting of asynchronous games.

3. Thin concurrent games

In order to enforce uniformity, as in [CCW14], we equip event structures with a sort of
equivalence relation between configurations, which is proof relevant in the sense that two
configurations may be related in several different ways. Following [Win07], the resulting
structure is called event structures with symmetry. In [Win07, CCW14], event structures
with symmetry are defined as certain spans of open maps – instead, here we mainly use
their more concrete presentation as isomorphism families: certain sets of bijections, such
as the set of reindexing isos between configurations of !A.

Isomorphism families plays two important roles in the construction of the framework:

● Adjoined to games, they express “equivalent configurations” of a game, allowing us
to switch to a coarser equivalence on strategies (weak isomorphism). They give an
abstraction of reindexing isos for games not necessarily of the form !A.

● Adjoined to strategies, they are used as witnesses of uniformity. Unlike in AJM
games, in our development such witnesses are not unique – uniformity is not a
property of strategies but a part of their structure.

In this section, we construct a category Tcg≅ (which will be proved compact closed
in Section 4) of uniform strategies up to isomorphism, where both games and strategies
are equipped with an isomorphism family. This category generalizes the category CG of
[RW11, CCRW] to deal with uniformity, in the same way that AJM games [AJM00b] extend
simple games [Hyl97]. For now we focus on the issue of extending composition in the
presence of symmetry: we keep comparing strategies up to isomorphism. The issue of
relaxing the equivalence relation (from isomorphism to weak isomorphism) is addressed
later (in Section 5), to make the presentation more accessible.

In Section 3.1 we define isomorphism families and event structures with symmetry,
and study their properties. In Section 3.2, we develop a notion of games equipped with
isomorphism families, generalizing the situation of !A, and introduce a notion of uniform
strategies. In Section 3.3, we explain how these notions interact with the composition of
strategies developed in [RW11, CCRW].

3.1. Isomorphism families and symmetry. Isomorphism families extend the partial
equivalence relation on plays in AJM games to event structures, in a “proof relevant” way.
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Definition 3.1 (Isomorphism families and event structures with symmetry). Let A be an

event structure and Ã be a set of bijections between configurations of A. Then, Ã is an
isomorphism family on A if it satisfies:

● (Groupoid) The set Ã contains all identity bijections, and is stable under composition
and inverse of bijections.

● (Restriction) For every bijection θ ∶ x ≃ y ∈ Ã and x′ ∈ C (A) such that x′ ⊆ x, then

the restriction θ ↾ x′ of θ to x′ is in Ã. In particular, θ x′ ∈ C (A).
● (Extension) For every bijection θ ∶ x ≃ y ∈ Ã and every extension x ⊆ x′ ∈ C (A),
there exists a (non-necessarily unique) y ⊆ y′ ∈ C (A) and an extension θ ⊆ θ′ such

that θ′ ∶ x′ ≃ y′ ∈ Ã.

In this case the pair A = (A, Ã) is called an event structure with symmetry (ess).
We will use S,T ,A,B, . . . to range over event structures with symmetry. If A additionally
has polarities and bijections in Ã preserve them, we say that A is an event structure
with symmetry and polarities (essp).

An isomorphism family on a game A is an isomorphism family Ã on the underlying
event structure such that all bijections in Ã preserve polarities.

The definition above does not explictly mention that the bijections need to be order-
isomorphisms. It is actually a consequence of the (Restriction) axiom:

Lemma 3.2. Let A be an ess and θ ∶ x ≃ y ∈ Ã. Then, θ is an order-isomorphism.

Proof. Let s ≤ s′ ∈ x. Applying the restriction axiom to θ−1 and the configuration [θs′] ⊆ y,
it entails that θ−1[θs′] is a configuration so it is in particular down-closed. As s′ ∈ θ−1[θs′],
it follows that s ∈ θ−1[θs′]. This directly implies θs ≤ θs′ as θs ∈ [θs′].

Since θ ∶ x ≃ y ∈ Ã is an order-isomorphism, we will denote it via θ ∶ x ≅ y to indicate
that it preserves and reflects the (implicit, inherited from ≤A) ordering on x and y.

Instead of θ ∶ x ≅ y ∈ Ã, we will also often use the more compact notation θ ∶ x ≅Ã y; and we
will refer to θ as a symmetry between x and y.

Given a bijection θ, we write dom θ and codom θ for its domain and codomain respec-
tively. The existence of a symmetry θ between two configurations x and y of A ensures that
x and y have isomorphic pasts and bisimilar futures. Another remark is that the axiom
(Extension) is equivalent to its one-step counterpart:

Lemma 3.3 (One-step extension). Let A be an event structure and Ã be a family of

bijections. The family Ã satisfies the (Extension) axiom if and only if for all θ ∶ x ≅Ã y and

a ∈ A such that x
a

−Ð⊂ , there exists a′ ∈ A such that θ ∪ {(a, a′)} ∈ Ã. (In particular y
a′

−Ð⊂ )

Proof. Straightforward by induction.

3.1.1. Constructing event structures with symmetry. We construct some ess of interest.
Firstly, expanded arenas and reindexing isos are ess.

Proposition 3.4. Let A be an arena. Recall the expanded arena !A (Definition 2.24) whose

events are indexing functions α ∶ [a] → N with a ∈ A. The sets !̃A of reindexing isos (see

Definition 2.27), !̃A− of negative reindexing isos, and !̃A+ of positive reindexing isos, are
isomorphism families on !A.
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Proof. The (Groupoid) axiom is easy to check for these three families. The (Restriction)
axiom follows from all the θ being order-isomorphisms.

We check the (Extension) axiom for the first family using Lemma 3.3. Let θ ∶ x ≅
!̃A
y and

α ∶ [a] → N an extension of x. Recall from the discussion below Definition 2.24 that events in
!A are entirely determined by their label, their justifier (immediate causal dependency), and
copy index. Define α′ = justα. We set the extension of θ to be (α,β), where β is set to be
the unique event of !A with justifier θ(α′), label a and copy index some fresh k not reached
in y yet (or at the very least, not reached by events with label a justified by θ(α′)). This
yields θ ∪ {(α,β)} an order-isomorphism between configurations of !A, preserving labels.

If θ ∶ x ≅
!̃A+

y and α ∶ [a] → N is a positive extension of x, the same reasoning applies.

If it is a negative extension, then the unique possible extension of θ is (α,β) where β has
justifier θ(justα) and copy index indα. Such β cannot be in y already: indeed, its pre-image
through θ would be an event with label a, justifier justα and copy index indα – so would
be α, absurd since α /∈ x. The reasoning for !̃A− is dual.

Event structures with symmetry support all the basic operations on event structures.

Definition 3.5. Let A and B be ess. We build their simple parallel composition as(A ∥ B, Ã ∥ B̃) where Ã ∥ B̃ is the set of bijections of the form θ1 ∥ θ2 ∶ x ∥ y ≃ x
′ ∥ y′ where

x,x′ ∈ C (A), y, y′ ∈ C (B), θ1 ∈ Ã, θ2 ∈ B̃ and θ1 ∥ θ2 is defined as (i, a) ↦ (i, θi(a)).
If A is a game equipped with symmetry, its dual A⊥ has the same isomorphism family

Ã on the arena A⊥.

3.1.2. Morphisms. In the setting without symmetry, morphisms of event structures played
a central role, providing in particular an adequate notion of labeling functions for strategies
σ ∶ S → A. In our new setting with symmetry, we will also need to consider a corresponding
notion of morphisms.

Definition 3.6. Let A,B be event structures with symmetry. A map of event structures
f ∶ A → B preserves symmetry iff for all θ ∶ x ≅

Ã
y, the bijection fθ = {(fa, fa′) ∣ (a, a′) ∈

θ} is in B̃.
In that case, f is a map of event stuctures with symmetry, written f ∶ A → B.

Event structures with symmetry and their maps form a category written E∼. In E∼,
morphisms can be compared up to symmetry, abstracting away from the comparison of
morphisms up to the choice of copy indices of the previous section.

Definition 3.7. Let f, g ∶ A → B be maps of event structures with symmetry. They are
symmetric (written f ∼B̃ g) when for all x ∈ C (A), the bijection {(fs, gs) ∣ s ∈ x} is in B̃.

We will now define our games and strategies as certain event structures with symmetry.

3.2. Games with symmetry and uniform strategies. In this subsection, we define our
notions of game with symmetry and uniform strategy, and show that copycat provides one
example of such a strategy.
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3.2.1. Thin concurrent games. As observed in Definition 2.27, the expanded arena !A has
three natural isomorphism families !̃A, !̃A+, !̃A−. The positive symmetry on !A will be used
to compare strategies up to positive copy indices. By duality, the negative symmetry is
needed to compare counter-strategies. The whole symmetry appears naturally when we
want to make a strategy interact against a counter-strategy.

In our effort to abstract away from exanded arenas, our notion of game with symmetry
will also feature three isomorphism families analogous to !̃A, !̃A+, !̃A−:

Definition 3.8. A thin concurrent game (tcg) is an essp A (so A is an esp / a game)

with two additional isomorphism families Ã− and Ã+ on A such that:

(a) The families Ã+ and Ã− are subsets of Ã,

(b) If θ ∈ Ã+ ∩ Ã− then θ is an identity bijection,

(c) If θ ∈ Ã− and θ ⊆− θ′ ∈ Ã then θ′ ∈ Ã−,
(d) If θ ∈ Ã+ and θ ⊆+ θ′ ∈ Ã then θ′ ∈ Ã+.

where θ ⊆− θ′ (resp. θ ⊆+ θ′) means that θ ⊆ θ′ such that θ′∖θ only contains pairs of negative

(resp. positive) events. The triple (A, Ã−, Ã+) will be often written simply A to ease the
notation.

The key example of a thin concurrent game is given by expanded arenas.

Proposition 3.9. Let A be an arena. Then, (!A, !̃A, !̃A−, !̃A+) is a thin concurrent game.

Proof. Straightforward verification.

In fact, all the thin concurrent games involved in the construction of our cartesian
closed category (in Section 6) will be expanded arenas, or isomorphic to expanded arenas.
However, the issues of symmetry and uniformity are best addressed in the slightly more
abstract setting of thin concurrent games.

Given a tcg A, we will write A− for the event structure with symmetry (A, Ã−) and A+
for (A, Ã+). We now generalize to tcgs the usual operations on arenas.

Definition 3.10. Given a tcg (A, Ã−, Ã+), its dual is
(A, Ã−, Ã+)⊥ = (A⊥, Ã+, Ã−)

Note that the two additional isomorphism families are swapped.
Likewise, the simple parallel composition of (A, Ã−, Ã+) and (B, B̃−, B̃+) is per-

formed componentwise:

(A, Ã−, Ã+) ∥ (B, B̃−, B̃+) = (A ∥ B, Ã− ∥ B̃−, Ã+ ∥ B̃+)
where parallel composition of sets of bijections is defined as in Definition 3.5.

3.2.2. Properties of tcgs. The definition of tcgs above has a few interesting consequences
that will be useful later on. First of all, we introduce the property that gives its name to
thin concurrent games: thinness is a minimality condition on the isomorphism family of
an essp. It restricts positive extensions, which – as we will see later – ensures that some
positive extensions of the symmetry are uniquely determined, which will be key in Section
5 to ensure that weak isomorphism is preserved under composition.

We define:
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Definition 3.11. An essp A is thin if for all x ∈ C (A), for all idx ⊆
+ θ ∈ Ã, then θ = idy

for some x ⊆ y ∈ C (A).
Indeed, the axioms of tcgs entail that their sub-symmetries are thin:

Lemma 3.12. If A is a tcg, then A− and (A+)⊥ are thin.

Proof. The two cases are dual; we only detail the first. Since idx ∈ Ã+, it follows from (d)

that θ ∈ Ã+, so θ ∈ Ã+ ∩ Ã−, hence the conclusion follows by (b).

We will also use the following fact: bijections in the isomorphism family of a tcg can
be uniquely factored into a negative and a positive part.

Lemma 3.13 (Decomposition lemma). Let A be a tcg. The following function is an order-
isomorphism:

Ã− ×A Ã+ Ð→ Ã

(θ−, θ+) ↦ θ− ○ θ+

where Ã− ×A Ã+ = {(θ−, θ+) ∈ Ã− × Ã+ ∣ codom θ+ = dom θ−} is ordered by pairwise inclusion

and Ã is ordered by inclusion.

Proof. The map is clearly well defined because Ã− and Ã+ are included in Ã.
Injectivity. Assume we have θ = θ−1 ○ θ

+
1 = θ

−
2 ○ θ

+
2 ∶ x ≅Ã y. In other words we have the

following commutative square:

z1
θ −
1≅

Ã
−

x
θ +
2≅

Ã
+

θ
+
1

≅ Ã
+

y

z2

θ
−
2

≅ Ã
−

By using groupoid laws we get that θ+1 ○ (θ+2 )−1 = (θ−1 )−1 ○ θ−2 ∶ z1 ≅ z2 ∈ Ã− ∩ Ã+ hence both
are equal to the identity: z1 = z2, θ

+
1 = θ

+
2 and θ−1 = θ

−
2 .

Surjectivity. By induction on θ ∈ Ã we build a preimage. If θ is empty then (∅,∅) is
suitable. Assume we have the decomposition of θ ∶ x ≅Ã y into x

θ+

≅Ã+ z
θ−

≅Ã− y and θ extends

to θ′ ∶ x′ ≅ y′ by a pair of fixed polarity, say positive. We use the extension axiom on θ− to
get θ− ⊆ θ′− ∶ z′ ≅Ã− y

′. It follows that θ+ ⊆ (θ′−)−1 ○ θ′ ∶ x′ ≅Ã z′ is a positive extension of

θ+ so it must belong to Ã+ by the properties of tcgs. Hence θ′ = θ′− ○ ((θ′−)−1 ○ θ′) provides
the required decomposition.

Monotonicity and monotonicity of the inverse. Clearly, the function is monotonic. We
prove that so is its inverse. Assume θ− ○ θ+ ⊆ θ′− ○ θ

′
+. We write θ− ○ θ+ ∶ x ≅Ã y and

θ′− ○ θ
′
+ ∶ x

′ ≅Ã y
′; in particular we have x ⊆ x′ and y ⊆ y′. But then restricting θ′+ to x yields

θ′′+ ∶ x ≅Ã+ z, and restricting θ′− to z yields θ′′− ∶ z ≅Ã− y, where θ
′′
− ○ θ

′′
+ is the restriction of

θ′− ○ θ
′
+ to x, i.e. θ− ○ θ+. By injectivity (proved above), θ− = θ

′′
− and θ+ = θ

′′
+. Thus, θ− ⊆ θ

′
−

and θ+ ⊆ θ
′
+.
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As an aside, an interesting consequence of this lemma is that the commutative diagram

(A,{idx ∣ x ∈ C (A)})
vv♠♠♠♠♠♠♠♠

((◗◗◗◗◗◗◗◗

(A, Ã+)
((◗◗◗◗◗◗◗◗◗◗◗

(A, Ã−)
vv♠♠♠♠♠♠♠♠♠♠♠

A

is a both a pullback and a pushout in E∼. In particular, this means that Ã is uniquely
determined from Ã− and Ã+.

3.2.3. Uniform strategies. Given a tcg A, we would like to define when a strategy σ ∶ S →A
on A is uniform.

Drawing inspiration from AJM games, a natural condition that comes to mind is to say
that any configurations x, y ∈ C (S) mapping to symmetric configurations of the game (i.e.
there exists θ ∶ σx ≅Ã σy) have similar futures. For instance, if x extends by s ∈ S, then
there exists s′ ∈ S such that y extends by s′, and θ ∪ {(σs,σs′)} ∶ σx ∪ {σs} ≅ σy ∪ {σs′} is
in Ã. However, in our setting this definition is too naive.

Example 3.14. Consider the strategy σ represented below, extending with copy indices that
of Figure 5.

!Jcom → comK

run−,i

run+,0
✐ ❣ ❢ ❞ ❝

❴���

/o/o run+,1
q ♥ ❦ ❤ ❡

❴���
done−,j

✤

done−,k

✤

✓ %%,❙❙❙❙❙❙❙

done+,k

✚
✢

✤
✦

✩
✫

Such a strategy is definable with the help of an operation + for a non-deterministic
choice (definable in IPA), for instance with the term λxcom.(x;�)+x. There is a reindexing

iso between configurations {run−,i,run+,0,done−,j} and {run−,i,run+,1,done−,k} of the
tcg !Jcom → comK, however only the latter can be extended by a move with label done+.

This example shows that in the presence of explicit non-deterministic branching in-
formation, it is not because two configurations have a symmetric image in the game that
they should be considered equivalent. To circumvent this problem, we let strategies specify
themselves which configurations should be equivalent by equipping the event structure S
with a symmetry S̃. We ask however that if θ ∈ S̃, then σθ = {(σs,σs′) ∣ (s, s′) ∈ θ} must

be in Ã, hence turning σ into a map of ess S → A. Note that in what follows, whenever
we speak of a map of ess σ ∶ S → A with A a tcg, we mean that the symmetries in S̃ are
transported to Ã rather than to one of the sub-symmetries Ã+ or Ã−.

Nothing so far prevents a strategy to specify that the only equivalent configurations are
those which are equal. To force the symmetry on strategies to be non-trivial (thus enforcing
a genuine notion of uniformity), we introduce the notion of ∼-receptivity.
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3.2.4. Pre-∼-strategies. To make sure that σ ∶ S → A includes enough bijections in S̃, we
ask that it must be receptive to Opponent extensions of the symmetry (without necessarily
being receptive as in Definition 2.20, or courteous). Although it will only come into play in
Section 5, we also require from the start that σ should be thin (Definition 3.11).

Definition 3.15. If A is a tcg, a map of ess σ ∶ S → A is ∼-receptive iff for all θ ∶ x1 ≅S̃ x2,
for all x1

s−
1

−Ð⊂ and σ x2
a−
2

−Ð⊂ such that σ θ ∪ {(σ s1, a2)} ∈ Ã, there is a unique s2 such that

σ s2 = a2, and we have θ ∪ {(s1, s2)} ∈ S̃.
A pre-∼-strategy is a ∼-receptive map of ess σ ∶ S → A such that S is thin (with

polarities imported from A).

From ∼-receptivity follows the uniqueness part of receptivity, but not the existence. A
pre-∼-strategy σ ∶ S → A which is additionally receptive is called strong-receptive. It
is then receptive at the level of the symmetry : for all θ ∶ x ≅S̃ y, for all extension σ θ ∪

{(a−1 , a−2)} ∈ Ã, there are unique s1, s2 ∈ S such that σ si = ai and θ ∪ {(s1, s2)} ∈ S̃. In
this paper, most of the concrete pre-∼-strategies we will be interested in will actually be
strong-receptive – with the exception of the strategy used in Section 7.3 to handle state.

The following example illustrates how ∼-receptivity ensures uniformity:

Example 3.16. Recall the non-uniform strategy from Section 2:

!J B → BK →∣ !JB → BK

q−,i

✯qqx ❥❥❥❥❥❥❥❥❥❥

q+,i

✫oov ❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢
✯qqx ❥❥❥❥❥❥❥❥❥

✺vv� ✉✉

q−,0

✚ ))0❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩
❥ ❤ ❢ ❞ ❜ ❛

q−,1
♣ ♠ ❥ ❣ ❞

q−,i
✉

q+,0
✗

✕
✒

✎
☞

✟

Assume now there is an isomorphism family S̃ on this event structure S such that the
labelling map σ ∶ S → !JB→ BK⊥ ∥ !JB→ BK is ∼-receptive.

By ∼-receptivity (since the identity on {q−,0,q+,0} must be in S̃), we must have that

the bijection {q−,0,q+,0,q−,0} ≅ {q−,0,q+,0,q−,1} is in S̃. However, only the left hand side
part can be extended by q+,0, absurd.

In the construction of the category Tcg≅, pre-∼-strategies will play a role similar to that
played by prestrategies in the construction of CG: they support a notion of composition,
which will however not yet yield a category. Beyond the motivation of ∼-receptivity as a way
to guarantee uniformity, it is also crucial to define composition: indeed, for σ ∶ S → A⊥ ∥ B
and τ ∶ T → B⊥ ∥ C plain maps of ess, one cannot even define their interaction in general,
since E∼ does not have all pullbacks (see Appendix A.1).

Before we go on, let us mention in passing the following lemma, which shows that
in checking ∼-receptivity for a map of ess it is enough to look at extensions of identity
symmetries.

