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S U M M A R Y

This study lays the groundwork for a new generation of earthquake source models based on

a general formalism that rigorously quantifies and incorporates the impact of uncertainties in

fault slip inverse problems. We distinguish two sources of uncertainty when considering the

discrepancy between data and forward model predictions. The first class of error is induced

by imperfect measurements and is often referred to as observational error. The second source

of uncertainty is generally neglected and corresponds to the prediction error, that is the

uncertainty due to imperfect forward modelling. Yet the prediction error can be shown to

scale approximately with the size of earthquakes and thus can dwarf the observational error,

particularly for large events. Both sources of uncertainty can be formulated using the misfit

covariance matrix, Cχ , which combines a covariance matrix for observation errors, Cd and a

covariance matrix for prediction errors, Cp, associated with inaccurate model predictions. We

develop a physically based stochastic forward model to treat the model prediction uncertainty

and show how Cp can be constructed to explicitly account for some of the inaccuracies

in the earth model. Based on a first-order perturbation approach, our formalism relates Cp

to uncertainties on the elastic parameters of different regions (e.g. crust, mantle, etc.). We

demonstrate the importance of including Cp using a simple example of an infinite strike-slip

fault in the quasi-static approximation. In this toy model, we treat only uncertainties in the

1-D depth distribution of the shear modulus. We discuss how this can be extended to general

3-D cases and applied to other parameters (e.g. fault geometry) using our formalism for Cp.

The improved modelling of Cp is expected to lead to more reliable images of the earthquake

rupture, that are more resistant to overfitting of data and include more realistic estimates of

uncertainty on inferred model parameters.

Key words: Inverse theory; Probability distributions; Earthquake source observations.

1 I N T RO D U C T I O N

Inferring earthquake source models is an essential ingredient in ef-

forts to understand the physics of seismic rupture phenomena and

the relationship of an earthquake with its tectonic and geodynamic

environment. As such, the earthquake source model is not only an

end into itself but serves as input into a variety of other related ap-

plications such as studies of fault zone rheology (e.g. Rice & Cocco
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UMR 7516, France.
†Now at: Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, California 91109, USA.

2007), earthquake energy budget analysis (e.g. Kanamori & Rivera

2006) and Coulomb stress transfer calculations (e.g. King 2007).

Source estimates are also useful for rapid assessment and response

to seismic disasters when they occur (e.g. Duputel et al. 2012b).

However, source inversion algorithms usually do not include real-

istic error analyses and their results are generally not accompanied

by reliable estimates of uncertainty. These limitations reduce the

utility of inferred rupture models and associated by-products. Fur-

thermore, uncertainty in both data and model predictions can cause

current source models to be significantly biased due to overfitting

of seismic and geodetic observations.

Descriptions of earthquake sources come in various flavours

depending on the nature of the data (e.g. seismological, geode-

tic, geological), the observation scale (i.e. regional or global), the

C© The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1
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2 Z. Duputel et al.

Figure 1. An illustration of variability of kinematic earthquake source models. Results of finite-source rupture modelling obtained by different research

groups are presented for the 1999 Izmit earthquake (Yagi & Kikuchi 2000; Bouchon et al. 2002; Delouis et al. 2002; Sekiguchi & Iwata 2002). The origin of

XY-coordinates is set at the epicentre location. These source models are available through the SRCMOD source inversion database (Mai 2012).

parametrization of the source (e.g. linear versus non-linear) and the

approach used to infer relevant parameters (e.g. Yabuki & Matsu’ura

1992; Wald & Heaton 1994; Ji et al. 2002; Minson et al. 2013). The

reliability of any source inversion depends on many factors includ-

ing the size and complexity of the event, the amount and quality

of data, the way in which data sample the source region and, while

usually disregarded, uncertainties in our forward models (i.e. our

model predictions).

The last decade has seen considerable improvements in the

fidelity of forward modelling capability (e.g. Komatitsch &

Vilotte 1998; Williams et al. 2005) and a substantial expan-

sion of geophysical observations including broad-band data from

dense seismic networks (e.g. USArray, http://www.usarray.org;

Geonet, http://geonet.org.nz; CENC, http://www.csndmc.ac.cn; F-

net, Okada et al. 2004), continuously recording geodetic positioning

data from permanent GPS installations (e.g. the Plate Boundary

Observatory, http://pbo.unavco.org; Geonet, http://geonet.org.nz,

Taiwan GPS Network, Yu et al. 1997) and spatially synoptic geode-

tic imaging data from orbiting radar and optical satellites (e.g. Si-

mons & Rosen 2007). Despite this progress in forward modelling

and data acquisition, one of the biggest obstacles to significant

progress in earthquake source modelling arises from imperfect pre-

dictions of geodetic and seismic data due to uncertainties in (or

imperfect knowledge of) the Earth structure—whose impact is gen-

erally ignored. Indeed, for large earthquakes and even aseismic

processes, our ability to measure ground motions frequently far ex-

ceeds our ability to model them. As discussed latter in Section 2 for

linear elastic deformation, the prediction errors due to earth model

inaccuracies scale with the fault slip. This aspect is particularly

important since large events with large amounts of slip will mag-

nify earth model errors in contrast to small earthquakes for which

measurement errors are dominant. Besides the necessity to continue

improving the accuracy and efficiency of forward calculations, one

of the main challenges today is thus to develop an accurate stochas-

tic model that better describes modelling uncertainty in predicting

geodetic and seismic data.

One approach to estimate the uncertainty in source parameters

for a given earthquake is to compare fault slip models obtained

by various research groups using different inversion approaches

(Mai 2012). Fig. 1 shows selected kinematic rupture models for the

1999 Izmit earthquake. Although these models are generally de-

rived from similar data sets, there is a large variability in inversion

results. The 1999 Izmit earthquake is not an isolated case. For many

events, such as the 1992 Landers or 2001 Arequipa earthquakes,

small differences in modelling techniques and data lead to striking

differences in inferred slip models (Wald & Heaton 1994; Hernan-

dez et al. 1999; Pritchard et al. 2007). When different methodologies

yield different results for the same event, it is not obvious how any

conclusion about the rupture process can be drawn.

This study focus on theoretical and algorithmic developments

needed for the next generation of finite-fault earthquake source

models by providing a general formalism to explicitly quantify the

impact of uncertainties in our forward models and to rigorously

incorporate such uncertainties in large ill-posed source inversion

problems. We stress the importance of using a stochastic forward

modelling approach in this process. It allows us to describe a proba-

bility distribution of predictions for a given source model, contrary

to a deterministic approach that provides a single set of (poten-

tially inaccurate) predictions. This idea of incorporating stochastic

(probabilistic) models in the inverse problem is not new and was in-

troduced in geophysics around 1980, notably by Tarantola & Valette

(1982). More recently, Yagi & Fukahata (2011) used such a formal-

ism and proposed a stochastic forward model based on adding Gaus-

sian noise to the unattenuated 1-D teleseismic Green’s functions.

This Gaussian noise is characterized by a covariance matrix that is

partially specified a priori. Minson et al. (2013) also presented a

Gaussian model for the uncertain prediction error in the forward

modelling, taking a diagonal covariance matrix with variances that

scale with the square of observed amplitudes. In the two approaches,

the scale factor that controls the prediction-error variances is incor-

porated in the model parameters to be inverted. Based on these early

studies, we develop here a new formulation exploiting more of the
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Accounting for model prediction uncertainty 3

physics of the forward problem to improve the modelling of the

prediction covariance matrix. This general formalism can be used

for various problems (e.g. earthquake or volcanic source inversions

based on seismic or geodetic data) and relates input uncertainties in

the earth model or source geometry to the corresponding distribu-

tion of predictions. As recognized by Yagi & Fukahata (2011) and

Minson et al. (2013), a physically based stochastic model must also

account for the dependence of the prediction uncertainty upon the

slip model.

We begin by developing the concept of the misfit covariance ma-

trix as used in inversions of slip on subsurface faults. This matrix is

the sum of a covariance matrix for observations (often assumed in-

dependent) and a covariance matrix for prediction errors associated

with inaccurate model predictions (often entirely ignored). We then

describe how a physically informed prediction covariance matrix

can be obtained. In particular, we consider the effect of uncertain-

ties in the earth model. Our description is based on a Bayesian

formulation of the inverse problem but our formalism can also be

used in optimization methods. Although our approach is general

and can be used for various seismic and geodetic data sets, we ex-

plore here the advantage of including more structured reasonable

prediction covariance matrices by using simple quasi-static models.

