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Simon Castellan, Pierre Clairambault, Glynn Winskel
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Abstract

In this technical report, we build a cartesian closed category of non-
deterministic concurrent strategies playing on arenas. We show that this
CCC admits as a sub-CCC the standard category of arenas and Hyland-
Ong innocent strategies. Our strategies, have much more possible behaviours
than standard Hyland-Ong innocent strategies – however the purpose of
this technical report is to define our CCC, and we leave for later its use for
semantics of programming languages.
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1 Introduction

In [RW11], Rideau and Winskel have introduced a compositional framework
for games based on event structures. The purpose of this note is to build an
extension of Hyland-Ong arena games where strategies, instead of trees, are
event structures. With this, we hope to be able to use the flexibility of the
Hyland-Ong approach within a more expressive metalanguage, and through
this get finer models for complex effectful programming languages, with con-
currency in mind.

The purpose of this note is to describe the cartesian closed category in
which our future developments will take place. In Section 2, we start with
some technical preliminaries on event structures, stable families, and symme-
try. In Section 3, we build the compact closed category equipped with the
adequate notions of symmetry. In Section 4, we use it to build our ccc that we
call concurrent Hyland-Ong games, and we show that its subcategory of deter-
ministic sequential strategies coincides with the standard ccc of arena games
and innocent strategies.

2 Preliminaries

2.1 Event structures and maps

Let us start with some elementary definitions on event structures. Here we
only give some basic definitions, notations and properties, but we will skip
proofs. This is intended as a reference only, a more comprehensive introduction
to event structures and stable families can be found e.g. in [Win11].
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2.1.1 The categories ES and ESP

Definition 2.1. An event structure (es for short) comprises (E,≤, Con), consisting
of a set E, of events which are partially ordered by ≤, the causal dependency re-
lation, and a nonempty consistency relation Con consisting of finite subsets of E,
which satisfy

{e′ | e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆ X ∈ Con =⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.

Event structures support the following notion of state.

Definition 2.2. The (finite) configurations, C (E), of an event structure E consist of
those finite subsets x ⊆ E which are

Consistent: x ∈ Con, and

Down-closed: ∀e, e′. e′ ≤ e ∈ x =⇒ e′ ∈ x.

Notations. We recall some basic notations on event structures. If e ∈ E, its
prime configuration is [e] = {e′ ∈ E | e′ ≤ e}. If e, e′ ∈ E are such that e < e′

and no other event lies in between, we write e _ e′. If x ∈ C (E) and e ∈ E is

such that e 6∈ x and x ∪ {e} ∈ C (E), we write x−⊂e, or just x
x

−−⊂ ∪ {e}.
Moreover, if two configurations x, y of E are such that x ∪ y is consistent

then we write that x and y are compatible. (It is equivalent to asking that x ∪ y
is a configuration of E.)

We now introduce total maps between event structures.

Definition 2.3. A total map f : (E,≤E, ConE) → (F,≤F, ConF) between event
structures (written f : E → F for conciseness) is a function f : E → F such that:

(1) For all x ∈ C (E), f x ∈ C (F),

(2) For all e, e′ ∈ x ∈ C (E), f e = f e′ =⇒ e = e′.

We write ES for the category of event structures and total maps between
them. An event structure with polarities (esp for short) is an es E equipped
with a polarity function polE : E → {−,+} specifying for each event e ∈ E,
whether it is positive/Player (pol(e) = +) or negative/Opponent (pol(e) = −).
The names negative/Opponent and positive/Player will be used interchange-
ably in this paper. Maps of esp are supposed to preserve polarities, and form a
category ESP .

Notations. If E is an esp, when introducing events of E we will sometimes
label them with polarities, as in e−, e+. In such a case the labeling is not part of
the identifier and can be thought of as typing information – the identifier e can
later be used without the annotation. Typically we might say ”let e− ∈ E” to
abbreviate ”let e ∈ E such that pol(e) = −”.
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2.1.2 Two constructions on event structures

We introduce two constructions on event structures, that will be useful later
on. We spell them out for plain event structures, but they obviously also make
sense in the presence of polarities.

Restriction. Let E be an event structure, and R ⊆ E. The restriction of E to R
comprises events whose causal dependencies are all in R.

Definition 2.4. There is an event structure E ↾ R, the restriction of E to R, having:

• Events:
{e ∈ E | [e] ⊆ R}

• Causality, consistency: same as in E.

For (E,FE) a stable family one can also form its restriction to R by restrict-
ing FE to subseteq of R. We can then check that C (E ↾ R) = C (E) ↾ R, and for
all (E,FE) stable family we have Pr((E,FE) ↾ R) = Pr((E,FE)) ↾ max−1R.

Projection. Let E be an event structure, and V ⊆ E. The projection of E to V
hides the causal dependencies that are not in V.

Definition 2.5. For E an event structure and V ⊆ E there is an event structure
E ↓ V, the projection of E to V, having:

• Events: Those of V,

• Causality, consistency: Induced by E.

2.1.3 Some lemmas on event structures

The two following technical lemmas will be useful in our development.

Lemma 2.6. Let f : E → F be a map of event structures, and let x, y ∈ C (E) be
compatible configurations such that x, y ⊆ z and f (x) ⊆ f (y), then x ⊆ y.

Proof. Suppose this is not the case, then there is e ∈ x such that e 6∈ y. But still
f (e) ∈ f (y) so there is e′ ∈ y such that f (e) = f (e′). But since x, y ⊆ z ∈ C (E),
by local injectivity we have e = e′, absurd.

Lemma 2.7 (Mapification). Suppose there is a total function p : C (R) → C (S)
preserving −⊂ and preserving bounded unions in the sense that for all x, y ∈ C (R)
such that x and y are compatible, then p(x ∪ y) = p(x)∪ p(y). Then there is a unique
total map of event structure p̂ : R → S such that for all x ∈ C (R), p̂(x) = p(x).
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Proof. For an event r ∈ R, we necessarily have p([e)) −⊂ p([e]), let us write

p([e]) = p([e)) ∪ {e′}. We set p̂(e) = e′. Now, suppose x
e

−−⊂ y in C (R).
Necessarily,

p(y) = p(x ∪ [e])

= p(x)∪ p([e])

= p(x)∪ p([e))∪ { p̂(e)}

= p(x)∪ { p̂(e)}

from which it follows by immediate induction that for any configuration x ∈
C (R), p̂(x) = p(x). Finally, p̂ is a map of event structures since it evidently
preserves configurations, and is locally injective since it preserves −⊂.

2.2 Stable families, and structure in ES

In this subsection, we aim to construct some structure in ES : namely, products
and pullbacks. Those are notably difficult to describe combinatorially directly
on event structures. Instead, it is more convenient to first describe the category
of stable families, of which ES can be seen as a full category. Products (and
pullbacks) are more direct to construct in stable families, and are then easily
transported to ES .

2.2.1 Stable families

Definition 2.8. Let E be a set of events equipped with a non-empty FE ⊆ f E (a set
of finite subsets) set of configurations. For X ⊆ FE we say that X is compatible,
written X ↑, iff there is x ∈ FE such that ∪X ⊆ x. We define a stable family as
such a pair (E,FE) satisfying the additional axioms:

(1) Completeness: For X ⊆ FE, if X ↑ then ∪X ∈ FE as well.

(2) Stability: For X ⊆ FE, if X ↑ then ∩X ∈ FE as well.

(3) Coincidence-freeness: For e, e′ ∈ x ∈ F with e 6= e′, then there is y ∈ FE

with y ⊆ x and e ∈ y ⇔ e′ 6∈ y.

A map f : (E,FE) → (F,FF) of stable families is a function f : E → F preserving
configurations, and locally injective in the sense that forall e, e′ ∈ x ∈ FE, f (e) =
f (e′) =⇒ e = e′. This forms a category SF of stable families and maps between
them.

When speaking about a stable family (E,FE) we will sometimes leave E
implicit and refer to it as FE. If E is an event structure, (E, C (E)) is a stable
family. Obviously the operation C (−) gives a functor:

C (−) : ES → SF

which is full and faithful.
We now define the product of stable families.
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Definition 2.9. For stable families (A,FA) and (B,FB) their product is (A× B,FA×B),
where x ⊆ A × B is in FA×B iff it satisfies:

(1) Projections: π1x ∈ FA and π2x ∈ FB

(2) Injectivity of projections: If e, e′ ∈ x with πie = πie
′, then e = e′.

(3) Coincidence-freeness: If e, e′ ∈ x with e 6= e′, then there exists y ⊆ x with
π1y ∈ FA and π2y ∈ FB as well, and e ∈ y ⇔ e′ 6∈ y.

This definition yields a stable family, and actually gives a product in SF .
This product can be transported to event structures as follows.

2.2.2 Products in event structures

We now construct a right adjoint to C (−) which, to any stable family, associates
a canonical event structure representing it.

Primes. Let (E,FE) be a stable family, and x ∈ FE. Then there is a partial
order induced on x by, for e, e′ ∈ x:

e ≤x e′ ⇔ ∀y ⊆ x, y ∈ FE & e′ ∈ y =⇒ e ∈ y

We also have the corresponding notion of immediate dependency e _x e′.
Then for e ∈ x ∈ FE, we can define the prime:

[e]x = {e′ ∈ x | e′ ≤x e}

It is then easy to show that [e]x ∈ FE.

Definition 2.10. For a stable family (E,FE) we define an event structure Pr((E,FE))
having:

• Events: primes [e]x.

• Causality: inclusion.

• Consistency: For X a finite set of primes, X ∈ ConPr((E,FE))
iff ∪X ∈ FE.

Then one can check that Pr(−) extends to a functor from stable families to
event structures, which is right adjoint to C (−). For event structures A and B
we can now define:

A × B = Pr(C (A)× C (B))

This defines a product of A and B in the category of event structures.
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2.2.3 Pullbacks in ES

We have seen how one can define products in ES . Take now f , g : E → F.
Defining R ⊆ E as e ∈ R iff f (e) = g(e), one can check that E ↾ R is an
equalizer of f and g. Together with the product introduced above, this permits
to construct pullbacks in ES .

Let f : A → C and g : B → C. Form their pullback by expanding the
definition above.

A ⊛ B
Π1

{{xx
xx
xx
xx Π2

""F
FF

FF
FF

F
?�

A

f ##F
FF

FF
FF

F B

g{{xx
xx
xx
xx

C

Precisely, we first define R ⊆ A × B as the set of events c ∈ A × B such that
f (Π1 c) = g (Π2 c). Then we set:

A ⊛ B = Pr(C (A)× C (B) ↾ R)

and thereby obtain the pullback of f and g. Unfolding the definitions, we can
see that events of A ⊛ B have the form:

[(a, b)]x

where x ∈ C (A)× C (B) ↾ R and (a, b) ∈ x, and for all (a′, b′) ∈ x we have
f a′ = g b′ (so in particular f a = g b).

2.2.4 Technical lemmas on the pullback

The pullback will be of key importance in our development. We will make use
of the following technical lemmas, for a pullback A ⊛ B of f : A → C and
g : B → C.

Lemma 2.11 (Characterization of immediate causality). Take f : A → C and
g : B → C, and take their pullback A ⊛ B. Suppose moreover that in the pullback, we
have:

[(a, b)]x _ [(a′, b′)]x

Then necessarily, a _ a′ or b _ b′.

Proof. Suppose first we have a ≤ a′ or b ≤ b′, say w.l.o.g. a < a′. Suppose,
looking for a contradiction, that this dependency is not immediate: there is a′′

such that a < a′′ < a′. But then [(a′, b′)]x must contain some (a′′, b′′). Then we
have:

[(a, b)]x ⊂ [(a′′, b′′)]x ⊂ [(a′, b′)]x

Contradicting the immediate causality [(a, b)]x _ [(a′, b′)]x, so a _ a′.
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Suppose we have neither a ≤ a′ nor b ≤ b′. But then, setting y = [(a′, b′)]x
we have y \ (a, b) ∈ C (A ⊛ B). To prove that, the only non-trivial condition to
check is that its projections are still configurations. Suppose by contradiction
that π1(y \ (a, b)) 6∈ C (A). This means that there is a′′ ∈ y such that a ≤ a′′, so
y \ (a, b) is not down-closed anymore. But then there is (a′′, b′′) ∈ y with:

(a, b) ≤x (a′′, b′′)

But (a′′, b′′) ≤x (a′, b′) as well by definition of y, so that contradicts the hypoth-
esis [(a, b)]x _ [(a′, b′)]x.

Lemma 2.12 (Characterization of immediate conflict). Take f : A → C and g :
B → C, and take their pullback A⊛ B. Suppose moreover that in the pullback, we have

x ∈ C (A ⊛ B) with x
[(a,b)]y
−−⊂ , x

[(a′,b′)y′ ]

−−⊂ but x ∪ {[(a, b)]y, [(a′, b′)]y′} 6∈ C (A ⊛ B).

Then either Π1 x ∪ {a, a′} 6∈ C (A), or Π2 y ∪ {b, b′} 6∈ C (B).

Proof. If we had both Π1 ∪{a, a′} ∈ C (A) and Π2 ∪{b, b′}, then x∪{[(a, b)]y, [(a′, b′)]y′}

would have its two projections respectively in C (A) and C (B). However it ob-
viously satisfies the other conditions of configurations of the product, and is in
the restriction involved in the definition of the pullback; therefore it is a valid
configuration of A ⊛ B, absurd.

Very often, we will reason at the level of configurations of the pullback
rather than events. Such configurations can be presented a bit more simply:

Proposition 2.13. Configurations of A ⊛ B uniquely correspond to the composition
bijections between x ∈ C (A) and y ∈ C (B):

x
f
∼= f (x) = g(y)

g
∼= y

that are secured, in the sense that the transitive relation generated by (a, b) ≤ (a′, b′)
iff a ≤ a′ or b ≤ b′ is a partial order – in other words there is no causal loop.

Proof. Simple verification.

2.3 Symmetry

The basic theory of event structures with symmetry is introduced and devel-
oped in [Win07]. In this preliminary section, we oly recall some basic defini-
tions, then state and/or prove some lemmas used in our development.

2.3.1 Event structures with symmetry

Definition 2.14 (Open maps). A map f : A→B between event structures is open
whenever it is rigid (preserves causal dependency) and for each configuration x of A
and y configuration of B such that f x ⊆ y then x can be extended to a configuration
x′ of A such that f x′ = y.
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Definition 2.15 (Event structure with symmetry). An event structure with sym-

metry (ess for short) A is a tuple (A, Ã, lA, rA) where A and Ã are event structures,
and lA, rA form a span:

A Ã
lAoo rA // A

such that lA, rA are jointly monic (i.e. their pairing 〈lA, rA〉 is monic) and satisfy
diagrams presenting categorically equivalence relations, see e.g. [Win07]. Moreover,
lA and rA are supposed to be open maps.

We do not recall the diagrams expressing the fact that lA, rA form an equiva-
lence since they are standard, and actually not used much in our development.

We use the notation A,B, C to range over event structures with symmetry
whose underlying event structures will be denoted A, B, C, . . . and symmetries

Ã, B̃, C̃, . . . An alternative definition of event structures with symmetry can be
given in terms of isomorphism families:

Definition 2.16 (Isomorphism families). An isomorphism family on event struc-
ture A is a set SA of bijections between configurations of A containing the identities
idx : x ∼= x, closed under composition and inverse, and satisfying two more properties:

• Whenever θ : x∼=y∈SA and x′ a sub-configuration of x then θ|x′ the restriction
of θ to x′ must belong to SA

• Whenever θ : x∼=y∈SA and x ⊆ x′∈C (A) then there exists θ′ ⊇ θ in SA such
that the domain of θ′ is x′.

Note that because of restriction, any bijection which belongs to SA is also
an order-isomorphism, i.e. it preserves and reflects causal order.

Isomorphism families can be regarded as a more concrete presentation of

symmetries on event structures. Any symmetry (Ã, lA, rA) on event structure
A generates an isomorphism family by setting:

SA = {{(lA ã, rA ã) | ã ∈ x} | x ∈ C (Ã)}

Likewise SA is a stable family on the set of events A × A, therefore one can
redefine the symmetry via the primes construction, as Pr(SA). One can check
that the event structure defined in this way along with the obvious projections
is a symmetry isomorphic to the original. This connection is worked out in all
details in [Win07]. In our development, we will mostly work with the isomor-
phism families and leave the symmetry implicit.