Lemma 3.17. Let A be a tcg and σ ∶ S → A be a map of ess. Then, σ is ∼-receptive iff

for all x ∈ C (S) and x s−
1

−Ð⊂ , for all idσ x ∪ {(σ s1, a2)} ∈ Ã, there exists a unique s2 such that

σ s2 = a2, and we have idx ∪ {(s1, s2)} ∈ S̃.
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Proof. only if. Particular case of the definition of ∼-receptivity.
if. Assume θ ∶ x1 ≅S̃ x2, x1

s−
1

−Ð⊂ and σ x2
a−
2

−Ð⊂ such that σ θ ∪ {(σ s1, a2)} ∈ Ã. By

(Extension), there is s′1 such that θ
(s1,s

′
1
)

−Ð⊂ . Since σ is a map of ess, we must have σ θ ∪

{(σ s1, σ s′1)} ∈ Ã as well. By (Groupoid), it follows that idσx2 ∪ {(σ s′1, a2)} ∈ Ã. By

hypothesis, we get a unique s2 such that σ s2 = a2, satisfying idx2 ∪ {(s′1, s2)} ∈ S̃. And

finally, by (Groupoid) again, θ ∪ {(s1, s2)} ∈ S̃.
3.2.5. Copycat. As a key example, we show how the copycat strategy presented in Definition
2.9 can be equipped with a symmetry, and made into a pre-∼-strategy.

Recall that the copycat strategy on game A is a labeled event structure:

ccA ∶ CCA → A⊥ ∥ A

where CCA has the same events as A⊥ ∥ A, but additional immediate causal links from
negative events on one side to matching positive events on the other side. Consequently,
configurations x ∈ C (CCA) decompose as x = x1 ∥ x2 ∈ C (A⊥ ∥ A).

The following definition is forced by the requirement that the map ccA should be a map
of ess, and that each symmetry should be an order-iso.

Definition 3.18. Let A be a tcg. Given x = x1 ∥ x2 ∈ C (CCA), y = y1 ∥ y2 ∈ C (CCA), the
set of symmetries between x and y (written CCÃ) comprises any bijection θ = θ1 ∥ θ2 such

that θ1, θ2 ∈ Ã, and which is an order-iso (for the order on x, y induced by ≤CCA
).

This definition makes good intuitive sense. However, to reason on such symmetries,
it will be convenient to rely on a more high-level characterisation that does not explicitly
require an order-isomorphism. To introduce it, recall first from [CCRW] that configurations
x ∈ C (CCA) are exactly those x1 ∥ x2 ∈ C (A ∥ A) such that (with polarity as in A ∥ A):

x2 ⊇
− x1 ∩ x2 ⊆

+ x1

Furthermore, it is observed in [Win13, CCRW] that this relation between x2 and x1 is a
partial order called the “Scott order”, written x2 ⊑A x1. This order is of crucial importance
in the construction and study of the bicategory CG.

If A is a tcg, we now observe the following.

Proposition 3.19. The set CCÃ is equivalently defined as comprising the bijections of the
form

θ1 ∥ θ2 ∶ x1 ∥ x2 ≃Ã⊥∥Ã y1 ∥ y2

satisfying the further condition that for all a ∈ x1 ∩ x2, we have θ1(a) = θ2(a).
In other words, CCÃ comprises the bijections θ1 ∥ θ2 ∈ Ã

⊥ ∥ Ã such that θ2 ⊇
− θ1 ∩ θ2 ⊆

+

θ1, i.e.
θ2 ⊑Ã θ1

This justifies the notation CCÃ, as this agrees with the description of configurations of
copycat via the Scott order.

Proof. Take θ = θ1 ∥ θ2 ∶ x1 ∥ x2 ≅ y1 ∥ y2.
If θ is an order-isomorphism, then take a ∈ x1 ∩ x2. Assume without loss of generality

that polA(a) = +, so that we have (1, a) _ (2, a) in CCA. But then since θ is an order-iso,
it preserves immediate causal dependency, therefore (1, θ1 a) _ (2, θ2 a). But since these
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two events are in different components of A⊥ ∥ A, this necessarily means that θ1 a = θ2 a as
required (using e.g. the characterisation of immediate causality of copycat in Lemma 3.3 of
[CCRW]).

Reciprocally, assume that for all a ∈ x1 ∩ x2, θ1 a = θ2 a. Using again Lemma 3.3 of
[CCRW], it is immediate that θ preserves immediate causal links. The same reasoning
applies to θ−1 (it is easy to show that the hypothesis is stable under inverse), so it reflects
immediate causal links as well; and is an order-iso.

We now check the axioms for isomorphism families.

Lemma 3.20. The family CCÃ satisfies the axioms (Groupoid) and (Restriction) of isomor-
phism families.

Proof. Immediate from Definition 3.18.

We prove the extension axiom separately. Although we will show it holds in tcgs, it
fails in general for copycat on event structures with polarity and symmetry without further
conditions – the interested reader can find a counter-example in Appendix A.3.

In order to establish it for tcgs, we show that the isomorphism family on tcgs automat-
ically satisfies a technical condition called race-preservation.

Lemma 3.21. Let A be a tcg. Then Ã is race-preserving, in the sense that for any θ ∶ x ≅Ã y,
for any θ ⊆+ θ1 ∶ x1 ≅Ã y1 and θ ⊆

− θ2 ∶ x2 ≅Ã y2, if x1 and x2 are compatible (x1∪x2 ∈ C (A)),
then so are θ1 and θ2: θ1 ∪ θ2 ∈ Ã as well.

Proof. We first prove that Ã+ and Ã− are race-preserving. Let θ ∶ x ≅Ã+ y with a positive

extension θ1 ∶ x1 ≅Ã+ y1 and a negative extension θ2 ∶ x2 ≅Ã+ y2, with x1 ∪ x2 ∈ C (A).
Using (Extension) of Ã+ twice to θ1 and θ2, we get to the following picture:

θ′1 ∶ x1 ∪ x2 ≅Ã+ y
′
1 θ′2 ∶ x1 ∪ x2 ≅Ã+ y

′
2

θ1 ∶ x1 ≅Ã+ y1

⊆
−

θ2 ∶ x2 ≅Ã+ y2

⊆
+

θ ∶ x ≅Ã+ y

⊆+
⊆
−

By the (Groupoid) axiom on Ã+, we have idy ⊆ θ
′
1 ○ θ

′
2
−1
∶ y′2 ≅Ã+ y

′
1. By (Restriction), we

build ϕ = θ′1 ○ θ
′
2
−1
↾ y2. By construction, we have idy ⊆

− ϕ ∈ Ã+, so ϕ = idy2 by Lemma 3.12.

It follows that θ2 ⊆ θ
′
1, hence θ

′
1 = θ1 ∪ θ2 as required. A dual reasoning shows that Ã− is

race-preserving as well.
Now, we deduce the result for Ã, using the decomposition of Lemma 3.13. Assume

θ = θ− ○ θ+ has extensions θ ⊆+ θ1 and θ ⊆− θ2, with decompositions θ−1 ○ θ
+
1 and θ−2 ○ θ

+
2 . By

monotonicity of the decomposition, we have θ+ ⊆+ θ+1 , θ
+ ⊆− θ+2 , θ

− ⊆+ θ−1 and θ− ⊆− θ−2 . By

race-preservation of Ã+ it follows first that θ+1 ∪ θ
+
2 ∈ Ã+, and then by race-preservation of

Ã− it follows that θ
−
1 ∪θ

−
2 ∈ Ã−. Thus (θ−1 ∪θ−2 )○(θ+1 ∪θ+2 ) = (θ−1 ○θ+1 )∪(θ−2 ○θ−1 ) = θ1∪θ2 ∈ Ã.

From that, we finally deduce the following.

Proposition 3.22. Let A be a tcg. Then, writing CCA = (CCA,CCÃ), the map

ccA ∶ CCA →A⊥ ∥ A

is a pre-∼-strategy.
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Proof. By Lemma 3.20 we already know that CCÃ satisfies all axioms for an isomorphism
family except for (Extension), which we establish now.

Let θ1 ∥ θ2 ∶ x ∥ y ≅CC
Ã
x′ ∥ y′. Assume e.g. x ∥ y

(2,a)
−Ð⊂ . There are two cases:

● If polA(a) = −, then by (Extension) for Ã⊥ ∥ Ã we have θ1 ∥ θ2 ⊆ θ1 ∥ θ
′
2 ∈ Ã

⊥ ∥ Ã
whose domain is x ∥ y ∪ {a}. Its codomain is x′ ∥ y′ ∪ {a′}. Since polA(a) = −, we
cannot have a′ ∈ x′ – indeed x′ ⊇+ x′ ∩ y′ ⊆− y′, so we would have a′ ∈ y′ as well,
absurd. So we have x′ ∩ (y′ ∪ {a′}) = x′ ∩ y′ ⊆+ x′, and x′ ∩ (y′ ∪ {a′}) = x′ ∩ y′ ⊆−
y′ ⊆− y′ ∪ {a′}, which establishes that x′ ∥ (y′ ∪ {a′}) ∈ C (CCA).

Likewise we have θ1 ∩ θ
′
2 = θ1 ∩ θ2, hence we still have θ1 ∩ θ

′
2 ⊆+ θ1 but also

θ1 ∩ θ
′
2 ⊆
− θ2 ⊆

− θ′2, therefore θ1 ∥ θ
′
2 ∈ CCÃ.

● If polA(a) = + is positive then a ∈ x as well. Thus, [a) ⊆ x ∩ y. Therefore, we have(x ∩ y) ∪ {a} ∈ C (A), and (x ∩ y) ∪ {a} ⊆ x. Define θ′1 = θ1 ↾ (x ∩ y) ∪ {a}. We have:

θ′1 ⊇
+ θ1 ∩ θ2 ⊆

− θ2

By construction, the domains of θ′1 (which is (x ∩ y) ∪ {a}) and the domain of θ2
(which is y) are compatible, so by Lemma 3.21, θ′2 = θ

′
1∪θ2 ∈ Ã, and by construction

its domain is y ∪ {a}. To sum up, we have:

θ1 ⊇
+ θ1 ∩ θ

′
2 ⊆
− θ′2

Hence θ1 ∥ θ
′
2 ∈ CCÃ provides the required extension.

We have established that CCÃ is an isomorphism family. It is obvious that ccA ∶ CCA →
A⊥ ∥ A preserves symmetry. It remains finally to show that it is ∼-receptive, for which
we apply Lemma 3.17. Assume x ∥ y ∈ C (CCA) can be extended by (2, a−) in CCA and by(2, b−) in A⊥ ∥ A (in which case it is immediate that it is a valid extension in CCA as well),
such that:

idx ∥ (idy ∪ {(a, b)}) ∈ Ã⊥ ∥ Ã
We need to check that this is a valid extension in CCÃ as well. By the characterisation of

Proposition 3.19, we only have to check that idx c = (idy∪{(a, b)}) c for each c ∈ x∩(y∪{a}),
but in fact we must have c ∈ x ∩ y. Indeed, we cannot have a ∈ x, as by x ⊇+ x ∩ y ⊆− y and
polA(a) = − that would imply a ∈ y as well, absurd. So the verification is obvious.

Finally, that copycat is thin is an immediate consequence of Lemma 3.12 and the
characterisation of symmetries in copycat of Proposition 3.19.

We have a notion of pre-∼-strategy that – as we have seen – enforces some notion of
uniformity, and includes the copycat strategies. We will now extend to the presence of
symmetry the composition operation presented in Section 2.

3.3. Composition of pre-∼-strategies. In order to define the composition of pre-∼-
strategies, the first step is to define their interaction. As for the plain concurrent games
described in Section 2, the interaction of pre-∼-strategies will be adequately formulated as
a pullback.

The category E∼ has no pullbacks in general – the reader can find a proof of this in
Appendix A.1. We will start by showing that however, thanks to ∼-receptivity, pullbacks
involved in interactions of pre-∼-strategies do exist.
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3.3.1. Interaction. As in Section 2, we start by describing a closed interaction between ∼-
receptive maps of essps σ ∶ S → A and τ ∶ T → A⊥ (where A is a tcg). We construct the
pullback of their underlying map of event structures σ ∧ τ ∶ S ∧ T → A. Throughout this
section we will reuse the same notations as in Section 2 for operations on strategies.

First, we notice that bijections on configurations of the (plain) pullback induce bijections
on their projections:

Lemma 3.23. Let σ ∶ S → A and τ ∶ T → A be maps of event structures. Let θ ∶ w ≃ z
be a bijection, where w,z ∈ C (S ∧ T ). There are (unique) bijections θS ∶ Π1w ≃ Π1 z and
θT ∶ Π2w ≃ Π2 z satisfying Π1 ○ θ = θS ○ Π1 and Π2 ○ θ = θT ○ Π2. Moreover, the mapping
θ ↦ (θS , θT ) is monotonic w.r.t. inclusion.

Proof. We only define θS, the definition of θT is similar. By local injectivity, Π1 defines a
bijection w ≃ Π1w and z ≃ Π1z. With this remark, θS is simply defined as Π1 ○ θ ○Π

−1
1 . The

equation and uniqueness are by definition, and monotonicity is obvious.

Define S̃ ∧ T̃ to contain those bijections θ ∶ w ≅ z such that θS ∶ Π1w ≅ Π1z ∈ S̃
and θT ∶ Π2w ≅ Π2z ∈ T̃ . Bearing in mind the correspondence between configurations of
S ∧ T and secured bijections x ≃ y, there is an order-isomorphism between those bijections
θ ∈ S̃ ∧ T̃ and commutative squares between secured bijections x ≃ y and x′ ≃ y′ (ordered by
componentwise union):

x

θS ≅

S̃

≃
σ
σx = τy ≃

τ
y

θT ≅

T̃

x′ ≃
σ
σx′ = τy′ ≃

τ
y′

This definition indeed yields a pullback in E∼:

Lemma 3.24. Let σ ∶ S → A and τ ∶ T → A⊥ be ∼-receptive maps of ess. The set S̃ ∧ T̃ is
an isomorphism family on S ∧ T and the ess (S ∧ T, S̃ ∧ T̃) is a pullback in E∼ of σ and τ ,
written S ∧ T .

Proof. The (Groupoid) and (Restriction) axioms are direct consequences of the correspond-

ing conditions for S̃ and T̃ .
(Extension). Let θ ∶ w ≅S̃∧T̃ z. Assume w can be extended by an event e ∈ S ∧ T to w′.

Write s = Π1e and t = Π2e, and assume eg. σs is positive in A. We then have the following
picture:

Π1w
′ ≃ (σ ∧ τ)w′ ≃ Π2w

′

Π1w
s

R2 ❍❍❍❍❍❍

θS ≅

S̃

≃
σ (σ ∧ τ)w ≃

τ
Π2w

θT ≅

T̃

t
, �✈✈✈✈✈✈

Π1 z ≃
σ (σ ∧ τ)z ≃τ Π2 z

We first use the extension property on θS as Π1w
s

−Ð⊂ : θS extends by (s, s′). Since σθS = τθT ,
this means that τθT extends by (σs,σs′) which is negative in A⊥. By ∼-receptivity of τ , it
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follows that θT extends by (t, t′) with τt = σs and τt′ = σs′. The picture is now:

Π1w
′

≅
S̃

≃ (σ ∧ τ)w′ ≃ Π2w
′

≅

T̃

Π1w
s

R2 ❍❍❍❍❍❍

θS ≅

S̃

≃
σ (σ ∧ τ)w ≃

τ
Π2w

θT ≅

T̃

t
, �✉✉✉✉✉✉

Π1 z
s′

lLt
t

t
≃
σ (σ ∧ τ)z ≃

τ
Π2w

′

t′

� s❑
❑

❑

z1 ≃ σz1 = τz2 ≃ z2

The obtained bijection ϕ ∶ z1 ≃ z2 is secured by construction, so as observed in Definition
2.11 its graph is ordered by ≤ϕ compatible with both ≤S and ≤T . Therefore restricting ϕ
to the causal history of (s′, t′) yields e′ = [(s′, t′)]ϕ a prime secured bijection, i.e. an event

e′ ∈ S ∧ T such that z
e′

−Ð⊂z′. Finally, θ ∪ {(e, e′)} ∈ S̃ ∧ T̃ because θS ∪ {(s, s′)} ∈ S̃ and

θT ∪ {(t, t′)} ∈ T̃ .
If σs is negative the reasoning is dual: we use first the extension on T̃ and then ∼-

receptivity of σ.
It is a pullback. Clearly the maps Π1 ∶ S∧T → S and Π2 ∶ S∧T → T preserve symmetry:

they map θ to θS and θT respectively. We only need to check the universal property. Assume
we have two morphisms of ess ϕ ∶ X → S and ψ ∶ X → T such that the square commutes:

X
ϕ

		

ψ

��

S ∧ T

||①①①①①①①

##❋❋❋❋❋❋❋

S̃
σ

##❋❋❋❋❋❋❋ T
τ

{{①①①①①①①

A

Because S ∧ T is a pullback in E there is a map of event structures ⟨ϕ,ψ⟩ ∶ X → S ∧ T
making the two triangles commute, which is unique in E . This uniqueness lifts to E∼ as
the forgetful functor E∼ → E is faithful. To conclude we need only to prove that ⟨ϕ,ψ⟩
preserves symmetry and is thus a morphism in E∼. Let θ ∶ x ≅X̃ y. It is transported to a
bijection ⟨ϕ,ψ⟩θ ∶ ⟨ϕ,ψ⟩x ≃ ⟨ϕ,ψ⟩y such that (⟨ϕ,ψ⟩θ)S = ϕθ and (⟨ϕ,ψ⟩θ)T = ψ θ, thus⟨ϕ,ψ⟩θ ∈ S̃ ∧ T̃ by definition.

3.3.2. Hiding and composition. Given two pre-∼-strategies σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥
C, we now wish to define their composition.

Firstly, as in the plain case in Section 2.4 we form the interaction pullback; exploiting
Lemma 3.24 and the fact that σ ∥ C⊥ ∶ S ∥ C⊥ →A⊥ ∥ B ∥ C⊥ and A ∥ τ ∶ A ∥ T → A ∥ B⊥ ∥ C
are ∼-receptive maps of essps. So we can form the interaction pullback and associated map:

(σ ∥ C⊥) ∧ (A ∥ τ) ∶ (S ∥ C) ∧ (A ∥ T )→A ∥ B ∥ C

written τ ⊛ σ ∶ T ⊛ S → A ∥ B ∥ C.
Ignoring symmetry, recall from Section 2 that τ ⊙ σ ∶ T ⊙ S → A⊥ ∥ C is then obtained

using the projection (Definition 2.18): given V = {p ∈ S ⊛ T ∣ (τ ⊛ σ)p /∈ B} we set T ⊙ S =
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T ⊛ S ↓ V , and τ ⊙ σ to be the corresponding restriction of τ ⊛ σ. We now extend this
operation in the presence of symmetry.

Lemma 3.25. Let E be an ess and V ⊆ E closed under symmetry, in the sense that for all
θ ∶ x ≅Ẽ y, for all e ∈ V ∩ x, we have θ e ∈ V as well. Then, defining

Ẽ ↓ V = {θ ∶ x ≃ y ∣ x, y ∈ C (E ↓ V ), ∃θ ⊆ θ′ ∈ Ẽ, θ′ ∶ [x]E ≅Ẽ [y]E}
we have that Ẽ ↓ V is an isomorphism family, making E ↓ V = (E ↓ V, Ẽ ↓ V ) into an event
structure with symmetry.

Proof. As usual the axiom (Groupoid) is clear. In this proof we abbreviate [x]E to [x] for
x ∈ C (E ↓ V ) for clarity reasons.

(Restriction) Let θ ∶ x ≃ y ∈ Ẽ ↓ V , and x0 ∈ C (E ↓ V ) such that x0 ⊆ x. By definition

there is θ ⊆ θ′ ∶ [x] ≅Ẽ [y]. We have [x0] ⊆ [x]. Therefore, by (Restriction) on Ẽ we have

θ′0 ⊆ θ
′ with θ′0 ∶ [x0]≅Ẽy′0. Since V is closed under symmetry, θ′0 ∩ V

2 ∶ x0 ≃ y
′
0 ∩ V is still a

bijection, which by definition is in Ẽ ↓ V . It is clear by construction that θ′0 ∩ V
2 ⊆ θ.