We also discuss how to account for other sources of prediction un-

certainty such inaccurate as fault geometries. Given the increased

computational complexity, we leave a similar development of the

prediction covariance for kinematic modelling to a future study.

2 O N T H E I M P O RTA N C E O F

P R E D I C T I O N U N C E RTA I N T Y I N

S O U RC E I N V E R S I O N P RO B L E M S

Let dobs = [dobs
1 , dobs

2 , . . . , dobs
N ]T be the set of N field observations

used in the source inversion process. Let also define m as the set

of source model parameters in the M-dimensional model space M.

In the source inversion process, we want to use dobs to learn about

m. As in many inverse problems, error models play a central role

in the formulation of uncertainties and our knowledge of m will

strongly depend on the information they provide. In our problem,

we can separate two sources of error that we can account for using

appropriate stochastic models. These two fundamental probability

models are discussed in the following.

The first source of uncertainty comes from the observational

error that is induced by the measurement process. When measuring

an N-dimensional quantity d, measurements are associated with an

uncertain error e given by

e = d∗ − d. (1)

In this equation, d∗ is a stochastic variable representing uncertain

measurement and d is the actual displacement value. The set of field

observations dobs = [dobs
1 , dobs

2 , . . . , dobs
N ]T can be seen as a single

realization of d∗. In other words, dobs is a fixed vector corresponding

to actual measured values and d∗ is a stochastic vector representing

uncertainty on those field observations. We will assume that positive

and negative errors of equal magnitude are equally plausible and

so take e to have zero mean. We also choose a covariance matrix

Cd for e. Following the Principle of Maximum Entropy (Jaynes

1983, 2003), the probability density function (PDF) that assumes

the least additional information about e under these conditions is a

Gaussian probability density p(e|d) = N (e|0, Cd) with covariance

matrix Cd and zero mean (cf. Bishop 2006). Our stochastic model

for the measurement process is thus given by

p(d∗|d) = N (d∗|d, Cd)

=
1√

(2π )N |Cd|
exp

(
−

1

2
(d∗ − d)T C−1

d (d∗ − d)

)
, (2)

where p(d∗|d) is the probability (density) for getting the measured

value d∗ when the uncertain physical quantity being measured has

the value d. The PDF p(d∗|d) and the associated measurement co-

variance matrix Cd depend of course on the nature of measurement

and on the type of instrument used. A common model is to take

independent observational errors (i.e. diagonal Cd). However, for

observations like InSAR or seismic data, off-diagonal components

should be included in Cd to allow correlation of measurement errors

between neighbouring data samples (e.g. Lohman & Simons 2005;

Fukahata & Wright 2008; Duputel et al. 2012a).

The second source of uncertainty corresponds to our imperfect

knowledge of d for a given source model m, which comes from the

prediction error due to imperfect forward modelling, also referred

to as epistemic error. For earthquake source modelling problems,

this component includes but is not limited to, lack of fidelity in the

fault geometry, oversimplifications of the mechanical earth model

and approximations made when calculating the Earth’s response to

an applied force.

Let g(�, m) be a deterministic model for the forward predictions

for a source model m. In addition to the source model, the forward

model depends on a set of uncertain properties parametrized by a

vector � that is not solved for (e.g. earth model elastic properties,

fault geometry). We are uncertain about what value to take for the

parameters �. Suppose �̃ denotes the most plausible value a priori.

Then, for a given source model m, we obtain the corresponding

prediction dpred = g(�̃, m). We define the uncertain prediction error

by

ǫ = d − dpred = d − g(�̃, m), (3)

which is taken as a stochastic variable associated with a probability

density p(ǫ|m), that describes the uncertainty in the actual physical

quantity d (i.e. displacement), given dpred. Using a similar argument

for ǫ as for e above, we choose a maximum entropy distribution

subject to a zero mean and a covariance matrix Cp(m) to get the

Gaussian distribution p(ǫ|m) = N [ǫ|0, Cp(m)]. The correspond-

ing stochastic forward model for the predictions is then given by

the conditional Gaussian PDF

p(d|m) = N
[
d|g(�̃, m), Cp(m)

]
=

1√
(2π )N

∣∣Cp(m)
∣∣

× exp

(
−

1

2

[
d − g(�̃, m)

]T
Cp(m)−1

[
d − g(�̃, m)

])
.

(4)

Even though the prediction error is generally neglected (i.e. Cp = 0),

we know that its contribution can be comparable or even larger than

measurement errors, in particular for large earthquakes. This can be

easily understood if we consider, for example, a linear formulation

of the forward problem g(�, m) = G(�) · m. In this case, we can

write

ǫ =
[
G(�) − G(�̃)

]
· m = Ŵ(�̃,�) · m, (5)

where the matrix Ŵ describes the uncertainty in G due to the un-

certainty in �. In this equation, the level of the prediction error

ǫ modelled by Cp scales with the magnitude of the source model
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4 Z. Duputel et al.

m (this dependence is also discussed in Yagi & Fukahata 2011).

The observational uncertainties, on the other hand, are independent

of the model parameters and are essentially controlled by the na-

ture and quality of the measurements. For large earthquakes, the

contribution of Cd is thus frequently negligible compared to Cp.

At this point, we therefore have (1) a stochastic model p(d∗|d)

associated with Cd in eq. (2) describing the measurement uncer-

tainty and (2) a stochastic forward model p(d|m) associated with

Cp in eq. (4) describing the prediction uncertainty. Using Bayesian

source inversion, our goal here is to combine the available infor-

mation from observations and prior information about the model

parameters and forward modelling to construct a posterior distri-

bution for the source model parameters. To do so, we use Bayes’

theorem to get the posterior PDF p(m|dobs) over the model space

(Bayes 1763):

p(m|dobs) = κ p(dobs|m) p(m), (6)

where κ is a normalization constant and p(dobs|m) is a likelihood

function:

p(dobs|m) =

∫

Dpred

p(dobs|d) p(d|m) dd. (7)

Strictly speaking, p(dobs|m) is a marginal or integrated likelihood in

which d has been marginalized out over the prediction space Dpred,

which is the space of all conceivable forward model predictions.

Eq. (6) states that the posterior probability density of m given the

measurements dobs is proportional to the product of a PDF p(m)

describing the prior information on m and the likelihood function

p(dobs|m), which gives a measure of how well the model m explains

the data dobs. A similar result can be obtained using the concept

of conjunction of states of information as introduced by Tarantola

& Valette (1982). In eq. (7), p(dobs|d) comes from substituting

d∗ = dobs in the probability model p(d∗|d). It describes the likelihood

of having observed dobs if the actual displacement was d. Using the

stochastic models developed in eqs (2) and (4) in eqs (6) and (7),

we can then show (cf. Appendix A)

p(m|dobs) = η(m) p(m) exp

(
−

1

2

[
dobs − g(�̃, m)

]T

× Cχ (m)−1
[
dobs − g(�̃, m)

] )
, (8)

where Cχ (m) is the misfit covariance matrix defined as

Cχ (m) = Cd + Cp(m) (9)

and η(m) is a normalization factor:

η(m) = κ (2π )−N/2 |Cd|
−1/2

∣∣Cp(m)
∣∣−1/2 ∣∣C−1

d + Cp(m)−1
∣∣−1/2

.

(10)

It is important to note that the covariance Cχ plays a central role in

the inversion process. First of all, Cχ controls the shape of the poste-

rior probability density p(m|dobs) and therefore affects the solution

of the inverse problem. Secondly, Cχ is the only term in eq. (8) that

describes the statistics of measurement (Cd) and model prediction

errors (Cp). Among these two contributors, Cd can easily be more

readily taken into account because the statistics of observational un-

certainties are generally well characterized. Cp, on the other hand,

is usually neglected even if its contribution can be larger than Cd

as discussed above. In this paper, we advocate improved modelling

of the prediction-error uncertainty in any source inversion prob-

lem by developing a stochastic forward model using a covariance

matrix structure based on an explicit treatment of uncertainties in

the predictions.