If A is an event structure with symmetry, we will write:

x
θ

∼=A y

if θ : x ∼= y is in SA.
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Definition 2.17 (Maps of event structures with symmetry). A map f : A→B of
event structures with symmetry is a map f : A→B of event structures such that for

each isomorphism x
θ

∼=A y, the bijection induced by f :

f θ = {( f (a1), f (a2)) | (a1, a2) ∈ θ}

is in SB.
Or equivalently, there exists a (necessarily unique) map f̃ : Ã→B̃ such that lB ◦

f̃ = f ◦ lA, and rB ◦ f̃ = f ◦ rB.

There is a category ESS of event structures with symmetry and maps pre-
serving symmery, and a category ESSP in the presence of polarities, which the
isomorphisms and maps should preserve.

Symmetry allow us to identify maps that play symmetric events:

Definition 2.18 (Symmetric maps). Let f , g : A→B be two parallel maps of event
structures with symmetry. We say that f and g are symmetric (notation: f ∼ g) when
for any configuration x in A, the induced bijection:

θ = {( f (a), g(a)) | a ∈ x}

is in SB.
Or equivalently, there is a (necessarily unique) h : A → B̃ such that lB ◦ h = f

and rB ◦ h = g.

This relation ∼ is preserved by composition, which makes ESS and ESSP
enriched over equivalence relations, or (rather degenerate) strict 2-categories.

2.3.2 Higher symmetry

If A is an event structure with symmetry, then its symmetry Ã is itself canoni-
cally equipped with a symmetry. Although it can be described via a universal
property (pseudopullbacks – see [CCW14]), here we define it instead through
its isomorphism family.

As we have seen above, configurations of Ã correspond to isomorphisms
θ ∈ SA. By abuse of notations, we will often silently go from one to the other. In

particular, configurations on ˜̃A should correspond to certain bijections between
isomorphisms θ, θ′ ∈ SA (seen as subsets of A × A). We ask the isomorphism

family of Ã to comprise bijections between θ, θ′ corresponding to commuting
squares:

x φ
∼=A

x′

y

θ ∼=

A
φ′
∼=A

y′

θ′ ∼=

A

According to this characterisation, l
Ã

sends this square to its left side and r
Ã

sends it to its right side. However, there are now additional maps u
Ã

send-
ing it to its upper side and d

Ã
sending it to its lower side. These additional

projections satisfy the diagram:
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We write Ã for Ã equipped with its symmetry ˜̃A. We can now automatically

lift some properties from maps f : A → B to f̃ : Ã → B̃:

Lemma 2.19. We have the following lifting properties.

1. If f : A → B is a morphism in ESS/ESSP , then f̃ : Ã → B̃ preserves
symmetry as well.

2. If f ∼ g, then f̃ ∼ g̃,

Proof. (1) We need to check that f̃ : Ã → B̃ preserves symmetry. Take a iso-

morphism in ˜̃A, corresponding to a square:

x

θ ∼=

A

φ1∼=A
x′

θ′ ∼=

A

y φ2∼=A
y′

The component-wise image of this isomorphism by f̃ corresponds to the com-
muting square:

f x

f θ ∼=

B

f φ1∼=B
f x′

f θ′ ∼=

B

f y f φ2∼=B
f y′

which corresponds to a configuration of the isomorphism family of B̃ by defi-
nition.

(2) Suppose f ∼ g, this means that for any x ∈ C (A), the isomorphism
θx = {( f a, ga) | a ∈ x} is in the isomorphism family of x. Then it is clear that
for any isomorphism x ∼=φ y in the isomorphism family of A, the following
square commutes:

f x

∼=

f φ

∼=θx gx

∼=

gφ

f y ∼=θy gy

Indeed take (a, b) ∈ φ. Then we have ( f a, f b) ∈ f φ, (ga, gb) ∈ gφ, ( f a, ga) ∈ θx

and ( f b, gb) ∈ θy. But this square corresponds to an isomorphism between f φ

and gφ in B̃, so we do have f̃ ∼ g̃.
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2.3.3 Projections with symmetry

In this small subsection, we introduce a few definitions and lemmas regarding
the generalisation of projection in the presence of symmetry.

Definition 2.20. Let A be an event structure with symmetry. A subset V ⊆ A is
closed under symmetry iff, setting

Ṽ = {ã ∈ Ã | lA(ã) ∈ V}

we have σA(Ṽ) = Ṽ (where σA : Ã → Ã is the map expressing that as an equivalence
relation, the symmetry is symmetric).

Proposition 2.21. Let A be an event structure with symmetry, let V be a subset of the

events of A closed under symmetry. Then the triple (Ã ↓ Ṽ, lA ↾ Ṽ, rA ↾ Ṽ) (where ↾
denotes function restriction) is a symmetry on A ↓ V.

The event structure with symmetry (A ↓ V, Ã ↓ Ṽ) is called the projection of A
on V.

Proof. A subset V is closed under symmetry if and only if it is the domain of
a partial map of event structures preserving symmetry. According to this, this
proposition is a restatement of the partial-total factorisation result for event
structures with symmetry [CCW14, Win07].

3 Thin concurrent games with symmetry

In this section, we introduce the basic compact closed category that serves as
a base for our forthcoming concurrent generalisation of Hyland-Ong games.
The basic idea is to construct a compact closed (∼-bi-)category analogous to
[RW11] in the presence of symmetry.

In [CCW14], we constructed such a compact closed category of concurrent
games based on event structures with symmetry. What we describe here is
very close to [CCW14], but does differ in a crucial point. In the basic compact
closed category of [CCW14] strategies are saturated, in the sense that when-
ever they are in position to play a particular event they must also be prepared
to play (non-deterministically) all events symmetric to it. Saturation enables
a greater generality (it is required in particular to define an exponential on
non-polarized games). However, for the vast majority of the applications that
we have in mind to program semantics, that generality does not seem to be
needed. So instead of directly building on [CCW14], we start by developing a
non-saturated variant of it.

As the reader will see, developing such a non-saturated variant is far from
being a formality. In fact, it is arguably the most significant technical contribu-
tion of this paper – it is definitely the part whose development took the most
time and effort. Its key advantage is that the symmetry-aware constructions
on games and strategies involved are all compatible with [RW11] – meaning
that although the soundness of the basic operations on games and strategies

12



heavily involves symmetry, their definition is independent from symmetry. So,
ignoring the symmetry layer, one immediately gets the games of [RW11]. This
is in contrast with [CCW14] where composition and copycat are changed to a
symmetry-aware version. Whereas in [CCW14] the key difficulty was to find
symmetry-friendly notions of copycat and composition, here we find condi-
tions that make the copycat and composition of [RW11] symmetry-friendly.

Beyond its technical advantages, we believe that this approach yields more
economical representations of the execution of programs.

3.1 Thin concurrent games with symmetry

In this first subsection, we define the notion of games that we are going to work
with.

Definition 3.1. An essp A is thin if for all x
θ

∼=A y, if θ has positive extensions to valid

isomorphisms x1

θ1∼=A y1 and x2

θ2∼=A y2 with θ ⊆+ θ1, θ ⊆+ θ2, if x1 ∪ x2 ∈ C (A)
then θ1 ∪ θ2 is a valid isomorphism as well.

Or equivalently, lA and rA reflects positive compatibility.

In order to state the definition below, we need the notion of sub-symmetry.

A sub-symmetry of an essp A is a sub-event structure Ã′ of Ã that is still a
symmetry for A. We say that it is a receptive sub-symmetry if for any x ∈

C (Ã′), if x ⊆− y ∈ C (Ã), then y ∈ C (Ã′) as well. In other words a sub-

symmetry is receptive when the embedding map idA : (A, Ã′) → (A, Ã) is
strong-receptive (in the sense of [CCW14], also recalled later).

Definition 3.2 (Thin Concurrent game). A thin concurrent game (tcg for short)
is an essp such that:

• It is race-preserving, i.e. the projection lA : Ã → A preserves races: if

x ∈ C (Ã) with x−⊂a−1 , x−⊂a+2 but x ∪ {a1, a2} 6∈ C (Ã), then lA x ∪
{lA a1, lA a2} 6∈ C (A) either. It automatically follows that rA preserves races
as well.

• A has Ã− and Ã+, thin receptive sub-symmetries of A⊥ and A respectively.

The fact that lA preserves races will be essential for copycat to have a sym-
metry. Along with the sub-symmetry condition, they will ensure that compo-
sition preserves equivalence between strategies.

The set of concurrent games with symmetry is closed under parallel com-
position and dual (−)⊥, in the obvious way.

Definition 3.3. A pre-∼-strategy σ : S → A is just a map of essps.
A ∼-strategy σ : S→A is a pre-∼-strategy such that:

(1) σ : S → A is courteous1: if s1, s2 ∈ S such that s1 _ s2 and pol(s1) = + or
pol(s2) = −, then σ s1 _ σ s2.

1Called innocent in [RW11] and [CCW14] – we switched to courteous here (following [MM07])
to avoid collision with Hyland-Ong innocence.
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(2) σ : S → A is strong-receptive: if

x
θ

∼=S y

with σ θ−⊂(a1, a2), then there is a unique θ−⊂(s1, s2) such that σs1 = a1 and
σs2 = a2. Equivalently, σ̃ is receptive in the sense of [RW11]. Together with
courtesy, this means that σ̃ is a strategy in the sense of [RW11].

(3) σ : S → A is thin, in the sense that S is thin.

Recall from [RW11] that a map of essp σ : S → A (without symmetry) is re-
ferred to as a pre-strategy, and a strategy if it satisfies (1) and (2). We will use this
terminology later on in the text when the map has to be considered independently of
symmetry.

Note that it automatically follows that σ̃ : S̃ → Ã is itself a ∼-strategy:

Lemma 3.4. Let σ : S→A be a ∼-strategy, then so is σ̃ : S̃→Ã.

Proof. Courtesy is a consequence of the rigidity of l and r. Thus we only need

to prove that σ̃ is strong-receptive, i.e. that ˜̃σ is receptive, and that S̃ is thin.

Suppose we have a configuration in ˜̃S, represented by a square:

x1
φ
∼=S x2

y1
φ′
∼=S

θ

∼=

S

y2

θ′

∼=

S

Suppose that the image by ˜̃σ of this configuration extends in the following way:

σx1 ∪ {a1}
σφ∪{(a1,a2)}∼=A σx2 ∪ {a2}

σy1 ∪ {a′1}
σφ′∪{a′1,a′2}∼=A

σθ∪{(a1,a′1)}

∼=

A

σy2 ∪ {a′2}

σθ′∪{(a2,a′2)}

∼=

A

where all a1, a2, a′1, a′2 have negative polarity. By receptivity of σ there are
unique s1, s2, s′1, s′2 mapping respectively to a1, a2, a′1, a′2 by σ. By receptivity

of σ̃, we necessarily have that θ
(s1,s′1)
−−⊂ , θ′

(s2,s′2)
−−⊂ , φ

(s1,s2)
−−⊂ and φ′

(s′1,s′2)
−−⊂ , so that the

following commutative diagram corresponds to an isomorphism in ˜̃A.

x1 ∪ {s1}
φ∪{(s1,s2)}∼=S x2 ∪ {s2}

y1 ∪ {s′1}

θ∪{(s1,s′1)}

∼=

S

φ′∪{(s′1,s′2)}∼=S y2 ∪ {s′2}

θ′∪{(s2,s′2)}

∼=

S

14



uniqueness is a trivial consequence of the uniqueness for receptivity of σ.

Let us now show that S̃ is thin. Take a configuration of ˜̃S, regarded as a
commuting square:

x1
φ
∼=S x2

y1
φ′
∼=S

θ

∼=

S

y2

θ′

∼=

S

Suppose it extends positively to φ1, φ′
1, θ1, θ′1, and alternatively to φ2, φ′

2, θ2, θ′2
with compatible left projections. Since S is thin, it follows that φ1 ∪ φ2, φ′

1 ∪
φ′

2, θ1 ∪ θ2 are compatible. By composition, it also follows that θ′1 ∪ θ′2 is com-
patible as well. Putting these together, the two extensions of the commuting
square are compatible as well, so the left projection reflects positive compati-
bility.

3.2 Weak equivalence of ∼-strategies

As notion of equivalence between ∼-strategies we introduce weak equivalence,
that adequately weakens isomorphism of strategies in the presence of symme-
try. In particular, it allows us to consider equivalent ∼-strategies that might
play the same events, but with a different choice of copy indices.

Definition 3.5 (Weak equivalence). Let σ : S→A and τ : T →A be ∼-strategies
on a tcg A. A weak equivalence between σ and τ is given by two morphisms of essps
f : S → T and g : T → S such that f ◦ g ∼ idT , g ◦ f ∼ idS , τ ◦ f ∼ σ and
σ ◦ g ∼ τ.

A central difficulty in our endeavour will be to show that weak equivalence
is preserved under composition. Readers familiar with AJM games may note
that this difficulty already exists there, where one has to show that equivalence
between strategies is preserved under composition. Here, the richer structure
of our strategies makes this fact more technical. This is where our thin require-
ment on essps comes in.

In particular, preservation of weak equivalence under composition will use
the fact that the isomorphism family of thin essps satisfy the coherent positive
extension property below.

Definition 3.6. Let A be an essp. We say that A has a coherent extension iff for each

x
θ

∼=A y, for each x ⊆+ x′ ∈ C (A) there is y ⊆+ y′ ∈ C (A) and x′
ext(θ,x′)
∼=A y′ such

that θ ⊆+ ext(θ, x′). Moreover the function ext (the coherent extension) should
satisfy the two following properties:

• (monotonicity) If x1
∼=θ y1 and x1 ⊆+ x2 ⊆+ x3, then

ext(ext(θ, x2), x3) = ext(θ, x3)
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• (stability) If x1
∼=θ1

y1, θ1 ⊆− θ2 (writing x2
∼=θ2

y2) with x1 ⊆+ x′1 such
that {ext(θ1, x′1), θ2} ↑, then

ext(θ1, x′1) ⊆ ext(θ2, x2 ∪ x′1)

This condition is implied by the thin condition:

Lemma 3.7. If σ : S → A is a ∼-strategy, then S has a coherent extension.

Proof. Note first that for any x
θ
∼=S y and x ⊆+ x′, then by the extension prop-

erty of isomorphism families there is y ⊆+ y′ and θ ⊆ θ′ such that x′
θ′
∼=S y′.

But θ′ is actually uniquely defined since if there was another x′
θ′′
∼=S y′′ it would

yield a positive conflict. Since σ is a thin strategy, this positive conflict should
be preserved by lS but that is obviously not the case, therefore θ′ = θ′′. Using
that, the monotonicity condition is obvious.

For stability, take x1
∼=θ1

y1, θ1 ⊆− θ2 (writing x2
∼=θ2

y2) with x1 ⊆+ x′1
such that {ext(θ1, x′1), θ2} ↑. By restriction, there is θ ⊆ ext(θ2, x2 ∪ x′1) such
that lA(θ) = x′1. By restriction again it restricts again to θ′ ⊆ θ with l(θ′) = x1.
But then θ′ and ext(θ1, x′1) are two positive extensions of θ1 whose left pro-
jection is x′1. If their right projection was different then that would be a pos-

itive conflict in S̃, immediately contradicting preservation of positive conflict.
Therefore θ′ and ext(θ1, x′1) must be equal.