(Extension) Let θ ∶ x ≃ y ∈ Ẽ ↓ V , and x ⊆ x0 ∈ C (E ↓ V ). By definition there is

θ ⊆ θ′ ∶ [x] ≅Ẽ [y]. We have [x] ⊆ [x0] ∈ C (E ↓ V ), therefore by (Extension) for Ẽ there

is θ′0 ∶ [x0] ≅Ẽ y′0. Again since V is closed under symmetry, θ′0 ∩ V
2 ∶ x0 ≃ y

′
0 ∩ V is still a

bijection. By definition it is in Ẽ ↓ V , and by construction it contains θ.

Finally, given ∼-receptive σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C (where A,B and C
are tcgs), we note that V = {p ∈ S ⊛ T ∣ (τ ⊛ σ)p /∈ B} is closed under symmetry; we

can therefore apply the lemma above. Accordingly we define T̃ ⊙ S̃ as T̃ ⊛ S̃ ↓ V , i.e. as
comprising bijections θ ∶ x ≃ y such that there exists

θ ⊆ θ̄ ∶ [x]T⊛S ≅T̃⊛S̃ [y]T⊛S
This makes T ⊙ S = (T ⊙ S, T̃ ⊙ S̃) an event structure with symmetry. In fact, we

will show in Lemma 3.28 that thanks to thinness, the witnessing symmetry θ̄ as above is
uniquely determined. As an aside, we note that this does not hold in the our first version
of games with symmetry [CCW14], where rather than thin we required our strategies to be
saturated.

Summing up, we state:

Lemma 3.26. If σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C are pre-∼-strategies, then
τ ⊙ σ ∶ T ⊙ S → A⊥ ∥ C

is a map of ess.

Proof. First, we prove that τ ⊙σ preserves symmetry. Let θ ∶ x ≅T̃⊙S̃ y. By definition, there

is θ ⊆ θ̄ ∶ [x] ≅T̃⊛S̃ [y]. Then, (τ ⊛ σ) θ̄ is some

θA ∥ θB ∥ θC ∶ xA ∥ xB ∥ xC ≅Ã∥B̃∥C̃ yA ∥ yB ∥ yC

since (τ ⊛ σ) preserves symmetry. But then (τ ⊙ σ)θ is

θA ∥ θC ∶ xA ∥ xC ≅Ã∥C̃ yA ∥ yC
which is a valid symmetry in Ã ∥ C̃ as required.
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In order to get a composition operation on pre-∼-strategies, it remains to investigate the
stability of thinness and ∼-receptivity under composition. We will first do so for thinness,
then for ∼-receptivity.
3.3.3. Preservation of thinness. Preservation of thinness relies on the key observation that
the closed interaction between pre-∼-strategies is trivial, i.e. reduced to identities. This is
because due to thinness, only an external Opponent can possibly introduce non-trivial pairs
in a symmetry: none of the interacting pre-∼-strategies can do it first.

Lemma 3.27. Let σ ∶ S → A and τ ∶ T → A⊥ be pre-∼-strategies. The family S̃∧ T̃ is trivial
(reduced to identities).

Proof. We prove by induction that all bijections in S̃ ∧ T̃ are identities. Let z ∈ C (S ∧ T )
and assume idz extends by (e, e′) to θ ∈ S̃∧ T̃ . Assume for instance Π2 e is positive in T (the

other case is similar). By construction idΠ2 z extends to θT = Π2 θ ∈ T̃ by positive events

(Π2 e,Π2 e
′), hence Π2 e = Π2 e

′ and θT is the identity because T̃ is thin. By local injectivity
of Π2 it follows that e and e′ must be equal, or incompatible extensions of z. But if they
are incompatible, by Lemma 2.15 (and Proposition 2.16) it means that Π1 e and Π1 e

′ are
incompatible extensions of Π1 z mapping to the same event in the game, contradicting the∼-receptivity of σ. Hence e = e′ and θ is the identity.

Note that this does not cover an open interaction between pre-∼-strategies σ ∶ S → A⊥ ∥
B and τ ∶ T → B⊥ ∥ C: indeed, this is obtained as a pullback between σ ∥ C⊥ and A ∥ τ ,
where A and C⊥ are not thin. Nevertheless, whenever the interaction stays within B the
phenomenon above applies, and the symmetry is fixed. In other words, only the external
Opponent can put in relation two non-identical events first. As a result, a bijection in the
symmetry of the interaction is fully determined by its restriction to visible events:

Lemma 3.28 (Unique witness). Let σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C be pre-∼-strategies.
Recall the set of visible events of the interaction:

V = {e ∈ T ⊛ S ∣ (τ ⊛ σ)e /∈ B}
Let θ ∶ x ≅T̃⊛S̃ y and θ′ ∶ x ≅T̃⊛S̃ y

′ such that θ ∩ V 2 = θ′ ∩ V 2. Then θ = θ′.

Proof. By hypothesis, we have that y∩V = y′∩V . Note that θ○θ′−1 ∶ y′ ≅ y ∈ (S̃ ∥ C̃)∧(Ã ∥ T̃ )
and contains idy∩V . So necessarily, the projection of θ ○ θ′−1 to A and C is an identity

bijection. As a result, the symmetry θ ○ θ′−1 actually belongs to (S̃ ∥ (C+)⊥) ∧ (A− ∥ T̃).
This is a pullback of pre-∼-strategies, so θ ○ θ′−1 is an identity by Lemma 3.27, so θ = θ′.

Note that as we mention earlier, this implies that any bijection in T̃ ⊙ S̃ is witnessed
by exactly one bijection in T̃ ⊛ S̃.

Using this, we can prove that thinness is stable under composition.

Lemma 3.29. For σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C pre-∼-strategies, τ ⊙ σ is thin.

Proof. Let z ∈ C (T ⊙ S) such that idz extends by (e, e′) to θ ∶ x ≅ y ∈ T̃ ⊙ S̃ with witness
θ̄ ∶ [x] ≅T⊛S [y]. Write θ0 for θ̄ ∖ {(e, e′)} ∶ x0 ≅ y0. By hypothesis, θ0 behaves like the
identity on the visible part of x0. Hence, by Lemma 3.28, θ0 is the identity on x0.

Since idx0 = θ0 can be extended by (e, e′) to θ̄ which is positive in T ⊙S we can assume
eg. Π2 e and Π2 e

′ are positive in T . Hence Π2 θ0 (which is also an identity) extends by
positive (Π2 e,Π2 e

′). Since τ is thin, we have Π2 e = Π2 e
′ from which e = e′ follows (e and

e′ are positive), as desired.
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3.3.4. Preservation of ∼-receptivity. Unlike for thinness, the composition of pre-∼-strategies
is not, in general, ∼-receptive – so pre-∼-strategies fail to be stable under composition.

Besides ∼-receptivity, almost all pre-∼-strategies considered in this paper are also cour-
teous. In combination with courtesy, ∼-receptivity is preserved by composition – but it will
be convenient for later (for the interpretation of state in Section 7.3) to be able to compose
pre-∼-strategies which are not courteous. So we briefly deviate from our main narrative and
provide a sufficient condition for ∼-receptivity to be stable under composition.

Definition 3.30. Let σ ∶ S → A⊥ ∥ B be a pre-∼-strategy. We say that σ is (A,B)-courteous
iff for all s1 _ s2 in S, if polS(s2) = − (i.e. polA⊥∥B(σ s2) = −), then s1 and s2 map to the

same A/B component.
We will also say that σ ∶ S → A⊥ ∥ B is componentwise courteous to mean that it is(A,B)-courteous, when A and B are clear from the context.

So σ is not necessarily courteous, but is not allowed to influence negative moves accross
components. As announced, we have the following.

Lemma 3.31. Let σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C be pre-∼-strategies, such that σ is(A,B)-courteous and τ is (B,C)-courteous. Then, τ⊙σ is ∼-receptive and (A,C)-courteous.
Proof. As a preliminary to the proof, we note that thanks to (A,B)-courtesy of σ and(B,C)-courtesy of τ , the immediate dependencies of negative p ∈ T ⊙ S in T ⊛ S have to
be visible as well, and must map to the same component – this is the key argument of the
proof. Indeed assume p′ _ p in T ⊛S with visible p mapping to a negative event in A⊥ ∥ C,
for instance in C. Then by general properties of the pullback in E , since p maps to C, its
immediate causal dependencies p′ _ p in T ⊛ S must be such that Π2 p

′ _ Π2 p in A ∥ T
(consequence of e.g. Lemma 2.7 of [CCRW] with Proposition 2.16), but since p maps to
C those must actually both be in T , and since τ is (B,C)-courteous p′ must map to C as
well, therefore it is visible.

From that, it is clear that τ⊙σ is (A,C)-courteous. We now show that it is ∼-receptive.
We prove it via Lemma 3.17. Take z ∈ C (T ⊙ S), assume z extends via some negative p,
say in C. The configuration z has a witness [z] ∈ C (T ⊛S), however in general this witness
might not extend with p, as it may need to perform some invisible events prior to that.
In our case though, the preliminary above shows that this is not possible: the immediate
dependencies in T ⊛ S of p are visible as well, and hence in z ⊆ [z]. Now, if we also have

that (τ ⊙ σ)z extends with c− with id(τ⊙σ)z ∪ {((τ ⊙ σ)p, c)} ∈ Ã ∥ B̃ ∥ C̃, then

Π2 [z] Π2 p
−Ð⊂ idΠ2 [z] ∪ {((A ∥ τ) (Π2 p), c)} ∈ Ã ∥ B̃ ∥ C̃

so using ∼-receptivity of A ∥ τ , we can uniquely lift c to A ∥ T , hence to T ⊛ S and T ⊙ S,
and that lifting is by construction compatible with T̃ ⊛ S̃ and T̃ ⊙ S̃.

At this point, we have a notion of (A,B)-courteous pre-∼-strategy comprising copycat,
and a notion of composition which, as will follow from Section 4, is associative up to (strong)
isomorphism. In particular, it will also follow from 4 that the pre-∼-strategies which are
additionally receptive (so they are strong-receptive) and courteous (in the sense of Definition
2.20) form a bicategory.
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3.3.5. The category Tcg≅. Isomorphism of pre-strategies naturally generalize to pre-∼-
strategies by requiring preservation of symmetry.

Definition 3.32. Let σ ∶ S → A and τ ∶ T → A be pre-∼-strategies. A strong isomor-
phism between σ and τ is an isomorphism of event structures with symmetry f ∶ S ≅ T
such that τ ○ f = σ.

Such isomorphisms are called strong as they must commute with projections on the
game on the nose. Later, we will consider weak isomorphisms that need only commute with
projections on the game up to the symmetry (of the game).

Two pre-∼-strategies σ and τ are strongly isomorphic (written σ ≅ τ) when there
exists an isomorphism f between them. Strong isomorphism is a congruence on pre-∼-
strategies:

Proposition 3.33. Let σ ∶ S → A⊥ ∥ B, σ′ ∶ S ′ → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C be
pre-∼-strategies such that σ ≅ σ′, given by f ∶ S ≅ S ′.

Then, τ ⊙ σ ≅ τ ⊙ σ′.
The proof is a straightforward extension of the case without symmetry [CCRW]. How-

ever, we reproduce here the details of the proof because it is key to understand the difficulties
to generalize it to weak isomorphism (to come).

Proof. The maps T ⊛S
π1
Ð→ S ∥ C

f∥C
ÐÐ→ S ′ ∥ C and T ⊛S

π2
Ð→A ∥ T make the obvious square

commute. By the universal property of pullbacks, there exists a map τ ⊛f ∶ T ⊛S → T ⊛S ′.
Similarly, there exists a map τ ⊛ f−1 ∶ T ⊛ S′ → T ⊛ S′. Using the uniqueness of those two
maps, it is easy to derive that they are inverse of each other, so that τ ⊛ f is part of an
isomorphism T ⊛S ≅ T ⊛S ′, which furthermore commutes with the projection on A ∥ B ∥ C.

As a result τ ⊛ f preserves visible events and restricts to the desired isomorphism
τ ⊙ σ ≅ τ ⊙ σ′.

To construct a category, we simply need to define ∼-strategies, by generalizing the
notion of strategies of CG:

Definition 3.34. A ∼-strategy is a courteous and receptive pre-∼-strategy.
Assuming the developments of the next section, this allows us to conclude:

Corollary 3.35. The following is a category written Tcg≅:

● Objects: Thin concurrent games
● Morphisms from A to B: ∼-strategies on A⊥ ∥ B up to strong isomorphism.

We will sometimes write σ ∶ A
Tcg
+ // B to mean that σ is a ∼-strategy (a concrete ∼-

strategy rather than an equivalence class) from A to B, keeping the S anonymous.

4. A compact closed category

In the previous section, we have defined notions of games and strategies equipped with
symmetry, in a tentative to express the symmetry induced by copy indices in games of the
form !A and to ensure that strategies behave uniformy w.r.t. this symmetry. We proved
in particular that composition of strategies could be extended to these ∼-strategies, that
respect symmetry. We obtained a category Tcg≅ of tcgs and ∼-strategies up to (strong)
isomorphisms, preserving the moves played on the nose.



CONCURRENT HYLAND-ONG GAMES 37

In this section, we perform a more complete investigation of the categorical structure
of ∼-strategies in concurrent games with symmetry. In particular, we show that just as for
our plain concurrent games of [CCRW], concurrent games with symmetry and ∼-strategies
between them form a compact closed category. This categorical structure will be key in
constructing the cartesian closed category of Concurrent Hyland-Ong games in Section 6.
All this categorical structure will be established up to strong isomorphism; in other words
the category Tcg≅ will be proved to be compact closed. Nevertheless it will follow from our
investigations later that Tcg with the coarser weak isomorphism investigated in Section 5
is also a compact closed category.

In an attempt to avoid duplication of work w.r.t. [CCRW], we will show that many
properties of concurrent games with symmetry and ∼-strategies can be deduced from the
corresponding properties in [CCRW]. This will be done by exploiting the representation of
event structures with symmetry as spans of event structures in E .

4.1. Event structures with symmetry as spans. In [Win07], event structures with
symmetry are described differently than in the present paper. They are defined as spans of
event structures ÌE

lE

��⑧⑧⑧⑧⑧⑧⑧⑧
rE

��❄❄❄❄❄❄❄❄

E E

satisfying some further properties: lE , rE are jointly monic, they are open maps [Win07],
and they satisfy the diagrams of (categorical) equivalence relations. The detail of these
conditions will not be useful here; however we will use that the category E∼ can be embedded
fully and faithfully in Span(E), defined as below.

Definition 4.1. Let C be a (small) category. As objects, the category Span(C) has spans
in C whose both legs map to the same object of C. As morphisms, Span(C) has pairs (f, Ìf)
yielding commuting diagrams:

A

f

��

ÌA
Ìf
��

lAoo rA // A

f

��
B ÌBlBoo rB // B

From isomorphism families to spans. In [Win07], it is proved that event structures with
symmetry can be equivalently defined through such spans, plus further conditions. Here we
will not need this equivalence, but only the fact that event structures with symmetry can
be represented as spans.

Let us see how. Let E = (E, Ẽ) be an ess; let us see how to represent the isomorphism

family Ẽ as an event structure ÌE. Similarly to the definition of events in an interaction
pullback, the events of ÌE will be certain prime bijections. Recall that any θ ∈ Ẽ is an
order-isomorphism. Hence, it is trivially a secured bijection, and its graph is ordered. So,
as in Definition 2.13, we can form an event structure from its primes, i.e. thoses symmetries
whose graph has a top element. For such a prime θ, write (elθ, erθ) for its top element.

Definition 4.2. From the isomorphism family Ẽ, we build the event structure Pr(Ẽ), with:
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● Events. Prime symmetries in Ẽ,
● Causality. Inclusion,
● Consistency. For X a finite set of prime symmetries, we set X ∈ Con

Pr(Ẽ) iff ∪X ∈ Ẽ.

Moreover, there are projections maps of event structures

lE ∶ Pr(Ẽ) → E

θ ↦ elθ

rE ∶ Pr(Ẽ) → E

θ ↦ erθ

forming a span E Pr(Ẽ)lEoo rE // E as above.

The axioms of event structures are direct to check, along with the fact that lE , rE are
maps of event structures. Note also that this definition extends in the presence of polarity
in a straightforward way.

Just like for interactions (Proposition 2.16), configurations of Pr(Ẽ) are in direct cor-
respondence with symmetries.

Proposition 4.3. For any x ∈ C (Pr(Ẽ)), writing yl = lE x and yr = rE x, we have θx = ∪x ∶

yl ≅ yr ∈ Ẽ. Moreover, the assignment:

C (Pr(Ẽ)) → Ẽ

x ↦ θx

is an order-isormorphism (with both sets ordered by inclusion). Finally, there is a family
of order-isomorphisms:

νx ∶ x ≅ θx
θ ↦ (elθ, erθ)

that is natural in x.

Proof. Straightforward adaptation of Proposition 2.16.

In order to transport thin concurrent games to spans, we will make use of the following
key proposition.

Proposition 4.4. There is a full and faithful strong monoidal functor (where the monoidal
structure of Span(E) is obtained by component-wise action of that of E).

Span ∶ E∼ → Span(E)
This extends trivially in the presence of polarities.

Proof. Details can be found in [Win07].

4.2. Spannning games and strategies. In order to inherit properties of Tcg≅ from CG,
we will use the functor above. For that to be useful, we show that the construction of the
compact closed category CG can be replicated with spans rather than mere games.

A span-game is a span A = A ÌAlAoo rA // A , where ÌA,A are esps. A span-strategy
on A is a morphism (σ,Ìσ) ∶ S→ A in Span(EP) (where EP is the category of event structures
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with polarities, with maps preserving polarities).

S

σ

��

ÌS
Ìσ
��

lSoo rS // S

σ

��
A ÌAlAoo rA // A

where σ,Ìσ are strategies in CG, i.e. are receptive and courteous.
Constructions on games can be generalized to span-games. The dual of a span-game

A ÌAlAoo rA // A is A⊥ ÌA⊥l⊥
Aoo

r⊥
A // A⊥ , making use of the functor (−)⊥ ∶ EP → EP .

Likewise, simple parallel composition is extended to spans following the functor ∥∶
EP2 → EP . As before we define span-strategies from A to B as span-strategies (σ,Ìσ) ∶ S→
A
⊥ ∥ B, also written (σ,Ìσ) ∶ A + //B.

We define the copycat span-strategy:

Lemma 4.5. The esp construction A↦ CCA extends to a functor CC ∶ EP → EP .

Proof. From f ∶ A → B, we form f⊥ ∥ f ∶ A⊥ ∥ A → B⊥ ∥ B. It is direct that we have also
CCf = f

⊥ ∥ f ∶ CCA → CCB.

Using the above, we construct the copycat span-strategy as the diagram:

CCA

ccA

��

CC ÌA

cc ÌA
��

CClAoo
CCrA // CCA

ccA

��
A⊥ ∥ A ÌA⊥ ∥ ÌAl⊥

A
∥lAoo

r⊥
A
∥rA // A⊥ ∥ A

Besides copycat, other constructions on strategies act in a functorial way. In particular,
in order to extend strategy composition to span-strategies, we recall ([CCRW], Lemma 4.4)
the following lemma.

Lemma 4.6. Consider two commuting diagrams between strategies:

S1
f //

σ1
��

S2

σ2
��

A⊥1 ∥ B1

h⊥
1
∥h2 // A⊥2 ∥ B2

T1
g //

τ1
��

T2

τ2
��

B⊥1 ∥ C1

h⊥
2
∥h3 // B⊥2 ∥ C2

Then, the following diagram commutes.

T1 ⊙ S1
g⊙f //

τ1⊙σ1
��

T2 ⊙ S2

τ2⊙σ2
��

A⊥1 ∥ C1

h⊥
1
∥h3 // A⊥2 ∥ C2

(recall that g ⊙ f is the restriction of g ⊛ f ∶ T1 ⊛ S1 → T2 ⊛ S2 to visible events, which
in turn is obtained by universal property of the interaction pullback)
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Thus, from two span-strategies

S

σ

��

ÌS
Ìσ
��

lSoo rS // S

σ

��
A⊥ ∥ B ÌA⊥ ∥ ÌBlA∥lBoo rA∥rB // A⊥ ∥ B

T

τ

��

ÌT
Ìτ
��

lToo rT // T

τ

��
B⊥ ∥ C ÌB⊥ ∥ ÌCl⊥

B
∥lCoo

r⊥
B
∥rC // B⊥ ∥ C

we obtain componentwise a new span-strategy:

T ⊙ S

τ⊙σ

��

ÌT ⊙ ÌS
Ìτ⊙Ìσ
��

lT⊙lSoo rT⊙rS // T ⊙ S

τ⊙σ

��
A⊥ ∥ C ÌA⊥ ∥ ÌCl⊥

A
∥lCoo

r⊥
A
∥rC // A⊥ ∥ C

Together, we expect composition of span-strategies and the copycat span-strategy to
form a category. In fact they will form a bicategory, whose 2-cells will be morphisms of
span-strategies: commuting diagrams as below.