3 A S T O C H A S T I C M O D E L F O R T H E

P R E D I C T I O N U N C E RTA I N T Y

The development of a covariance matrix for the predictions (Cp) is

important regardless of the particular approach one uses to invert for

source model parameters. Indeed, in most source inversion problems

(e.g. Hartzell & Heaton 1983; Delouis et al. 2000; Ji et al. 2002;

Simons et al. 2011; Minson et al. 2013, 2014), the discrepancies

between data dobs and forward predictions g(�̃, m) for a source

model m are quantified by defining a least-squares misfit function

of the form

χ (m) =
1

2

[
dobs − g(�̃, m)

]T
· C−1

χ ·
[
dobs − g(�̃, m)

]
. (11)

In a parameter optimization process, χ (m) is minimized while

in a Bayesian formulation the likelihood function is given by

p(dobs|m) = η(m)exp ( − χ (m)). Therefore, whatever the source

estimation method, a central role is played by the misfit covariance

matrix, Cχ = Cd + Cp. As we discussed previously, Cp is the domi-

nant term for large earthquakes and the construction of an improved

prediction covariance matrix can lead to improved source imaging

techniques. If one adopts a regularized least-squares approach for

finite-fault models using a Tikhonov regularization (e.g. minimum

moment, minimum roughness), then the particular choice of the

penalty parameter depends on the effective information content

of the data. This dependence on Cχ is true regardless of whether

one chooses the amount of damping by some L-curve approach,

cross-validation or Bayesian model class selection. Similarly, if one

chooses to adopt a fully Bayesian approach, then having the appro-

priate covariance matrix can control the extent to which one does

or does not overfit the observations.

3.1 Prediction uncertainty due to inaccuracies in the

forward model

The derivation proposed here is developing ideas proposed by

Duputel et al. (2012a), who demonstrated that centroid location

uncertainty in point-source moment tensor inversions can be ac-

counted for by designing a prediction covariance matrix Cp based

on the relevant physics of the forward problem. In this study, we

consider the effects of properties of the forward model which are

not solved for but can significantly affect the predictions (e.g. Earth

elastic properties, fault geometry).

Hereafter, we derive the statistics of the prediction uncertainty

by assuming that g(�, m) for given generic properties � of the

forward model is well approximated by linearized perturbations of

our predictions g(�̃, m) for the a priori set of parameters �̃:

g(�, m) ≈ g(�̃, m) + K� (�̃, m) · (� − �̃), (12)

where the matrix K� (�̃, m) is the so-called sensitivity kernel of the

predictions with respect to �:

(K� )i j (�̃, m) =
∂gi

∂� j

(�̃, m). (13)

Under the first-order approximation of eq. (12), we can write the

prediction error ǫ as

ǫ = g(�, m) − g(�̃, m) ≈ K� (�̃, m) · δ�. (14)
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Accounting for model prediction uncertainty 5

Using eq. (12) we can write Jacobian rule p(�) = p(d|m)| ∂d

∂�
|,

where | ∂d

∂�
| is the Jacobian determinant of the transformation

d = g(�) and we write the prediction covariance as

Cp(m) =

∫ [
g(�, m) − g(�̃, m)

]

×
[
g(�, m) − g(�̃, m)

]T
p(�) d�, (15)

where p(�) is the prior probability density describing the uncer-

tainty in the generic properties �. We assume here that p(�) is a

Gaussian distribution:

p(�) = N (�|�̃, C� ), (16)

which corresponds to the least informative PDF that is adequate for

given a priori parameters �̃ and a covariance matrix C� defined

as

C� =

∫
(� − �̃)(� − �̃)T p(�) d�. (17)

If more information is available about �, one can of course choose

another more informative form of p(�). By plugging eqs (14) and

(17) into eq. (15), it follows that

Cp = K� · C� · KT
� , (18)

where we drop the variables �̃ and m for clarity. Using the for-

mulation developed above, we can do much better than predict-

ing a set of observations for a given source model. We can now

construct a probability distribution for the predictions p(d|m) =

N [d|g(�̃, m), Cp], that is, a stochastic forward model based on

more of the physics of the problem and reflecting uncertainties in

properties � which are not inverted but can affect the predictions.

3.2 Accounting for inaccuracies in the earth model

Among the different sources of uncertainty, the approximate na-

ture of the chosen earth model is of great interest as it is one of

the largest contributors to forward modelling errors (Savage 1987;

Hjörleifsdóttir & Ekström 2010; Yagi & Fukahata 2011). We explic-

itly treat this aspect in constructing a stochastic forward model for d.

In some extreme cases, an earth model �̃ can be very different from

the actual elastic structure and there will be no simple relationship

between the corresponding predictions and the actual displacement

values. In such situations, results of our inversion would be unreli-

able and we should focus our efforts on obtaining a more accurate

earth model. However, in most applications, elastic models are rea-

sonable approximations of the true underlying elastic structure of

the Earth and we may still be able to solve the source inversion

problem by designing an appropriate misfit covariance model, Cχ .

As in previous section, we can derive the statistics of the pre-

diction uncertainty by assuming that g(�, m) for given elastic pa-

rameters � is well approximated by linearized perturbations of our

predictions g(�̃, m) for the a priori earth model �̃. The elastic

parameters in � being strictly positive, we use the formulation de-

scribed in Section 3.1 with � = ln �. We therefore assume here that

p(�) is a log-normal distribution which corresponds to the least-

informative PDF (i.e. the maximum entropy PDF) that is adequate

for a Jeffrey’s parameter (Tarantola 2005):

p(ln �) = N (ln �| ln �̃, C	), (19)

with ln �̃ and C	, respectively, the mean and covariance of ln �.

This choice of a log-normal distribution is also justified by the

fact that modern tomography techniques are often based on relative

model perturbations (e.g. δln 	 = δ	/	, Tromp et al. 2005). The

prediction covariance matrix associated with such uncertainty in the

earth model is then given by

Cp = K	 · C	 · KT
	, (20)

where the matrix K	 is the sensitivity kernel of the predictions with

respect to the earth model parameters:

(K	)i j (�̃, m) =
∂gi

∂ ln 	 j

(�̃, m). (21)

In Section 4, we consider a simple 1-D case for which 	j represents

the shear modulus μj in the jth layer of the tabular elastic model

�̃ = μ̃ used to compute the predictions gi (μ̃, m). In the 3-D case,

	j = μj can represent the shear modulus in the jth region of the

earth model (cf. Appendix B).

3.3 Practical implementation in a Bayesian framework

In this study, we use a Bayesian sampling algorithm called Cascad-

ing Adaptive Transitional Metropolis In Parallel (CATMIP), which

allows sampling in very high dimensional problems in a parallel

computing framework (Minson et al. 2013). CATMIP combines the

Metropolis algorithm with elements of simulated annealing and ge-

netic algorithms to dynamically optimize the algorithms efficiency

as it runs. As proposed initially by Beck & Au (2002) and Ching

& Chen (2007), the CATMIP algorithm samples from a series of

intermediate PDFs:

f (m, βi ) ∝ p(m) p(dobs|m)β ,

i = 1, . . . , B

0 = β0 < β1 < β2 < . . . < βB = 1. (22)

In this procedure, we start at β0 = 0 to sample the prior and slowly

increase β i through several transitional steps. When β i = βB = 1,

we obtain an accurate sampling of the posterior probability den-

sity p(m|dobs). As proposed in Ching & Chen (2007) and Beck &

Zuev (2013), we optimize the transitional process by choosing each

δβ i = β i + 1 − β i adaptively rather than using a pre-set schedule

for the sequence of β i. More specifically, each δβ i is chosen such

that the effective sample size between f(m, β i) and f(m, β i + 1) is

about 50 per cent (Beck & Zuev 2013). Between each transitional

step, a large number of Markov chains run in parallel. Each chain

is governed by the Metropolis algorithm in which the probability

of acceptance of one candidate sample is determined by comparing

the value of the intermediate PDF with that of the current sample

(Minson et al. 2013).

Our derivation is consistent with ideas proposed initially by

Tarantola & Valette (1982), who argued that modelling uncertain-

ties can be incorporated into the inversion framework by adding a

term to the data covariance matrix that represents the uncertainties

in the physical theory (i.e. Cp). However, we differ from Tarantola

& Valette (1982) by recognizing that our prediction covariance ma-

trix Cp should also depend on the earthquake source model and

is not just a constant matrix, that is, changing the magnitude and

distribution of fault slip will change Cp for a given elastic model.

For practical implementation, there are different ways of dealing

with the dependence of Cχ = Cd + Cp upon the source model m.

For example, one can calculate Cp(mprior) using an a priori source

model, mprior, such as a centroid-moment-tensor solution or a pre-

liminary finite-fault model and assume that Cp is constant. In con-

trast, we propose here to update the prediction covariance during the
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6 Z. Duputel et al.

source inversion process. More precisely, in our implementation of

CATMIP, the sample mean 〈m〉 at each transitional step is used as

a new model to re-compute Cp. Therefore, we assume that Cp does

not vary significantly in the neighbourhood of 〈m〉, which ensure

that the likelihood term p(dobs|m) in eq. (22) is Gaussian for a given

value of β. For computational efficiency, the slip inversion being a

linear problem d = Gm, we can pre-calculate the sensitivity kernels

for each Green’s functions in the matrix G

(KG
	)i jk =

∂ G ik

∂ log 	 j

, (23)

such that

K	 = KG
	 · 〈m〉. (24)

In practice, this approach can be used for static and seismic data.