Lemma 3.8. Suppose σ : S → A is a ∼-strategy. Then, the coherent extension of

S̃ coincides with that of S in the sense that for any isomorphism θ1

φ
∼=S̃

θ2 such that

θ1 ⊆+ θ′1, we have:

u
S̃
(ext(φ, θ′1)) = ext(u

S̃
(φ), l

Ã
(θ′1))

d
S̃
(ext(φ, θ′1)) = ext(d

S̃
(φ), r

Ã
(θ′1))

Proof. First, we describe the coherent extension of S̃ . Take a configuration of ˜̃S,
described as a commuting square of isomorphisms:

x1
ψ
∼=S x2

y1
ψ′
∼=S

θ1

∼=

S

y2

θ2

∼=

S

Suppose also that θ1 extends positively to x′1
∼=θ′1

y′1. Then, the unique positive
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extension is:
x′1

∼=ext(ψ,x′
1
) x′2

x′1

wwwwwwwwww

wwwwwwwwww
x1⊇

⊆

∼=ψ x2

⊆

⊆ x′2

GGGGGGGGGG

GGGGGGGGGG

y′1

∼ =
θ′1

y1⊇

∼ =θ1

∼=ψ′ y2

∼ =θ2

⊆ y′2

∼ =

θ′2

y′1

GGGGGGGGGGG

GGGGGGGGGGG

⊇

∼=ext(ψ′,y′1) y′2

⊇

wwwwwwwwwww

wwwwwwwwwww

where θ′2 = ext(ψ′, y′1) ◦ (θ′1)
−1 ◦ ext(ψ, x′1)

−1. The outer commuting square
gives us an extension ext(φ, θ′1) of φ, which satisfies the required equations.

3.3 Copycat

We now proceed to show how copycat adapts to our framework. The definition
of copycat without symmetry (as given e.g. in [RW11, Win11]), gives us:

cc A : CCA → A⊥ ‖ A

We need to equip it with a symmetry.
We start by showing that CC can be extended to a functor:

CC : ESP → ESP

Indeed, one can check that for f : A → B a map of esps, the map defined as:

CC f : CCA → CCB

(1, a) 7→ (1, f a)
(2, a) 7→ (2, f a)

It is still a map of esps, and by definition it is immediate that the construction
is indeed functorial. This allows us to formulate the tentative definition of a
symmetry on copycat:

C̃CA = CC
Ã

lCCA
= CClA

rCCA
= CCrA

We need to check that (CC
Ã

, CClA
, CCrA) indeed is a symmetry on CCA. First we

show that it is an equivalence relation, which relies on the following lemma:

Lemma 3.9. The functor CC preserves pullbacks.

17



Proof. First, it is easy to check that the functors (−)⊥ : ESP → ESP and ‖:

ESP2 → ESP preserve pullbacks. So if we have a pullback square in ESP :

P
Π1

��~~~
~ Π2

��?
??
?

?�
A

f ��?
??

? B

g�����
�

C

then the following is a pullback square as well:

P⊥ ‖ P
Π

⊥
1 ‖Π1

xxqqq
qq Π⊥

2 ‖Π2

&&LL
LL?�

A⊥ ‖ A

f ⊥‖ f
&&MM

MMM
B⊥ ‖ B

g⊥‖g
xxrrr

r

C⊥ ‖ C

We want to transport the universal property of the above pullback to the fol-
lowing commuting square:

CCPCCΠ1

{{www
w

CCΠ2

##F
FF

F
?�

CCA

CC f
##G

GG
G

CCB

CCg
{{xxx
x

CCC

To do that, take h1 : X → CCA and h2 : X → CCB making the square commute,
and form h = 〈 cc A ◦ h1, cc B ◦ h2〉 using the universal property of the above
pullback square. To any x ∈ C (X), h associates a configuration h(x) ∈ C (P⊥ ‖
P). By Proposition 2.13, it corresponds to a secured bijection:

θ : y ∼= ( f⊥ ‖ f )(y) = (g⊥ ‖ g)(z) ∼= z

with y ∈ C (A⊥ ‖ A) and z ∈ C (B⊥ ‖ B). By definition of f⊥ ‖ f and g⊥ ‖ g
and writing y = y1 + y2 and z = z1 + z2, this decomposes into two secured
bijections:

θ1 : y1
∼= f (y1) = g(z1) ∼= z1

θ2 : y2
∼= f (y2) = g(z2) ∼= z2

But we also know that h1(x) ∈ CCA and h2(x) ∈ CCB, therefore y1 ⊇+ y1 ∩
y2 ⊆− y2 and z1 ⊇+ z1 ∩ z2 ⊆− z2. By definition of θ1 and θ2 we must have
θ1 ⊇+ θ1 ∩ θ2 ⊆− θ2 as well, so θ1 ⊑ θ2. From that, we conclude that h(x) ∈ CCP

as needed, and the square above is a pullback.

From that, it is immediate to deduce that (CC
Ã

, CClA
, CCrA) is an equivalence

relation from the fact that (Ã, lA, rA) is one. We then need to check that CClA

and CCrA are open maps, which relies on the following lemma.
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Lemma 3.10. Let A be a tcg, then CClA
and CCrA are open.

Proof. Let us detail it for CClA
. First, we note that it is rigid. Indeed, immediate

causal links in CC
Ã

have one of the forms:

(i, ã) _ (i, ã′)

(i, ã) _ (3 − i, ã)

In the first case, we necessarily also have ã _ ã′ in Ã. Since lA is rigid, we

have lA ã _ lA ã′ as well. Therefore (i, lA ã) _ (i, lA ã′) in CCA, but that is by

definition CClA
(i, lA ã) _ CClA

(i, lA ã′). In the second case we have CClA
(i, ã) =

(i, lA ã) _ (3 − i, lA ã) = CClA
(3 − i, ã) as well by definition of copycat.

We now prove that CClA
has the configuration extension property. A con-

figuration x ∈ C (CC
Ã
) corresponds to a diagram [RW11, Win11]:

x1 ⊇+

∼=

θ1

x1 ∩ x2 ⊆−
∼=

θ1∩θ2

x2

∼=

θ2

y1 ⊇+ y1 ∩ y2 ⊆− y2

where the upper side corresponds to lA(x) ∈ C (CCA) and the lower side cor-

responds to rA(x) ∈ C (CCA). Suppose now that we have lA(x)
a

−−⊂ . There are
three possible cases.

Suppose first that the upper side of the diagram above extends to:

x1 ⊇+ x1 ∩ x2 ⊆− x2 ∪ {a}

with pol(a) = −. By the extension property of isomorphism families, there

is an extension θ2

(a,a′)
−−⊂ , yielding an obvious extension of the diagram above,

hence an extension of x. If the upper side extends to:

x1 ∪ {a} ⊇+ x1 ∩ x2 ⊆− x2

with pol(a) = +, then the situation is symmetric and is dealt with similarly.
If the upper side extends to:

x1 ⊇+ x1 ∩ x2 ⊆− x2 ∪ {a}

with pol(a) = +. Then, the situation is a bit more subtle. Indeed in this case, we
necessarily have a ∈ x1, so in the domain of θ1. Therefore there is (a, a′) ∈ θ1

with a′ ∈ y1. So any extension θ′2 of θ2 to a must satisfy θ′2(a) = a′. This invites
us to simply define θ′2 = θ2 ∪ {(a, a′)}, however we have to check that this
is allowed. Suppose this is not. Then, we note that (x1 ∩ x2) ∪ {a} ∈ C (A).

Indeed a ∈ x1 and x2

a
−−⊂ , so the dependencies of a are in x1 ∩ x2. So we can

restrict θ1 on the left to it, necessarily yielding the bijection (θ1 ∩ θ2) ∪ {(a, a′)}
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which is therefore a valid isomorphism of A. So we have two valid extensions
of θ1 ∩ θ2:

(θ1 ∩ θ2) ∪ {(a, a′)} ⊇+ θ1 ∩ θ2 ⊆− θ2

If they are compatible, then θ ∪ {(a, a′)} is a valid isomorphism, providing the
required extension of x. Otherwise this is a race. By hypothesis, lA preserves
races, so we have another race:

(x1 ∩ x2) ∪ {a} ⊇+ x1 ∩ x2 ⊆− x2

Therefore, x2 ∪ {a} 6∈ C (A), absurd. So, lCCA
is open. The same reasoning

holds for rCCA
.

With the two lemmas above, we have proved that if A is a tcg, then CCA

can be equipped with a symmetry (CC
Ã

, CClA
, CCrA) making CCA an essp. By

definition, we also have cc
Ã

: C̃CA → Ã⊥ ‖ Ã a strategy. In order to get a
∼-strategy, the last thing to check is that CClA

reflects positive compatibility.
But for any esp A positive extensions of CCA are always compatible, so this is
trivial. Therefore we have:

Proposition 3.11. The triple (CC
Ã

, CClA
, CCrA) is a symmetry and makes CCA an

essp, written CCA. Moreover,

cc A : CCA → A⊥ ‖ A

is a ∼-strategy.

Here it is crucial that A is race-preserving, otherwise Lemma 3.10 fails; this
was initially one of the motivations for the saturated development of [CCW14].

Let us conclude this sub-section with a few technical lemmas on strategies
and ∼-strategies.

Lemma 3.12. Let σ : S → A be a strategy, then for any x ∈ C (S), if x−⊂s1 and
x−⊂s2 with pol(s1) = − or pol(s2) = −, and σ x ∪ {σ s1, σ s2} ∈ C (A), then
x ∪ {s1, s2} ∈ C (S) as well. In particular, σ preserves races.

Proof. Elementary verification, using receptivity and courtesy.

Lemma 3.13. Let σ : S → A be a strong-receptive courteous pre-∼-strategy on a tcg
A, then S is race-preserving as well.

Proof. Suppose x
θ

∼=S y with two valid extensions θ ⊆+ θ1 and θ ⊆− θ2, such
that lS θ1 and lS θ2 are compatible. Then σ (lS θ1) = lA (σ θ1) and σ (lS θ2) =
lA (σ θ2) are compatible as well. Since lA preserves races, σ θ1 and σ θ2 are
compatible. So σ θ1 ⊆− σ θ1 ∪ σ θ2. It follows by strong-receptivity that there
is θ1 ⊆− θ3 such that σ θ3 = σ θ1 ∪ σ θ2. Finally, by Lemma 3.13 we have
θ3 = θ1 ∪ θ2 as well.
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3.4 Interaction of ∼-strategies

We now give the technical background preliminary to the definition of the com-
position of ∼-strategies.

3.4.1 Defining pullbacks

As a first step towards defining the composition of ∼-strategies, we now show
how to compute their interaction, formulated as a pullback in ESS . The key
remark here is that despite the general phenomenon that the category of event
structures with symmetry does not have pullbacks (see [Win07]), the pullbacks
involved in the composition of ∼-strategies (really, of strong-receptive pre-∼-
strategies) do exist. Moreover, if σ : S → A and τ : T → A⊥ are strong-
receptive pre-∼-strategies, then their pullback in ESS is obtained as the pull-
back of σ and τ regarded as plain maps of esps, equipped with the symmetry
obtained by taking the pullback of σ̃ and τ̃ regarded also as plain maps of esps,
as we show in the following lemma.

Lemma 3.14. Let σ : S → A and τ : T → A⊥ be courteous strong-receptive
pre-∼-strategies. Then, forgetting polarities, the pullback

S ⊛ T

zzuuu
uu

$$II
II

I
?�

S

σ $$I
II

II
T

τzzuuu
uu

A

exists in ESS and has symmetry; its base event structure is the pullback S ⊛ T in ES

and its symmetry is the pullback S̃ ⊛ T̃ in ES , with the obvious projections.

Proof. We first take the pullback in ES :

S ⊛ T
Π1

{{www
ww

Π2

##G
GG

GG?�
S

σ ##G
GG

GG
T

τ{{vvv
vv

A

in event structures and maps, which we know always exists. Then we take the
pullback:

S̃ ⊛ T̃
Π̃1

||zz
zz
z Π̃2

""E
EE

EE?�

S̃

σ̃ ""E
EE

EE
T̃

τ̃||yy
yy
y

Ã
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in plain event structures and maps, which always exists as well. Exploiting the
universal property of the first pullback, we get maps:

S̃ ⊛ T̃

lS⊛T
��lS◦Π̃1





lT◦Π̃2

��

S ⊛ T
Π1

||yy
yy
yy
yy Π2

""E
EE

EE
EE

E
?�

S

σ ""E
EE

EE
EE

E T

τ||yy
yy
yy
yy

A

S̃ ⊛ T̃

rS⊛T

��rS◦Π̃1





rT◦Π̃2

��

S ⊛ T
Π1

||yy
yy
yy
yy Π2

""E
EE

EE
EE

E
?�

S

σ ""E
EE

EE
EE

E T

τ||yy
yy
yy
yy

A

That (S̃ ⊛ T̃, lS⊛T, rS⊛T) form an equivalence relation on S ⊛ T follows from
a simple diagram chasing, and so does the fact that lS⊛T and rS⊛T are jointly
monic. The key property left is that they are open.

Let us prove rigidity first. Recall that:

S̃ ⊛ T̃ = Pr(C (S̃)× C (T̃) ↾ R)

where R = {(s̃, t̃) | σ̃(s̃) = τ̃(t̃)}. Then, suppose that

[(s̃, t̃)]x̃ _ [(s̃′, t̃′)]x̃

in S̃ ⊛ T̃. This means that we also have:

(s̃, t̃) _x̃ (s̃′, t̃′)

in C (S̃) × C (T̃) by definition of Pr and restriction. It follows by lemma 2.11

that either s̃ _ s̃′ in S̃ or t̃ _ t̃′ in T̃; the cases being symmetric, let us suppose

w.l.o.g. that s̃ _ s̃′. Since lS is open thus rigid, writing s1 = lS(s̃) and s′1 = lS(s̃′)
we have that s1 _ s′1 in S. It follows that necessarily, (s1, t1) _x1 (s

′
1, t′1), where

t1 = lT(t̃), t′1 = lT(t̃′), and:
x1 = (lS × lT) x̃

(obviously x1 ∈ C (S)× C (T)). By definition of Pr and restriction, this implies
that [(s1, t1)]x1 _ [(s′1, t′1)]x1 in Pr(C (S) × C (T) ↾ R′) where R′ = {(s, t) |

σ(s) = τ(t)}. But [(s1, t1)]x1 = lS⊛T([(s̃, t̃)]x̃) and [(s′1, t′1)]x1 = lS⊛T([(s̃′, t̃′)]x̃),
therefore lS⊛T preserves immediate causality. The same argument applies for
rS⊛T as well, therefore lS⊛T and rS⊛T are rigid.

It remains to prove that lS⊛T, rS⊛T have the configuration extension prop-

erty; let us prove it w.l.o.g. for lS⊛T. Let z ∈ C (S̃⊛ T̃). By Proposition 2.13, this
corresponds to a secured bijection:

φ : θ1
∼= σ̃ θ1 = τ̃ θ2

∼= θ2
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where xl

θ1∼=S xr and yl

θ2∼=T yr. Then, lS⊛T maps this secured bijection to:

φl : xl
∼= σ xl = τ yl

∼= yl

where φl ◦ lS = lT ◦ φ. Suppose now that φl extends to:

φl ∪ {(sl , tl)} : xl ∪ {sl} ∼= (σ xl) ∪ σ s = (τ yl) ∪ τ tl
∼= yl ∪ {tl}

The events sl and tl must have complementary polarities in S and T, so one of
them is negative – suppose w.l.o.g. that it is sl . That means that tl is positive.
By the extension property of isomorphism families (or alternatively, since lT is

open), there is tr ∈ T such that yl ∪ {tl}
θ2∪{(tl,tr)}

∼=T yr ∪ {tr}. So by receptivity of

σ̃, there is a corresponding extension of xl

θ1∼=S xr to xl ∪ {sl}
θ2∪{(sl,sr)}

∼=S xr ∪ {sr}
such that σ sl = τ tl and σ sr = τ tr. Moreover

θ1 ∪ {(sl , sr)} ∼= σ̃ θ1 ∪ {(σ sl , σ sr)} = τ̃ θ2 ∪ {(τ tl , τ tr)} ∼= θ2 ∪ {(tl, tr)}

which is still a secured bijection by construction, so we have proved the con-
figuration extension property.

With this definition, composition of ∼-strategies can be defined as in [RW11]
through the pullback construction followed by projection. We leave the details
for later because we still have one key difficulty to overcome: the fact that weak
equivalence is preserved by composition.