S2

σ2

��✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠
ÌS2

Íσ2

��✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠

lS2oo
rS2 // S2

σ2

��✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠

S1

f

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

σ1

$$❍❍❍❍❍❍❍❍❍❍❍
ÌS1lS1oo

rS1 //

Ìf

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

Íσ1

$$❍❍❍❍❍❍❍❍❍❍❍ S1
σ1

$$❍❍❍❍❍❍❍❍❍❍❍

f

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

A ÌAlAoo rA // A

By the construction of the associator ασ,τ,ρ ∶ ρ⊙(τ ⊙σ) ≃ (ρ⊙τ)⊙σ in [CCRW] through
a universal property, it follows easily that it extends to an isomorphism of span-strategies.
Likewise by Lemma 4.12 of [CCRW], so do the unitors λσ ∶ ccB ⊙ σ ≃ σ and ρσ ∶ σ ⊙ ccA ≃ σ.
All naturality and coherence laws are inherited from [CCRW], so it follows:

Theorem 4.7. There is a bicategory SpanCG having span-games as objects, span-strategies
as morphisms and, as 2-cells, morphisms of span-strategies.

Besides its bicategorical structure, SpanCG inherits from CG its compact closed struc-
ture. From two span-games A and B, their tensor A⊗B is simply defined as A ∥ B. Likewise,
the action of ⊗ on span-strategies is obtained componentwise from its action on strategies
[CCRW].

In [CCRW], we showed how to lift any courteous receptive map f ∶ A → B in EP to a

strategy f ∶ A + //B. This lifting process was instrumental in defining the compact closed
structure of CG. This process is easily extended to span-games. For a morphism (f, Ìf)
from span A to span B such that f and Ìf are receptive and courteous, its lifting is the
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span-strategy (f, Ìf) obtained by composition in Span(E):
CCA

ccA

��

CC ÌA

cc ÌA
��

cc lAoo
cc rA // CCA

ccA

��
A⊥ ∥ A

A⊥∥f

��

ÌA⊥ ∥ ÌAl⊥
A
∥lAoo

ÌA⊥∥Ìf
��

r⊥
A
∥rA // A⊥ ∥ A

A⊥∥f

��
A⊥ ∥ B ÌA⊥ ∥ ÌBl⊥

A
∥lBoo

r⊥
A
∥rB // A⊥ ∥ B

In other words, it is defined as the span morphism with components f and Ìf , where −
denotes the lifting operation of [CCRW].

Following [CCRW], using lifting, structural morphisms of the obvious symmetric monoidal
structure for Span(EP) (with ∥ as tensor) can be lifted to SpanCG. From Lemma 4.12 of
[CCRW] and the construction of lifting above, these structural morphisms in SpanCG are
componentwise those of CG. It follows that all equations for a compact closed category
hold up to isomorphism of span-strategies.

4.3. Embedding Tcg≅ in SpanCG. From the constructions above, we transfer to Tcg≅

the compact closed structure of SpanCG.

4.3.1. Copycat and composition. In order to embed Tcg≅ into SpanCG, we show that the
functor Span ∶ EP∼ → Span(EP) (where EP∼ is the category of event structures with polari-
ties and symmetry and structure-preserving maps) also preserves all our main constructions
on strategies: copycat and composition (and lifting).

Lemma 4.8. Let A be a tcg. Write ÌA = Pr(Ã). Then, there is an iso making the diagram

CCA

Pr(CCÃ) ≅

lCCA ;;①①①①

rCCA
##❋❋❋❋

CC ÌA

CClA
]]❁❁❁❁

CCrA
��✂✂✂

CCA

commute, and which also preserves the projections to the span-game

A⊥ ∥ A ÌA⊥ ∥ ÌAlAoo rA // A⊥ ∥ A

In particular, this yields an isomorphism of span-strategies.

Proof. Thanks to Lemma 2.12 of [CCRW], it suffices to check that Pr(CCÃ) and CC ÌA have
isomorphic domains of configurations. Using Lemma 2.14 of [CCRW], the required commu-
tations can be checked pointwise on configurations.

By Proposition 4.3, configurations of Pr(CCÃ) canonically correspond to symmetries in
CCÃ. By their definition (Definition 3.18), they are those of the form:

θ1 ∥ θ2 ∶ x ∥ y ≅ x
′ ∥ y′

where x ∥ y,x′ ∥ y′ ∈ C (CCA), and where θ2 ⊑
Ã⊥∥Ã θ1. But θ1, θ2 ∈ Ã⊥, Ã, which, by

Proposition 4.3 again, correspond canonically to configurations z1, z2 ∈ C ( ÌA⊥),C ( ÌA) such
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that z2 ⊑ ÌA z1 – in other words, by Lemma 3.10 of [CCRW], to configurations z2 ∥ z1 ∈
C (CC ÌA).

All commutations are immediate to check.

From the lemma above, we know that copycat on tcgs is defined in a way compatible
with the copycat span-strategy in the compact closed category of span-games. We now
prove a similar lemma for composition.

Lemma 4.9. Let σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C be pre-∼-strategies. Write ÌS for Pr(S̃)
and ÌT for Pr(T̃ ). There is an isomorphism of esps making the diagram

T ⊙ S

Pr(T̃ ⊙ S̃)
lT⊙S

;;①①①①

rT⊙S ##❋❋❋❋❋
≅ ÌT ⊙ ÌS

lT⊙lS
]]❁❁❁

rT⊙rT��✂✂✂✂

T ⊙ S

commute, and which also preserve the projections to the underlying span-game. In partic-
ular, this yields an isomorphism of span-strategies.

Proof. We do it for interactions. The property for composition will follow, as the isomor-
phism will (by consequence of preserving the projections to games) preserve visible events.
Again, we rely on Lemma 2.12 of [CCRW] and build an order-isomorphism between the
underlying domains and configurations.

As above, configurations of Pr(T̃⊛S̃) correspond canonically to symmetries in T̃⊛S̃. By
definition (above Lemma 3.24), those correspond to commuting squares between composite
secured bijections x ≃ y and x′ ≃ y′

x

θA ≅S̃
≃
σ

σx = τy ≃
τ

y

θT ≅T̃
x′ ≃

σ
σx′ = τy′ ≃

τ
y′

In particular, this gives a bijection between pairs (s, s′) ∈ θS and (t, t′) ∈ θT . This bi-
jection is secured, since the upper and lower sides of the diagram are secured by hypothesis
and θS and θT are order-isos. By Proposition 4.3, θS and θT canonically represent configu-
rations zS ∈ C (ÌS) and zT ∈ C (ÌT ) – so overall, diagrams as above canonically correspond to
secured composite bijections between zS and zT , as required. By construction these corre-
spondences commute with the projections to T ⊛ S and to the underlying span-game.

From this, we can use Theorem 4.7 to transport the bicategorical structure of SpanCG to
Tcg, and in particular show that Tcg is a category up to isomorphism. Beyond ∼-strategies,
it also follows that the composition of the component-wise courteous pre-∼-strategies of
Definition 3.30 is associative.

We now inherit from SpanCG its compact closed categorical structure.

4.3.2. Lifting and compact closure. First of all, we note that just like EP and Span(EP),
the category EP∼ has a symmetric monoidal structure. We have, for instance, a natural
isomorphism

λA ∶ 1 ∥ A → A
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Just as above, the structural ∼-strategies involved in the symmetric monoidal structure of
Tcg≅ will be lifted from EP∼. Detailing a bit more:

Definition 4.10. Let f ∶ A → B be a strong-receptive, courteous map of EP∼. Then its
lifting is the ∼-strategy

f = (A⊥ ∥ f) ○ σ ∶ CCA →A⊥ ∥ B

which is a ∼-strategy from A to B (in particular, it is thin).

All required verifications are immediate. Applying this to λA yields, for instance:

λA ∶ 1⊗A
Tcg
+ // A

Moreover, Span(λA) = Span(λA), and structural ∼-strategies of Tcg≅ are sent to those
of SpanCG. The functor Span being full, it follows that all isomorphisms involved in the
compact closed structure of SpanCG are imported in Tcg≅. So, we have:

Theorem 4.11. The category Tcg≅ is compact closed.

Proof. For completeness, we list here all structural morphisms for the symmetric monoidal
structure of EP∼.

ρA ∶ A ∥ 1 → A
λA ∶ 1 ∥ A → A
sA,B ∶ A ∥ B → B ∥ A

αA,B,C ∶ (A ∥ B) ∥ C → A ∥ (B ∥ C)
These isomorphisms are then lifted to ∼-strategies.

ρA ∶ A ⊗ 1
Tcg
+ // A

λA ∶ 1⊗A
Tcg
+ // A

sA,B ∶ A ⊗B
Tcg
+ // B ⊗A

αA,B,C ∶ (A⊗B)⊗ C Tcg
+ // A⊗ (B ⊗ C)

As explained above, all coherence and naturality laws follow from the fact that the relevant
constructions for games based on EP∼ are mapped to those based on Span(EP), and from
the compact closed structure of SpanCG.

For completeness, we also mention that there are (copycat) ∼-strategies
ηA ∶ 1

Tcg
+ // A⊥ ⊗A ǫA ∶ A ⊗A⊥

Tcg
+ // 1

satisfying the necessary equations up to isomorphism of ∼-strategies.
Finally, we will import from [CCRW] the lifting lemma, which we will use later.

Lemma 4.12. Let f ∶ B → C be a strong-receptive courteous map of essps, and σ ∶ S →
A⊥ ∥ B be a ∼-strategy. Then, the following strategies are isomorphic:

f ⊙ σ ∶ CCB ⊙ S → A⊥ ∥ C(A⊥ ∥ f) ○ σ ∶ S → A⊥ ∥ C

Proof. By Lemma 4.6 and Lemma 4.12 of [CCRW], the lifting lemma of CG (Lemma 5.4
of [CCRW]) lifts to span-strategies. By Lemma 4.8 and functoriality of Span(−), we have

that Span(f) ≅ Span(f). The result follows by Lemma 4.9.
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Note that for f ∶ B⊥ → A⊥ a strong-receptive courteous map of essps we have the dual

lifting f
⊥
= (f ∥ B) ○ cc B ∶ A

Tcg
+ // B; and, by duality, the symmetric lemma to the above

holds: for σ ∶ B
Tcg
+ // C, σ ⊙ f

⊥
≅ (f ∥ C) ○ σ. Finally we note:

Lemma 4.13. Let f ∶ A → B be an isomorphism of essps – so both f and f−1 are strong-

receptive courteous. Then, f ≅ f−1
⊥
.

Proof. Straightforward.

5. Weak isomorphism

As we have explained in Section 2, symmetry is not only needed for uniformity, but also to
compare strategies up to their choice of copy indices. So far, we have only built a category of
uniform strategies where strategies are not identified up to this choice. In other words, Tcg≅

is not yet fit as a basis for a cartesian closed category that assimilates the two strategies of
Example 2.26. For that we need to import into thin concurrent games the notion of weak
isomorphism from Definition 2.28.

Definition 5.1. Let A be a tcg, σ ∶ S → A, τ ∶ T → A. A weak morphism from S to T is
a map of ess f ∶ S → T such that the triangle

S

f
))

σ
  ❅❅ T

τ
~~⑥⑥

A

commutes up to positive symmetry, i.e. τ ○ f ∼A+ σ.
If f ∶ S → T and g ∶ T → S are two weak morphisms such that g○f = idS and f ○g = idT ,

we say that (f, g) is a weak isomorphism between σ and τ . We write σ ≈ τ to mean that
σ and τ are weakly isomorphic.

The goal of this section is to build a new compact closed category Tcg where strate-
gies are compared up to weak isomorphism. As the categorical laws hold up to strong
isomorphism (e.g. associativity), the only remaining fact to check is that ≈ is a congruence.

However, proving that turns out to be challenging. The reason is that if a strategy
behaves like a strategy σ1 if Opponent plays a certain move with index k1, and behaves like
a strategy σ2 if Opponent plays with an index k2, ∼-receptivity along with the axioms of
isomorphism families only give us that σ1 and σ2 are bisimilar (in a sense that we avoid
making formal here) but we need actual morphisms between σ1 and σ2 to establish a weak
isomorphism. There is a quite subtle issue; and this is where the thinness condition comes
in in a crucial way – the reader will find in Appendix A.2 a counter-example to the claim
that weak isomorphism between ∼-strategies without thinness is a congruence.

Our proof of congruence for strong isomorphism (Proposition 3.33) relies on the univer-
sal property of pullbacks. But this is not adequate here: the universal property is rendered
useless as projections to the game only commute up to symmetry. Hence, we will aim for a
refined universal property, that of a bipullback, that takes symmetry into account.
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5.1. The weak bipullback property. We illustrate the difficulty of extending a weak
isomorphism σ ≈ σ′ to τ ⊙ σ ≈ τ ⊙ σ′ via an example.

Example 5.2. Consider the two following strategies on !JcomK:

σ1 ∶ !JcomK σ2 ∶ !JcomK

run−,i
❴���

run−,i
❴���

done+,0
✤

done+,1
✤

that only differ by the choice of copy index for done. There are obviously ∼-receptive (in
fact they are strong-receptive). There is an obvious weak isomorphism ϕ ∶ σ1 ≈ σ2. Consider
now the following strategy τ :

!JcomK →∣ !JcomK

run−,i

✪oou ❡❡❡❡❡❡❡❡❡❡❡❡❡❡
✹

✲

✫

✤

✘

✑

✡

run+,⟨i,0⟩
❴���

done−,j
❴���

✤

run+,⟨i,j+1⟩
❴���

done−,k

✙ ))/❨❨❨❨❨❨❨❨❨❨❨❨❨

✤

done+,⟨j,k⟩

which represents x ∶ com ⊢ x;x ∶ com.
In order to build a weak isomorphism between the resulting compositions τ ⊙ σ1 and

τ ⊙σ2, a reasonable first step is to build a weak isomorphism between the interactions τ⊛σ1
and τ ⊛ σ2. In particular, given a configuration of T ⊛ S1, we should be able to build a
canonical configuration of T ⊛ S2. Consider e.g. the following configuration of T ⊛ S1.

!JcomK →∣ !JcomK

run−,i

✫oov ❢❢❢❢❢❢❢❢❢❢❢❢❢
✩

★

✦

✤

✢

✛

✚

run⟨i,0⟩
❴���

done0
❴���

✤

run⟨i,1⟩
❴���

done0

✘ ((/❳❳❳❳❳❳❳❳❳❳❳❳

✤

done+,⟨0,0⟩

where events on the left hand side are drawn without polarity, as they are synchronised
between σ1 and τ . It is easy to extract from this representation configurations x ∈ C (S1 ∥
!JcomK) and y ∈ C (T ) such that

(σ1 ∥ !JcomK)x = τ y
and such that the induced bijection is secured.
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In order to construct a configuration in T ⊛ S2, it is natural to try and replace x with
ϕ(x) – and that would work out if ϕ was a strong isomorphism. But as it is only a weak
isomorphism, we do not have (σ2 ∥ !JcomK) (ϕx) = τ y, only

(σ2 ∥ !JcomK) (ϕx) ≅ ̃!JcomK∥!JcomK
τ y

However, we can indeed extract from ϕx and y a valid configuration of T ⊛S2. For our
example, the only possibility is:

!JcomK →∣ !JcomK

run−,i

✫oov ❢❢❢❢❢❢❢❢❢❢❢❢❢
✹

✲

✫

✤

✘

✑

✡

run⟨i,0⟩
❴���

done1
❴���

✤

run⟨i,2⟩
❴���

done1

✘ ((/❳❳❳❳❳❳❳❳❳❳❳❳

✤

done+,⟨1,1⟩

It appears that both ϕx and y had to change, in order to find an agreement as to the
choice of copy indices. Firstly, by ∼-receptivity, T̃ comprises a bijection:

!JcomK →∣ !JcomK

run−,i

✫oov ❢❢❢❢❢❢❢❢❢❢❢❢

run+,⟨i,0⟩
❴���

done−,0
✤

≅T̃
!JcomK →∣ !JcomK

run−,i

✫oov ❢❢❢❢❢❢❢❢❢❢❢❢

run+,⟨i,0⟩
❴���

done−,1
✤

By (Extension) in T̃ , we know that this bijection can be extended to some:

!JcomK →∣ !JcomK

run−,i

✫oov ❢❢❢❢❢❢❢❢❢❢❢❢

run+,⟨i,0⟩
❴���

done−,0
✤

❴���
run+,⟨i,1⟩

≅T̃

!JcomK →∣ !JcomK

run−,i

✫oov ❢❢❢❢❢❢❢❢❢❢❢❢

run+,⟨i,0⟩
❴���

done−,1
✤

❴���
run+,⟨i,2⟩

Likewise, by ∼-receptivity of σ2 ∥ !JcomK this extension is lifted to S̃2 ∥ ̃!JcomK, and

we then apply (Extension) on S̃2. And the process goes on, interactively between σ2 and
τ , until we get x′ ≅

S̃∥̃!JcomK
ϕx and y′ ≅T̃ y such that (σ2 ∥ !JcomK)x′ = τ y′ (which in our

example, is the configuration of the interaction represented above).

Formalizing this process of using ∼-receptivity on one strategy and extension on the
other yields the following lemma:
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Lemma 5.3 (Weak bipullback property). Let σ ∶ S → A and τ ∶ T → A⊥ be pre-∼-strategies.
Let x ∈ C (S) and y ∈ C (T ) and θ ∶ σx ≅Ã τy, such that the composite bijection

x
σ≃ σ x θ≅Ã τ y τ≃ y

is secured. Then, there exists z ∈ C (S ∧T ) along with θS ∶ x ≅S̃ Π1z and θT ∶ Π2z ≅T̃ y, such
that τθT ○ σθS = θ. Moreover, z is unique up to symmetry.

Proof. Uniqueness. Assume we have such (z, θS , θT ) and (z′, θ′S , θ′T ). Then it is easy to see
that θ′S ○ θ

−1
S ∶ Π1z ≅S̃ Π1z

′ and similarly θ′T ○ θ
−1
T ∶ Π2z ≅T̃ Π2z

′. Those match on the game

A, so they induce a z ≅ z′ in S̃ ∧ T̃ as desired.
Existence. We proceed by induction on θ; the base case is trivial. Assume θ extends

by (σs, τt) to θ′ ∶ σx′ ≅ τy′. For instance, s is positive. We have θS ∶ x ≅ Π1z and x

can be extended to x′ by s, so by the extension property of the symmetry θS extends to
θ′S ∶ x

′ ≅ z′S . This means that τ θT can be extended by symmetric negative (for T ) events so
by ∼-receptivity, θT can extend to θ′T ∶ z

′
T ≅T̃ y′, with σz′S = τz′T by construction. Since the

bijection z′S ≅ z
′
T is obviously secured, we get z′ ∈ C (S ∧ T ) that satisfies our property.

Note that we did not use the fact that σ and τ are thin – ∼-receptivity alone is sufficient.
This statement is a step in the right direction, however the non-uniqueness of z (only up to
symmetry) is problematic: it cannot be used to build maps, in particular it cannot be used
to lift a weak morphism σ → σ′ to a map τ ⊛ σ → τ ⊛ σ′.

However, we can turn this uniqueness up to symmetry into a uniqueness on the nose
if the symmetry on T ⊛ S is trivial. Our proof idea is the following: we will replay the
interaction T ⊛S, replacing A and C (in the pullback of σ ∥ C and A ∥ τ) by A− and (C⊥)−;
which are thin. By Lemma 3.27 the resulting symmetry on T ⊛ S will be trivial, which we
will be able to exploit to extract the required map.

5.2. Proving the bipullback property. We can now deduce the the bipullback property
from our previous investigations. Note that though we refer to this as the bipullback property,
this is in fact stronger that a bipullback, as we have the further knowledge that the triangles
w.r.t. the mediating arrow and the projections commutes up to positive symmetry.

Proposition 5.4 (Bipullback property). Let σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C be
pre-∼-strategies.