Although KG
	 can be pre-computed, its calculation remains a

challenging problem. We propose here to use the perturbation the-

ory which has been extensively employed in seismic tomography

through the Born approximation (e.g. Marquering et al. 1998;

Tromp et al. 2005; Virieux & Operto 2009) and has been intro-

duced for quasi-static problems by Du et al. (1994) and Cervelli

et al. (2002). In the motivational example presented in Section 4,

we use analytical solutions that are available in the quasi-static case

for infinite strike-slip faults embedded in a layered earth model (Du

et al. 1994). For non-infinite faults, one can increase the efficiency

of the sensitivity kernel calculation by adopting an adjoint formu-

lation. This approach allows a reduction in the computational cost

when the number of stations is small compared to the number of

elements and is popular in various fields such as 3-D seismic tomog-

raphy (Tarantola 1984, 1988; Tromp et al. 2005), inverse problems

in elasticity (Bonnet & Constantinescu 2005) and meteorological

studies (Talagrand & Courtier 2007). To further increase the com-

putational tractability of the sensitivity kernel calculations, we can

also consider a limited number of tectonically parametrized regions

where the uncertainties on elastic parameters are prescribed. Indeed,

we are not interested in assigning variable uncertainties on a fine

mesh but rather describing the earth model uncertainty in a limited

number of tectonic regions (e.g. crust, mantle, etc.).

4 A P P L I C AT I O N T O G E O D E T I C DATA :

A M O T I VAT I O NA L E X A M P L E

In this synthetic application, we study the static surface displace-

ments due to a vertical strike-slip fault and solve for the depth

distribution of slip given uncertainties in the depth distribution of

shear modulus (μ) in the elastic medium. With this purpose, we

consider a simple model of an infinite 2-D strike-slip fault embed-

ded in a shallow low compliance layer of thickness H overlying an

elastic half-space (cf. red line on Figs 2b and d). We define μ2,

the shear modulus in the half-space and μ1, the shear modulus in

the shallow layer so that μ2/μ1 = 1.4. Given synthetic data at 100

observation points regularly sampled from the surface deformation

of this 2-D model, we infer the depth distribution of slip assuming a

homogeneous elastic half-space and accounting for the uncertainty

in μ using the formulation of Cp described in Section 3.2. For sim-

plicity, we assume no uncertainty on the Poisson’s ratio although

this can easily be implemented using our formalism of Cp. The 2-D

calculation of Cp, the fault parametrization as well as practical im-

plications of using a non-constant prediction covariance structure

are addressed in the following sections.

4.1 Calculation of Cp in two dimensions

In this application example, we want to take into account the pre-

diction error due to uncertainty in the 1-D shear modulus structure

(� = μ). In this case, the prediction covariance Cp defined in eq.

(20) can be rewritten as

Cp = Kμ · Cμ · KT
μ . (25)

From this equation, we know that in order to obtain Cp, we need

to estimate the shear modulus sensitivity kernel Kμ and to choose

an appropriate covariance Cμ describing the uncertainty on μ. For

practical implementation, we discretized the earth model into 50

small layers from depth of 0 to 5H, where H is the thickness of the

shallow layer. We then compute the sensitivity of the predictions

with respect to the shear modulus in each layer using the first-order

perturbations introduced initially by Du et al. (1994) for infinite

strike-slip faults. The calculation of Kμ in the quasi-static case is

detailed in Appendix B.

In this simple implementation of Cp, the covariance matrix Cμ

is used to describe the uncertainty and correlations of the shear

modulus for each of the 50 layers used to discretize the earth model.

Various covariance structures in Cμ can designed depending on

the amount of information available about the earth model. Two

different forms of Cμ are presented in Figs 2(a) and (c). To illustrate

the corresponding uncertainty on μ, Figs 2(b) and (d) show 1000

stochastic earth model realizations that are drawn for each form of

Cμ (cf. eq. 16). It should be noted that static predictions are only

affected by gradients in elastic parameters and are not sensitive to

absolute values in μ. Therefore, in this implementation, we take

the half-space as the reference and allow the shear modulus to vary

in the shallow layers. In Figs 2(a)–(b), we assume that the shallow

layer thickness is known but that the shear modulus contrast with the

homogeneous half-space is uncertain. In this case, we have a sharp

transition in Cμ between the shallow layer and the homogeneous

half-space. In Figs 2(c)–(d), we consider the layer thickness as

uncertain and we assume a smooth transition using a decaying

exponential correlation function for depth larger than 0.8H.

Figs 3(a) and (c) show the corresponding covariance matrices Cp

obtained for a simple uniform unit slip distribution between 0 to

0.9H where H is the thickness of the shallow layer. Figs 3(b) and

(d) present 1000 stochastic prediction realizations for both versions

of Cp. Note that Cp is not very different for the two forms of Cμ,

even though the prediction uncertainty for distant stations is slightly

larger if we include uncertainty in the layer thickness. Several inter-

esting features can be identified in the prediction covariance matrix

structure. From the diagonal elements of Cp, we note first an in-

crease of the prediction uncertainty as one approaches the fault,

in agreement with the idea proposed by Minson et al. (2013) that

mismodelling error should be roughly proportional to the data am-

plitude. However, we also note a drop of prediction uncertainty for

observation points very close to the fault, since they provide direct

slip measurements that have little sensitivity to the shear modulus.

The off-diagonal covariance components show a clear anticorrela-

tion with values on the opposite side of the fault for the form of

Cμ considered here. If the predicted data happen to be anomalously

large on one side, the prediction must also be anomalously large but

of opposite sign on the other side of the fault. The prediction covari-

ance Cp thus provides essential information about data weighting

and data correlation that should be taken into account in the inverse

problem.
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Accounting for model prediction uncertainty 7

Figure 2. Uncertainty in the 1-D shear modulus structure μ. The shear modulus uncertainty is presented in (a)–(b) assuming a fixed thickness H for the shallow

layer and in (c)–(d) considering the layer thickness as uncertain. For both cases, we present the shear modulus covariance matrix Cμ in (a) and (c). Using eq.

(16) to sample for each form of Cμ, we show 1000 stochastic earth model realizations in (b) and (d), where individual stochastic realizations are plotted in

black and the actual earth model is presented in red. We define μ1, the shear modulus in the shallow layers and μ2, the shear modulus in the half-space.

4.2 A side comment on fault parametrization

In this section, we investigate the model resolution in order to design

a proper parametrization of the fault. We aim to derive a fault

discretization that allows us to accurately reflect the slip distribution

and account for the resolving power of available measurements.

Furthermore, to allow a natural comparison between the inferred

model and the true slip distribution, we need to understand the

fundamental spatial resolution of the estimated slip model.

Fig. 4 shows the inversion results obtained for a target slip dis-

tribution with 1-m uniform slip (i.e. m = 1 m) at depths between 0

and 0.9H. We use p(m) = U(−0.3, 20)M as the prior information

on the slip parameters m (i.e. a uniform probability distribution

from −0.3 to 20 m in M-dimensions). As described above, the data

computed for a layered half-space with μ2/μ1 = 1.4 (cf. red line

in Fig. 2 d) is inverted using Green’s functions for a homogeneous

half-space including our formulation of Cp (using the shear modulus

structure Cμ shown in Fig. 2c). The results obtained if we neglect

Cp are presented in Fig. S1 of the Supporting Information and the

advantages of including Cp in the inversion are discussed latter (see

Section 4.3).

Histograms in Fig. 4(a) present the marginal PDFs obtained if the

fault is discretized into 16 fault patches. Apart for the shallowest

subfault, the shape of these marginals clearly suggests a multivari-

ate Dirichlet distribution of slip over group of adjacent patches. An

Np-dimensional Dirichlet distribution produces sets of Np stochastic

positive numbers that sum to a given constrained value (cf. Min-

son et al. 2013). The marginal of a Dirichlet distribution is a beta

distribution of the form

β(mi |1, Np − 1) ∝ (1 − mi )
Np−2, (26)

where we assumed unit concentration parameters (Bishop 2006).