3.4.2 Pullbacks as bipullbacks

We now get to the bigger obstacle to the definition of thin concurrent games.
In [RW11], preservation of isomorphism by composition follows from the

universal property of the pullback. However, here for ∼-strategies σ : S → A
and τ : T → A, we have defined their weak equivalence through the existence
of certain maps f : S → T and g : T → S with respect to which the projections
to the game commutes up to symmetry. But nothing, in the universal property
of the pullback, ensures that it is compatible with this notion of equivalence.

For that, we prove that the pullback of ∼-strategies also satisfies the univer-
sal property up to symmetry of bipullbacks – which corresponds to a pullback
in the quotient category.

Definition 3.15. A bipullback of two maps f : A→C and g : B→C of ess is an object
P and two maps Π1 : P→A and Π2 : P→B such that f ◦ Π1 ∼ g ◦ Π2 and for
all maps x : X→A and y : X→B such that f ◦ x ∼ g ◦ y, there exists a map of ess
h : X→P unique up to symmetry such that Π1 ◦ h ∼ f and Π2 ◦ h ∼ g.

Proposition 3.16. Suppose σ : S → A and τ : T → A⊥ are strong-receptive cour-
teous pre-∼-strategies with receptive thin sub-symmetries. Then, forgetting polarities,
the pullback of σ and τ in ESS is also a bipullback.
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Proof. Suppose we have f : R → S and g : R → T such that the square
commutes up to equivalence, i.e. for any z ∈ C (R) there is an isomorphism

σ f z
φz
∼=A τgz.

Suppose we have a chain:

∅ = z0 −⊂ z1 −⊂ z2 −⊂ . . . −⊂ zn

of configurations of R. For each i ≤ n, we will build a diagram of the shape:

f (zi)
θS

i∼=S
_

σ

��

xi
}

σ
��=

==
==

==
=

yiA

τ
����
��
��
��

θT
i∼=T g(zi)_

τ

��
σ( f (zi))

σθS
i∼=A vi

τθT
i∼=A τ(g(zi))

such that τθT
i ◦ σθS

i = φzi
, and where θS

i and θT
i are respectively in the receptive

thin sub-symmetries S̃+ and T̃+. This is done by induction on i.
For i = 0, this diagram is built by setting all components to ∅. Suppose

now the diagram constructed for i, and take zi

r
−−⊂ zi+1. Necessarily, either

pol( f (r)) = + or pol(g(r)) = +. Suppose w.l.o.g. that it is the former, the other
case will be symmetric. We write f (r) = s1, and we set:

θS
i+1 = ext(θS

i , f (zi) ∪ {s1})

We write θS
i+1 = θS

i ∪ {(s1, s2)}. Likewise, we write that φzi

(σs1,a)
−−⊂ φzi+1. Then

by hypothesis, we have:

τθT
i

(σs2,a)
−−⊂

Moreover, polA⊥(σt) = polA⊥(a) = −, therefore by strong-receptivity there are
unique t1, t2 ∈ T such that τt1 = σs2 and τt2 = a, and:

θT
i

(t1,t2)
−−⊂

We set θT
i+1 = θT

i ∪ {(t1, t2)}, yielding a valid extension of the diagram for i+ 1.
By induction, the diagram is well-defined for any n ∈ N.

Now, we want to show that the diagram obtained for n does not depend on
the particular chain z0 −⊂ . . . −⊂ zn but only on zi. This is done by showing
that this construction is invariant under permutations of independent events

in the chain (zi). Suppose zi

r
−−⊂ zi+1 and zi+1

r′

−−⊂ zi+2 where r and r′ are
concurrent. It follows that there is another chain:

∅ = z′0 −⊂ z′1 −⊂ . . . −⊂ z′n

defined by z′j = zj for all j ≤ i, z′i+1 = zi ∪ {r′}, and z′j = zj for all j ≥ i + 2.

24



We perform the construction described above on (zi) and (z′i), and com-
pare the results. The components of the diagrams obtained by applying the
construction to (zj)0≤j≤n will be called xj, yj, vj, θS

j , θT
j and the components of

the diagrams obtained by applying the construction to (z′j)0≤j≤n will be called

x′j, y′j, v′j, θ′
S
j , θ′

T
j . By construction, it is obvious that these diagrams coincide for

j ≤ i. We will now compare them for i + 2.
There are two independent cases: permutation of two events yielding events

in A of the same polarity, and permutation of two events yielding events in A
of opposite polarity. We start by the former. Without loss of generality, suppose
pol(σ( f r)) = pol(σ( f r′)) = + and write f r = s and f r′ = s′. Since r and r′ are
concurrent, it follows that s and s′ are concurrent as well. We have:

θS
i+2 = ext(ext(θS

i , f (zi) ∪ {s}), f (zi) ∪ {s, s′})

θ′
S
i+2 = ext(ext(θ′

S
i , f (zi) ∪ {s′}), f (zi) ∪ {s′, s})

but we know that θS
i = θ′

S
i , so they are both equal to ext(θS

i , f (zi) ∪ {s, s′}) by

monotonicity. By uniqueness of receptivity, we also have that θT
i+2 = θ′

T
i+2, so

the two diagrams coincide at i + 2. Note that it also follows from this reasoning
(and we will use it later) that:

θS
i+2 = θS

i+1 ∪ θ′
S
i+1

θT
i+2 = θT

i+1 ∪ θ′
T
i+1

Clearly θS
i+1 = ext(θS

i , f (zi)∪{s}) ⊆ θS
i+2 and the same holds for θ′

S
i+1 therefore

we have the inclusion θS
i+1 ∪ θ′

S
i+1 ⊆ θS

i+2, the equality follows because these
two isomorphisms have the same domain and codomain. The second equality
follows by uniqueness of receptivity.

Now suppose that r and r′ yield events in A of opposite polarity. Suppose
w.l.o.g. that pol(σ( f r)) = + and pol(σ( f r′)) = −. We write f (r) = s1 and
g(r) = t2, f (r′) = s′1 and g(r′) = t′2. We display the diagram obtained for zi+1:

f (zi) ∪ {s1}
θS

i+1∼=S
_

σ

��

xi ∪ {s2}



σ %%J
JJ

JJ
JJ

JJ
yi ∪ {t1}4

τyytt
tt
tt
tt
t

θT
i+1∼=T g(zi) ∪ {t2}_

τ

��
σ( f (zi)) ∪ {σs1}

σθS
i+1∼=A vi ∪ {σs2}

τθT
i+1∼=A τ(g(zi)) ∪ {τt2}

Where s2 and θS
i+1 are obtained from s1 by coherent extension of θS

i , τt1 is

fixed to be σ s2 from which t1 follows uniquely by receptivity, and θT
i+1 =

θT
i ∪ {(t1, t2)} is valid by strong-receptivity.
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Likewise, the diagram for z′i+1 is:

f (zi) ∪ {s′1}
θ′

S
i+1∼=S

_

σ

��

xi ∪ {s′2}



σ
$$J

JJ
JJ

JJ
JJ

yi ∪ {t′1}4

τ
zztt
tt
tt
tt
t

θ′
T
i+1∼=T g(zi) ∪ {t′2}_

τ

��
σ( f (zi)) ∪ {σs′1}

σθ′
S
i+1∼=A vi ∪ {σs′2}

τθ′
T
i+1∼=A τ(g(zi)) ∪ {τt′2}

We now show that the diagram obtained for zi+2 is the (component-wise) union
of those two.

We know by the diagram obtained for z′i+1 that ext((θT
i )

−1, g(zi) ∪ {t′2}) =

(θT
i )

−1 ∪ {(t′2, t′1)}. Moreover, we know that g(zi) ∪ {t2, t′2} ∈ C (S) since r
and r′ are concurrent. Moreover pol(t2) 6= pol(t′2), so since by Lemma 3.13
(using that A, as a tcg, is race-preserving) T is race-preserving it follows that
(θT

i )
−1 ∪ {(t2, t1), (t

′
2, t′1)} is in the isomorphism family of T. Therefore by the

stability axiom of coherent extensions, it follows that

ext((θT
i )

−1, g(zi) ∪ {t′2}) ⊆ ext((θT
i )

−1 ∪ {(t2, t1)}, g(zi) ∪ {t2, t′2})

or, in other words:

(θT
i )

−1 ∪ {(t′2, t′1)} ⊆ ext((θT
i+1)

−1, g(zi) ∪ {t2, t′2})

which implies (t′2, t′1) ∈ ext((θT
i+1)

−1, g(zi) ∪ {t2, t′2}). We also have (t2, t1) ∈

ext((θT
i+1)

−1, g(zi)∪ {t2, t′2}) since (t2, t1) ∈ (θT
i+1)

−1, so it immediately follows

that θT
i+2 = θT

i+1 ∪ θ′
T
i+1. The reasoning for θS

i+2 = θS
i+1 ∪ θ′

S
i+1 is symmetric.

We have proved that the construction of this diagram is invariant under
permutation of concurrent events, so the diagram for a chain z0 −⊂ . . . −⊂ zn

only depends on zn and is independent of the particular chain used to reach it.
So we have a construction which to any configuration z ∈ C (R) associates a
diagram:

f (z) ∼=
θS
z_

σ

��

xz
~

σ
��>

>>
>>

>>
>

yz@

τ
����
��
��
��

∼=
θT
z g(z)

_

τ

��
σ( f (z)) ∼=

σθS
z vz

∼=
τθT

z τ(g(z))

Now, we define the following functions:

f ′ : C (R) → C (S)
z 7→ xz

g′ : C (R) → C (T)
z 7→ yz

h′1 : C (R) → C (S̃)
z 7→ θS

z

h′2 : C (R) → C (T̃)
z 7→ θT

z

By definition, it is obvious that these functions preserve −⊂. Additionally they
preserve bounded union. Indeed, take any of the functions f : C (R) → C (E)
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defined above. We have seen during the construction of the functions above
that for any diagram:

z

y

AA���
y′

^^==

x

]];; @@��

in C (R), we have f (z) = f (y) ∪ f (y′). Now suppose x, y ∈ C (R) are compati-
ble. Pick a chain

∅ = x0

a1
−−⊂ . . .

an
−−⊂ xn = x

and similarly, a chain:

∅ = y0

b1
−−⊂ . . .

bn
−−⊂ yp = y

We have the following lattice of sub-configurations of x ∪ y whose order pre-
serve the chains (xi)0≤i≤n and (yi)0≤i≤p:

bp <<yy
anbbEE

b1 <<yy
a1bbEE

an

bbEE
bp

<<yy

a1

bbEE
b1

<<yy

By induction on this diagram using the union property mentioned above, we
have that f (x ∪ y) = f (x) ∪ f (y). Therefore by Lemma 2.7, there are unique

maps of event structures f̂ ′ : R → S, ĝ′ : R → G, ĥ′1 : R → S̃ and ĥ′2 : R →

S̃. By the uniqueness property of the map construction, the hat construction
preserves commuting diagrams. It follows that the following diagram (in ES)
commutes:

R
f





ĥ′1

|| f̂ ′





〈 f̂ ′,ĝ′〉
�� ĝ′

��

ĥ′2

##

g

��

S̃

lS����
��
��
��

rS
��=

==
==

==
= S ⊛ T

?�

Π1}}{{
{{
{{
{{
{

Π2 !!D
DD

DD
DD

DD
T̃

lT����
��
��
��

rT ��=
==

==
==

=

S S

σ
""E

EE
EE

EE
EE

T

τ
||yy
yy
yy
yy
y

T

A

which exactly means that 〈 f̂ ′, ĝ′〉 is the required mediating arrow making the
two triangles of the pullback diagram commute up to symmetry. Of course for

27



now h = 〈 f̂ ′, ĝ′〉 is just a map of event structures and not of event structures

with symmetry, so we need to define h̃ : R̃ → S̃⊛ T̃. Note that by Lemmas 2.19
and 3.8, all the components lift to symmetries, so the same construction can be
carried out on the diagram below, where all components have been replaced
with their symmetry.

R̃
f̃





ˆ̃
h′1

|| ˆ̃
f ′





ˆ̃
g′

��

ˆ̃
h′2

""

g̃

��

˜̃S

l
S̃����

��
��
��

r
S̃ ��;

;;
;;

;;
; S̃ ⊛ T̃

?�

Π̃1~~||
||
||
||
|

Π̃2 !!B
BB

BB
BB

BB
˜̃T

lT̃����
��
��
��

rT̃ ��;
;;

;;
;;

;

S S̃

σ̃ !!C
CC

CC
CC

CC
T̃

τ̃}}{{
{{
{{
{{
{

T̃

Ã

The same process as before can be applied on this diagram, yielding 〈 ˆ̃
f ′,

ˆ̃
g′〉 :

R̃ → S̃ ⊛ T̃.
Furthermore, this diagram projects to the previous one in two distinct ways:

(1) by mapping each Ẽ to E via lE, and each ˜̃E to Ẽ via uẼ, and (2) by mapping

each Ẽ to E via rE, and each ˜̃E to Ẽ via dẼ. By Lemmas 2.19 and 3.8 all the

constructions used to build 〈 ˆ̃
f ′,

ˆ̃
g′〉 : R̃ → S̃⊛ T̃ all commute with these projec-

tions. It follows that

lS⊛T ◦ 〈 ˆ̃
f ′,

ˆ̃
g′〉 : R̃ → S̃ ⊛ T̃ = 〈 f̂ ′, ĝ′〉 ◦ lR

rS⊛T ◦ 〈 ˆ̃
f ′,

ˆ̃
g′〉 : R̃ → S̃ ⊛ T̃ = 〈 f̂ ′, ĝ′〉 ◦ rR

So 〈 f̂ ′, ĝ′〉 preserves symmetry as needed.
It remains to prove that the mediating arrow is unique up to symmetry.

Suppose there are two mediating arrows:

R

f





g

��

∼ ∼

k,k′

��
S ⊛ T

Π1||zz
zz
zz
zz
z

Π2 ""E
EE

EE
EE

EE?�

S

σ
""E

EE
EE

EE
EE

T

τ
||yy
yy
yy
yy
y

A
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Then we know that for all z ∈ C (R), θz = {( f (r), Π1 ◦ k(r)) | r ∈ z} and
θ′z = {( f (r), Π1 ◦ k′(r)) | r ∈ z} are in the isomorphism family of S. It follows
that for all z ∈ C (R), the isomorphism

ψz = {(Π1 ◦ k(r), Π1 ◦ k′(r)) | r ∈ z}

is in the isomorphism family of S as well, since it is obtained by composition
of θz and θ′z. So there is a map:

ψ : R → S̃

such that lS ◦ ψ = Π1 ◦ k and rS ◦ ψ = Π1 ◦ k′. By the same reasoning there is a

map ψ′ : R → T̃ such that lT ◦ ψ′ = Π2 ◦ k and rT ◦ ψ′ = Π2 ◦ k′. Moreover, we
have σ̃ ◦ ψ = τ̃ ◦ ψ′: this obviously holds once post-composed by lA and rA,

so this equation follows by joint monicity. By the universal property of S̃ ⊛ T̃,

there is a unique map h : S → S̃ ⊛ T̃ such that Π̃1 ◦ h = ψ and Π̃2 ◦ h = ψ′. By
post-composing with the left and right maps we get:

Π1 ◦ lS⊛T ◦ h = Π1 ◦ k

Π1 ◦ rS⊛T ◦ h = Π1 ◦ k′

Π2 ◦ lS⊛T ◦ h = Π2 ◦ k

Π2 ◦ rS⊛T ◦ h = Π2 ◦ k′

It follows from the universal property of the pullback for S⊛T that lS⊛T ◦ h = k
and rS⊛T ◦ h = k′, so k ∼ k′ as needed.