The ess T ⊛ S enjoys the following universal property: for all f ∶ X → S ∥ C and
g ∶ X → A ∥ T such that τ ○ g ∼

Ã∥B̃∥C̃ σ ○ f , there exists ⟨f, g⟩ ∶ X → T ⊛ S, unique up to

symmetry, such that Π1 ○ ⟨f, g⟩ ∼S̃∥C̃+ f and Π2 ○ ⟨f, g⟩ ∼Ã−∥T̃ g.
This is summed up by the following diagram (where all squares and triangle commutes

up to ∼ in the category of event structures with symmetry – though the diagram omits some
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information on the commutation of the triangles up to positive symmetry of the triangles):

X
⟨f,g⟩

��f
∼





g
∼

��

T ⊛ S
Π1

yysssss
Π2

&&▲▲▲▲▲
❄⑧

S ∥ C

σ %%❏❏❏❏
∼ A ∥ T

τyyssss

A ∥ B ∥ C

Proof. Uniqueness. Assume there are two such maps ω,ω′ ∶ X → T ⍟ S. Let x ∈ C (X).
Then the induced bijection Π1 (ω x) ≅ Π1 (ω′ x) is in S̃ ∥ C̃ as the composition

Π1 (ω x) ≅S̃∥C̃ f x ≅S̃∥C̃ Π1 (ω′ x)
Similarly Π2 (ω x) ≅ Π2 (ω′ x) ∈ Ã ∥ T̃ and those two bijections match on the game,

hence ω x ≅ ω′ x ∈ T̃ ⊛ S̃ which means ω ∼
T̃⊛S̃ ω

′.
Existence. The main idea is to apply Lemma 5.3 to:

(σ ∥ (C⊥)−) ∶ S ∥ (C⊥)− →A⊥ ∥ B ∥ C⊥

(A− ∥ τ) ∶ A− ∥ T → A ∥ B⊥ ∥ C

Those are ∼-strategies hence their pullback has a trivial symmetry by Lemma 3.27.
This means that uniqueness of Lemma 5.3 holds on the nose. Just as T ⊛ S, this pullback
has events T ⊛ S – however, its symmetry is reduced to identities.

Let x ∈ C (X). By the above remark applied to f x ∈ C (S ∥ C) and g x ∈ C (A ∥ T )
we get a unique z ∈ C (T ⊛ S) with Π1 z ≅S̃∥(C̃⊥)− f x and Π2 z ≅Ã−∥T̃ g x. This construction
induces a map ψ ∶ C (X) → C (T ⊛ S) such that Π1 (ψ x) ≅ f x and Π2 (ψ x) ≅ g x. The
map ψ is monotonic and preserves cardinality. We show it preserves compatible unions:
let x, y ∈ C (X) such that x ∪ y ∈ C (X). Because ψ is monotonic, we have ψ(x) ∪ ψ(y) ⊆
ψ(x ∪ y). Moreover, since cardψ(x) = card f(x), and f(x∪ y) = f(x)∪ f(y), it follows that
ψ(x ∪ y) = ψ(x) ∪ ψ(y).

Hence, we define ⟨f, g⟩(s) to be the unique element of ψ[s]∖ψ[s) (which is a singleton
since ψ preserves cardinality). Using preservation of compatible unions, it follows that⟨f, g⟩(x) = ψx ∈ C (T ⊛ S) for all x ∈ C (X) and local injectivity follows by construction.
Hence ⟨f, g⟩ is a map of event structures. It preserves symmetry and satisfies the desired
equivalence by construction.

5.3. The category Tcg≈. We now conclude the proof of congruence of weak isomorphism,
and deduce the categorical structure of the quotient of strategies by weak isomorphism.

Since the universal property of bipullbacks guarantees only uniqueness up to symmetry,
from a weak isomorphism σ ≈ σ′, it will not give us back a weak isomorphism τ ⊙σ ≈ τ ⊙σ′,
but rather a weak equivalence, that is where the two morphisms are only inverse of each
other up to symmetry. To conclude the proof, we need to show that both notions coincide
on ∼-strategies. This is another consequence of thinness.

Lemma 5.5. For σ ∶ S → A a pre-∼-strategy and θ ∶ x ≅S x′ such that σθ ∈ Ã+, θ = idx.
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Proof. We prove the result by induction on θ. If θ is empty, it is clear. For idx
(s,s′)
−Ð⊂ θ ∈ S̃. If

s and s′ are positive, then by thin s = s′. Otherwise, they are negative and we can conclude
by the axioms of thin concurrent games.

Lemma 5.6. Let σ ∶ S → A and τ ∶ T → A be ∼-strategies. If f ∶ S → T and g ∶ T → S are
such that g ○ f ∼ idS , f ○ g ∼ idT and σ ○ f ∼A+ τ , then σ and τ are weakly isomorphic.

Proof. Given x ∈ C (S), by assumption we have θ ∶ x ≅ g(f(x)) such that σθ ∈ A+, as a
result θ = id and x = g(f(x)). This implies that g ○ f = idS , and by symmetry f ○ g = idT .
As a result, f is a weak isomorphism between σ and τ .

We can now wrap and deduce that weak isomorphism is a congruence – first we use the
the universal property of the bipullback to deduce that weak equivalence is preserved, and
from that we deduce that so is weak isomorphism.

Proposition 5.7. Let σ ∶ S → A⊥ ∥ B, σ′ ∶ S ′ → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C be pre-∼-
strategies such that σ ≈ σ′, with maps f ∶ S → S ′ and g ∶ S ′ → S.

Then, τ ⊙ σ ≈ τ ⊙ σ′.
Proof. First, we notice that there are obvious maps:

T ⊛ S
Π1

ww♦♦♦♦♦♦ Π2

''PPPPPP

S ∥ C
f∥C ��

T ⊛ S ′
Π′

1

ww♣♣♣♣♣♣ Π′
2

''❖❖❖❖❖❖ A ∥ T

S ′ ∥ C

σ′∥C
''❖❖❖❖❖

A ∥ T

A∥τww♦♦♦♦♦

A ∥ B ∥ C

The outer diagram commutes up to symmetry because

(σ′ ∥ C) ○ (f ∥ C) ○Π1 ∼ (σ ∥ C) ○Π1 = (A ∥ τ) ○Π2

By Proposition 5.4, there exists a map of ess T ⊛ f ∶ T ⊛ S → T ⊛ S ′ (unique up to
symmetry), such that Π′1 ○ (T ⊛f) ∼S̃′∥C̃+ (f ∥ C)○Π1 and Π′2 ○ (T ⊛f) ∼Ã−∥T̃ Π2. A similar

argument yields T ⊛ g ∶ T ⊛ S ′ → T ⊛ S such that Π1 ○ (T ⊛ g) ∼S̃∥C̃+ (g ∥ C) ○ Π′1 and

Π2 ○ (T ⊛ g) ∼Ã−∥T̃ Π′2. By the uniqueness up to symmetry of the bipullback property, we

have that (T ⊛ f) ○ (T ⊛ g) ∼ idS ′∥C and (T ⊛ g) ○ (T ⊛ f) ∼ idS∥C .
Since Π′1 ○ (T ⊛ f) ∼

S̃′∥C̃+
(f ∥ C) ○Π1, we also have

(σ′ ∥ C) ○Π′1 ○ (T ⊛ f) ∼
Ã∥B̃∥C̃+

(σ′ ∥ C) ○ (f ∥ C) ○Π1

∼Ã∥B̃∥C̃+ (σ ∥ C) ○Π1

In other words, (τ⊛σ′)○(T ⊛f) ∼Ã∥B̃∥C̃+ τ⊛σ. But likewise, exploiting Π′2○(T ⊛f) ∼Ã−∥T̃
Π2, we deduce (τ ⊛σ′) ○ (T ⊛ f) ∼Ã−∥B̃∥C̃ τ ⊛ σ. By definition of symmetric maps, together

this implies that: (τ ⊛ σ′) ○ (T ⊛ f) ∼Ã−∥B̃∥C̃+ τ ⊛ σ
This implies in particular that T ⊛ f preserves visible events. Hence we can restrict to

T ⊙ f ∶ T ⊙ S → T ⊙S ′, which, by restriction of the above, satisfies:

(τ ⊙ σ′) ○ (T ⊙ f) ∼(Ã⊥∥C)+ τ ⊙ σ
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so T ⊙f is a weak morphism from τ ⊙σ to τ ⊙σ′. By the same reasoning, we define T ⊙g as
a weak morphism from τ⊙σ′ to τ⊙σ. Since T ⊛f and T ⊛g are inverses up to symmetry, so
are T ⊙f and T ⊙g. But they are both weak morphisms, so by Lemma 5.6 they are inverses
of each other on the nose, so they form a weak isomorphism. Therefore, τ ⊙ σ ≈ τ ⊙ σ′.

We are now ready to conclude:

Theorem 5.8. The following defines a compact closed category Tcg≈:

Objects: Thin concurrent games,
Morphisms from A to B: : ∼-strategies on A⊥ ∥ B, up to weak isomorphism.

Proof. It is easy to see that the functorial action of ⋅ ∥ ⋅ and (⋅)⊥ preserve weak isomorphisms.
All the required laws hold up to ≅, so they hold up to ≈ as well.

6. Concurrent Hyland-Ong games

We have constructed a compact closed category Tcg≈, which is equipped to deal with
the problem evoked at the end of Section 2. Using it, we can revisit (more formally) the
interpretation sketched in Subsection 2.5. Exploiting the developments of the previous
section, and in particular the fact that weak isomorphism is a congruence, it will follow
that the two terms of Example 2.26 cannot be distinguished by any strategy in the model.
Indeed, we will get a cartesian closed category supporting e.g. the interpretation of IPA.

We will first construct the category Cho and show that it is cartesian, then prove that
it is also closed. Finally, we will prove that it supports the interpretation of a fixpoint
combinator.

From now on, all event structures are assumed to have binary conflict. All the operations
we will consider on them (simple parallel composition, composition, interaction, etc.) have
been established throughout the development to preserve that property.

6.1. The cartesian category Cho. We now construct the category Cho proper, of Con-
current Hyland-Ong games; and prove that it is cartesian. The objects of Cho will be
negative arenas, as in Definition 2.4 – with the further restriction that arenas should have
a countable set of events, assumed from now on. The morphisms from arena A to arena
B will be certain ∼-strategies from !A to !B (up to weak isomorphism):

σ ∶ S → (!A)⊥ ∥ (!B)
Just as in standard Hyland-Ong games, we will have to restrict the set of strategies

that we consider in order to satisfy the laws of a cartesian category. We will now inspect
the different requirements of a cartesian category, and introduce the additional conditions
on strategies when they are required.
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6.1.1. Terminal object and negativity. First of all, a cartesian category has a terminal object.
In our case, this will be the empty arena 1, defined as having an empty set of events –
note that !1 also has an empty set of events. However, as it is, 1 is not a terminal object.
For each negative arena A, it is easy to see that the unique labelling function

eA ∶ 1→ (!A)⊥ ∥ (!1)
is a ∼-strategy. Crucially, it is receptive since, by negativity of A, the minimal events of(!A)⊥ are all positive. However, eA might not be the unique ∼-strategy from !A to 1, as
illustrated below.

Example 6.1. The following diagram represents a ∼-strategy from !com to 1.

(!com)⊥ ∥ (!1)
run+,0

The answer to this issue is clear: we need to require morphisms in Cho to be negative,
just as arenas. A ∼-strategy σ ∶ S → (!A)⊥ ∥ (!B) is negative whenever the underlying
event structure S is negative, i.e. its minimal events all have negative polarity – note that
this definition makes sense in general without symmetry, for a prestrategy σ ∶ S → A.

We then easily have:

Proposition 6.2. For any negative arena A, the empty ∼-strategy:
eA ∶ 1→ (!A)⊥ ∥ (!1)

is the unique negative ∼-strategy from !A to !1.
In more generality, the only negative prestrategy σ ∶ S → A⊥ ∥ 1 for a negative game A

is the empty prestrategy.

Proof. Immediate, as in a negative prestrategy σ ∶ S → A⊥ ∥ 1, any hypothetical minimal
events in S have nowhere to map to.

Thus, in order to get a category of ∼-strategies with a terminal object, we will require
that all ∼-strategies are negative. Clearly, copycat – along with all ∼-strategies obtained by
lifting – is negative. Moreover, negative ∼-strategies are stable under composition. Since
negativity makes sense without symmetry, we state and prove that in slightly greater gen-
erality.

Lemma 6.3. Let σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C be negative prestrategies (with
A,B,C negative). Then, τ ⊙ σ is still negative.

Proof. First, we notice that any map of event structures preserves minimal events. Indeed
let f ∶ A → B be a map of event structures and a ∈ A be a minimal event of A. This means[a] = {a} and f[a] = {fa} is a configuration of B. Since f[a] is down-closed, this implies
that fa is minimal in B.

Hence, minimal events of T ⊛ S are projected to minimal events of S ∥ C and A ∥ T .
Take e ∈ T ⊛ S a minimal event. If (τ ⊛ σ)e is in A, then Π1e is a minimal event of S
projected to a (necessarily positive) minimal event of A – absurd because σ is negative.
Likewise, if (τ ⊛σ)e is in B, this contradicts the negativity of τ . So minimal events of T ⊛S
are visible and are in C.

Now, take any minimal event e ∈ T ⊙ S. Since minimal events of T ⊛ S are visible, e is
also minimal in T ⊛ S. By the previous remark, (τ ⊙ σ)e is in C and is minimal. It is also
negative because C is negative.
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Therefore, the category having arenas as objects and as morphisms from A to B, neg-
ative ∼-strategies σ ∶ S → (!A)⊥ ∥ (!B) up to weak isomorphism, has a terminal object 1.
We now investigate the existence of products.

6.1.2. Binary products and single-threadedness. For two arenas A and B, their product
A ×B is defined as the parallel composition A ∥ B, which is still a negative arena.

Projections. Note that there is an injection map of event structures with symmetry:

iA ∶ !A → !(A ×B)
(α ∶ [a]→ ω) ↦ ( α′ ∶ [(1, a)] → ω(1, a′) ↦ α(a′) )

Likewise, there is iB ∶ !B → !(A ×B). Using those, we define the projections

̟A ∶ CC!A → !(A ×B)⊥ ∥ !A ̟B ∶ CC!B → !(A ×B)⊥ ∥ !B

by lifting the injections, i.e. ̟A = iA⊥
⊥
and ̟B = iB⊥

⊥
(see Definition 4.10).

Pairing. Now, for two negative ∼-strategies σ ∶ S → !A⊥ ∥ !B and τ ∶ T → !A⊥ ∥ !C, we wish
to define their pairing ⟨σ, τ⟩, a ∼-strategy from !A to !(B ×C). This ∼-strategy will simply
be obtained by relabeling the parallel composition of S and T . In simple cases, it suffices
to take the co-pairing:

⟪σ, τ⟫ ∶ S ∥ T → !A⊥ ∥ !(B ×C)
= [(!A⊥ ∥ iB) ○ σ, (!A⊥ ∥ iC) ○ τ]

However, this is not always well-defined as a ∼-strategy. Indeed, it might fail local
injectivity if some events in S and T have the same image in !A⊥. As a first step towards
the general construction of pairing, let us prove that this gives a well-defined ∼-strategy
when the images of σ and τ are disjoint.

Lemma 6.4. If negative ∼-strategies σ ∶ S → !A⊥ ∥ !B and τ ∶ T → !A⊥ ∥ !C have disjoint
codomain on !A⊥, then ⟪σ, τ⟫ as above is a negative ∼-strategy.
Proof. First, we prove that it is a ∼-strategy. By construction, ⟪σ, τ⟫ preserves configu-
rations. Local injectivity follows from local injectivity of σ, τ , and the hypothesis that
they have disjoint codomains; so it is a map of event structures. Preservation of symmetry
follows from the fact that for θ1 ∶ x1 ≅ y1, θ2 ∶ x2 ≅ y2 ∈ !̃A with x1 ∩ x2 = y1 ∩ y2 = ∅, we still
have θ1 ∪ θ2 ∈ !̃A, which follows from definition of !̃A. Courtesy and thinness are obvious by
construction.

Strong-receptivity needs further attention. Take θ ∶ xS ∥ xT ≅ yS ∥ yT ∈ S̃ ∥ T , write
θ = θS ∥ θT . Its projection to the game is

⟪σ, τ⟫ θ = ((!A⊥ ∥ iB) ○ σ θS) ⊎ ((!A⊥ ∥ iC) ○ τ θT )
which, as argued above, is a valid symmetry in G = !A⊥ ∥ !(B ×C). Assume it extends by
a pair (c−1 , c−2). Since dependency in the game is forest-shaped, there are unique d1 _G c

−
1

and d2 _ c−2 , and since symmetries are order-preserving, we have (d1, d2) ∈ ⟪σ, τ⟫ θ. But
that means that it must be either in ((!A⊥ ∥ iB) ○ σ)θS , or in ((!A⊥ ∥ iC) ○ τ)θT . We can
then apply strong-receptivity of σ, τ , and the injection maps, to produce the extension to
θ = θS ∥ θT .
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Now, we prove that this simple pairing behaves well w.r.t. projections.

Proposition 6.5. Assume negative ∼-strategies σ ∶ S → !A⊥ ∥ !B and τ ∶ T → !A⊥ ∥ !C as
in the previous lemma. Then, we have isomorphisms:

̟B ⊙ ⟪σ, τ⟫ ≅ σ ̟C ⊙ ⟪σ, τ⟫ ≅ τ
Proof. Let us prove the first. More precisely, we prove that the interactions ̟B ⊛ ⟪σ, τ⟫
and cc !B ⊛ σ are isomorphic. This will entail by restriction an isomorphism between the
corresponding compositions, and the latter is isomorphic to σ by neutrality of copycat for
composition.

We establish the isomorphism between ̟B ⊛⟪σ, τ⟫ and cc !B ⊛σ first for the plain event
structures – by Lemma 2.12 of [CCRW] it suffices to prove that they have an isomorphic
domain of configurations.

Using Proposition 2.16, we know that configurations of the event structure for the
former interaction correspond to secured bijections

(xS ∥ xT ) ∥ xB ≃ yA ∥ (y1B ∥ y2B)
where xS ∈ C (S), xT ∈ C (T ),⟪σ, τ⟫(xS ∥ xT ) = yA ∥ (iB y1B), and y1B ∥ y2B ∈ C (CC!B), and
where the bijection is the unique such that image of events through the labelings ⟪σ, τ⟫ ∥ !B
and !A ∥ ̟B match. In particular, ⟪σ, τ⟫(xS ∥ xT ) does not reach !C. But any minimal
events of xT are negative by negativity of τ , and hence must be in !C (since A is negative).
Therefore, xT is empty. Getting rid of xT yields a secured bijection corresponding to a
configuration of the event structure of cc !B ⊛ σ. This association is bijective, and yields the
required isomorphism between domains of configurations. By construction, it is clear that
this isomorphism preserves symmetry.

So, we know how to construct a pairing behaving well with projections, when the paired
strategies happen to have a disjoint codomain. However, for arbitrary σ ∶ S → !A⊥ ∥ !B and
τ ∶ T → !A⊥ ∥ !C, there might in general be collisions: events s ∈ S and t ∈ T such that
σ s = τ t. In such a case, the co-pairing as above fails local injectivity, and therefore does
not correspond to a strategy. Fortunately, we can relabel moves of S and T , not changing
their weak isomorphism class, to ensure that there are no such collisions. For that, we note
that there are maps of event structures with symmetry

ιe ∶ !A
⊥ → !A⊥ ιo ∶ !A

⊥ → !A⊥

such that ιe ∼+ ιo ∼+ id!A⊥, but such that ιe and ιo have disjoint codomain. For definiteness,
say that ιe sends (necessarily positive) minimal events with copy index i to the same events
with copy index 2i, and preserves the copy index of other events. Likewise, ιo could follow
the injection i ↦ 2i + 1. These maps preserve the index of negative events, so that ιe ∼+
ιo ∼+ id!A⊥ .

Given arbitrary σ ∶ S → !A⊥ ∥ !B and τ ∶ T → !A⊥ ∥ !C, we define:

σe = (ιe ∥ !B) ○ σ τo = (ιo ∥ !C) ○ τ
From ιe ∼+ ιo ∼+ id!A⊥ it is obvious that σ ≈ σe and τ ≈ τo, but σe and τo now have

disjoint codomains: σe (resp. τo) only reaches indexing functions in !A whose index for
minimal events is even (resp. odd). Therefore, using Proposition 6.5, we define:

⟨σ, τ⟩ = ⟪σe, τo⟫
The pairing of arbitrary negative ∼-strategies σ ∶ S → !A⊥ ∥ !B and τ ∶ T → !A⊥ ∥ !C

is defined as ⟨σ, τ⟩. We have, as required, ̟B ⊙ ⟨σ, τ⟩ = ̟B ⊙ ⟪σe, τo⟫ ≅ σe ≈ σ, and for
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the same reason ̟C ⊙ ⟨σ, τ⟩ ≈ τ . It is an immediate verification that ⟨−,−⟩ preserves weak
isomorphism, so it will still make sense as an operation on the quotient category.

