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Abstract This paper addresses the problem of estimating the extreme value
index in presence of random censoring for distributions in the Weibull domain
of attraction. The methodologies introduced in [Worms 2014], in the heavy-
tailed case, are adapted here to the negative extreme value index framework,
leading to weighted versions of the popular moments of relative excesses. This
leads to the definition of two families of estimators (with an adaptation of the
so called Moment estimator as a particular case), for which the consistency is
proved under a first order condition. Illustration of their performance, coming
from an extensive simulation study, are provided.

Keywords Extreme value index � Tail inference � Random censoring �
Kaplan-Meier integration

Mathematics Subject Classification (2000) 62G32 (Extreme value
statistics) � 62N02 (Estimation for censored data)

1 Introduction

Extreme value statistics is an active domain of research, with numerous fields
of application, and which benefits from an important litterature in the context
of i.i.d. data, dependent data, and (more recently) multivariate or spatial data.
By contrast, methodological articles in the case of randomly censored data are
quite recent and few : [Einmahl et al. (2008)] presents a general method for
adapting estimators of the extreme value index in a censorship framework (a
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methodology based on a previous work [Beirlant et al. (2007)]), [Worms 2014]
proposes a more survival analysis-oriented approach restricted to the heavy
tail case, and [Diop et al. (2014)] extends the framework to data with covariate
information. Other existing works on the topic of extremes for censored data
are [Brahimi et al. (2013)] and the review paper [Gomes and Neves (2011)].

In this paper, the topic of extreme value statistics for randomly censored
data with negative extreme value index is addressed. Our purpose is to extend
the ideas of [Worms 2014] (in which the Hill estimator was adapted to the
censoring framework) in order to propose weighted versions of the popular
moments of the relative excesses, and therefore define competitive estimators
of the extreme value index in this censoring situation, for distributions in the
Weibull maximum domain of attraction. Let us first define more precisely the
framework, the data, and the notations.

In the classical univariate framework of i.i.d. data, a central task is to esti-
mate the extreme value index γ, which captures the main information about
the behavior of the tail distribution of the data. More precisely, a distribution
function (d.f.) F is said to be in the maximum domain of attraction of Hγ

(noted F P DpHγq) with

Hγpxq :�
"

exp
��p1� γxq�1{γ

�
for γ � 0 and 1� γx ¡ 0

expp� expp�xqq for γ � 0 and x P R ,

if there exist two normalizing sequences panq � R� and pbnq � R such that

Fnpanx� bnq nÑ8ÝÑ Hγpxq p@x P Rq.

We consider in this paper two independent i.i.d. non-negative samples
pXiqi¤n and pCiqi¤n with respective continuous distribution functions F and
G (with end-points τF and τG, where τF :� suptx, F pxq   1u). In the context
of randomly right-censored observations, one only observes, for 1 ¤ i ¤ n,

Zi � Xi ^ Ci and δi � IXi¤Ci .

We denote by H the distribution function of the Z-sample, satisfying

1�H � p1� F qp1�Gq

and by Z1,n ¤ � � � ¤ Zn,n the associated order statistics. In the whole paper,
δ1,n, . . . , δn,n denote the δ’s corresponding to Z1,n, . . . , Zn,n, respectively. F
and G are assumed to be in the maximum domains of attraction DpHγX q and
DpHγC q respectively, where γX and γC are real numbers, which implies that
H P DpHγq, for some γ P R.

Our goal is to estimate the extreme value index γX in this context of right
censoring. The most interesting cases, described in [Einmahl et al. (2008)], are
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the following :

case 1: γX ¡ 0 , γC ¡ 0 in this case γ � γXγC
γX � γC

case 2: γX   0 , γC   0 , τF � τG in this case γ � γXγC
γX � γC

case 3: γX � γC � 0 , τF � τG � �8 in this case γ � 0.

In [Worms 2014], the heavy-tail case 1 above was considered and an adap-
tation of the so-called Hill estimator to the right censoring framework was
proposed. In this paper, our aim is to consider case 2 above and adapt the ap-
proach leading to the so-called Moment Estimator to this censored situation.
An adaptation of this estimator was already proposed in [Einmahl et al. (2008)]
which consists in dividing the classical Moment Estimator γ̂Zn of γ (calculated
from the Z-sample) by the ultimate proportion

pp :� k�1
n

°kn
i�1 δn�i�1,n

of uncensored data, where kn is the number of upper order statistics retained.
Note that γ̂Zn is an appropriate combination of the following moments :

Mpαq
n,kn

:� 1
kn

kņ

i�1

logα
�
Zn�i�1,n

Zn�kn,n



,

for α � 1 or 2 (where logαpxq stands for plogpxqqα).