3.5 Composition of ∼-strategies

We now proceed to define the composition of ∼-strategies. Given two ∼-
strategies σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C , we compose them as
before by first (forgetting polarities) taking the pullback (S ‖ C)⊛ (A ‖ T ),

which exists by Lemma 3.14 and has symmetry (S̃ ‖ C̃)⊛ (Ã ‖ T̃). Then, we
define:

V = {p ∈ (S ‖ C)⊛ (A ‖ T) | (σ ‖ C) ◦ Π1 p 6∈ B}

This set of events is closed under symmetry (see Definition 2.20), as it is the left

projection of Ṽ defined similarly on (S̃ ‖ C̃)⊛ (Ã ‖ T̃). So by Proposition 2.21
there is an event structure with symmetry:

T ⊙ S = (S ‖ C)⊛ (A ‖ T ) ↓ V

Note that by definition, this is exactly the same as the composition T ⊙ S of
σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C regarded as strategies without symmetry,

equipped with the symmetry T̃ ⊙ S̃ obtained as the composition of σ̃ : S̃ →

Ã⊥ ‖ B̃ and τ̃ : T̃ → B̃⊥ ‖ C̃ regarded as well as strategies without symmetry.
In other words, we have the following equality:

T̃ ⊙ S = T̃ ⊙ S̃
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between esps, which reflects the earlier C̃CA = CC
Ã

. Interestingly, it can be

checked that the equality above also holds when T̃, S̃ and T̃ ⊙ S are regarded
as event structures with symmetry equipped with the free higher symmetry
(see Subsection 2.3.2).

Since in particular composition following this definition is compatible with
usual composition without symmetry, it follows that the composition of ∼-
strategies is a strong-receptive courteous pre-∼-strategy; we check below that
it is thin as well and hence is a ∼-strategy.

Lemma 3.17. Let σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C be ∼-strategies, then
τ ⊙ σ : T ⊙ S → A⊥ ‖ C is a ∼-strategy.

Proof. We only have to check that τ ⊙ σ is thin, i.e. that lT⊙S reflects positive

compatibility. Take a configuration of T̃ ⊙ S̃ (so also a configuration of (S̃ ‖

C̃)⊛ (Ã ‖ T̃)) represented as a commuting diagram:

x1
∼=
σ

θ1 ∼ =S‖C

σ x1 = τ y1
∼=
τ

y1

θ′1 ∼ =A‖T

x′1
∼=
σ

σ x′1 = τ y′1
∼=
τ

y′1

Suppose that, as a configuration of T̃ ⊙ S̃, it extends positively to two other
versions of this diagram, with components labeled 2 and 3 respectively, such
that the left projections (x2, y2 and x3, y3) are compatible. Regarded as config-

urations of (S̃ ‖ C̃)⊛ (Ã ‖ Ã), these extensions are not necessarily positive;
however the new visible events have positive polarity in A⊥ ‖ C. For simplic-
ity suppose the extensions to x2, y2 and x3, y3 to be atomic, the general case will
follow by immediate induction. If the extensions of x1 to x2, x3 have different
polarities, then the extensions of θ1 to θ2, θ3 and of θ′1 to θ′2, θ′3 are compatible as

well by race-preservation of S ‖ C⊥ and A ‖ T (which follows from Lemma
3.13). If the extensions of x1 to x2, x3 are both positive, then they cannot both
be in C⊥ as that would contradict the fact that new visible events have positive
polarity. If they are both in S , then the extensions of θ1 to θ2, θ3 are compati-
ble since S is thin, and the extensions of θ′1 to θ′2, θ′3 are compatible by Lemma
3.12 since A ‖ τ is courteous and strong-receptive. If one (say x2) is in S and
the other (say x3) is in C , then θ2 and θ3 are compatible by definition of ‖, and
θ′2 and θ′3 are compatible by Lemma 3.12 since A ‖ τ is strong-receptive and
courteous.

So, from the results of [RW11] we know that tcgs and ∼-strategies up to
isomorphism form a bicategory. However, as argued before, for this setting of
strategies up to symmetry to make sense, we need to check that weak equiva-
lence is preserved by composition. In proving so we will use crucially Propo-
sition 3.16. Note that Proposition 3.16 was proved for pullbacks of the form
σ : S → A and τ : T → A⊥ where both σ and τ admit receptive thin sub-
symmetries – this is the case for the composition pullback, since concurrent
games with symmetry were assumed to have receptive thin sub-symmetries.
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Lemma 3.18. Let σ : S → A⊥ ‖ B, σ′ : S ′ → A⊥ ‖ B with σ ≃ σ′ and
τ : T → B⊥ ‖ C , τ′ : T ′ → B⊥ ‖ C with τ ≃ τ′. Then:

τ ⊙ σ ≃ τ′ ⊙ σ′

Proof. We show that if σ ≃ σ′ then τ ⊙ σ ≃ τ ⊙ σ′, the general case easily
follows from that. Let us write P = (S ‖ C)⊛ (A ‖ T ) and P′ = (S ′ ‖ C)⊛
(A ‖ T ) the two composition pullbacks. By definition of weak equivalence,
there are maps f : S → S ′ and g : S ′ → S such that σ′ ◦ f ∼ σ, σ ◦ g ∼ σ′,
f ◦ g ∼ idS ′ and g ◦ f ∼ idS . Therefore, forgetting polarities, the following
square commutes up to symmetry:

P ′
( f ‖C)◦Π

′
1

wwooo
ooo Π

′
2
''PP

PPP
P

∼S ′ ‖ C
σ′‖C

''OO
OOO

A ‖ T

A‖τ
wwooo

oo

A ‖ B ‖ C

But besides being a pullback, P is a bipullback by Proposition 3.16. Indeed,
although the courteous strong-receptive pre-∼-strategy σ ‖ C⊥ : S ‖ C⊥ →
A⊥ ‖ B ‖ C⊥ is not thin (because idA : A → A is not thin in general), its

symmetry has a receptive thin sub-symmetry S̃ ‖ C̃−, and likewise Ã ‖ T̃ has

a receptive thin sub-symmetry Ã+ ‖ T̃.
From there it is immediate to apply the universal property of bipullbacks to

obtain f ′ : P → P ′ and g′ : P ′ → P satisfying the required commutations up
to symmetry, and the weak equivalence between the two compositions follow
by restriction.

We have defined a structure TCG, with:

• Objects: concurrent games with symmetry,

• Morphisms from A to B: ∼-strategies σ : S → A⊥ ‖ B, with an identity
∼-strategy cc A : CCA → A⊥ ‖ A,

• 2-cells: weak equivalences.

For σ : S → A⊥ ‖ B a morphism in TCG, we will sometimes write σ :

A
TCG
+ // B.
Since our construction extends [RW11] conservatively, we get that copy-

cat is neutral with respect to composition up to isomorphism, hence up to
weak equivalence. In fact the compositional structure is completely similar
to [RW11]. except that our composition is performed by an universal property
up to ∼ rather than strict. For the same reasons as in [RW11], it follows that the
laws of a bicategory are satisfied up to symmetry; we call that a ∼-bicategory.
In fact as in [RW11, CCW14] we also have:
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3.6 Compact closed structure

We show that TCG satisfies the laws of a compact closed category up to ≃.

Bifunctor. We first remark that parallel composition ‖ on cgs extends to a
functor:

‖s: TCG/≃ ×TCG/≃→ TCG/≃

For ∼-strategies σ1 : S1 → A⊥
1 ‖ B1 and σ2 : S2 → A⊥

2 ‖ B2, we set:

σ1 ‖s σ2 : S1 ‖ S2 → (A1 ‖ A2)
⊥ ‖ (B1 ‖ B2)

to be the obvious map of essps. It is direct to show the bifunctor laws, which
are in fact satisfied up to isomorphisms.

Lifting. In order to give the structural maps of the compact closed stucture, it
will be useful to be able to automatically lift maps of essps to ∼-strategies. For
that, we start by noticing that given a strong-receptive, courteous map of essps

f⊥ : B⊥ → A⊥, one can always lift it to a ∼-strategy f : A + //B, defined by:

f : CCB → A⊥ ‖ B
c 7→ ( f⊥ ‖ B) ◦ cc B(c)

The ∼-pre-strategy f is courteous and strong-receptive because these proper-
ties are stable under composition in ESSP . It is also thin, which is automati-
cally inherited from CCB. Moreover, we note that if f , g : B → A are symmetric

then f and g are weakly equivalent; indeed the identity idCCB
in both directions

provides a weak equivalence.
We now characterise the configurations and symmetries corresponding to

the composition of ∼-strategies with lifted maps.

Lemma 3.19. Let f⊥ : B⊥ → A⊥ be a strong-receptive, courteous map of essps with

A,B tcgs, and σ : S → B⊥ ‖ C be a ∼-strategy. Then σ⊙ f : A
TCG
+ // C is isomorphic

(in ESSP/A⊥ ‖ C) to ( f⊥ ‖ C) ◦ σ : S → A⊥ ‖ C .

Proof. Consider the pullback (CCB ‖ C)⊛ (A ‖ S) (along the maps ( f ‖ B ‖
C) ◦ ( cc B ‖ C) and A ‖ σ) involved in the definition of σ ⊙ f .

For each x ∈ C (S) we have σ(x) = xB + xC, we write σB = xB and σC = xC.
By Proposition 2.13, configurations of the pullback correspond to composite
secured bijections:

xB ‖ σB y ‖ σC y ∼= f (xB) ‖ σB y ‖ σC y ∼= f (xB) ‖ y

with xB ⊑ σB y ∈ C (B) (where ⊑, defined as ⊇+⊆− is the Scott order – see
e.g. [Win11]) and y ∈ C (S). Clearly, this space of configurations is isomorphic
to the space of configurations of the pullback (CCB ‖ C)⊛ (B ‖ S) (along the
maps ( cc B ‖ C)⊛ (B ‖ σ)), described by the composite secured bijections:

xB ‖ σB y ‖ σC y ∼= xB ‖ σB y ‖ σC y ∼= xB ‖ y
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with xB ⊑ σB y. This isomorphism of configurations preserves −⊂ and com-
patible unions, so it is an isomorphism of event structures between the corre-
sponding pullbacks. Additionally it sends visible events to visible events, so it
yields an isomorphism (of ESP) making the following diagram commute:

S ⊙ f
f ′ //

σ⊙ f
��

S ⊙ CCB

σ⊙ cc B

��
A⊥ ‖ C B⊥ ‖ C

f ⊥‖Coo

By composition with the usual isomorphism σ ⊙ cc B
∼= σ, this yields the re-

quired isomorphism between σ ⊙ f and ( f⊥ ‖ C) ◦ σ. This isomorphism pre-
serves symmetry, since the very same construction can be performed the sym-
metries in a way preserving projections.

Note that from the lemma above already follows a useful property of lifting:
it is functorial.

Lemma 3.20. Let f⊥ : C⊥ → B⊥ and g⊥ : B⊥ → A⊥ be strong-receptive, courteous
maps of essps. Then, we have an isomorphism in ESSP/A⊥ ‖ C :

f ⊙ g = g ◦ f

Proof. Direct application of Lemma 3.19.

Compact closed structure. In ESSP , parallel composition has a unit up to
isomorphism, namely the empty game 1. In fact equipped with ‖, ESSP has a
symmetric monoidal structure given by the following natural isomorphisms:

ρA : A ‖ 1 → A
λA : 1 ‖ A → A

sA,B : A ‖ B → B ‖ A
αA,B,C : (A ‖ B) ‖ C → A ‖ (B ‖ C)

Then, these lift to:

ρ−1
A⊥ : A ‖ 1

TCG
+ // A

λ−1
A⊥ : 1 ‖ A

TCG
+ // A

s−1
A⊥,B⊥ : A ‖ B

TCG
+ // B ‖ A

α−1
A⊥,B⊥,C⊥ : (A ‖ B) ‖ C

TCG
+ // A ‖ (B ‖ C)

which satisfy the required equations by Lemma 3.20.
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Note also the duality: for σ : A
TCG
+ // B we also have σ⊥ : B⊥ TCG

+ // A⊥, such
that (τ ⊙ σ)⊥ = σ⊥ ⊙ τ⊥. Using that, the fact that the essp maps above are
isomorphisms and Lemma 3.19, it is straightforward to show that the liftings
above are natural.

Finally, we have the obvious maps:

ηA : CCA → 1⊥ ‖ (A⊥ ‖ A)
ǫA : CCA → (A ‖ A⊥)⊥ ‖ 1

and it is a direct variant of the neutrality of copycat under composition to check
that these obey the required unit and co-unit laws, so we have:

Proposition 3.21. The category TCG/≃ is compact closed.

4 Concurrent Hyland-Ong games

We have built a ∼-bicategory TCG, which has the structure of a compact closed
category and satisfies its laws up to weak equivalence. Using it as underlying
linear category, we will construct a sub-∼-bicategory of strategies playing on
(tcgs generated from) standard Hyland-Ong arenas, and show how the usual
ccc of innocent strategies arises as a subcategory.

4.1 Arenas and expanded games

First, we give (an alternative presentation of) the usual notion of arenas [HO00].
For A an event structure, write min(A) for its set of minimal events.

Definition 4.1. An arena is a countable esp A which is:

• A forest: for all a, a′ ≤ a′′ we have either a ≤ a′ or a′ ≤ a,

• conflict-free: P f (A) ⊆ ConA,

• alternating: for all a _ a′, pol(a) 6= pol(a′).

An arena A is negative iff pol(min(A)) = {−}. We can also add a Questions/Answers
labeling, but this is outside the scope of this paper.

We will now be interested in ∼-strategies playing on a tcg !A thought as
”A with replications”, derived from an arena A. Its underlying set of events
will be the set of index functions on A: functions α : [a] → ω. For such an
index function, we write lbl α = a for the maximal element of its domain, and
ind α = α (lbl α) for the copy index of its domain.

Lemma 4.2. Let A be an arena. There is an tcg !A having:

• Events: indexing functions α : [a] → ω.
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• Causality: α ≤ α′ defined as lbl α ≤ lbl α′ and α, α′ agree on their common
domain,

• Consistency: trivial – there is no conflict.

• Symmetry: comprises order-isomorphisms θ : x ∼= y with x, y ∈ C (!A) such
that θ preserves labels.

Events α ∈ !A also inherit polarities from A.

Proof. Clearly this set contains the identity and is stable under composition,

inverse and restriction. If we have x
θ
∼= y and x

α1 :[a]→ω
−−⊂ , then since A is a forest

there is a unique a′ _ a, and necessarily α′1 = α1 ↾ [a′] satisfies α′1 _ α2.
Take α′2 = θ(θ′1). Necessarily, since y is finite, there is n ∈ ω such that α2 =
α′2 ∪ {a 7→ n} 6∈ y, it is direct to check that extending θ with (α1, α2) gives an
order-isomorphism preserving labels as required.

The essp !A is race-preserving, since it is conflict-free. For receptive thin
sub-symmetries, pick the isomorphism families:

!̃A+ = {x
θ

∼=!A y | ∀α+ ∈ x, ind α = ind (θ(α))}

!̃A− = {x
θ

∼=!A y | ∀α− ∈ x, ind α = ind (θ(α))}

which obviously satisfy the requirements.

Arenas are closed under parallel composition A ‖ B – sometimes written
A × B for compatibility with [HO00] and since it will be the product of our
cartesian closed category. They also support the dual operation (−)⊥, and
include the empty arena 1.

A ∼-strategy playing on an arena A is a ∼-strategy σ : S → !A, and a ∼-
strategy from !A to !B is a ∼-strategy σ : S → !A⊥ ‖ !B. Restricting TCG to
objects of the form !A gives a full sub-∼-category of TCG. We will now restrict
this sub-∼-bicategory further to obtain one satisfying the laws of a cartesian
closed category up to weak equivalence.

4.2 A sub-∼-bicategory of TCG

To get a cartesian closed stucture, we will restrict to negative arenas, and only
consider as morphisms ∼-strategies that are negative, and single-threaded in the
following sense.

Definition 4.3. An esp A is single-threaded iff it satisfies:

(1) For any a ∈ A, [a] has exactly one minimal event.

(2) For any x ∈ C (A) such that x
a1

−−⊂ , x
a2

−−⊂ and x ∪ {a1, a2} 6∈ C (A), then
[a1] ∩ [a2] 6= ∅. (alternatively, they share the same minimal event).
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An essp A is single-threaded iff A is. For a ∼-strategy σ : S → A, we say that it is
single-threaded iff S is.