Example 6.6. Consider the copycat strategy cc !JcomK on !JcomK.

!JcomK →∣ !JcomK

run−,i

✮qqx ✐✐✐✐✐✐✐

run+,i
❴���

done−,j
✤

✕ &&-❯❯❯❯❯❯

done+,j
✙

✤

✪

Following the definition above, the construction of ⟨ cc !JcomK, cc !JcomK⟩ produces the ∼-strategy
illustrated below.

!JcomK →∣ !(JcomK × JcomK)
run−,i

★nnt ❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝ run−,j

★nnt ❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝

run+,2i
❴���

run+,2j+1
❴���

done−,k

✛ **0❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬

✤

done−,l

✛ **0❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬

✤

done+,k

✪

✤
✙

done+,l

✪

✤
✙

As prescribed by the construction, the positive moves on the left hand side had to be
relabeled to avoid the collision in the case where i = j.

Note that the representation above only displays the event part of the ∼-strategy⟨ cc !JcomK, cc !JcomK⟩, but its construction also equips it with a symmetry ensuring its uni-
formity.

Surjective pairing. In order to obtain a product, we also need to prove surjective pairing,
that is, that for all σ ∶ S → !A⊥ ∥ !(B ×C), we have:

σ ≈ ⟨̟B ⊙ σ,̟C ⊙ σ⟩
However, as it stands, this is in general not the case.

Example 6.7. In Figure 6, we display on the left hand side two ∼-strategies σ1, σ2 ∶ !1 Tcg
+ //

!(JcomK × JcomK), and on the right hand side the corresponding distinct ∼-strategies ob-
tained by projection and pairing.

We observe that surjective pairing fails for these strategies, as behaviours that span
both components get erased through composition with the projections.

The analysis of this phenomenon is the same as in standard Hyland-Ong games [Har99]:
there, the condition of single-threadedness ensures that strategies treat independently events
hereditarily caused by distinct minimal events. The definition is independent from symme-
try, so we state it first in more generality.

Definition 6.8. Let σ ∶ S → A be a prestrategy. We say that σ is single-threaded if it
satisfies the following two conditions.

(1) For any s ∈ S, [s] has exactly one minimal event written init(s).
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σ1 ∶ !(JcomK × JcomK)
run−,i

❴���
run−,j

✲ssz ♠♠♠

done+,j
✤

⟨̟l ⊙ σ1,̟r ⊙ σ1⟩ ∶ !(JcomK × JcomK)
run−,i run−,j

σ2 ∶ !(JcomK × JcomK)
run−,i

❴���
run−,j

❴���
done+,0

✤

/o done
+,0

✤

⟨̟l ⊙ σ2,̟r ⊙ σ2⟩ ∶ !(JcomK × JcomK)
run−,i

❴���
run−,j

❴���
done+,0

✤

done+,0
✤

Figure 6. Failures to surjective pairing

(2) Whenever s1 ♯ s2 in S, init(s1) = init(s2).
Single-threaded ∼-strategies always satisfy surjective pairing.

Proposition 6.9. Let σ ∶ S → !A⊥ ∥ !(B × C) be a single-threaded ∼-strategy. Then, we
have:

σ ≈ ⟨̟B ⊙ σ,̟C ⊙ σ⟩
Proof. First of all, we define two subsets of S as follows:

SB = {s ∈ S ∣ σ (init(s)) ∈ B}
SC = {s ∈ S ∣ σ (init(s)) ∈ C}

(we abuse notations slightly with ∈ B, ∈ C).
By single-threadedness, SB and SC are disjoint and down-closed, with no immediate

conflict spanning both components – in other words, S = SB ⊎ SC . They are obviously
still event structures. It is direct to check that the restrictions of σ (along with a simple
relabeling to !B/!C)

σB ∶ SB → !A⊥ ∥ !B σC ∶ SC → !A⊥ ∥ !C

are receptive and courteous, i.e. are strategies.
This decomposition also works at the level of symmetries. Any θ ∈ S̃ preserves SB and

SC . Indeed if (sB , sC) ∈ θ, then (init(sB), init(sC)) ∈ θ as well: absurd, since one maps
to !B and the other to !C. It follows that θ = θB ⊎ θC where θB and θC are bijections
between configurations of SB and SC respectively. The set of restrictions to SB (resp. SC)

of symmetries in S̃ yields a set of bijections between configurations of SB (resp. SC), which

is easily checked to satisfy the conditions for an isomorphism family S̃B (resp. S̃C). The
labeling functions σB and σC preserve symmetry. Strong-receptivity and thinness follow
directly from those for σ, so σB and σC are ∼-strategies.

By construction, σB and σC have disjoint codomain; so we can form their pairing⟪σB, σC⟫ without relabeling. Then, the obvious bijection S = SB ⊎ SC ≅ SB ∥ SC is an
isomorphism of event structures, preserves symmetry, and preserves labeling so as to yield
an isomorphism of ∼-strategies:

σ ≅ ⟪σB, σC⟫
By Proposition 6.5, it follows that ̟B ⊙ σ ≅ σB and ̟C ⊙ σ ≅ σC . But clearly, ⟪σB, σC⟫ ≈⟨σB , σC⟩, and ⟨−,−⟩ preserves weak isomorphism, so we have surjective pairing.
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So, single-threadedness ensures surjective pairing. It is clear that copycat ∼-strategies
– and lifted ∼-strategies in general – on (expanded) arenas are single-threaded, since CC!A

has the shape of a conflict-free forest. In order to get a cartesian category, the last thing to
check is that single-threaded strategies are stable under composition.

Single-threadedness and its stability under composition is independent from symmetry,
so we state it and prove it below in greater generality.

Proposition 6.10. Let σ ∶ S → A⊥ ∥ B and τ ∶ T → B⊥ ∥ C be negative single-threaded
prestrategies. Then, τ ⊙ σ is single-threaded.

Proof. We first prove that the interaction T ⊛S satisfies the single-threadedness conditions.
More precisely, we prove by induction on ϕ that for any secured bijection ϕ ∶ xS ∥ xC ≃ yA ∥
yT representing (via Proposition 2.16) a configuration of T ⊛ S, then

ϕ = ⊎
1≤i≤n

ϕi

where each ϕi is a secured bijection with a unique minimal event. Indeed, assume ϕ
(c,d)
−Ð⊂ϕ′

where ϕ′ fails this condition. Necessarily, either c = (1, s+) or d = (2, t+), w.l.o.g. assume the
first. Then, the immediate predecessors of (c, d) in ≤ϕ′ must be ((1, s−1 ), d1), . . . , ((1, s−p ), dp)
(using Lemma 2.7 of [CCRW]), with si _S s. By hypothesis, there are 1 ≤ i, j ≤ p and
distinct 1 ≤ k ≠ l ≤ n such that ((1, s−i ), di) ∈ ϕk and ((1, s−j ), dj) ∈ ϕl. But ϕk (resp. ϕl)

must contain an event synchronized with init(si) (resp. init(sj)). Since σ is single-threaded
and si, sj ∈ [s] we have init(si) = init(sj), which contradicts ϕl ∩ ϕk = ∅.

Now, we go on to prove single-threadedness.
(1) Prime secured bijections have no non-trivial decomposition as above, therefore

they have a unique minimal event. This is true in particular for the visible prime secured
bijections. Condition (1) of single-threadedness follows then from the fact used in the proof
of Lemma 6.3 that a minimal event in the interaction of negative strategies is always visible.

(2) Finally, assume there is a minimal conflict ϕ /o/o ψ in T ⊙ S between visible prime
secured bijections. This means that there are non-necessarily visible prime secured bijections
ϕ′ ⊆ [ϕ]T⊛S , ψ′ ⊆ [ψ]T⊛S , such that ϕ′ /o/o ψ′ in T ⊛S. Writing ϕ′′ (resp. ψ′′) for ϕ′ (resp.
ψ′) without its top event, minimality of ϕ′ /o/o ψ′ means that ϕ′′ ∪ ψ′′ is a valid secured
bijection. Therefore, it decomposes:

ϕ′′ ∪ψ′′ = ⊎
1≤i≤n

ϕi

With each ϕi a secured bijection having exactly one minimal event. If n = 1, we are done
since as remarked the unique minimal event is necessarily visible. Otherwise, there are at
least two ϕi, ϕj with distinct minimal events.

Then, using Lemma 2.15, ϕ′ /o/o ψ′ implies that their top elements have the form((1, sϕ′), dϕ′) and ((1, sψ′), dψ′) with sϕ′ /o/o
Ssψ′ , or (cϕ′ , (2, tϕ′)) and (cψ′ , (2, tψ′)) with

tϕ′ /o/o
T tψ′ , w.l.o.g. say the first. By receptivity and courtesy of σ, we have pol(sϕ′) =

pol(sψ′) = +. Since n ≥ 2, there are (c1, d1) _ϕ ((1, s+ϕ′), dϕ′) with (c1, d1) ∈ ϕi and

(c2, d2) _ψ ((1, s+ψ′), dψ′) with (c2, d2) ∈ ϕj . By Lemma 2.7 of [CCRW], as an immediate

dependency of ((1, s+ϕ′), dϕ′), we have (c1, d1) = ((1, s−1), d1) with s1 _S sϕ′ (similarly,

(c2, d2) = ((1, s−2 ), d2) with s2 _S sψ′). But by single-threadedness of σ, init(sϕ′) = init(sψ′),
so there should be an event synchronized with init(s1) = init(s2) both in ϕi and ϕj , absurd.
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At this point, we have finished constructing our basic category of Concurrent Hyland-
Ong games. Let us call Cho the category having: as objects, negative arenas; and as
morphisms from A to B, negative single-threaded ∼-strategies σ ∶ S → !A⊥ ∥ !B, up to weak

isomorphism. We will also sometimes write σ ∶ A
Cho
+ // B to mean that σ is a morphism

from A to B in Cho, keeping S anonymous.
From all the developments above, we get:

Proposition 6.11. The category Cho has finite products.

In particular, it follows as usual that × is a bifunctor Cho2 →Cho, by setting σ1×σ2 =

⟨σ1 ⊙̟A1
, σ2 ⊙̟A2

⟩, for σ1 ∶ A1
Cho
+ // B1 and σ2 ∶ A2

Cho
+ // B2.

When constructing the cartesian closed structure, we will leverage the compact closed
structure of the underlying category Tcg. Therefore, it is useful to connect the cartesian
structure of Cho with the monoidal structure of Tcg. For that, we note that there is an
obvious isomorphism of essps:

mA,B ∶ !(A ×B) ≅ !A⊗ !B

Using Definition 4.10, it follows that there is an isomorphism mA,B in Tcg between
!(A×B) and !A⊗ !B. This isomorphism allows us to connect better the cartesian structure
of Cho with the monoidal structure of Tcg.

Lemma 6.12. Let σ1 ∶ A1
Cho
+ // B1 and σ2 ∶ A2

Cho
+ // B2. Then,

σ1 × σ2 ≈mB1,B2

−1 ⊙ (σ1 ⊗ σ2)⊙mA1,A2

Proof. Write σ1 ∶ S1 → !A⊥1 ∥ !B1 and σ2 ∶ S2 → !A⊥2 ∥ !B2. By definition,

σ1 × σ2 = ⟨σ1 ⊙̟A1
, σ2 ⊙̟A2

⟩
By Lemma 4.12, σ1 ⊙̟A1

≅ (iA⊥
1
∥ !B1) ○ σ1 and σ2 ⊙̟A2

≅ (iA⊥
2
∥ !B2) ○ σ2. These

maps have disjoint codomain, so up to weak isomorphism their pairing is

⟪(iA⊥
1
∥ !B1) ○ σ1, (iA⊥

2
∥ !B2) ○ σ2⟫ ∶ S1 ∥ S2 → !(A1 ×A2)⊥ ∥ !(B1 ×B2)

Likewise by Lemma 4.12, mA2,B2

−1 ⊙ (σ1 ⊗ σ2)⊙mA1,B1
has (up to isomorphism) essp

S1 ∥ S2 and labeling function the obvious relabeling of σ1 ⊗σ2 by mA1,A2
and mB1,B2

. It is
a simple verification that these two coincide.

6.2. Cartesian closure. We finish the construction of our cartesian closed category by
describing the cartesian closure. We have constructed Cho as a subcategory of Tcg –
which, as a compact closed category, is symmetric monoidal closed. We wish to leverage
this closed structure of Tcg in order to transfer it to Cho.
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6.2.1. Arrow arena. For two thin concurrent games A and B in Tcg, the corresponding
exponential object (following the compact closed structure) is obtained as A⊥ ∥ B. In Cho,
where objects are arenas, this hints at defining the exponential object of A,B as A⊥ ∥ B.
Indeed, it is easy to check that !(A⊥ ∥ B) ≅ !A⊥ ∥ !B, so this matches the closed structure
of Tcg. However, objects in Cho are required to be negative arenas, and A⊥ ∥ B is no
longer negative. Therefore, we are brought to introduce a negative variant of A⊥ ∥ B, that
would be an object of Cho. The natural choice, familiar from Hyland-Ong games, is to
make events in A depend on minimal events of B. It would be incorrect to make events of
A depend on all minimal events of B, so we will instead create as many copies of A as they
are minimal events in B. Writing min(B) for the set of minimal events of B, we define:

Definition 6.13. Let A,B be two negative arenas. Their arrow is A ⇒ B, with the
following components.

● Events, and polarity. Those of:

(∥b∈min(B) A
⊥) ∥ B

● Causality. As follows:

≤(∥b∈min(B)A
⊥)∥B ⊎{((2, b), (1, (b, a))) ∣ b ∈min(B) & a ∈ A}

Example 6.14. Following this definition, the reader can check that JcomK ⇒ JcomK is the
arena presented as Jcom → comK in Example 2.5. As JcomK has only one minimal event,
there is no duplication of the left hand side. However, the arena JcomK ⇒ (JcomK×JcomK)
is displayed below.

JcomK ⇒ (JcomK × JcomK)
run−❞❢❤❥❧ ✤

✤ run−❞❢❣✐❦ ✤
✤

run+

✤
✤ run+

✤
✤ done+ done+

done− done−

This is exactly the arena construction of [HO00], where arenas are forests.

6.2.2. Cartesian closed structure. Our proof of cartesian closure will leverage the compact
closed structure of Tcg. More precisely, we will show that there is a bijection (up to
weak isomorphism) between negative single-threaded ∼-strategies playing respectively on
!A⊥ ∥ !(B ⇒ C) and !A⊥ ∥ (!B⊥ ∥ !C). This bijection will leave the internal event structure
of strategies unchanged, and will only operate through relabeling.

First, we describe the action of the bijection from !A⊥ ∥ !(B ⇒ C) to !A⊥ ∥ (!B⊥ ∥ !C).
Let us first explain it on an example. Consider a ∼-strategy represented as below – which
is, in essence, a curried version of the contraction on JcomK of Example 6.6.
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JcomK ⇒ (JcomK × JcomK)
run−,i

✩nnu ❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞ run−,j

✩nnu ❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

run+,0
❣ ❡ ❞ ❝ ❛

❴���
run+,0

❣ ❡ ❞ ❝ ❛

❴���
done−,k

✤

✚ ))0❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩ done−,l
✤

✚ ))0❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩

done+,k

✪

✤
✙

done+,l

✪

✤
✙

Note that the positive moves on the left hand side have copy index 0, whereas in
Example 6.6 they were carefully chosen so as to avoid collisions. This is because the current
arena has more causal links. The two positive moves on the left are already made distinct
by their justification pointers, so there is no need to distinguish them further via their copy
indices. As this example illustrates, we cannot simply relabel this ∼-strategy to JcomK⊥ ∥(JcomK × JcomK) without changing copy indices, as that would result in a collision, i.e. a
failure of local injectivity of the labeling function.

Therefore, we use countability of the arena in order to do a collision-free relabeling.

Lemma 6.15. There is a strong-receptive, courteous map of event structures with symme-
try:

χA,B ∶ !(A⇒ B)→ !A⊥ ∥ !B

which, additionally, preserves the copy index of negative events.

Proof. For events b ∈ B we use ♯ b for the natural number associated to b by the countability
of B. As in Section 2.5, we use ⟨−⟩ ∶ ω3 → ω for any injective function; the collision with
the pairing operation should not generate any confusion.

We set:

χA,B ∶ !(A⇒ B) → !A⊥ ∥ !B(α ∶ [(1, (b, a))] → ω) ↦ (1, α′)(β ∶ [(2, b)] → ω) ↦ (2, β′)
where:

α′ ∶ [a] → ω

a′ ↦ ⟨♯ b,α((2, b)), α((1, (b, a′)))⟩ (if a′ ∈min(A))
a′ ↦ α((1, (b, a′))) (otherwise)

and:
β′ ∶ [b] → ω

b′ ↦ β((2, b′))
With this definition χA,B preserves symmetry, is strong-receptive (it does not change

the copy indices of negative events, since minimal events of A⊥ are positive) and courteous
(it only breaks immediate causal links from minimal events of B to minimal events of A⊥,
so from negative to positive).
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This allows us, from σ ∶ S → !C⊥ ∥ !(A⇒ B), to define its relabeling:

Φ(σ) ∶ S → !C⊥ ∥ (!A⊥ ∥ !B)
= (!C⊥ ∥ χA,B) ○ σ

For well-chosen hashing function ♯ and injection ⟨−⟩, this relabeling applied to the curried
contraction above yields exactly the ∼-strategy of Example 6.6.

Before going on to the other direction, we note a further property of this relabeling.

Lemma 6.16. Let σ ∶ S → !C⊥ ∥ !(A⇒ B) be a negative single-threaded ∼-strategy. Take
s1, s2 ∈ S such that σ s1 has the form (2, β) with lblβ = (2, b) (b ∈min(B)), and σ s2 = (2, α)
with lblα = (1, (b′, a)). Then, b = b′ iff s1 = init(s2).
Proof. Straightforward consequence of single-threadedness.

Lemma 6.17. Let σ1, σ2 ∶ S → !C⊥ ∥ !(A⇒ B) be two negative single-threaded ∼-strategies
sharing the same internal ess. Then, σ1 ∼+ σ2 iff Φ(σ1) ∼+ Φ(σ2).
Proof. if. Assume Φ(σ1) ∼+ Φ(σ2). Take x ∈ C (S), and form θ = {(σ1 s,σ2 s) ∣ s ∈ x}. We
wish to prove that θ is a valid symmetry on !C⊥ ∥ !(A ⇒ B). Firstly, we remark that the
following diagram of bijections commutes.

x
σ1

zz✉✉✉✉✉✉✉✉✉✉
σ2

$$■■■■■■■■■■

σ1 x

!C⊥∥χA,B

��

θ // σ2 x

!C⊥∥χA,B

��
Φ(σ1)x θ′

!C⊥
∥(θ′

!A⊥
∥θ′

!B
)
// Φ(σ2)x

It follows that θ decomposes as θ!C⊥ ∥ θ!(A⇒B) with θ!C⊥ ∈ !̃C⊥, and we are left to prove

that θ!(A⇒B) ∈
̃!(A⇒ B). By construction it is a bijection, so we need to prove that it

preserves and reflects causality, that it preserves labels, and that it preserves indices of
negative events – which is clear, as they are preserved throughout this diagram.

We prove that it preserves immediate causality. The only nontrivial case concerns
immediate causal links not preserved by χA,B, i.e. those of the form:

σ1 s1 = (2,{(2, b) ↦ n})_ (2,{(2, b) ↦ n, (1, (b, a)) ↦ p}) = σ1 s2
But then, by Lemma 6.16, we have s1 = init(s2). Since labels are preserved by θ′!A⊥ and θ

′
!B,

and using Lemma 6.16 again, we still have θ (σ2 s1)_ θ (σ2 s2). The argument also applies
to the θ−1, which therefore is an order-isomorphism.

Preservation of labels also follows directly from Lemma 6.16. Finally, θ is a positive
symmetry as all bijections involved preserve the copy index of negative events.

only if. By preservation of symmetry for χA,B, and the fact that it preserves the copy
index of negative events.