The best-fitting Beta distributions shown in black in Fig. 4(a) in-

dicate that optimum values for Np range between 2 and 4. This

suggests that the sum of slip on Np ∼ 3 neighbouring patches can

be resolved while it is poorly constrained on individual subfaults.

Fig. 5 shows some model samples chosen randomly near the mean of

the posterior distribution. For these models, the distribution of slip

shows strong oscillations over adjacent patches while the average

slip over group of subfaults are consistent with the target model. The

best-fitting Dirichlet distributions along with this checker-boarding

of neighbouring subfaults indicate that the slip can be well resolved

over Np ∼ 3 neighbouring patches, that is, at a scale of about 0.2H.

Histograms in Fig. 4(b) present marginal PDFs similar to Fig. 4(a)

with the fault discretized into 32 fault patches. In this case, the best-

fitting Dirichlet distribution indicates checkerboarding over Np ∼

6 patches which corresponds to a resolution scale of about 0.2H,

consistent with results obtained using the 16 patches discretization.
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8 Z. Duputel et al.

Figure 3. Prediction uncertainty in a 2-D quasi-static case. We assume a simple infinite strike-slip fault with unit slip from the free surface to 0.9H, where H

is the thickness of the shallow layer (cf. red line in Fig. 2). Panels (a) and (b) illustrate the prediction uncertainty statistics if we assume a fixed thickness for

the shallow layer (cf. Figs 2a–b). Panels (c) and (d) present the predictive stochastic model obtained if we consider some uncertainty on the layer thickness (cf.

Figs 2c–d). For both cases, we present the corresponding prediction covariance matrices in (a) and (c). For each stochastic model, we show 1000 stochastic

predictions in (b) and (d) in black assuming a homogeneous half-space. The predicted data for the actual layered earth model is shown in red and the predictions

for a homogeneous half-space are shown as yellow dashed lines.

There are several different possibilities to take into account this

limited resolution. A first possibility is to increase the size of

patches, therefore using a coarse fault discretization. This possi-

bility has already been explored by Pritchard et al. (2002) and

Barnhart & Lohman (2010) who proposed to use variable patch

sizes depending on the resolution scale on the fault. On the other

hand, one should assign small patch sizes to enhance the accuracy of

the forward modelling in order to minimize parametrization errors

due to the assumption of constant slip on elements that produces

sharp discontinuities. A better practice is thus to use a discretization

smaller than the actual resolution scale and eventually to filter the

slip distribution a posteriori using a smoothing or averaging length

comparable to the resolution scale. Therefore, we prefer here to use

16 fault patches and to account for the model resolution scale us-

ing local averaging rather than using coarse discretization. Fig. 4(c)

shows marginal distributions of filtered model samples using an

arithmetic mean over a sliding window of Np = 3 patches. These re-

sults show a Gaussian-like distributions that are well centred around

the target slip value (i.e. m = 1 m), which confirms the possibility

to resolve slip over three to four patches.

4.3 Comparison of inversion results with and without

neglecting the prediction uncertainty

To assess the impact of including Cp in the estimation process, we

compare inversion results with and without neglecting the predic-

tion uncertainty. We assume a non-uniform target slip distribution

from 0 to 0.9H presented in Fig. 6(a). We compute the data for the

layered half-space presented in red in Fig 2(d) and add 5 mm of un-

correlated Gaussian observational noise. The resulting data vector

is presented in red in Figs 6(d)–(f). Once again, the source inversion

is performed assuming a homogeneous half-space. We therefore in-

clude the two classes of errors discussed in Section 2—errors on

the measurements and in the predictions. As described before, we

use a simple uniform prior p(m) = U(−0.3, 20)M on the slip distri-

bution, a fault discretized into 16 patches, and a smoothing window

over three patches. The measurement covariance matrix Cd is diag-

onal with standard deviation of 5 mm. For the calculation of Cp, we

consider the first layer thickness as uncertain (i.e. Cμ in Fig. 2c) and

use a prediction covariance structure similar to the one presented in

Fig. 2.

The comparison of the posterior model distribution mean with

and without neglecting the prediction uncertainty are shown, re-

spectively, on Figs 6(b) and (c). The corresponding 1-D and 2-D

marginal posterior PDFs for each fault patch are also presented

in Fig. 7 [each p(mi|dobs)] and Fig. 8 [each p(mi, mj|dobs)] based

on nearly 700 000 samples of the slip vector m. We note signif-

icant discrepancies in the inversion results depending on whether

the prediction covariance matrix Cp is included or ignored. If Cp is

neglected, the mean of the distribution shown in Fig. 6(b) is very

different from the target model in Fig. 6(a). Estimated slip values

are larger than the target model for depths between 0.2 and 0.4H

and significantly lower than the target slip value at larger depth. We

note also that the uncertainty on the slip distribution is clearly un-

derestimated: the marginal PDFs in Figs 7(a) and 8(lower left) show

very narrow peaks at large depth that are clearly shifted with respect

to the target slip values. On the other hand, if Cp is included, we
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Accounting for model prediction uncertainty 9

Figure 4. Source estimation for a constant unit slip distribution. Raw marginal PDFs for the slip in each fault patch are shown in (a) if the fault is discretized

into 16 patches and in (b) if the fault is discretized into 32 patches. The target slip model is indicated as dashed black lines and the mean of the distribution is

shown in blue. The number of parameters Np of the best-fitting marginal Dirichlet distribution (black curves) is indicated for each patch. The marginal PDFs

for 16 patches after using a moving average over three neighbouring patches is shown in (c).

Figure 5. Examples of model samples chosen near the mean of the posterior

distribution. The fault from 0 to 0.9H is discretized into 16 fault patches.

The depicted models are the four samples closest to the mean of the posterior

distribution in a CATMIP simulation of 8192 samples.

obtain much broader posterior distributions centred around a mean

model that is in agreement with the target slip model. This increase

of estimated posterior uncertainty is particularly visible on the 2-D

marginal posterior PDFs in Fig. 8. In this figure, we also note a

slight correlation between neighbouring patches at large depth (i.e.

for patches P 5–P 16), which is certainly related to the averaging of

slip on neighbouring patches as described in the previous section.

This correlation among adjacent patches will not affect inversion

results as long as the slip distribution is relatively smooth as in

Fig. 6(a). It can however be problematic if the target model includes

short-scale variations of slip. To explore this possibility, Fig. 9 shows

inversion results for a target model including an abrupt drop of 1 m

in the slip distribution at depth 0.56H (cf. dashed black lines). As

in the case of the smoother slip model in Fig. 7 , the introduction of

Cp significantly improves the posterior model estimates. However,

in Fig. 9(b), we note that the mean model (blue lines) is relatively

smooth and does not reproduce the slip step at a depth of 0.56H.

The step in slip cannot be recovered because in this example we can

only resolve features over a scale corresponding to three neighbour-

ing patches (cf. Section 4.2). Consequently, the mean model shows

better agreement with the filtered target model shown in white in

Fig. 9(b), which corresponds to a three-neighbouring-patches mov-

ing average of the initial target model. In any case, note that both

raw and filtered target models are within the error bounds defined

by the posterior marginal distribution histograms. The two simple

models presented here clearly illustrate the importance of using an

accurate stochastic model for the prediction uncertainty in order to

reliably infer the posterior distribution of source model parameters.

Using our formulation for Cp, we can obtain more realistic estimates

of the posterior uncertainty but also improve the slip distribution

model.

4.4 Dependence of prediction uncertainty upon the source

model

An important finding of this work is the dependence of the prediction

error upon the source model parameters m. Two critical questions
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10 Z. Duputel et al.

Figure 6. Comparison of inversion results with and without neglecting the prediction uncertainty. Panel (a) is the target slip model. The mean of the posterior

distributions are shown in black (b) when the prediction uncertainty is neglected and (c) when Cp is included in the estimation process. The continuous red

line corresponds to the target slip model. Comparisons between data and predictions for each model in a homogeneous half-space are shown in (d)–(f). The

data are presented in red. The predictions shown in yellow are calculated for each model presented in black in (a)–(c). Black lines correspond to a set of 1000

stochastic realizations drawn from the posterior predictive PDF defined in eq. (27). The residuals between data and predictions are shown in (g)–(i). The yellow

line is the difference between the data and the predictions presented, respectively, in red and yellow in (d)–(f). Black lines are the residuals between data and

the 1000 stochastic predictions shown in (d)–(f).

need to be addressed. First, how is it possible to account for the

coupling between Cp and the source model? Secondly, what is the

variation of Cp as a function of m?