The ∼-bicategory Cho has:

• Objects: Negative arenas,

• Morphisms from A to B: ∼-strategies

σ : S → !A⊥ ‖ !B

that are negative (i.e. S is negative), and single-threaded. We write σ :

A
Cho
+ // B. Negative single-threaded strategies are called Cho-strategies.

• 2-cells: weak equivalences.

For that to typecheck, we need to check that copycat satisfies these condi-
tions and that they are stable under composition.

Lemma 4.4. For A,B conflict-free single-threaded tcgs, the strategies obtained by
lifting maps f : B⊥ → A⊥ are negative and single-threaded.

Proof. We just have to check that CCB for any conflict-free tcg B is negative and
single-threaded. Clearly minimal events of CCB are negative. Let us first check
condition (1). Take a prime configuration x ∈ C (CCB), we need to check that x
has a unique minimal event. We know that x must correspond to:

x1 ⊇+ x2 ⊆− x3

Suppose first that the maximal event of x corresponds to b ∈ x1. Then we
make two observations: firstly, x1 = [b] – this follows from a straightforward
analysis of causal dependencies in CCB . Secondly, necessarily x2 = x3 since by
definition of CCB no event in x3 \ x2 could be below b. Any minimal event of
x must correspond to a minimal (negative) event in x3 by negativity of CCB .
Therefore if there were two such a1, a2 ∈ x2 = x3 they would appear (and be
minimal) as well in x1, which is absurd since x1 = [b] and B is single-threaded.

Suppose now that the maximal event of x corresponds to b ∈ x3. Then for
the same reason as above x3 = [b]. Since minimal events of x must be in x3,
there must be only one by single-threadedness of B.

For condition (2), note that since B has no conflict, CCB has none either.

In particular, from Lemma 4.4 it follows that cc !A : A
Cho
+ // A is negative and

single-threaded. We now show that Cho-strategies are stable under composi-
tion.

Lemma 4.5. Let σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C be negative single-threaded
∼-strategies with A,B, C negative tcgs. Then, τ ⊙ σ : T ⊙ S → A⊥ ‖ C is negative
and single-threaded.
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Proof. Note first that this is independent from symmetry, so we shall just reason
on strategies σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C.

Let P = (S ‖ C)⊛ (A ‖ T) be the pullback (in ES) of σ ‖ C and A ‖ τ, with
projections Π1 and Π2. By construction we have P = Pr(F ) with F the stable
family:

F = C (S ‖ C)× C (A ‖ T) ↾ R

where R = {(e1, e2) | (σ ‖ C)(e1) = (A ‖ τ)(e2)}.
In order to prove condition (1) of single-threadedness, we are going to

prove by induction on <P that for all p ∈ P, there exists a unique p′ ∈ min(P),
necessarily of the shape [((2, c), (2, t))]z, such that p′ ≤ p. If p ∈ P is minimal
it has the form [((2, c), (2, t))]z for some z ∈ F , indeed any other case would
contradict negativity of either S or T. Otherwise p is not minimal, i.e. it has an
immediate cause q1 _ p. By induction hypothesis, there is a unique q′1 mini-
mal such that q′1 ≤ q1 ≤ p. So if there is another q′2 ≤ p minimal, there must
be another q2 _ p such that q′2 ≤ q2. We now distinguish cases, depending on
the form of p.

• If p has the form [((1, s), (1, a))]z. Then, by Lemma 2.11 it is straight-
forward to show that qi must have the form [(1, si),−)]z. Necessarily,
this implies that si _ s as well, and in particular si ≤ s. By single-
threadedness of S it follows that there is a unique s′ ∈ min(S) such that
s′ ≤ s1 and s′ ≤ s2. By definition of the pullback it follows that there is
t ∈ T such that ((1, s′), (2, t)) ∈ z, and we have:

[((1, s′), (2, t))]z ≤ qi

By induction hypothesis, the unique minimal cause of q1 and q2 must be
the same as for [((1, s′), (2, t))]z, so we must have q′1 = q′2.

• If p has the form [((1, s), (2, t))]z where pol(s) = +, then by Lemma 2.11 it
is straightforward to show that qi must have the form [((1, si), e)]z. Then
we argue that, as above, we must have si ≤ s. Indeed from Lemma 2.11
we also know that we have either si _ s, or e has the shape (2, ti) with
ti _ t. But by courtesy the latter would imply that τti _ τt, so si ≤ s as
well since σ is a map of event structures. Then the same reasoning as in
the previous case applies.

• If p has the form [((1, s), (2, t))]z where pol(s) = −, then for the same
reason as above, qi must have the form [(−, (2, ti))]z. The reasoning is
dual to the previous case.

• If p has the form [((2, c), (2, t))]z, then qi must have the form [(−, (2, ti))]z
with ti ≤ t and the same reasoning applies.

Note in passing that from the characterisation of minimal events of the pull-
back above it follows that T ⊙ S is negative.
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Let us now show condition (2). Take an immediate conflict in T ⊙ S. Nec-
essarily it must originate in a conflict in P:

w1

[(s,t)]∪w1
⊃−− z

[(s′,t′)]∪w2
−−⊂ w2

Necessarily by Lemma 2.12 this conflict must originate from one of the projec-
tions. Let us suppose w.l.o.g. that the following is a conflict in S ‖ !C.

Π1 w1

s
⊃−−Π1 z

s′

−−⊂Π1 w2

Since σ is single-threaded, there must be s′′ ∈ S ‖ C such that s′′ ≤ s and
s′′ ≤ s′. Necessarily, there is t′′ ∈ A ‖ T such that (s′′, t′′) ∈ z. Take a minimal
predecessor p ≤ [(s′′, t′′)]z; it is necessarily visible (and in C) since S and T are
negative. It is also below [(s, t)]∪w1 and [(s′, t′)]∪w2 by construction, so τ ⊙ σ is
single-threaded.

So, we have constructed our ∼-bicategory. We now prove that it is cartesian.

4.3 A cartesian category

First, let us note that the empty arena 1 is such that !1 = 1 (with the right hand
side 1 denoting the empty cgs). Since the objects of Cho are negative arenas
and the strategies are negative as well, any morphism in Cho:

σ : S → !A⊥ ‖ !B

is such that the minimal events of S must map to !B. But in the particular
case where B = 1, this means that S cannot have any minimal events, so it is
necessarily the unique trivial map from the empty set to !A⊥ ‖ !B. It follows
that 1 is a terminal object.

Projections. We start by noting the following isomorphism.

Lemma 4.6. Let A and B be arenas. Then there is an isomorphism in ESSP :

!(A ‖ B)
γA,B
∼= !A ‖ !B

Proof. We define γA,B as the map:

γA,B : !(A ‖ B) → !A ‖ !B

α 7→ (1, α′)

{
α′ : [a] → ω (lbl α = (1, a))

a′ 7→ α(1, a′)

β 7→ (2, β′)

{
β′ : [b] → ω (lbl β = (2, b))

b′ 7→ α(1, b′)

This is clearly a map of ESPs, and it has an obvious inverse γ−1
A,B. Both preserve

labels and as isomorphism of ESPs they are rigid, so they transport isomor-
phisms on !(A ‖ B) (order-isomorphisms preserving labels) to isomorphisms
on !A ‖ !B. Therefore they are actually isomorphisms in ESSP .
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From that it follows that we have maps:

iA : !A → !(A × B)
α 7→ γ−1

A,B(1, α)

iB : !B → !(A × B)
β 7→ γ−1

A,B(2, β)

which are such that iA⊥ and iB⊥ are strong-receptive and courteous whenever
A and B are negative. Therefore we define by lifting:

̟A = iA⊥ : A × B
Cho
+ // A

̟B = iB⊥ : A × B
Cho
+ // B

Pairing. For A, B, C negative we need to define the pairing of:

σ : S → !C⊥ ‖ !A

τ : T → !C⊥ ‖ !B

We would like to set:

〈σ, τ〉 : S ‖ T → !C⊥ ‖ !(A × B)
(1, s) 7→ (!C⊥ ‖ iA) ◦ σ

(2, t) 7→ (!C⊥ ‖ iB) ◦ τ

However this might fail local injectivity, since σ and τ might have a common
codomain on !C⊥. So we need to reindex their moves to make sure that no such
collision can occur. In order to do that we introduce two maps:

ιo : !A → !A

α 7→ α′ where

{
α′(a) = 2α(a) + 1 (if a minimal)
α′(a) = α(a) (otherwise)

ιe : !A → !A

α 7→ α′ where

{
α′(a) = 2α(a) (if a minimal)
α′(a) = α(a) (otherwise)

It is immediate to check that ιe and ιo are maps of essp. Moreover, they have
disjoint codomains, ι⊥e and ι⊥o are strong-receptive (since we only change the
copy index of minimal events) and courteous, and they are both symmetric
with the identity: ιe ∼ id!A and ιo ∼ id!A.

It follows that we have weak equivalences:

(ι⊥o ‖ !A) ◦ σ ≃ σ

(ι⊥e ‖ !B) ◦ τ ≃ τ
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And we can now form the pairing:

〈σ, τ〉 : S ‖ T → !C⊥ ‖ !(A × B)
(1, s) 7→ (ι⊥o ‖ iA) ◦ σ

(2, s) 7→ (ι⊥e ‖ iB) ◦ τ

It is then direct – a straightforward variant of the neutrality of copycat under
composition – to check:

̟A ⊙ 〈σ, τ〉 ≃ σ

̟B ⊙ 〈σ, τ〉 ≃ τ

In order to have a cartesian category, we still have to prove:

Lemma 4.7 (Surjective pairing). For any negative arenas A, B and negative single-

threaded ∼-strategy σ : C
Cho
+ // A × B we have the weak equivalence:

σ ≃ 〈̟A ⊙ σ, ̟B ⊙ τ〉

Proof. Let us write σ : S → !C⊥ ‖ !(A × B). By condition (1) of single-
threadedness, each event s ∈ S has a unique minimal dependency s′ ∈ S.
By negativity of arenas and strategies s′ must map either to A (more formally
to an event of the form {(1, a) 7→ n} for a ∈ min(A)) or to B (more formally to
an event of the form {(2, b) 7→ n} for b ∈ min(B)). Write SA for the subset of S
comprising events whose minimal dependency map to A, and similarly write
SB. Then SA and SB are down-closed, otherwise that would contradict condi-
tion (1) of single-threadedness. Therefore, they are event structures. The same
reasoning holds for symmetries, so we have the decomposition S = SA ∪ SB.

Take x ∈ C (S). For the reason above, x decomposes uniquely in xA ∪ xB,
with xA ∈ C (SA) and xB ∈ C (SB). From xA and xB we can (by an immediate
variation on the neutrality of copycat) build x′A ∈ CC!A ⊙ S (composing the ∼-
strategies ̟A – which has “internal” event structure CC!A – and σ) and x′B ∈
CC!B ⊙ S, so

x′A ‖ x′B ∈ C (CC!A ⊙ S ‖ CC!B ⊙ T)

which is the event structure for the ∼-strategy 〈̟A ⊙σ, ̟B ⊙ τ〉. This operation
satisfies by construction the conditions of Lemma 2.7, so induce a map. The
operation lifts smoothly on symmetries, so the map preserves symmetry as
well. This construction preserves the projection to the game on the nose.

Reciprocally take x′A ∈ CC!A ⊙ S and x′B ∈ CC!B ⊙ S. Again by an immediate
variation on the neutrality of copycat we can get corresponding xA ∈ C (S)
and xB ∈ C (S) in a way preserving the projection to the game, the covering
relation and compatible union of configurations. Now, it actually follows that
xA ∪ xB ∈ C (S) as well: indeed events in xA and xB cannot share their minimal
dependencies, since for xA they map to A and to B for xB. Therefore by condi-
tion (2) of single-threadedness xA and xB are compatible. The correspondence
from x′A, x′B to xA ∪ xB preserves covering and compatible unions so by Lemma
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2.7 induces a map, and one can show that it preserves symmetry by perform-
ing the exact same construction at the level of symmetries. The projection to
the game is again preserved on the nose.

Finally the correspondence generates an isomorphism, since we have only
transformed the events via the correspondence between CC!A ⊙ SA and SA,
which is an isomorphism.

So putting all of this together, we have proved

Proposition 4.8. The ∼-bicategory Cho satisfies the laws of a cartesian category up
to weak equivalence.

4.4 A cartesian closed category

Cho is a sub-∼-bicategory of TCG which is compact closed, so we could expect
the closed structure of Cho to correspond to the compact closed structure of
TCG; however we run into the issue that the arena A⊥ × B is not an object of
Cho, since it is not negative. So we proceed as in [HO00], and replace it with
a negative variant where minimal events of A⊥ are set to depend on minimal
events of B.

So, we start by recaling the arrow arena construction of [HO00]. For two
negative arenas A and B, we define the arrow arena A ⇒ B as having:

• Events, {(1, (b, a)) | a ∈ A & b ∈ min(B)} ∪ {(2, b) | b ∈ B}.

• Causality,

{((1, (b, a1)), (1, (b, a2))) | a1 ≤ a2 & b ∈ min(B)}∪
{((2, b1), (2, b2)) | b1 ≤ b2}∪
{((2, b), (1, (b, a))) | a ∈ A & b ∈ min(B)}

• Polarity, pol((1, (b, a))) = −pol(a) and pol((2, b)) = pol(b).

To show that this gives a closed structure, we need to relate it to the compact
closed structure of TCG. To that effect, we will now define a map of essps:

ξA,B :!(A ⇒ B) → !A⊥ ‖ !B

For events b ∈ B we use ♯b for the natural number associated to b by the count-
ability of B. We also use 〈−,−〉 : ω2 → ω for any injective function; the
collision with the pairing operation should not generate any confusion.

We set:

χA,B : !(A ⇒ B) → !A⊥ ‖ !B
(α : [(1, (b, a))] → ω) 7→ α′

(β : [(2, b)] → ω) 7→ β′
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where:

α′ : [a] → ω
a′ 7→ 〈♯b, α((2, b)), α((1, (b, a′)))〉 (if a′ ∈ min(A))
a′ 7→ α((1, (b, a′))) (otherwise)

and:
β′ : [b] → ω

b′ 7→ β((2, b′))

With this definition χA,B preserves symmetry, is strong-receptive (it does

not change the copy indices of negative events, since minimal events of A⊥ are
positive) and courteous (it only breaks immediate causal links from minimal
events of B to minimal events of A⊥, so from negative to positive). This allows
us, from σ : S → !C⊥ ‖ !(A ⇒ B), to define:

Φ(σ) : S → !C⊥ ‖ (!A⊥ ‖ !B)
= (!C⊥ ‖ χA,B) ◦ σ

Reciprocally, we can go in the other direction using the following lemma.

Lemma 4.9. Any single-threaded map of ess σ : S → !C⊥ ‖ (!A⊥ ‖ !B) such that
minimal events of S map to !B (as in a negative strategy in the presence of polarities)
factors uniquely through !C⊥ ‖ χA,B up to weak equivalence.

Proof. We define σ′ : S → !C⊥ ‖ !(A ⇒ B). For s ∈ S, then if σ(s) = (1, γ) we
set σ′(s) = (1, γ) still.

If σ(s) = (2, (2, β)) with β : [b] → ω, then we set σ′(s) = (2, β′) with

β′ : [(2, b)] → ω
(2, b′) 7→ β(b′)

If σ(s) = (2, (1, α)) with α : [a] → ω, then by condition (1) of single-
threadedness there is a unique minimal s′ ≤ s. Since S is negative, s′ must
be negative as well, but the only negative minimal events of !C⊥ ‖ (!A⊥ ‖ !B)
have the form (2, (2, β)) with β = {b 7→ n}. Therefore we set:

α′ : [(1, (b, a))] → ω
(1, (b, a′)) 7→ α(a′)
(2, b) 7→ n

and we define σ′(s) = (2, α′).
It is routine to check that this preserves symmetry, is strong-receptive and

courteous, and that its composition with χA,B is weakly equivalent to σ – copy
indices have been heavily modified, but labels and causal dependency remains
the same. Uniqueness up to symmetry follows from the fact that arena labels
have to be preserved, and the dependency annotations in !(A ⇒ B) are forced
by the causality in S. Only copy indices can be modified, and they do not
matter up to symmetry.
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From that, we deduce the following.