Relabeling from !C⊥ ∥ (!A⊥ ∥ !B) to !C⊥ ∥ !(A⇒ B) is slightly more subtle: indeed, we
go from a game having one copy of A to one having as many as there are minimal moves in
B. Thus, chosing the label for events formerly mapping to A requires us to choose a copy
of A corresponding to some minimal event in B. Here condition (1) of single-threadedness
is crucial: each move s mapped to A has a unique minimal dependency init(s), which must
be mapped to a minimal event of B, and hence specifies the copy of A that s should be sent
to. More formally, we prove the following.
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Lemma 6.18. For any single-threaded ∼-strategy σ ∶ S → !C ∥ (!A ∥ !B), there is σ′ ∶ S →
!C ∥ !(A⇒ B), unique up to positive symmetry, such that

σ ∼+ (!C ∥ χA,B) ○ σ′

Proof. We define σ′ ∶ S → !C ∥ !(A⇒ B). For s ∈ S, then if σ(s) = (1, γ) we set σ′(s) = (1, γ)
still.

If σ(s) = (2, (2, β)) with β ∶ [b]→ ω, then we set σ′(s) = (2, β′) with
β′ ∶ [(2, b)] → ω(2, b′) ↦ β(b′)

If σ(s) = (2, (1, α)) with α ∶ [a]→ ω, then by condition (1) of single-threadedness it has
a unique minimal dependency init(s) ≤ s. By hypothesis, σ (init(s)) has the form (2, (2, β))
with β = {b ↦ n}. Therefore we set:

α′ ∶ [(1, (b, a))] → ω(1, (b, a′)) ↦ α(a′)(2, b) ↦ n

and we define σ′(s) = (2, α′).
It is routine to check that this map is strong-receptive and courteous, and that its

composition with !C ∥ χA,B is positively symmetric to σ. It follows from Lemma 6.17 that
it preserves symmetry, and that it is unique up to positive symmetry.

From that, we deduce the following.

Proposition 6.19. There is a bijection Φ up to weak isomorphism, preserving and reflecting
weak isomorphism, between:

● Negative, single-threaded ∼-strategies σ ∶ S → !C⊥ ∥ !(A⇒ B),
● Negative, single-threaded ∼-strategies σ′ ∶ S → !C⊥ ∥ (!A⊥ ∥ !B).

Moreover this bijection is compatible with pre-composition: for all τ ∶ T → !D⊥ ∥ !C, we
have:

Φ(σ)⊙ τ ≃ Φ(σ ⊙ τ)
Proof. On the one hand Φ(σ) is obtained as (!C⊥ ∥ χA,B) ○ σ, while Φ−1(σ′) is obtained
by the unique factorisation of Lemma 6.18. The bijection up to weak isomorphism follows
from Lemma 6.18 as well.

We now prove stability under composition. By definition, we have Φ(σ) = (!C⊥ ∥
χA,B) ○ σ. But by Lemma 4.12 this is the same (up to isomorphism) as χA,B ⊙ σ, so
the action of Φ can be obtained by post-composition via a lifted map. Stability under
composition follows immediately by associativity of composition.

And finally, we deduce:

Theorem 6.20. The category Cho is cartesian closed.

Proof. We already know that it is cartesian. Throughout this proof, in the construction
of the components of the cartesian closed structure, we ignore the associativity and unity
isomorphisms from the compact closed structure of Tcg – those can be easily and uniquely
recovered from the context.
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For any two arenas A,B, we first define the evaluation ∼-strategy:
evA,B ∶ A × (A⇒ B) Cho

+ // B
= (ǫ!A ⊗ !B)⊙ (!A⊗Φ( cc !(A⇒B)))⊙mA,A⇒B

Likewise, for any σ ∶ A ×C
Cho
+ // B, we define its curryfication as:

Λ(σ) ∶ C
Cho
+ // (A⇒ B)

= Φ−1(!A⊥ ⊗ (σ ⊙mA,C
−1)⊙ (η!A ⊗ !C))

It is then a straightforward equational reasoning to prove the two equations [LS88], for

σ ∶ A ×C
Cho
+ // B and τ ∶ C

Cho
+ // (A⇒ B),
(β) evA,B ⊙ (A ×Λ(σ)) ≈ σ(η) Λ(evA,B ⊙ (A × σ)) ≈ σ

using mainly Proposition 6.19 and the laws of the compact closed structure of Tcg, in
combination with Lemma 6.12 to relate the cartesian structure of Cho and the monoidal
structure of Tcg – all the structural isomorphisms involved in the definition cancel each
other.

6.3. Recursion. As the final technical part of this paper, we prove that Cho supports the
interpretation of a fixpoint combinator.

Usually in game semantics, the interpretation of the fixpoint combinator Y is obtained
by showing that the category of games and strategies is enriched over a category of suf-
ficiently complete partial orders. Here however it will not be the case: indeed, just as in
AJM games [AJM00b], our cartesian closed category is a quotient (its morphisms being
weak isomorphism classes). It is not clear that the natural ordering on weak isomorphism
classes is complete. However, this is not a big issue: although weak isomorphism classes
of ∼-strategies might not form a complete partial order, concrete ∼-strategies do. There-
fore, when solving recursive strategy equations, we will make sure to work with concrete∼-strategies rather than weak isomorphism classes.

Our first step will be to order ∼-strategies.
Definition 6.21. Let σ ∶ S → A, τ ∶ T → A be two ∼-strategies on a tcg A. We write σ ⊴ τ
iff S ⊆ T , the inclusion map S ↪ T is a map of essps, with all data in S coinciding with the
restriction of that in T , and such that for all s ∈ S, σ s = τ s

The ∼-strategies on A ordered by ⊴ form a directed complete partial order (dcpo). It
is not pointed though – it does not have a least element. Indeed, a ⊴-minimal ∼-strategy
must still satisfy receptivity, and hence comprise events for minimal negative events of A.
However, the name in S given to those is arbitrary, so there is one ⊴-minimal ∼-strategy on
A for each renaming of the minimal negative events of A. For each A we distinguish one⊴-minimal ∼-strategy

�A ∶ min−(A)→ A

that has as events the negative minimal events of A with induced symmetry, and as labeling
function the identity. Not every ∼-strategy is above �A. However, for every ∼-strategy
σ ∶ S → A, we pick one σ ≅ σ† such that �A ⊴ σ† obtained by renaming the minimal negative
events of S. We write DA for the pointed dcpo of ∼-strategies above �A.
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Lemma 6.22. For any tcg A, DA is a pointed dcpo with �A as minimal element.

Proof. If Γ = {γ ∶ Sγ → A} ⊆ DA is a directed subset of DA, we form

∨Γ = ∪γ ∶ ⋃
γ∈Γ

Sγ →A

with all components defined as componentwise union.
It is direct that this defines a ∼-strategy, which is the least upper bound of Γ.

Additionally, we note that if all ∼-strategies in a directed set Γ are negative or single-
threaded, so is ∨Γ. We now note that all the operations we defined on ∼-strategies in this
section are continuous for ⊴.
Lemma 6.23. Composition, tensor, pairing, curryfication and the (−)† operation defined
above are continuous for ⊴.
Proof. Straightforward.

From the above, we deduce the following.

Corollary 6.24. For any arena A there is a fixpoint combinator YA ∶ (A⇒ A) Cho
+ // A, i.e.

a single-threaded ∼-strategy such that:

YA ≈ evA,A ⊙ ⟨YA, cc !(A⇒A)⟩
Proof. First, we define the following operation, using the combinators on Cho.

F ∶ D!(A→A)⊥∥!A → D!(A→A)⊥∥!A

σ ↦ (evA,A ⊙ ⟨σ, cc !(A⇒A)⟩)†
By Lemma 6.23 it is continuous, and from the outermost dagger it has indeed value inD!(A⇒A)⊥∥A. Thus, we can take its least fixpoint YA ∈ D!(A⇒A)⊥∥A. The weak isomorphism
in the statement actually follows as an equality.

7. Interpretation of IPA

In this section, we illustrate our model further by defining the interpretation of IPA, dis-
playing the interpretation of programs of interest, and proving a few properties along the
way.

We insist here that our purpose is not to prove full abstraction, nor to prove deep
properties of the interpretation. We feel indeed that given the length of the paper, the
specifics of such an endeavour are best left for later. Furthermore, it is our impression
that it serves the purpose of this paper better (introducing and developping Concurrent
Hyland-Ong games) to give the reader an understanding of what the model computes, what
it can and cannot do, rather than delve into additional technical developments.

Throughout all this section, by strategy we mean ∼-strategy. However, the symmetry
will be kept implicit.

7.1. Sequential innocent part. In this subsection, we focus on the interpretation of the
(sequential) innocent part of IPA, i.e. essentially PCF, plus the combinators for commands.
In other words, this contains all of IPA except for variables and parallel composition of
commands.
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JttK = !JBK

q−,i

❴���
tt+,0

✤

JffK = !JBK

q−,i

❴���
ff+,0

✤

JnK = !JNK

q−,i

❴���
n+,0

✤

JskipK = !JcomK

run−,i

❴���
done+,0

✤

Figure 7. Interpretation of constants of IPA

Interpretation of types. The arenas for the types com and B were given in Example 2.5.
The interpretation for N is a countably infinite variant of the interpretation of B:

JNK

q−
✠

❱ ▼
❈

0+ 1+ . . . n+ . . .

The interpretation function extends to all types (not containing ref), with JA → BK =
JAK ⇒ JBK.

Interpretation of terms. The interpretation follows the standard lines of the interpretation
of the λ-calculus in a cartesian closed category. A context Γ = x1 ∶ A1, . . . , xn ∶ An is
interpreted as the product Π1≤i≤nJAiK (which is just the parallel composition of the Ais).
A typing sequent Γ ⊢M ∶ A is interpreted as a Cho-morphism:

JΓ ⊢M ∶ AK ∶ JΓK
Cho
+ // JAK

For the λ-calculus combinators – variables, application, abstraction –, the interpretation
is standard (and we do not detail it). For the fixpoint combinators, we use the combinatorY of Section 6.3. The interpretation of constants is displayed in Figure 7. Note that we
only display representations, treating multiple copies of Opponent moves symbolically. The
reader should be able to expand them unambiguously to the full event structures, and to
detail their isomorphism families. Note also that we give these interpretations over the
empty context – they can easily be relabeled to any context Γ.

Likewise, the interpretation of function symbols is given in Figure 8. We have only one
figure for a unary function op ∶ X→ X, which covers (up to obvious relabeling) the cases of
succ ∶ N → N,pred ∶ N → N and iszero ∶ N → B. The interpretation of sequents involving
those follows as usual, with e.g. the following composition in Cho:

JΓ ⊢ ifMN1N2 ∶ XK = JifK⊙ ⟨JMK, JN1K, JN2K⟩ ∶ JΓK
Cho
+ // JXK

At this point, we have finished defining the interpretation function of all well-typed
terms of the sequential innocent fragment of IPA. Using the cartesian closed structure and
the equations for the fixpoint combinator, it would be straightforward at this point to
prove soundness and adequacy of the interpretation. We refrain from detailing this – rather
standard – proof.

The paper already contains some examples of the interpretation of terms of the fragment
of IPA currently under study, most notably in Section 2 – where for some, copy indices need
to be adequately adjoined. In general, the interpretation of such terms yields rather simple
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Jop−K = !JXK⊥ ∥ !JXK

q−,i

✱rrz ❧❧❧❧❧❧❧

q+,i
❴���

x−,j
✤

✒ $$,❘❘❘❘

op(x)+,⟨j,♯x⟩
✙

✤

✪

J− ; −K = !Jcom × XK⊥ ∥ !JXK

run−,i

✪oou ❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

run+,i
❴���

done−,j
✤

✓ %%,❙❙❙❙

run+,⟨i,j⟩
❴���

x−,k
✤

✒ $$,❘❘❘❘❘

x+,⟨j,k⟩
✚

✛

✢

✤

✦

★

✩

Jif − − −K = !JB × X × XK⊥ ∥ !JXK

q−,i

✩nnu ❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

q+,i
❆zz� ⑥��$

tt−,j1
✁

✕ &&-❯❯❯❯❯❯❯❯❯ ff−,j2

❂

✕ &&-❯❯❯❯❯❯❯❯❯

q+,⟨i,j1⟩
❴���

q+,⟨i,j2⟩
❴���

x−,k1
✤

✖ ''.❱❱❱❱❱❱❱❱❱❱ x−,k2
✤

✘ ((/❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

x+,⟨1,j1,k1⟩
✛

✙

✗

✖

✔

✒

✏

x+,⟨2,j2,j2⟩

★

✪

✫

✭

✯

✱

✳

Figure 8. Interpretation of sequential function symbols of IPA

event structures, whose causal order is forest-shaped and which have no conflict. Modulo
copy indices, and as it was noted in Section 2, these forests exactly coincide with the view
functions of standard Hyland-Ong games: their branches are exactly the P -views. Hence,
our interpretation gives a way to compute the composition of innocent strategies while
staying within a causal representation corresponding to view functions, never resorting to
expanded plays.

Non-determinism. Although the fragment of the language currently under study is deter-
ministic, we find it interesting to study some examples given by its extension with a non-
deterministic primitive. Therefore, we add to the language a new constant coin ∶ B which
returns a random boolean. Its interpretation is (an obvious extension with copy indices of)
the strategy on the left hand side of Figure 5. For Γ ⊢ M,N ∶ A, we define as syntactic
sugar a non-deterministic sum Γ ⊢M +N ∶ A as Γ ⊢ if coinMN ∶ A.

We give in Figure 9 representations of the interpretation of some well-chosen terms.
Copy indices are not exactly as given by the interpretation function (though they are up to
weak isomorphism): they have been relabeled for convenience of presentation.

As Figure 9a illustrates, the model represents non-determinism in a non-idempotent
way : redundant non-deterministic choices are kept separate by the interpretation. In
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!JBK

q−,i

❅zz� ���
⑦��$

❃❃❃

tt+,0
✎

�

/o/o/o tt+,0
✴

❃

(a) Jtt + ttK
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(d) Jf ∶ B→ B ⊢ (f tt) + (f ff)K

Figure 9. Intepretation of some non-deterministic terms

Figure 9c, � (which is syntactic sugar for Y (λxB.x)) is interpreted as the empty strat-
egy. The interpretation of tt + � illustrates that, despite displaying explicitely the point
of non-deterministic branching, the hiding step of the interpretation removes some diverg-
ing branches of the interaction. Figures 9b and 9d display two strategies which have the
same branches (P-views), but differ in their branching points. This gives an interpreta-
tion of non-deterministic sequential programs that is similar to Tsukada and Ong’s recent
presheaf-based model [TO15], although our composition mechanism is very different. It is
fairly easy to capture exactly their category as a subcategory of Cho, whose morphisms are
sequential innocent [CCW14, CCW15] but not deterministic.

7.2. Concurrent innocent part. Now, we go on to show how our model represents con-
current primitives. The only concurrent primitive of IPA is parallel composition, whose
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Figure 10. Two concurrent innocent strategies

interpretation relies on the following strategy

J∥ K = !Jcom × comK⊥ ∥ JcomK
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Using this strategy we can define JΓ ⊢M ∥ N ∶ comK = J∥ K⊙ ⟨JMK, JNK⟩.
This strategy is no longer a forest, but rather a directed acyclic graph. We also note

that this is a deterministic strategy: there is no conflict in its event structure. As we shall
see later, without any non-deterministic primitives, it is only in the presence of shared state
that non-deterministic strategies will arise. In fact, a major advantage of our approach to
modeling concurrent languages is that, not being based on interleavings, we represent the
execution of such non-interfering terms deterministically.

In [CCW15], we exploit this property: we give a concurrent notion of innocence where
strategies are directed acyclic graphs rather than forests, and using this notion we give an
intensionally fully abstract model of a variant of PCF where independent computations are
performed in parallel. The detailed construction is out of the scope of this particular paper,
but let us illustrate it with two examples that are both concurrent innocent.

Figure 10 contains representations of two strategies, intended to be concurrent innocent
(we associate moves to the corresponding sub-type using indices rather than location). In
Figure 10a, we have a strategy for a parallel implementation of the left or, that is strict
in its left argument. Indeed, although the strategy starts evaluating both its arguments in
parallel, it can only return at toplevel if its first argument has returned. However, this is not
true anymore for the strategy of Figure 10b. There, it suffices that one argument returns
tt for the overall computation to return tt – indeed, this strategy computes the well-known
parallel-or function [Plo77].
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Figure 11. Strategies for assignment and dereferenciation

7.3. Stateful part. Finally, we finish the interpretation of IPA and describe how to in-
terpret the primitives of IPA dealing with manipulations of state. For the simplicity of
presentation, we set references in IPA to only store booleans; however the method applies
just as well to integers.

A variable can be interacted with in two ways: via reading and writing. As usual in
game semantics, we follow this idea for the interpretation of variables, and take JrefK to be
a product arena comprising actions for reading the reference or writing on the reference.
More precisely, we define:

JrefK =
R−

�
✎

❃
✴

W−
tt W−

ff

tt+ ff+ ok+ ok+

We now describe the interpretation of term constructors for the manipulation of state.
As usual, assignment and dereferenciation are simply interpreted as (sequential innocent)
strategies that interact with the memory cell. We give in Figure 11 the strategies used in
the interpretation of those. Using those, we can define:

JΓ ⊢M ∶= N ∶ comK = J− ∶= −K⊙ ⟨JMK, JNK⟩
JΓ ⊢ !M ∶ BK = J!−K⊙ JMK

Before giving the interpretation of genuine references, we mention that the interpreta-
tion of mkvar exploits as usual the isomorphism between JrefK and JBK × JcomK2 [AM96].

New reference. As usual, the more tricky part is the interpretation of the newref construct.
Indeed, while the strategies for assignment and dereferenciation only interact with the
interface of the variable in an innocent way, newref really has to provide an implementation
for the memory.

If Γ, x ∶ ref ⊢ M ∶ A depends on a reference x, its interpretation plays on (up to iso)
!JrefK⊥ ∥ !JΓK⊥ ∥ !JAK. Naively (we will see that this is a slight simplification), all we have to
do is to build a strategy cell ∶ !JrefK, and compose JMK with it to obtain Jnewref x inMK.

To define cell, we keep in mind the operational behaviour of a memory cell. In our
(sequentially consistent) understanding of memory in a concurrent setting, although reads
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and writes are called concurrently, they are performed in some sequential order by the
central memory. Thus the behaviour of a boolean memory cell is best described as the
prefix language of the infinite traces:

Celltt ∶∶= R− ⋅ tt+ ⋅Celltt ∣W−
tt ⋅ ok

+ ⋅Celltt ∣W−
ff ⋅ ok

+ ⋅Cellff
Cellff ∶∶= R− ⋅ ff+ ⋅Cellff ∣W−

tt ⋅ ok
+ ⋅Celltt ∣W−

ff ⋅ ok
+ ⋅Cellff

This language is ordered by prefix, so that Cellff is a forest. Setting all incomparable
words to conflict with each other, we get an event structure whose events are words, and
configurations are prefix-closed sets of prefixes of a word – so in one-to-one correspondence
with words. This event structure, with the obvious labeling function, can be regarded as a
prestrategy on JrefK (not on !JrefK). But in order to fit in our framework, we need to equip
it with copy indices (and symmetry). This calls for extra bookkeeping, as we need to make
sure that the same copy index is not used twice in the same branch. We define

CellIR,Itt,Ifftt ∶∶= R−,i ⋅ tt+,0 ⋅CellIR∪{i},Itt,Ifftt (i /∈ IR)∣W−,i
tt ⋅ ok

+,0 ⋅CellIR,Itt∪{i},Ifftt (i /∈ Itt)
∣W−,i

ff
⋅ ok+,0 ⋅CellIR,Itt,Iff∪{i}

ff
(i /∈ Iff )

and similarly for CellIR,Itt,Iff
ff

. Then we define the event structure Cell via Cell∅,∅,∅
ff

, as we
did above. It has an isomorphism family, that relates any two words differing only on their
copy indices. Moreover the names of the events denote the labeling function to !JrefK (with
all positive moves pointing – that is, being immediately dependent in the game – to the
prevous move). Overall, we get a map of essp:

cell ∶ Cell → !JrefK

Example 7.1. The following diagram represents a sub-event structure of Cell.
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ff

ff+,0
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We have constructed cell ∶ Cell → !JrefK a map of essps. However, cell is not a valid∼-strategy in Cho: it neither receptive (after playing R−,4 above one cannot play R−,4,
although it is compatible in the game) nor courteous (we have ff+,0 _ R−,4 which does not
hold in !JrefK). However, cell is a thin pre-∼-strategy, and as such can be composed with
JMK ∶ !JrefK⊥ ∥ !JAK to obtain JMK⊙ cell – and it turns out that JMK⊙ cell is always a valid∼-strategy.