Our goal is to show that relying on usual strategies in the survival analysis
literature leads to estimators of γX which are often sharper than those ob-
tained by simply dividing an estimator of γ by the proportion of uncensored
observations. By “usual” strategy we mean using “Kaplan-Meier”-like random
weights (we refer to [Worms 2014] for more detailed motivations for the ran-
dom weights appearing in the formulas below). We define, for any given α ¥ 1,
the following two versions of randomly weighted moments of the log relative
excesses :

M
pαq
n,kn

:� 1
np1� F̂npZn�kn,nqq

kņ

i�1

δn�i�1,n

1� ĜnpZ�n�i�1,nq

�
logα

�
Zn�i�1,n

Zn�kn,n




(1)

and �M pαq
n,kn

:� 1
np1� F̂npZn�kn,nqq

kņ

i�1

1
1� ĜnpZ�n�i�1,nq

ξi,n (2)

where

ξi,n :� i

�
logα

�
Zn�i�1,n

Zn�kn,n



� logα

�
Zn�i,n
Zn�kn,n




(3)

and pknq is a sequence of integers satisfying, as n tends to �8,

kn Ñ �8 and kn � opnq. (4)
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Above, F̂n and Ĝn naturally denote the Kaplan-Meier estimators of F and G,
respectively, defined as follows : for t   Zn,n,

1�F̂nptq �
¹

Zi,n¤t

�
n� i

n� i� 1


δi,n
and 1�Ĝnptq �

¹
Zi,n¤t

�
n� i

n� i� 1


1�δi,n

.

In section 2 below, assumptions are presented and discussed, convergence re-
sults for the weighted moments M pαq

n,kn
and �M pαq

n,kn
are stated, and we describe

how classes of estimators of γX can be deduced by combining these moments
for different values of α. In Section 3, performance of these estimators will
be presented on the basis of simulations. Section 4 provides some words of
conclusion, Section 5 is devoted to the proofs of Theorems 1 and 2 below, and
finally the Appendix includes standard (but central to our proofs) results on
regularly varying functions, as well as the proofs of the different lemmas which
were useful in Section 5.

2 Results

2.1 Assumptions

In addition to (4), our results need the following minimal assumption :

(A) F P DpHγX q, G P DpHγC q with γX   0 , γC   0 and x� :� τF � τG.

As noted earlier, this assumption implies that H P DpHγq with τH � x� and

γ � γXγC
γX � γC

  0.

If we note Uptq � HÐp1 � 1{tq the quantile function associated to H, then
x� � Up8q and H P DpHγq is equivalent to the existence of some positive
function a such that

lim
tÑ�8

logUptxq � logUptq
aptq{Uptq � xγ � 1

γ
, @x ¡ 0, (5)

which, since γ   0, is itself equivalent to

lim
tÑ�8

Up8q � Uptxq
Up8q � Uptq � xγ , @x ¡ 0. (6)

This means that the function Up8q�U is regularly varying (at �8) with index
γ (see the appendix for the definition of regular variation at �8). A reference
for the equivalence of conditions (5) and (6) to (A) is [Haan and Ferreira (2006)]
(respectively relation (3.5.4) and Corollary 1.2.10).

In order to obtain the asymptotic behavior of M pαq
n,kn

, we may need two
additional regularity assumptions on the function ppzq :� Ppδ � 1|Z � zq,
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already used in [Worms 2014] : denoting by p :� limzÑ8 ppzq, which equals
γC{pγX � γCq in our context, we will suppose that

1
kn

kņ

i�1

����p�HÐ

�
1� i

n




� p

���� PÝÑ c P R (7)

sup
ps,tqPCn

|ppHÐptqq � ppHÐpsqq| Ñ 0, for all C ¡ 0 (8)

where Cn � tps, tq such that s   1 , 1 � kn{n ¤ t   1 , |t � s| ¤ C
?
kn{n u.

Note that these two assumptions are not needed for the asymptotic behavior
of �M pαq

n,kn
.

Finally, we will need some very mild additional assumption on pknq

(K) there exists some δ ¡ 0, or some δ ¥ γX � γC
γX � γC

if γC ¥ γX , such that

� logpkn{nq
L
kn � Opn�δq. (9)

2.2 Asymptotic results

Let us introduce the notation an,k :� apn{knq{Upn{knq (see the previous sec-
tion for the definition of functions U and a), where an,k Ñ 0 (cf equation (3.5.5)
in [Haan and Ferreira (2006)]). In the paper, Betap�, �q denotes the usual Beta
function, Betapa, bq � ³1

0
ta�1p1� tqb�1 dt pa ¡ 0, b ¡ 0q.

Theorem 1 Under assumption (A) and conditions p4q, p7q, p8q and (K), for
any α ¥ 1 we have, as n tends to 8,

M
pαq
n,kn

pan,kqα
PÝÑ |γX |�1|γ|�αBetap|γX |�1 ; α� 1q .

Theorem 2 Under assumption (A) and conditions p4q and (K), for any α ¥ 1
we have, as n tends to 8,

�M pαq
n,kn

pan,kqα
PÝÑ |γX |�1|γ|�αBetap|γX |�1 ; α� 1q .

The following corollary states the consistency of our two different adaptations
of the Moment estimator to this censored framework.

Corollary 1 Under conditions of Theorem 1 or 2 respectively, as nÑ8,

pγn,Mom :�M
p1q
n,kn

� 1� 1
2

�
1� pM p1q

n,kn
q2

M
p2q
n,kn

��1

PÝÑ γX
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and

rγn,Mom :� �M p1q
n,kn

� 1� 1
2

�
1� p�M p1q

n,kn
q2�M p2q

n,kn

��1

PÝÑ γX .