Proposition 4.10. There is a bijection Φ up to weak equivalence, preserving and re-
flecting weak equivalence, between:

• Negative, single-threaded ∼-strategies σ : S → C⊥ ‖ !(A ⇒ B),

• Negative, single-threaded ∼-strategies σ′ : S → C⊥ ‖ (!A⊥ ‖ !B).

Moreover this bijection is compatible with pre-composition: for all τ : T → !D⊥ ‖ !C,
we have:

Φ(σ)⊙ τ ≃ Φ(σ ⊙ τ)

Proof. On the one hand Φ(σ) is obtained as (!C⊥ ‖ χA,B) ◦ σ, while Φ−1(σ′) is
obtained by the unique factorisation of Lemma 4.9. The bijection up to weak
equivalence follows from Lemma 4.9 as well.

To check that Φ commutes with composition, we consider the two follow-
ing pullbacks:

P
_
�

��

// T ‖ !(A ⇒ B)
τ‖!(A⇒B)��

!D ‖ S
!D‖Φ(σ)// !D ‖ !C ‖ !(A ⇒ B)

P ′

_
�

��

// T ‖ (!A⊥ ‖ !B)

τ‖(!A⊥‖!B)��
!D ‖ S

!D‖σ// !D ‖ !C ‖ (!A⊥ ‖ !B)

The maps:

T ‖ χA,B : T ‖ !(A ⇒ B) → T ‖ (!A⊥ ‖ !B)

!D ‖ S : !D ‖ S → !D ‖ S

!D ‖ !C ‖ χA,B → !D ‖ !C ‖ !A⊥ ‖ !B

map the base of the left hand side pullback to the base of the right hand side
pullback, which generate a map h : P → P ′. Reciprocally, we have seen in the
proof of Lemma 4.5 that the composition pullback P ′ is single-threaded. Using
that observation, we can define maps from P ′ to T ‖!(A ⇒ B) as in Lemma 4.9.
This map along with the identity on !D‖S induces an inverse h−1 : P ′→P for
h. It follows from uniqueness in Lemma 4.9 that h and h′ are inverse of each
other up to symmetry, yielding a weak equivalence. After projection to visible
events, this gives a weak equivalence between τ ⊙ Φ(σ) and Φ(τ ⊙ σ).

From that, it is now straightforward to deduce the cartesian closed struc-
ture.

Theorem 4.11. The ∼-bicategory Cho satisfies the laws of a cartesian closed category
up to weak equivalence.

Proof. We already know that it is cartesian.
Firstly, evaluation is defined as:

evA,B : A × (A ⇒ B)
Cho
+ // B

= λ−1
!A⊥ ⊙ ǫ!A ⊙ α!A⊥,!A,!B⊥ ⊙ (!A ‖s Φ( cc !(A⇒B)))⊙ γ−1

A⊥,(A⇒B)⊥
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Likewise curryfication of σ : S → !(A × C)⊥ ‖ !B is obtained by:

Λ(σ) : !C
Cho
+ // !(A ⇒ B)

= Φ((!A⊥ ‖s (σ ⊙ γA⊥,C⊥))⊙ α−1
!A⊥‖!A⊥‖!C

⊙ (η!A ‖s !C))

The required verifications are routine calculations, using the fact that Φ is a
bijection and the compact closed structure of TCG – all the structural isomor-
phisms eliminate each other.

4.5 Recursion

4.5.1 A dcpo of ∼-strategies

We compute least upper bounds of ∼-strategies using this concrete partial or-
dering:

Definition 4.12 (Inclusion). Let A,B be event structures with symmetry and polar-
ities. We say that A E B whenever A ⊆ B, all data on A (causality, consistency,
polarities, symmetry) is the restriction of that of B, and the inclusion induces a map of
essps A →֒ B (so A is down-closed in B).

The relation E is clearly a partial order on event structures with symmetry
and polarities. We set:

Definition 4.13 (Inclusion of ∼-strategies). Let σ : S→A and τ : T →A be
strategies. We say that σ E τ when S E T and for all s∈S, σ(s) = τ(s).

This partial order on ∼-strategies is directed complete. Indeed if D is a
directed set of ∼-strategies on a cgs A, then we define:

⊔
(σ:S→A)∈D σ : (

⋃
(σ:S→A)∈D S) → A

It is direct to check that this defines a ∼-strategy, which is a least upper bound
for D. Additionally if ∼-strategies in D are negative or single-threaded, this is
still the case of

⊔
D.

So, E equips the set of ∼-strategies with a structure of dcpo. It does not
have a least element though: a minimal strategy σ : S → A has as events in
S an initial negative segment corresponding to that of A, so there are as many
minimal strategies as possible renamings of this segment.

We pick one distinguished minimal ∼-strategy on a cgs A. Let us write A−

for the initial negative segment of A: the maximal purely negative cgs such
that A− E A (not to be confused with the negative thin sub-symmetry A−).
We set:

⊥A : A− → A

acting as the identity map. Clearly ⊥A is a ∼-strategy, negative and single-
threaded, and is minimal for E because anything strictly smaller would fail
receptivity.

Every strategy is isomorphic to a strategy lying over ⊥A:
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Lemma 4.14. Let σ : S→A be a strategy. There exists a strategy σ† : S†→A
isomorphic to σ such that ⊥A E σ†.

Proof. By receptivity S contains an initial segment isomorphic to the minimal
negative events of A. S† is obtained by replacing those events by the corre-
sponding events of A, and renaming the other events of S to avoid any poten-
tial collision. It is routine to check that we get an isomorphic strategy on A and
we clearly have σ∼=σ†.

The main operations we have for constructing strategies are continuous:

Lemma 4.15. Composition, parallel composition, pairing, curryfication and the (−)†

operation introduced just above are continuous for E.

Proof. Direct.

4.5.2 Fixpoint combinator in Cho

We are now ready to prove that there is a fixpoint combinator in Cho. For A a
cgs, we write DA for the pointed dcpo of negative single-threaded ∼-strategies
above ⊥A. We consider the following operation on D!(A⇒A)⊥‖!A:

F(σ) =

(
(A ⇒ A)

〈σ,idA⇒A〉
−−−−−−→ A × (A ⇒ A)

evA,A
−−−→ A

)†

By Lemma 4.15, F is continuous and because of the outermost dagger, it has
indeed value in D!(A⇒A)⊥‖!A. Therefore, we can take its fixpoint:

YA ∈ D!(A⇒A)⊥‖!A

By construction, it satisfies

YA ≃ evA,A ⊙ 〈Y, idA⇒A〉 : (A ⇒ A)
Cho
+ // A

As a consequence, we have:

Corollary 4.16. Let σ : Γ
Cho
+ // A ⇒ A. Then,

YA ⊙ σ ≃ evA,A ⊙ 〈YA ⊙ σ, σ〉 : Γ
Cho
+ // A

Proof. Direct using the equation above and the cartesian closed laws.

Using this structure, one can follow the lines of [HO00] and define the in-
terpretation of PCF in Cho. Of course, ∼-strategies in Cho have many more
possible behaviours than those coming from terms of PCF, including complex
concurrent and non-deterministic behaviours, but also behaviours typically as-
sociated with stateful computation.

In the final subsection we show however how to define in Cho a subcate-
gory corresponding exactly to the cartesian closed category from [HO00] of de-
terministic innocent strategies (modulo the Questions/Answers distinction).
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4.6 Embedding of standard Hyland-Ong innocent strategies

In this final subsection, we construct a sub-∼-bicategory ChoInn of Cho whose
quotient under weak equivalence is isomorphic to the standard category of
arenas and innocent strategies. We will first recall the basic definitions of the
usual category Inn of arenas and innocent strategies, and then relate Inn and
ChoInn.

4.6.1 The category Inn

This section is mainly there for reference and to fix the notions and notations.
The construction is standard, so we only give the definitions and the properties,
but skip all proofs. From now on, all arenas are considered negative.

Plays, strategies. First, we recall the notions of plays and strategies on an
arena.

Definition 4.17. Let Σ be an alphabet. A pointing string on Σ is a sequence m0m1 . . . mn

of elements of Σ when each mi may be equipped with a pointer to an earlier mj (i.e.
j < i). In that case we write mi → mj.

Definition 4.18. Let m be a pointing string on Σ, and Σ′ ⊆ Σ. The the restriction
m′ = m ↾ Σ′ of m to Σ′ is obtained by removing in m all moves from Σ \ Σ′. The
move m′

i points to m′
j if there is a pointer chain between the corresponding moves in m,

passing only through Σ \ Σ′.
The definition extends trivially if Σ

′ →֒ Σ is an injection instead of an inclusion.

Notations. We write |m| for the length of m, m′ ⊑ m for the prefix ordering,
m′ ⊑P m if additionally m′ is P-ending.

Definition 4.19. If A is an arena, then a legal play on A is a pointing string m on
A such that:

• If mi has no pointer, then mi ∈ min(A),

• If mi → mj, then mj ⊢A mi,

• For all 0 ≤ i ≤ |m| − 2, pol(mi) 6= pol(mi+1).

Let LA be the set of legal plays on A.

Definition 4.20. A (deterministic) strategy s : A on A is a non-empty, Opponent-
branching, even-prefix closed set of even-length legal plays on A.
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Copycat, composition.

Definition 4.21. The copycat strategy is defined by:

idA = {m ∈ LA1⇒A2
| ∀m′ ⊑P m, m′ ↾ A1 = m′ ↾ A2}

Definition 4.22. Let s : A ⇒ B and t : B ⇒ C be two strategies. Their interaction
is:

s ‖ t = {u ∈ (A ⇒ B) ⇒ C | u ↾ A, B ∈ s&u ↾ B, C ∈ t&u ↾ A, C ∈ LA⇒C}

Their composition is then defined by:

t⊙ s = {u ↾ A, C | u ∈ s ‖ t}

It is well-known that composition is associative and forms a category.

Visibility, innocence.

Definition 4.23. Let m ∈ LA. Its P-view is defined inductively as follows:

pmiq = i

pmpm′oq = pmpqo

pmpq = pmqp

where in the first line i ∈ min(A), in the second o → p and we have pol(o) = − and
pol(p) = +. Pointers are preserved if the target of the pointer is in the P-view, lost
otherwise.

For m ∈ LA, the P-view pmq is in general just a pointing string on A; not a
legal play since some pointers might be lost. For a play m ∈ LA, we say that
m is a P-view if pmq = m; it is easy to see that this is equivalent to the fact that
Opponent always points to the previous move.

Definition 4.24. Let m ∈ LA. We say that m is P-visible if for all m′ ⊑ m,
pm′q ∈ LA. In other words pointers are not lost when computing the P-view of prefixes
of m, so Player always points within its P-view.

A strategy s : A is visible when all its plays are P-visible.

Visible strategies are stable under composition and form a sub-category of
the category of arenas and strategies. We can now define:

Definition 4.25. Let s : A be a visible strategy. It is innocent if for all m, mop, no ∈
s with pmoq = pnoq, then nop ∈ σ as well (with the same pointer).

Innocent strategies are stable under composition, and form a CCC.
From the definition it follows that innocent strategies are entirely charac-

terized by their set of P-views, so to define an innocent strategy it is sufficient
to define a set of P-views, and to compose innocent strategies it is sufficient to
compute only interactions that give rise to P-views.
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4.6.2 The ∼-bicategory ChoInn

Let us now define the sub-∼-bicategory of Cho corresponding to it. In this
section, we consider negative single-threaded ∼-strategies – however, the con-
ditions introduced here and the corresponding reasonings only concern the
underlying strategy σ : S → A of ∼-strategies σ : S → A, so we will mostly
ignore symmetry in this subsubsection.

We introduce two further conditions: sequential innocence and determin-
ism.

Definition 4.26. An esp S is sequential innocent iff it is:

(1) Backward sequential: for all s ∈ S, [s] is a total order,

(2) Forward sequential: for all s ∈ S with s _ s+1 , s _ s+2 , then [s1] ∪ [s2] 6∈
C (S).

In particular, a strategy σ : S → A is sequential innocent iff S is.

It is obvious that copycat is sequential innocent, as are maps obtained through
lifting. Note that we call that sequential innocence and not just innocence, as we
have (in a forthcoming companion paper) a notion of innocence that accepts
strategies with concurrent behaviour such as that for the parallel or.

We now show that backward sequentiality is stable under composition.

Lemma 4.27. Let σ : S → A and τ : T → A⊥ be two backward sequential strategies.
Then, S ⊛ T is backward sequential as well.

Proof. It suffices to show that in S ⊛ T, each event has at most one immediate
causal dependency; but that follows immediately from Lemma 2.11, backward
sequentiality of S and T and the fact that A is a forest.

Proposition 4.28. If σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C are backward sequential,
so is τ ⊙ σ.

Proof. By Lemma 4.27, the composition pullback S ⊛ T is backward sequential
as well. From that it follows from a straightforward induction that events in
T ⊙ S have at most one predecessor as well, so τ ⊙ σ is backward sequential.

We now show that forward sequentiality is stable under composition.

Lemma 4.29. Let σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C be forward sequential.
Then, τ ⊙ σ is forward sequential as well.
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Proof. Let c _T⊙S c+1 , c+2 . By definition of projection, we must have:

[(si+1, ti+1)]x1
// . . . // [(sn, tn)]x1

// c1

c // [(s1, t1)]x // . . . // [(si, ti)]x

::uuuuuuuuu

$$I
II

II
II

II

[(s′i+1, t′i+1)]x2
// . . . // [(s′p, t′p)]x2

// c2

in the interaction pullback P = (S ‖ C)⊛ (A ‖ T). Suppose wlog that pol(si) =
−. By Lemma 2.11, we either have si _ si+1 or ti _ ti+1. But if ti _ ti+1,
then τti _ τti+1 as well by courtesy. It follows that si ≤ si+1, but necessarily
si _ si+1 otherwise that would contradict [(si, ti)]x1 _ [(si+1, ti+1)]x1 . For
the same reason, si _ s′i+1 as well. Therefore by forward sequentiality of σ,

[si+1] ∪ [s′i+1] 6∈ C (S). But c1 ∪ c2 must contain [si+1] ∪ [s′i+1], so cannot be a
valid configuration of the pullback – so [c1]T⊙S ∪ [c2]T⊙S 6∈ C (T ⊙ S).

So, we have a bicategory of sequential innocent strategies. All these con-
structions being orthogonal with symmetry, we also have a ∼-bicategory of
thin concurrent games and sequential innocent strategies – and a ∼-bicategory
of negative arenas and sequential innocent strategies. Strategies obtained by
lifting are sequential innocent and it is preserved by ccc operations, hence there
is a ∼-bicategory satisfying ccc laws up to weak equivalence of negative arenas
and single-threaded sequential innocent strategies.

Definition 4.30. For A a conflict-free esp, a strategy σ : S → A is deterministic iff
any finite subset of S is consistent.

This is not the standard definition of deterministic concurrent strategies (for
that, see [Win12]), but it is a specialization of it in a case – such as here – when
the games are conflict-free. Clearly copycat on a conflict-free game is deter-
ministic in the sense above. For self-completeness, we prove that deterministic
strategies are stable under composition.

Lemma 4.31. Let A be a conflict-free esp, and let σ : S → A and τ : T → A⊥ be
deterministic. Then, every finite subset of S⊛ T is consistent. Therefore, deterministic
strategies are stable under composition.

Proof. First, note that since all finite subsets of events of S and T are consistent
it follows that σ and τ are injective. Thefore for any s ∈ S, there is at most one
t ∈ T such that σs = τt. Take a finite set of configurations of S⊛ T, represented
as secured bijections:

xi

σ
∼= σxi = τyi

τ
∼= yi

for 1 ≤ i ≤ n. From the observation above, we have that

∪1≤ileqnxi

σ
∼= σ(∪1≤i≤nxi) = τ(∪1≤i≤nyi)

τ
∼= ∪1≤i≤nyi
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is still a bijection. Since xi and yi, as configurations of respectively S and T, are
down-closed, it immediately follows that this bijection is secured, making it a
configuration of S⊛ T corresponding to the union of the confiurations of S⊛ T
that we started with. It also follows that all finite sets of events of the projection
are consistent, hence deterministic strategies are stable under composition.