As discussed in Section 3.3, we propose here to account for the

coupling between Cp and m by updating the covariance at each

transitional step (i.e. increase of β in eq. 22) using the mean of the

model distribution. The prediction uncertainty covariance matrix

Cp is therefore considered here as a by-product of the inversion.

We explored different possibilities to design Cp at β0 = 0: (1)

calculating Cp from the mean of the distribution 〈m〉 at β0 = 0,

(2) computing Cp for a uniform unitary slip distribution as a func-

tion of depth, (3) calculating Cp from the solution of a prior source
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Accounting for model prediction uncertainty 11

Figure 7. 1-D marginal posterior PDFs for each patch as a function of depth. The marginal probability density histograms are shown in green (a) when the

prediction uncertainty is neglected and (b) when the prediction uncertainty is taken into account by including Cp in the inversion problem. The target slip

model is indicated as dashed black lines and the mean of the distribution is shown in blue.

inversion in which Cp is neglected and (4) using a preliminary form

of Cp whose diagonal elements are proportional to the observations

as suggested by Minson et al. (2014). Fig. 10 presents the evolu-

tion of the prediction covariance in the sampling process using the

mean of the distribution 〈m〉 at β0 = 0 (cf. Fig. 11). This evolution

of Cp corresponds to the estimation process for the target model

presented in Figs 6–8. Similar figures using approaches (2), (3) and

(4) are shown in Figs S2–S10. For all four cases, we note that Cp

converges properly to the covariance structure estimated from the

target model and that the posterior distributions are almost iden-

tical. Less transitional steps are however necessary when using a

diagonal Cp proportional to the observations at β0 = 0 (cf. Figs S9

and S10).

The mean models used to compute Cp are presented in Fig. 11.

The transitional process is clearly illustrated by the evolution of the

model sample mean shown in this figure. The mean models at the

first few transitional steps are largely controlled by the prior PDF

[i.e. uniform probability distribution p(m) = U(−0.3, 20)M ] and

then slowly converge to the target model as more weight is given to

the likelihood (i.e. as β increases). The corresponding covariance

matrix structures do not change significantly at each update although

the overall magnitude of Cp is quite different for small and large

values of β. Note that an additional sampling step is performed

after reaching β = 1 in order to resample the posterior PDF with a

prediction covariance estimated from the sample mean at βB = 1.

However, only minor differences are visible after the final update

of Cp.

5 D I S C U S S I O N

The previous synthetic application clearly illustrates the importance

of incorporating inaccuracies of the earth model in the prediction

uncertainty in source estimation problems. When neglecting Cp,

the posterior mean model shows strong oscillations with a slip

distribution that is overestimated between 0.2 and 0.4H and under-

estimated at larger depth. We observe similar features for a constant

unit slip distribution in Fig. S1(b). Note that the negative slip at

larger depth is due to the lower bound of the prior distribution

p(m) = U(−0.3, 20)M used to obtain these results. Using strictly

positive constraints leads to similar slip distributions as shown in

Fig. S11. These oscillatory artefacts when Cp is neglected are clearly

related to errors in the Green’s functions that are calculated for

an homogeneous half-space instead of a layered medium. To ex-

plain these artefacts, Fig. 12 shows the result of a simple linear

least-square inversion without positivity constraints (i.e. a purely

Gaussian case without prior information). In this example, we con-

sider noise-free data but still use incorrect Green’s functions (i.e.

assuming an homogeneous half-space instead of the actual layered

half-space with μ2/μ1 = 1.4). As shown in Fig. 12(a), if we assume

shallow slip on a fault with large a depth extent, the inferred least-

squares solution has strong artefacts at depth due to inaccuracies

in the predictions based on a homogeneous elastic half-space. The

model including Cp in Fig. 12(b) shows similar artefacts but has

error bars indicating that deep slip cannot be resolved given the

uncertainty in μ. The inferred slip model is actually identical to

 by guest on January 30, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


12 Z. Duputel et al.

Figure 8. 2-D marginal posterior probability densities for all possible pairs of fault patches. Fault patches are numbered increasingly as a function of depth

(e.g. P 16 is the deepest fault patch). The 2-D histograms are shown (bottom left) when Cp is neglected and (top right) when the prediction uncertainty is

accounted for. Dashed black lines indicate the target slip value for each fault patch.

the series of dislocations derived by Savage (1987) and presented

in Fig. 12(c). This slip distribution produces surface displacements

that are exactly identical to the input target slip model in a layered

half-space. Of course, in common source inversion practices, faults

are parametrized with a limited depth extent and the prediction er-

ror cannot be perfectly mapped in the distribution of slip. Fig. 13

illustrates such case with a constant target slip model discretized

in four slices down to 0.9H. We note strong oscillations when Cp

is neglected. Although there is no obvious analytical solution such

as Savage (1987) in this case, these oscillations are clearly due to

inaccuracies of half-space predictions since this is the only source

of uncertainty considered here. On the other hand, the model in-

cluding Cp is able to properly resolve the input target model since

error in the Green’s function cannot be perfectly reproduced by slip

oscillations.

To get more insight on the improvement of inversion results using

our formulation of Cp, we propose here to estimate the posterior

prediction uncertainty for the simple model presented in Fig. 6. To

do so, we calculate the posterior predictive distribution p(d|dobs) us-

ing the stochastic forward model p(d|m) in eq. (4) and the posterior

model distribution p(m|dobs) in eq. (8):

p(d|dobs) =

∫

M

p(d|m) p(m|dobs) dm. (27)

This equation can be obtained directly from the total probability

theorem (e.g. Bishop 2006) and describes the posterior variability

on the predictions d due to modelling error [i.e. p(d|m)] and pos-

terior uncertainty on the slip distribution [i.e. p(m|dobs)]. The PDF

p(d|dobs) can also be seen as the posterior information on the dis-

placement field. This posterior predictive PDF is illustrated in black

in Figs 6(e)–(f) by showing 1000 stochastic realizations drawn from

p(d|dobs). In Figs 6(h)–(i), we show the corresponding residuals af-

ter subtracting the data vector from each predictive realization. For

comparison, Figs 6(d) and (g) also show the posterior predictive
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Figure 9. 1-D marginal posterior PDFs for a target model including a slip step of 1 m at 0.56H. The marginal probability density histograms are shown in

green (a) when the prediction uncertainty is neglected and (b) when the prediction uncertainty is taken into account by including Cp in the inversion problem.

The mean of the posterior model distribution is shown in blue. The raw target slip model is indicated as dashed black lines and the locally averaged target slip

model using a moving window over three adjacent patches is shown in white.

Figure 10. Evolution of the prediction covariance Cp at each transitional step. The values of β in eq. (22) are specified on top of each subfigure.
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14 Z. Duputel et al.

Figure 11. Slip models used for the calculation of the prediction covariance matrix Cp. These slip models correspond to the mean of the model sample

distributions at each transitional step. The values of β in eq. (22) are specified on top of each subfigures.

Figure 12. An illustration of the effects of prediction uncertainty on inver-

sion results for an extend fault at depth. The target slip model, indicated as

dashed black lines, is used to generate noise-free data in a layered half-space.

Simple least-square inversion results for an extended fault in a homogeneous

half-space are presented in (a) when Cp is neglected and (b) when Cp is in-

cluded in the inversion. The calculation of Cp used in (b) is based on the

maximum a posteriori (MAP) slip model shown in (a). These two MAP

models are very similar to the theoretically derived half-space equivalent

slip distribution by Savage (1987) presented in (c).

PDF for the target slip model, assuming no uncertainty on the slip

distribution (i.e. p(m|dobs) = δ(m − mtrue) where mtrue is the target

model). Figs 6(e) and (h) show the data fit if the prediction uncer-

tainty is neglected [i.e. p(d|m) = δ(d − g(m)), where g(m) are the

predictions for a homogeneous half-space]. In Figs 6(f) and (i), we

Figure 13. An illustration of the importance of the prediction covariance

Cp. The target slip model, indicated as dashed black lines, is used to generate

noise-free data in a layered half-space. Simple least-square inversion results

for an extended fault in a homogeneous half-space are presented in (a) when

Cp is neglected and (b) when Cp is included in the inversion. The calculation

of Cp used in (b) is based on the maximum a posteriori slip model shown

in (a).

use the stochastic forward model based on Cp for the same g(m) (i.e.

p(d|m) = N [d|g(m), Cp]). The posterior predictive uncertainty is

significantly larger if Cp is taken into account. Even if the posterior

variability of the source model is incorporated when Cp is neglected,

we note that the posterior predictive uncertainty is negligible
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compared to the variability when Cp is included. Moreover, when

comparing data with predictions for a homogeneous half-space, the

data misfit is clearly smaller if the prediction uncertainty is ne-

glected. This small data residual is due to data overfitting resulting

from the use of a deterministic forward model. By neglecting Cp,

too much information is conferred to imperfect forward predictions,

leading to spurious posterior distributions which favour source mod-

els that closely explain observations. The differences between in-

version results in Fig. 6(b) and the target model in Fig. 6(a) are thus

certainly due to overfitting of observations using predictions for an

inaccurate earth model (i.e. a homogeneous half-space instead of

a layered medium). On the other hand, using a stochastic forward

problem, we gain an extra flexibility by allowing some variability

in the predictions, which allows us to select models having larger

and correlated data residuals. Thus, the impact of including the pre-

diction covariance Cp is not just a better analysis of the posterior

uncertainty. In fact, the use of Cp also improves source parame-

ter estimates by using physically based relative weights between

measurements and by preventing overfitting of observations.