However, that is still not quite what we want. The intended semantics for newref x inM
is that each of its evaluations spawns a new, independent memory cell, whereas the oper-
ation above would have it spawned once and for all and shared over all copies of M . In
other words, JMK⊙ cell is a valid ∼-strategy indeed, but it might not be single-threaded. So
finally, we build another pre-∼-strategy displayed in Figure 12, where Cell means a copy of
the pre-∼-strategy above, with minimal events pointing as indicated.
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!Jref → XK⊥ ∥ !JXK
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Figure 12. The pre-∼-strategy newcell

Finally, from Γ, x ∶ ref ⊢M ∶ X, we define:

Jnewref r inMK = newcell⊙Λ(JMK) ∶ !JΓK
Tcg
+ // !JXK

Then, despite newcell being a pre-∼-strategy rather than a ∼-strategy, we have:

Proposition 7.2. For any Γ, x ∶ ref ⊢M ∶ X, the thin pre-∼-strategy:
Jnewref r inMK = newcell ⊙Λ(JMK)

is a single-threaded ∼-strategy.
Proof. The composition is well-defined (as a map of essps) since both compounds are ∼-
receptive. Moreover, both compounds are also componentwise courteous (see Definition
3.30), so by Lemma 3.31 the composition newcell ⊙Λ(JMK) is a componentwise courteous
pre-∼-strategy. It is also thin, negative and single-threaded as these properties are stable
under composition (respectively Lemmas 3.29, 6.3 and Proposition 6.10).

It remains to check that it is receptive and courteous. But that does not involve
symmetry at all; and by the results of [RW11, CCRW] it suffices to check that

cc !JXK ⊙ (newcell ⊙Λ(JMK))⊙ cc !JΓK ≅ newcell⊙Λ(JMK)
but that follows from the fact that composition of componentwise courteous pre-∼-strategies
is associative (and indeed, the embedding of Section 4 shows that it maps to the composition
of spans of prestrategies), that Λ(JMK) is a strategy, and the easy verification that cc !JXK ⊙
newcell ≅ newcell.

This concludes the definition of the interpretation of IPA in Cho. As said before, we
do not aim in this paper to prove properties of this interpretation, such as soundness or
adequacy – those could be either proved directly as in [AM96], or more easily by constructing
a functor to the interpretation of [AM96] linearizing the partial orders. In any case, the
proof would take additional space without bringing much insight nor taking advantage of
the more refined representation offered by our event structures strategies, so we chose not to
include it. However, we will now illustrate this interpretation by providing some examples.
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7.4. Some examples.

First example: strictness test. As a first example, we detail the interpretation of the term
of Example 2.22. Recall that it was:

newref b in λfcom→com. f (b ∶= tt); !b ∶ (com → com)→ B

As the constructor new is only defined on terms of ground type, this is just syntactic sugar
for λfcom→com. newref b ∈ f (b ∶= tt); !b ∶ (com → com) → B. In order to define its
interpretation, the first step is to define:

Jf ∶ com → com, b ∶ ref ⊢ f (b ∶= tt); !b ∶ BK ∶ Jcom → comK × JrefK
Cho
+ // JBK

This is covered by the definitions above, using the cartesian closed structure and the
strategies of Figure 11 for assignment and dereferenciation. Computing this yields the strat-
egy represented below (again, the copy indices given by the actual interpretation function
differ, but this is irrelevant up to weak isomorphism).
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Again, this deterministic event structure is forest-shaped and its branches are versions
with explicit copy indices of the P-views of the corresponding innocent strategy in Hyland-
Ong games.

Now, we compose it with newcell. We represent below the event structure resulting
from their interaction. Events of the hidden/synchronised part of the interaction no longer
have a well-defined polarity, hence we set it to 0.
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!Jcom → comK⊥ ∥ !Jref → BK⊥ ∥ !JBK
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After hiding, the minimal conflict between the first two events in cell is inherited by
the final positive events. The reader can check that hiding yields (up to the copy indices)
the event structure of Example 2.22.

The reader familiar with Abramsky and McCusker’s model for IA will see that taking
the plays – i.e. alternating well-bracketed linear orderings of configurations, without copy
indices – of the resulting strategy yields the expected sequential strategy. But our model
says more, e.g. it also specifies the behaviour of the strategy if Opponent decides to both
ask its argument and return in parallel.

Second example: synchronization through state. Now, we compute the interpretation of the
following term of IPA.

x ∶ com, y ∶ com ⊢ newref r in
if (!r) � (x; r ∶= tt) ∥
if (!r) y �
∶ ref → com

As before, we first compute the interpretation of the variant of this term where the
variable has been abstracted away, obtaining the following strategy.
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q ♠ ❥ ❣ ❡

❆zz� ✁✁ ⑥��$
❂❂

tt−,j1

✉
❥

ff−,j2

❆

★nnt ❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝ tt−,j3

✁

✪oou ❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡ ff−,j4

❂

run+,⟨i,j2⟩
❴���

run+,⟨i,j3⟩
❴���

done−,k
✤

✘ ((/❳❳❳❳❳❳❳❳❳❳❳❳❳❳ done−,l
✤

✑ $$,
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tt

②
②

①
✇

✇
✈

✉
✉
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❴���
ok−,m

✤

✛ **0❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬

done+,⟨j2,k,l,m⟩

✜
✜

✢
✢

✣
✣

✤
✥

✥
✦

✦
✧

✧
★

We now compute a part of the interaction with newcell, pictured below.

!JcomK⊥ ∥ !JcomK⊥ ∥ !Jref → comK ∥ !JcomK

run−,i

✭ppw ❤❤❤❤❤❤❤❤❤❤❤❤

run0,i

✩nnu ❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

✮qqx ✐✐✐✐✐✐✐✐✐✐

R0,2i

❴���

❣ ❣ ❢ ❡ ❡ ❞ ❞ ❝ ❝ ❜ ❜ ❛ ❵

/o/o/o/o/o/o/o R0,2i+1

❴���

♥ ❦ ✐ ❣ ❞

ff0,0

✯qqx ❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

✐���
✮✮✮✮✮✮✮✮✮✮✮✮✮✮✮✮✮✮✮✮✮✮✮✮✮

✤

ff0,0

❴���

✤

R0,2i

❴���

✝
✄

�
⑥

③
✇

✉

ff0,0

✧mmt ❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜❜

✤

run+,⟨i,0⟩

❴���

run+,⟨i,0⟩

❴���
done−,k

✚ ))0❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩❩

✤

✕ &&-❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯ done−,l

✛ **0❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬❬

✤
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①

①
✇

✇
✇

❴���
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❴���

✌
☞

☛
☛

✡
✡

✠
✟

✟
✞

✝
✝

✆
☎

☎
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0,⟨0,l⟩
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✕
✔

✓
✓

✒
✒

✑
✑
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✏

✎
✍

✍
✌

✌

ok0,0

✤

❴���

ff0,0

✤
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ok0,0

✤

R0,2i+1

✝
✝

✝
✆

✆
✆

✆
☎
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☎
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✄

✄
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✂
✂

✂
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tt0,0

✤
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ok0,0

✤

run+,⟨i,0⟩
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done−,m

✤

✜ **1❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭❭

done0,⟨0,k,m,0⟩
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✣
✣
✣
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✤
✤
✤
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which, after hiding, yields a strategy with sub-event structures such as:
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Jλxcom, ycom.newref r in (if (!r)� (x; r ∶= tt)) ∥ (if (!r)y �)K =
!JcomK⊥ ∥ !JcomK⊥ ∥ !JcomK

run−,i

✪oou ❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡❡

★nnt ❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝❝

run+,⟨i,0⟩ /o/o/o
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❡ ❡ ❞ ❞ ❞ ❝ ❝ ❜ ❜ ❛ ❛ ❛ ❵
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❤ ❣ ❢ ❢ ❡ ❡ ❞ ❝ ❝ ❜ ❛ ❛

done−,l
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done−,k
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run+,⟨i,0⟩
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✁
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done−,m

✕ &&-❯❯❯❯❯❯

✤

done+,⟨0,k,m,0⟩
✛

✜

✣

✤

✥

✧

★

Here, there are several observations to make.
Firstly, note that the copy index of the call to y does not depend on k. This might

seem surprising, since it seems that if Opponent plays two occurrences of done−,k, once
with k = 0 and once with k = 1, Player will play the subsequent run+,⟨i,0⟩ twice, breaking
local injectivity.

In fact, this is because the symbolic notation used here is a bit misleading, and suggests
a uniformity in the behaviour of strategies which is not accurate for strategies that are not
innocent. In reality, the interaction presented here is incomplete and does not cover the case
where Opponent plays several occurrences of done−,k (that could happen if, for instance,

Opponent has access to call/cc). Indeed, this would trigger new W0,k
tt events, which would

be sequentialized in some order by the memory. The R0,2i+1 would happen at some point
during that sequentialization; each of these possible occurrences of R0,2i+1 would lead to a
call to y – so there would be multiple non-deterministic calls to y.

Secondly, we note that this term, in the Ghica-Murawski model of IPA [GM08], would
be interpreted by the same strategy than that for sequential composition. Unlike their
model, we keep some information about non-deterministic branching; meaning that we do
remember here that the term has a chance to diverge. In the interpretation presented in
this paper, we do not remember all the information about divergences though. If one was
to simplify the term above to newref r inλxcom, ycom. x; r ∶= tt ∥ if !r y �, the branch
where the read arrives too early w.r.t. the write would be hidden away by composition.
The sole purpose of the superfluous read in our example above is to create a race in memory
before x, spawning two non-deterministic copies of the execution of x. In one of them the
computation is doomed, as the second thread is stuck in a loop.

8. Conclusions

In this paper, we have given the detailed development leading to our cartesian closed cate-
gory Cho of Concurrent Hyland-Ong games, a setting that we illustrated with an interpre-
tation of IPA. The cartesian closed category Cho conservatively extends standard Hyland-
Ong games, in the sense that in our setting purely function programs are interpreted as
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(copy-index aware versions of) their tree of P-views – but our setting also supports stateful,
non-deterministic, or concurrent languages, or any combination thereof.

The cornerstone of our construction is a compact closed category Tcg of thin concurrent
games, which extends Rideau and Winskel’s category CG of games and strategies as event
structures [RW11, CCRW]. Note the interest of Tcg is not restricted to the construction
of Cho. It supports games that are much more general than those obtained from arenas.
The future will tell how this mathematical space is best exploited.

In an extended abstract [CCW15], we relied on the framework presented here to give
a full abstraction result for a parallel interpretation of PCF – due to the length of the
paper, we believe that the details of the fully abstract model and of the proof are best kept
for a separate paper. In another extended abstract [CC16], we investigate the connections
between (an affine version of) this interpretation of IPA with that of Ghica and Murawski.
There is a lot of ongoing research on this game semantics framework. Research directions
include extensions probabilities, applications to the semantics of proofs, or to the semantics
of non-interferent programming languages.
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Appendix A. Counterexamples

A.1. Absence of pullbacks in E∼. The category of event structures with symmetry does
not have pullbacks in general. For that we first note that if a diagram has a pullback in E∼,
then, forgetting symmetry, it is also a pullback in E . The reason for that is the following
proposition.

Proposition A.1. The forgetful functor E∼ → E which to any event structure with sym-
metry A = (A, Ã) associates A, has a left adjoint.

Proof. The right adjoint associates, to any event structure A, the event structure with
symmetry (A, reflA), where

reflA = {{(a, a) ∣ a ∈ x} ∣ x ∈ C (A)}
is the minimal symmetry on A. It is straightforward that this indeed defines an adjunction.

Hence the symmetry-forgetting functor is a right adjoint, and as such preserves pull-
backs. Now, in order to prove that E∼ does not have pullbacks, we are going to construct a
diagram in E∼ whose pullback in E has no possible isomorphism family. Indeed, consider A
the following event structure:

⋅a

❂yy� ⑥⑥⑥⑥⑥⑥⑥

✁ ��%
❆❆❆❆❆❆❆ ⋅b

❃yy� ⑦⑦⑦⑦⑦⑦⑦

� ��%
❅❅❅❅❅❅❅

⋅1 /o/o/o/o/o/o/o/o ⋅2 ⋅3 /o/o/o/o/o/o/o/o ⋅4
Write A for A equipped with the maximal isomorphism family: all order-isomorphisms

are in the family. Write A1 for the sub-event with symmetry where ⋅1 can only be sent to
itself and to ⋅3; and ⋅2 can only be sent to itself and to ⋅4. Similarly, write A2 for that where
⋅1 can only be sent to ⋅4 and ⋅2 to ⋅3.

Now we have the following diagram:

A1

id   ❆❆❆❆❆❆❆❆ A2

id~~⑥⑥⑥⑥⑥⑥⑥⑥

A
Assume this diagram has a pullback (A3,Π1,Π2). By Proposition A.1 its underlying

event structure is A and the projection maps are both identities on objects. The isomor-
phism {(⋅a, ⋅b)} ∶ {⋅a} ≅Ã3

{⋅b} must be in Ã3 as it is in both Ã1 and Ã2. However, its left

hand side {⋅a} can be extended with ⋅1, so by the extension property we must have

{(⋅a, ⋅b), (⋅1, ⋅i)} ∶ {⋅a, ⋅1} ≅Ã3
{⋅b, ⋅i}

with i ∈ {3,4}. But by construction such an isomorphism cannot be in both Ã1 and Ã2,
absurd.
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A.2. Weak isomorphism is not a congruence. This key observation is one of the key
facts guiding the design of the saturated games with symmetry of [CCW14] and the thin
concurrent games of Section 3.

It first came as a surprise that weak isomorphism between pre-∼-strategies is not pre-
served by composition with other pre-∼-strategies. Indeed, the extension property of sym-
metries ensures that two symmetric configurations have “bisimilar futures”. For two weakly
isomorphic pre-∼-strategies σ1, σ2 on game A, and another pre-∼-strategy τ on game A⊥ ∥ B,
from ∼-receptivity of τ and the weak isomorphism of σ1 and σ2 one certainly expects τ ⊙σ1
and τ ⊙σ2 to behave similarly. And they do indeed behave similarly, but in a way less strict
than that expressed by weak isomorphisms.

To be more precise, first consider the event structure with polarities and symmetry P
(the “pentagram”):

P =

⊕1

$d
$d

$d
$d

$d
$d

�T
�T
�T
�T
�T
�T

⊕2

z:
z:
z:
z:
z:
z:


J

J

J

J

J

J

⊕5 /o/o/o/o/o/o/o ⊕3

⊕4
Its isomorphism family is the maximal one, i.e. all bijections between configurations

are in the family. In P, two events will eventually be played. It does not matter which
ones, since they are all symmetric – the only thing that matters is the multiplicity.

We will consider P as a pre-∼-strategy on a game B with the same events as P
({⊕1,⊕2,⊕3,⊕4,⊕5}), the maximal isomorphism family, and without conflict. We write
α1 for the obvious labeling function

α1 ∶ P → B
⊕i ↦ ⊕i

which indeed informs a pre-∼-strategy on B.
We will also be interested in another pre-∼-strategy:

α2 ∶ S → B

where S has events {⊕1,⊕2} and again maximal isomorphism family. The map α2 sends ⊕i
in S to ⊕i in B. The pre-∼-strategies α1 and α2 behave similarly, since both will eventually
play two events; and we do not care which ones since all possible choices are symmetric in
the game. Despite that, α1 and α2 are not weakly isomorphic. In fact, there is no map
from α1 to α2: such a map would require us to build a map of event structures from P to
S, but the reader can check that this would induce a 2-coloring of P , which is not bipartite.

We will now obtain α1 and α2 respectively as compositions τ ⊙σ1 and τ ⊙σ2, for weakly
isomorphic σ1 and σ2. We introduce the game

A = ⊕a /o/o/o ⊕b
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with again the maximal isomorphism family. The pre-∼-strategy τ ∶ T → A⊥ ∥ B selects α1

or α2 depending on Opponent’s choice in A. Its events are represented below.

⊖a /o/o/o/o/o/o/o/o/o/o

❑��	 ☛☛☛☛
s���

✸✸✸✸

❫��� ❵���

❴���

⊖b

❑��	 ☛☛☛☛
s���

✸✸✸✸

⊕1

$d
$d

$d
$d

$d
$d

�T
�T
�T
�T
�T
�T

⊕2

z:
z:
z:
z:
z:
z:


J

J

J

J

J

J

⊕1 ⊕2

⊕5 /o/o/o/o/o/o/o ⊕3

⊕4

Itsisomorphism family is, again, the maximal one: all order-isomorphisms between
configurations are valid symmetries. One can check that this satisfies indeed the axioms
for an isomorphism family; crucially the extension axiom uses the fact that P and S are
bisimilar (and that the symmatry on B is the maximal one).

Finally, consider σ1, σ2 on A, with σ1 playing only ⊕a and σ2 playing only ⊕b. They are
clearly weakly isomorphic, since {(⊕a,⊕b)} is in Ã. But by construction we have τ ⊙σ1 ≅ α1

and τ ⊙ σ2 ≅ α2, which as we observed are not weakly isomorphic.
Note that the games A and B are both tcgs; but crucially τ is not thin (Definition

3.11). Indeed, for instance, the symmetry {(⊖a,⊖b)} extends to both {(⊖a,⊖b), (⊕1,⊕1)}
and {(⊖a,⊖b), (⊕1,⊕2)}, which is forbidden by Definition 3.11. For thin pre-∼-strategies,
positive extensions of the symmetry must be caninocally chosen, making it impossible that
composite strategies as above are bisimilar but not weakly isomorphic.

A.3. Failure of extension for copycat on general games. In the main text, we give
(Definition 3.18) a candidate for the isomorphism family on copycat CCÃ for any event
structure with polarities and symmetry A. The valid symmetries on CCA are simply those
order-isomorphisms between configurations of CCA which map to valid symmetries on A⊥ ∥
A.

Crucially, we proved in Proposition 3.22 that this satisfies the extension property of
isomorphism families if the game is a tcg. This boiled down to Lemma 3.21, which shows
that tcgs are race-preserving : races in the isomorphism family always originate to races
in the game. As this phenomenon played an important role in the design of the theory,
we find it useful to include here an example demonstrating the fact that without this
race-preservation property (so if the games are plain event structures with polarities and
symmetry, rather than tcgs), the extension property fails for the isomorphism family on
copycat.

Consider an event structure with polarities A = {a−, b+}. From it we form !2A with
events/causality/polarities/conflict that of A ∥ A (we write a−,i for (i, a)−), and isomor-
phism families the set of bijections between configurations included in the two maximal
ones: {(a−,1, a−,1), (b+,1, b+,1), (a−,2, a−,2), (b+,2, b+,2)}{(a−,1, a−,2), (b+,1, b+,2), (a−,2, a−,1), (b+,2, b+,1)}

So maximal symmetries either globally preserve the copy indices, or globally swap them.
It is not possible for a symmetry to, e.g. send a−,1 to a−,1 and b+,1 to b+,2. So !2 does not
act like the ! operation of Section 6 – instead, it is a binary version of the bang of [CCW14],
imported from AJM games [AJM00b].
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From Definition 3.18, the event structure CC!2A is equipped with a candidate isomor-
phism family CC

!̃2A
. We now show that this however fails the extension axiom of isomorphism

family. From the definition, the diagram below represents a valid symmetry in CC
!̃2A

.

!2A
⊥ ∥ !2A

≅CC
!̃2A !2A

⊥ ∥ !2A

b−,1 a−,1 b−,1 a−,2

The issue will come from the fact that the symmetry follows irreconciliable courses in
the left and the right components of CC!2 : in the left component it preserves copy indices,
whereas in the right component it swaps them. So it the left hand side of this symmetry
extends as depicted below

!2A
⊥ ∥ !2A

≅CC
!̃2A !2A

⊥ ∥ !2A

b−,1

✒ $$,❘❘❘❘❘❘ a−,1 b−,1 a−,2

b+,1

the only matching extension on the right hand side is with b+,1 as well (b+,2 is not possible
as it would require to play b−,2 first), but (b+,1, b+,1) is not a valid extension of the symmetry
above, as for that it would need to swap the copy index instead of preserving it.
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Ã−, Ã+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Negative/positive isomorphism families of a tcg A.
x ⊆p y, θ ⊆p θ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Extension with events of polarity p ∈ {−,+}.
CC
Ã
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