Note that although non-deterministic sequential innocent ∼-strategies are
not automatically single-threaded – they might fail condition (2) of single-
threadedness, deterministic sequential innocent ∼-strategies automatically are
and therefore form a sub-∼-bicategory of Cho satisfying the equations of a ccc
up to weak equivalence. We call this ∼-bicategory ChoInn.

4.6.3 Relating ChoInn and Inn

From ChoInn to Inn. First, let us show how to associate an innocent strat-
egy in the usual Hyland-Ong sense to any negative deterministic sequential
innocent ∼-strategy σ : S → !A⊥ ‖ !B. For the rest of this paragraph, we fix σ.

Note first that for any s ∈ S, by sequential innocence [s] is a total order:

s0 _ s1 _ . . . _ sn = s

to which we associate the sequence:

(lbl(σs0), lbl(σs1), . . . , lbl(σsn))

Additionally, this sequence is equipped with pointers by setting lbl(σsi) to
point to lbl(σsj) if, either σsj _ σsi, or j = 0 and σsi is minimal in !A – the

second case is here because we started with σ : S → !A⊥ ‖ !B rather than
σ : S → !(A ⇒ B). We denote this pointing sequence by P(s).

Let us now make a few observations on this pointing sequence. First of all
it is alternating: indeed by courtesy S can only enrich the causality of !A⊥ ‖ !B
with causal links from negative to positive events, and !A⊥ ‖ !B is alternat-
ing. Moreover, all Opponent moves in P(s) must point to the previous move;
indeed otherwise there would be s+j , s+k , s−i with σsj _ σsi, but sj < sk _ si.

But by courtesy that would mean that σsk _ σsi as well, so σsk = σsj since

!A⊥ ‖ !B is a forest – contradiction. Moreover all Player moves are equipped

with a pointer (since [s] ∈ C (S), and for any s′
+ ≤ s, either σs′ is not minimal

in !A⊥ ‖ !B and it has an immediate dependency, or it is minimal in !A⊥, in
which case it is by definition set to point to lbl(σs0)). So we have proved that
P(s) is a P-view.

Now, we are in a position to form:

P(σ) = {ǫ} ∪ {P(s) | s+ ∈ S}

obtaining a set of P-ending P-views. We now wish to show that this set of P-
views defines an innocent strategy. For that, it has to be O-branching. For that,
we will need the following key lemma.
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Lemma 4.32. Let s, s′ ∈ S, such that |[s]| = |[s′]|. Then, the following three propo-
sitions are equivalent.

(1) P(s) = P(s′),

(2) The unique order-isomorphism θ : [s] ∼= [s′] is in the isomorphism family of S ,

(3) The unique order-isomorphism θ : [s] ∼= [s′] is such that σ θ is in the isomor-
phism family of !A⊥ ‖ !B.

Proof. (1) ⇒ (2). By induction on ≤S. If s, s′ are minimal then since lbl(σs) =
lbl(σs′) they can only differ on their copy indices. By definition of the isomor-
phism family of !A⊥ ‖ !B, the unique bijection between the singletons {σs} and
{σs′} is a valid isomorphism. Since σ is negative, it follows that the unique bi-
jection between {s} and {s′} is a valid isomorphism by strong-receptivity.

Now suppose that [s1]
θ

∼=S [s2], and suppose s1 _ s′1 and s2 _ s′2, with
P(s′1) = P(s′2). If pol(s′1) = pol(s′2) = −, then the same reasoning as above
applies. Suppose now that pol(s′1) = pol(s′2) = +. By induction hypothesis

we have [s1]
θ

∼=S [s2], and [s1]−⊂s′1. By the extension property of isomorphism
families, there is s′′2 such that θ−⊂(s′1, s′′2 ), writing θ′ = θ ∪ {(s′1, s′′2 )}. By prop-
erty of isomorphism families θ′ is an order-isomorphism, therefore s2 _ s′′2 . By
forward sequentiality and determinism of σ, we must then have s′2 = s′′2 , so the
unique order-isomorphism between [s′1] and [s′2] is indeed in the isomorphism
family of S .

(2) ⇒ (3). Obvious.
(3) ⇒ (1). Immediate by definition of P .

From this lemma, it follows that P(σ) is O-branching. Indeed, suppose we

have s1 _ s′
+
1 , s2 _ s′

+
2 with P(s1) = P(s2). From the lemma above, the

unique order-isomorphism θ satisfies

[s1]
θ

∼=S [s2]

by the extension property of isomorphism families, we must have θ−⊂(s′1, s′′2 ),
so [s2]−⊂s′′2 . By determinism, forward sequentiality and the fact that θ is an
order-iso, it follows that s′′2 = s′2. But from that we get by σ the iso:

σ[s1] ∪ {σs′1}
σ(θcup{(s′1,s′2)})∼=!A⊥‖!B σ[s2] ∪ {σs′2}

so by definition of the isomorphism family of !A⊥ ‖ !B, we get that σs′1 and σs′2
have the same label and dependency in !A⊥ ‖ !B, so P(s′1) = P(s′2).

So, we have established that P(σ) is a non-empty (by construction) set of
even-length P-views, obviously even-prefix-closed. So, it induces an innocent
strategy in the usual Hyland-Ong sense, still written P(σ).

51



Let us note in passing that P is well-defined on weak equivalence classes

of strategies. If σ : S → !A⊥ ‖ !B and σ′ : S ′ → !B⊥ ‖ !C and σ
φ
≃ σ′ is a

weak equivalence, then P(σ) = P(σ′). Indeed for any s ∈ S, it is immediate to
check that P(s) = P(φ(s)). We will show later on that the converse also holds:
if P(σ) = P(σ′), then σ ≃ σ′.

Functoriality of P . Now we prove that this gives a functor.

Lemma 4.33. For any arena A, we have:

P( cc !A) = idA

Proof. ⊆. By immediate induction on ≤A, for any s ∈ CC!A, for any m′ ⊑P P(s)
we have m′ ↾ A1 = m′ ↾ A2 (where idA : A1 ⇒ A2 is labeled for convenience).

⊇. From m a P-ending P-view in idA, we have m ↾ A1 = m ↾ A2. Suppose
wlog that the last move of m is in A1. In fact (by property of P-views of copycat)
m ↾ A1 must be a pointer chain, hence we obtain α+ ∈ !A⊥ by adding an
arbitrary choice of copy indices. By construction we have P((1, α)) = m.

Lemma 4.34. For all σ : S → !A⊥ ‖ !B and τ : T → !B⊥ ‖ !C negative determinis-
tic sequential innocent ∼-strategies, we have:

P(τ ⊙ σ) = P(τ)⊙P(σ)

Proof. Let P = (S ‖ !C)⊛ (!A ‖ T) be the pullback involved in the composition
of σ and τ. For p ∈ P, by Lemma 4.27 [p] is a total order:

p0 _ p1 _ . . . _ pn = p

We define P(p) similarly to the corresponding definition on strategies, as the
sequence

(lbl((σ ⊛ τ)p0), . . . , lbl((σ ⊛ τ)pn))

with the pointers defined by causality in !A ‖ !B ‖ !C for events that are non-
minimal in the game, lbl((σ⊛τ)p0) for moves minimal in !B. For lbl((σ⊛τ)pi)
minimal in !A, necessarily Π1 pi ∈ S is positive, and hence [Π1πi]S has a unique
minimal event corresponding to some Π1 pj; then lbl((σ ⊛ τ)pi) is set to point
to lbl((σ ⊛ τ)pj).

Let Pn be its restriction to events whose causal history has exactly n events.
Likewise for s : A ⇒ B and t : B ⇒ C two innocent strategies in the Hyland-
Ong sense, let σ ‖n τ be the similarly restricted interaction, comprising point-
ing strings u on (A ⇒ B) ⇒ C of length n, such that u ↾ A, B is either in s or an
immediate Opponent extension of a play in s, u ↾ B, C is either in t or an imme-
diate extension of a play in t. Additionally, we require that u ↾ A, C ∈ LA⇒C

is a P-view, i.e. that external Opponent moves always point to the previous
move.

We show by induction on n that

P(Pn) = P(σ) ‖n P(τ)

52



⊆. Take p ∈ Pn+1. If p is an external Opponent move, suppose wlog that
it is in A. Take p′ _ p. Necessarily P(p′) terminates with a move in A with
Player polarity in A ⇒ B. Then P(p) ↾ A, B is an Opponent extension of a
play in σ by induction hypothesis and P(p) ↾ B, C = P(p′) ↾ B, C ∈ τ. Finally
P(p) ↾ A, C ∈ LA⇒C, since it consists in an Opponent extension of P-ending
P(p′) ↾ A, C which is in LA⇒C by induction hypothesis.

Otherwise p′ _ p is positive, either for σ or τ, suppose wlog that it is for
σ. Then either P(p) ↾ B, C = P(p′) ↾ B, C ∈ LB⇒C, or it is an immediate
Opponent extension of P(p′) ↾ B, C ∈ LB,C as required. If p corresponds to an
event in !B, then obviously P(p) ↾ A, C ∈ LA⇒C. If p corresponds to an event
in !A, then if p′ corresponds to an event in !A, P(p) ↾ A, C is an extension of
P(p′) ↾ A ⇒ C preserving alternation, so in LA⇒C. Finally if p′ corresponds to
an event in !B, we still have P(p′) ∈ P(σ) ‖n P(τ) terminating by a move with
Opponent polarity in B. By standard reasoning on polarities in interactions, it
follows that the last move of P(p′) appearing in A (if any) must have a Player
polarity in A. Therfore the extension of P(p′) with lbl((σ ⊛ τ)p) preserves
alternation in A ⇒ C and P(p) ↾ A, C ∈ LA⇒C. So it remains to show that
P(p) ↾ A, B ∈ P(σ). For that, we need to show that for all m ⊑P P(p) ↾ A, B,
pmq ∈ P(σ). For any strict P-ending prefix, it is true by induction hypothesis,
so we must just show that it holds for m = P(p) ↾ A, B. We calculate:

pP(p) ↾ A, Bq = pP(p′) ↾ A, Bq(lbl((σ ⊛ τ)p))

where by induction hypothesis, pP(p′) ↾ A, Bq is an Opponent extension of a P-

view in P(σ), therefore there is s′
− ∈ S such that pP(p′) ↾ A, Bq = P(s′). From

the usual arguments about immediate causality in a composition pullback, we
have necessarily s′ _ Π1 p. From there it is direct to observe that P(Π1 p) =
pP(p) ↾ A, Bq as required, so P(p) ∈ P(σ) ‖n+1 P(τ).

⊇. Take um ∈ P(σ) ‖n+1 P(τ), by induction hypothesis there if p ∈ Pn

such that P(p) = u. If m is an external O-move, then it is straightforward to
extend p accordingly, with the unique corresponding move with copy index 0,
as ensured by receptivity. Otherwise m is either a σ-move or a τ-move. Let us
assume wlog that it is a σ-move. By hypothesis we have

pum ↾ A, Bq = pu ↾ A, Bqm ∈ P(σ)

therefore there is s′ ∈ S such that P(s′) = pu ↾ A, Bqm. By backward se-
quentiality, s′ has a unique immediate dependency s _ s′, necessarily with

P(s) = pu ↾ A, Bq. But then, we observe that P(π1 p) = pP(p) ↾ A, Bq, which
follows from an immediate induction on ≤P. Therefore, P(s) = P(π1 p). So
by Lemma 4.32, the unique order-isomorphism satisfies:

[s]
θ

∼=S [π1 p]

So using backward sequentiality and the extension property of isomorphism
families, π1 p _ s′′. By receptivity, there is c ∈ !A ‖ S such that p _ [((1, s′′), c)]x =
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p′, for some x (that is here irrelevant, since all finite sets of events in the pull-
back are consistent, σ and τ being deterministic). By construction, we have as
required P(p′) = um.

So, we have constructed a functor:

P : ChoInn → Inn

Note that P satisfies the laws for a functor, even though its source is a ∼-
bicategory rather than a category. We will now show that this functor is full
and faithful.

P is faithful. First, we prove that it is faithful. Take σ : S → !A⊥ ‖ !B
and σ′ : S ′ → !A⊥ ‖ !B negative, deterministic sequential innocent such that
P(σ) = P(σ′), we want to establish that σ ≃ σ′.

Lemma 4.35. There is a isomorphism φ : S ∼= S ′, such that σ′ ◦ φ ∼ σ. In particular,
φ is a weak equivalence.

Proof. In a backward innocent event structure S, we say that s ∈ S have depth
n if [s] contains exactly n events. We write Sn for the projection of S to events
of depth less or equal than n. By induction on n, we define an isomorphism
of essps φn : Sn

∼= S ′
n such that σ′ ◦ φn ∼ σ, such that φn preserves depth and

preserves the copy index of (the projection to the game of) events of negative
polarity. Moreover, we ask that the family (φn)n is compatible, meaning that
φn+1 agrees with φn on events of depth less than n.

For n + 1 odd, the extension of φn is forced by receptivity and the require-
ment that φn+1 preserves the copy index of events of negative polarity. For
n + 1 even, pick s ∈ S of depth n + 1. Since n + 1 even, by alternation of
the game and courtesy of σ, pol(s) = +. Pick its immediate dependency
s0 _ s, and s′0 = φn(s0) ∈ S′. Since P(σ) = P(σ′), there is s′′ ∈ S′ such
that P(s) = P(s′′). Take s′′0 _ s′′. Necessarily, P(s0) = P(s′′0 ). Now, note that
since φn(s0) = s′0 we have P(s0) = P(s′0) as well – it follows from σ′ ◦ φn ∼ σ
and Lemma 4.32. Therefore, P(s′0) = P(s′′0 ). By Lemma 4.32, the unique order-
isomorphism satisfies:

[s′0]
θ

∼=S ′ [s′′0 ]

But from s′′0 _ s′′, we know by the extension property that there is s′0 _ s′

as well such that θ−⊂(s′, s′′). We set φn+1(s) = s′. Note that s′ is uniquely
determined by forward sequentiality and determinism, from that it is easy to
deduce that φn+1 so defined yields an order-isomorphism, and by construction
it satisfies the requirements.

Forming φ =
⊔

n∈ω φn we get the required weak equivalence. The fact that
φ preserves symmetry is an obvious consequence of Lemma 4.32.

Note that one consequence of that is that for ChoInn-strategies, if σ and σ′

are weakly equivalent then the weak equivalence can actually be assumed to
be an isomorphism between the corresponding essps S and S ′.
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P is full. Finally, it remains to show that P is full. Take s : A ⇒ B a
Hyland-Ong innocent strategy. Write PV(s) for the set of P-views of s, pos-
sibly extended by a ending Opponent move pointing to the latest move. For
m ∈ PV(s), write O(m) for the set of O-moves in m. Define an essp S having:

• Events, pairs (m, α) where α : O(m) → ω,

• Order, (m, α) ≤ (m′, α′) iff m ⊑ m′ and α, α′ compatible on their common
domain.

• Consistency, every finite set.

• Symmetry, the unique order-isomorphism between [(m, α)] and [(m′, α′)]
when m = m′.

By induction on n, we now define:

σn : Sn → !A⊥ ‖ !B

Take (m, α) _ (m′, α′), and assume that m′ = mb with b in B, the other case is
similar. If m′ is O-ending, then we set, with σn((m, α)) = (2, β):

σn+1((m
′, α′)) = (2, β ∪ {b 7→ α′(b)})

so the copy index of Opponent is set in the game as it is in the strategy. On the
other hand if m′ is P-ending (and so α = α′), we set:

σn+1((m
′, α)) = (2, β ∪ {b 7→ 〈♯m, ♯α〉})

where ♯m, ♯α denote natural numbers representing uniquely m and α, and 〈−,−〉 :
ω2 → ω is an arbitrary injection.

It is direct to check that σ =
⊔

n∈ω σn defines a ∼-strategy, and by construc-
tion we have P(σ) = s as needed – so P is full.
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