In this study, we have mainly focused on the impact of inaccu-

racies in the earth model, which significantly contribute to forward

modelling errors. We recognize, however, that other contributors

can have profound impact on the predictions. In particular, we know

that approximation of the true source geometry by a fault surface

φ̃ based on prior information can be a major source of uncertainty

in source estimation problems. A judicious approach is to incorpo-

rate φ into the source model parameters m for which the data are

inverted. However, this approach may be difficult to implement in

practice since we would have to recalculate the Green’s functions

for each explored model, a computationally challenging prospect.

Alternatively, if the imperfect fault surface is not grossly wrong,

we can use our formulation of Cp in order to account for the un-

certainty in the fault geometry. One possibility is to design a C	

that incorporates a high variability of elastic properties in a narrow

zone around the fault. Another approach is to take into account a

variability of φ in the inversion problem. The latter possibility is

formulated in the following.

Let us define a parameter � = [ln �T , φT ]T incorporating all

information about the earth model � and fault surface φ (which

are assumed independent). As in Section 3.1, we assume that pre-

dictions g(�, m) are modelled as first-order perturbations of our

predictions g(�̃, m). In this case, the prediction covariance can be

written as

Cp = K	 · C	 · KT
	 + Kφ · Cφ · KT

φ . (28)

The prediction uncertainty due to the fault geometry can therefore

be included by augmenting the prediction covariance matrix with a

new term Kφ · Cφ · KT
φ , where Cφ is the covariance matrix on fault

geometry parameters and Kφ(�̃, m) is the corresponding sensitivity

kernel

(Kφ)i j (�̃, m) =
∂gi

∂φ j

(�̃, m). (29)

In this equation, the vector φ can, for example, include averages of

dip and strike values over the entire (or portions of) the fault. This

approach can be extended to other sources of modelling uncertainty

and we should be able to define a gallery of prediction covariance

matrices to be included in the source inversion problem. However,

this formulation is not appropriate if prediction uncertainties are

too large since there will be no simple relationship between the

corresponding predictions g(�̃, m) and g(�, m). In such situations,

the results of our inversion would be unreliable and more efforts

should be spent to improve forward modelling capabilities. The

ultimate goal would be to allow for updating the uncertainty in all

model parameters (i.e. m, �, φ) by sampling from their posterior

PDF but this requires greatly increasing the computational speed for

the forward modelling, either by computer hardware and/or faster

algorithms (e.g. building surrogate (meta-) models of the forward

model using machine learning methods; Bishop 2006).

6 C O N C LU S I O N

This study improves the modelling of the misfit covariance ma-

trix as used in inversions for the distribution of slip on subsurface

faults. The misfit covariance, Cχ , is a combination of the observa-

tional covariance matrix, Cd, and the modelling covariance matrix,

Cp. The latter class of uncertainty is often entirely ignored even

though prediction errors scale with the size of earthquakes and

are thus generally larger than the observation uncertainty for large

events. Furthermore, prediction errors can induce important cor-

relation between the observation points that should be taken into

account in source inversion problems. This work provides a gen-

eral formalism to explicitly quantify the impact of uncertainties

in our forward models and to account for such prediction error in

source estimation problems. In particular, we describe a physically

based stochastic model for the prediction uncertainty that allows

for inaccuracies in the earth model by using sensitivity of the data

predictions to first-order perturbations of elastic properties. More-

over, to account for the dependence of the prediction error upon the

source model parameters m, the covariance matrix Cp is updated as

the model evolves in the source inversion process. We also discuss

the possibility to account for other sources of uncertainty such as

imperfections in the fault geometry.

For a simple 2-D synthetic data inversion, we demonstrated the

importance and feasibility of implementing Cp in source inversion

problems. The results indicate two main advantages of using an

improved covariance matrix structure. First, it improves the poste-

rior error description for the source model parameters. Secondly, it

improves the source model characterization itself notably because

using a more structured covariance matrix prevents overfitting of the

observations. Although our implementation is based on a Bayesian

formulation of the inversion problem, it should be noted that incor-

porating Cp can be beneficial regardless of the particular inversion

approach used. Indeed, the prediction covariance matrix offers a

natural way to specify the relative information content found in dif-

ferent observations. Furthermore, if different data types are used,

Cp provides a physical basis for the relative weighting between

disparate data sets.

The advances proposed here can thus enable production of the

next generation of source models that are more resistant to over-

fitting of data, provide a physical basis for the relative weighting

between disparate data sets, and include more realistic description

of uncertainty in the inferred source model parameters. These im-

provements in the model prediction uncertainty require developing

computationally tractable approaches to estimate the sensitivity of

the predicted geodetic and seismic observations of large earthquakes

to perturbations in material properties assumed in any given earth

model. Much of the underlying theory and many of the tools al-

ready exist in the domain of seismic tomography and could thus

be exploited to obtain more reliable images of the earthquake rup-

ture phenomena. While this work is motivated by specific goals

related to the study of large earthquakes, these techniques can also

be applied to a broad range of inverse problems in geophysics and
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earthquake engineering such as volcano monitoring and earthquake

early warning.
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A P P E N D I X A : P O S T E R I O R

P RO B A B I L I T Y D E N S I T Y F U N C T I O N

( P D F ) U N D E R T H E A S S U M P T I O N O F

G AU S S I A N U N C E RTA I N T I E S

Under the Gaussian assumption, we demonstrate that the posterior

PDF is given by eq. (8) of the main text. We essentially follow the

demonstration originally given by Tarantola & Valette (1982) in the

more general case when Cp depends on m. If p(d∗|d) and p(d|m) are

assumed to be Gaussian PDFs as in eqs (2) and (4), the integrated

likelihood in eq. (7) is proportional to the convolution between two

Gaussians:

p(dobs|m) = ν(m)

∫

Dpred

exp

(
−

1

2

{
(dobs − d)T C−1

d (dobs − d)

+
[
d − g(�̃, m)

]T
Cp(m)−1

[
d − g(�̃, m)

]})
dd,

(A1)

where ν(m) is a normalization factor defined as

ν(m) = (2π )−N |Cd|
−1/2

∣∣Cp(m)
∣∣−1/2

. (A2)

Eq. (A1) can be rearranged by separating quadratic terms from the

linear terms

p(dobs|m) = ν

∫

Dpred

exp

(
−

1

2

(
dT A d − 2 bT d + c

))
dd, (A3)

where we define

A = C−1
d + Cp(m)−1

bT = dT
obsC

−1
d + g(�̃, m)

T
Cp(m)−1

c = dT
obsC

−1
d dobs + g(�̃, m)

T
Cp(m)−1g(�̃, m). (A4)

The matrix A being positive definite, we can then show

p(dobs|m) = ν exp

(
−

1

2

(
c − bT A−1b

))

×

∫

Dpred

exp

(
−

1

2

(
d − A−1b

)T
A

(
d − A−1b

))
dd.

(A5)

The integral of the Gaussian in the right and side being equal to√
(2π )N /|A|, it follows that

p(dobs|m) = η exp

(
−

1

2

(
c − bT A−1 b

))
(A6)

where

η(m) = (2π )−N/2 |Cd|
−1/2

∣∣Cp(m)
∣∣−1/2 ∣∣C−1

d + Cp(m)−1
∣∣−1/2

.

(A7)

After substituting eqs (A4) into (A6) and using the following iden-

tities (Tarantola & Valette 1982)

[
Cd + Cp(m)

]−1
= C−1

d − C−1
d

[
C−1

d + Cp(m)−1
]−1

C−1
d

= C−1
p − Cp(m)−1

[
C−1

d + Cp(m)−1
]−1

Cp(m)−1

= Cp(m)−1
[
C−1

d + Cp(m)−1
]−1

C−1
d (A8)

we then obtain

p(dobs|m) = η(m) exp

(
−

1

2

[
dobs − g(�̃, m)

]T

×
(
Cd + Cp

)−1 [
dobs − g(�̃, m)

] )
, (A9)

which demonstrates eq. (8) of Section 2.

A P P E N D I X B : S E N S I T I V I T Y K E R N E L Kμ

I N T H E Q UA S I - S TAT I C C A S E F O R

G E N E R A L 3 - D P E RT U R B AT I O N S

We describe here the formulation of Kμ for the case of a known

source and a set of distributed receivers. We adopt a perturbation

approach which has been extensively used in seismic (e.g. Dahlen

& Baig 2002; Virieux & Operto 2009) and quasi-static problems

(Du et al. 1994; Cervelli et al. 2002). Assuming that the earth

model is characterized by the elastic stiffness tensor cijkl, for a

given source field f(x) and a set of boundary conditions, the pre-

dicted displacement field is described by the equation (Love 1906;
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Segall 2010)

∂

∂x j

[
ci jkl (x)

∂uk

∂xl

(x)

]
+ fi (x) = 0, (B1)

where the Einstein summation convention applies to repeated sub-

script indices. Introducing the Green’s function Hij(x, xs), the solu-

tion of this equation can be written in the integral form

ui (x) =

∫

V s

Hi j (x, xs) f j (x
s) d3xs, (B2)

where V s is the volume of the source region. Let us now assume

that a perturbation of the earth model

ci jkl (x) → ci jkl (x) + δci jkl (x) (B3)

leads to a perturbation of the predicted displacement field:

ui (x) → ui (x) + δui (x). (B4)

To derive the displacement sensitivity to the medium elastic prop-

erties, we insert eqs (B3)–(B4) into eq. (B1) and drop second-order

terms:

∂

∂x j

[
ci jkl (x)

∂δuk

∂xl

(x)

]
+ δ fi (x) = 0, (B5)

where δf is defined as

δ fi (x) =
∂

∂x j

[
δci jkl (x)

∂uk

∂xl

(x)

]
. (B6)

Note that this first-order perturbation equation is equivalent to the

Born approximation in elastodynamics (Dahlen & Tromp 1998; Aki

& Richards 2002) where δf is the secondary Born source. Since the

solution of the eq. (B1) is given by eq. (B2), the solution for δu in

eq. (B5) can be expressed as

δum(x) =

∫

V

Hmi (x, x′)
∂

∂x j

[
δci jkl (x

′)
∂uk

∂xl

(x′)

]
d3x′, (B7)

where V denotes the earth model volume. After some manipulations

using the divergence theorem, we obtain

δum(x) = −

∫

V

∂ Hmi (x, x′)

∂x ′
j

∂uk

∂x ′
l

(x′) δci jkl (x
′) d3x′

+

∫

S

Hmi (x, x′)δci jkl (x
′)

∂uk

∂x ′
l

n j d
2x′, (B8)

where nj is the normal to the Earth’s surface. The second integral

vanishes because of homogeneous boundary conditions. If we as-

sume an isotropic medium, assuming only perturbations in the shear

modulus (μ) while holding the Poisson’s ratio constant, we can then

write

δui (x) = −

∫

V

∂ Hi j (x, x′)

∂x ′
k

σ jk(x′)

μ(x′)
δμ(x′) d3x′, (B9)

where σ ij(x
′) = cijkl(x

′)uk, l(x
′). For practical implementation, we

can discretize the elastic medium into a limited number of layers

(as done in Section 4) or tectonically parametrized regions (e.g.

crust, mantle). If we allow for piecewise variation of μ in such

regions, we can then simplify eq. (B9) using again the divergence

theorem to obtain the following 2-D surface integral (Du et al.

1994)

δui (x) = −
∑

r

δ ln μr

∫

Sr

Hi j (x, x′) σ jk(x′) nr
k(x′) d2x′, (B10)

where nr
k(x′) is the normal to the surface S r delimiting the rth

perturbed region. From this equation, we can directly extract the

shear modulus sensitivity kernel Jμ of the predicted displacement

field u(x) for the rth layer or tectonic region

(Jμ)r
i (x) = −

∫

Sr

Hi j (x, x′) σ jk(x′) nk(x′) d2x′. (B11)

Recognizing the fact that geodetic predictions (dpred) represent only

a subset of the total predicted displacement field, we can write

dpred = R · u, (B12)

where R is a sampling operator acting on the complete displacement

field u(x). Similarly, the integral form in eq. (B10) can be discretized

to express the model prediction uncertainty (ǫ) as

ǫ = R · δu

= R · Jμ · δ ln μ. (B13)

From the definition of ǫ in eq. (14) of Section 3.1, we can then write

the sensitivity kernel as

Kμ = R · Jμ. (B14)

S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-

sion of this article :

Figure S1. Source estimation for a constant unit slip distribution if

Cp is neglected.

Figure S2. One-dimensional marginal posterior PDFs for each

patch as a function of depth. The marginal probability density his-

tograms are shown in green (a) when the prediction uncertainty

is neglected and (b) when the prediction uncertainty is taken into

account by including Cp in the inversion problem. The target slip

model is indicated as dashed black lines and mean of the distribution

is shown in blue. The results in (b) are obtained using approach (2)

described in Section 4.4 of the main text: Cp is calculated at β = 0

assuming a uniform unitary slip distribution as a function of depth

(cf. model shown in Fig. S4 for β = 0).

Figure S3. Evolution of the prediction covariance Cp at each tran-

sitional step. The approach (3) described in Section 4.4 of the main

text is used here: Cp is calculated at β = 0 assuming a uniform

unitary slip distribution as a function of depth (cf. model shown in

Fig. S4 for β = 0).

Figure S4. Slip models used for the calculation of the prediction

covariance Cp. The approach (3) described in Section 4.4. of the

main text is used here: the model used for the calculation of Cp at

β = 0 assuming a uniform unitary slip distribution as a function of

depth (cf. model shown for β = 0).

Figure S5. One-dimensional marginal posterior PDFs for each

patch as a function of depth. The marginal probability density his-

tograms are shown in green (a) when the prediction uncertainty

is neglected and (b) when the prediction uncertainty is taken into

account by including Cp in the inversion problem. The target slip

model is indicated as dashed black lines and mean of the distribution

is shown in blue. The results in (b) are obtained using approach (3)

described in Section 4.4 of the main text: Cp is calculated at β = 0

using the posterior mean model for which Cp is neglected (cf. blue

bars in (a) and Fig. S7).

Figure S6. Evolution of the prediction covariance Cp at each tran-

sitional step. The approach (3) described in Section 4.4. of the main

text is used here: Cp is calculated at β = 0 using the posterior mean

model for which Cp was neglected (cf. Fig. S7 and blue bars in

Fig. S5a).
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Figure S7. Slip models used for the calculation of the prediction

covariance Cp. The approach (3) described in Section 4.4. of the

main text is used here: the model used for the calculation of Cp at

β = 0 is the posterior mean model when Cp is neglected (cf. blue

bars in Fig. S5a).

Figure S8. One-dimensional marginal posterior PDFs for each

patch as a function of depth. The marginal probability density his-

tograms are shown in green (a) when the prediction uncertainty

is neglected and (b) when the prediction uncertainty is taken into

account by including Cp in the inversion problem. The target slip

model is indicated as dashed black lines and mean of the distribution

is shown in blue. The results in (b) are obtained using approach (4)

described in Section 4.4 of the main text: We use a preliminary form

of Cp whose diagonal elements are proportional to observations.

Figure S9. Evolution of the prediction covariance Cp at each tran-

sitional step. At β = 0, we use a preliminary form of Cp whose

diagonal elements are proportional to observations (cf. approach

(4) described in Section 4.4 of the main text).

Figure S10. Slip models used for the calculation of the prediction

covariance Cp. We use a preliminary form of Cp whose diagonal el-

ements are proportional to observations (cf. approach (4) described

in Section 4.4 of the main text).

Figure S11. Same as Fig. 7 in the main text but using strictly

positive constraints with a prior p(m) = U(0, 20)M (http://gji.

oxfordjournals.org/lookup/suppl/doi:10.1093/gji/ggt517/-/DC1).

Please note: Oxford University Press are not responsible for the

content or functionality of any supporting materials supplied by

the authors. Any queries (other than missing material) should be

directed to the corresponding author for the article.
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