In fact, by using the elementary properties of the Beta function, the weighted
moments M pαq

n or �M pαq
n can be combined in different ways, leading to the def-

inition of two different classes of consistent estimators of γX , parametrized by
α ¥ 1 (proofs of the 3 corollaries are easy and omitted). In the next section,
we study their finite sample performance.

Corollary 2 Under conditions of Theorem 1 or 2 respectively, as nÑ8,

pγpαqn,1 :� �
V �1
n,α � α� 1

��1 PÝÑ γX

and rγpαqn,1 :�
�rV �1

n,α � α� 1
	�1 PÝÑ γX

where

Vn,α :� 1� α� 2
α� 1

pM pα�1q
n q2

M
pαq
n M

pα�2q
n

and rVn,α :� 1� α� 2
α� 1

p�M pα�1q
n q2�M pαq

n
�M pα�2q
n

.

Corollary 3 Under conditions of Theorem 1 or 2 respectively, as nÑ8,

pγpαqn,2 :� 1� pα� 1qRn,α
pα� 1qp1�Rn,αq

PÝÑ γX

and rγpαqn,2 :� 1� pα� 1q rRn,α
pα� 1qp1� rRn,αq PÝÑ γX ,

where

Rn,α :� M
p1q
n M

pαq
n

M
pα�1q
n

and rRn,α :�
�M p1q
n
�M pαq
n�M pα�1q

n

.

Remark 1 It is straightforward to see that γ̂pαqn,2 with α � 1 equals 1� 1
2 p1�

Rn,1q�1, which is very close to γ̂n,Mom, since M p1q
n,kn

Ñ 0 in our finite endpoint
framework.

Remark 2 If Mpαq
n,kn

denotes the unmodified moments defined in the intro-
duction, it can be proved that under pAq and p4q, for α ¥ 1,

Mpαq
n,kn

pan,kqα
PÝÑ |γ|�α�1Betap|γ|�1 ; α� 1q .

Therefore, it is easy to check that combining those moments as described in
Corollaries 2 and 3 leads to consistent estimators of γ, and thus dividing the
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latter by p̂ (defined in the introduction) leads to 2 classes of consistent esti-
mators qγpαqn,1 and qγpαqn,2 of γX . We also define qγn,Mom as the estimator of γX
obtained by dividing the classical Moment estimator of γ by the proportion p̂.
A finite-sample comparison of those estimators with our new competitors is
presented in the following section.

3 Finite sample behavior

The goal of this Section is to present our results concerning the finite sample
performances of our new estimators of the extreme value index in presence of
random censoring, presented in Corollaries 1, 2 and 3. In each case considered,
2000 random samples of size n � 500 were generated, and the median bias
and mean squared error (MSE) of the different estimators of γ were plotted
against the number kn of excesses used.

A great variety of situations can be (and has been) considered in our sim-
ulation study : various values of γX and γC (and therefore various censoring
rates in the tail), various families of underlying distributions (Reverse Burr,
generalized Pareto, Beta), and choice of the value of α. It is impossible to
illustrate here the different possible combinations of these features : we will
therefore try to draw some general conclusions from the many different situ-
ations we have observed, and provide a partial illustration with 3 particular
cases.
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Fig. 1 Comparison between pγp2qn,1 (thick black), rγp2qn,1 (dashed black), qγp2qn,1 (thin

black), pγn,Mom (thick grey), rγn,Mom (dashed grey) and qγn,Mom (thin grey) for a
RevBurrp1, 1, 1, 10q censored by a RevBurrp10, 2{3, 1, 10q (γX � �1   γC � �3{2, weak
censoring)
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Fig. 2 Comparison between pγp2qn,2 (thick black), rγp2qn,2 (dashed black), qγp2qn,2 (thin

black), pγn,Mom (thick grey), rγn,Mom (dashed grey) and qγn,Mom (thin grey) for a
RevBurrp1, 8, 1{2, 10q censored by a RevBurrp10, 4, 1{2, 10q (γX � �1{4   γC � �1{2,
weak censoring)

Concerning the choice of the tuning parameter α, we did not find a value
which seemed preferable in every situation : nonetheless, in general, for small
values of kn, a value of α around 1 or 2 yields better MSE, whereas for high
values of kn, the MSE is lower for values of α greater than 2. We decided not
to include this preliminary study in this article, and chose (almost arbitrarily)
the value α � 2 in all our subsequent simulations.

Let us now settle the vocabulary used in this section. We will call Moment
estimators the estimators pγn,Mom and rγn,Mom appearing in Corollary 1, as
well as the estimator qγn,Mom introduced in Remark 2 above. We will call type
1 (resp. type 2) estimators the estimators pγpαqn,1 and rγpαqn,1 (resp. pγpαqn,2 and rγpαqn,2 )

appearing in Corollary 2 (resp. 3), as well as the estimator qγpαqn,1 (resp. qγpαqn,2 )
introduced in Remark 2.

We will also consider names for the different methods : the KM method
(for Kaplan-Meier-like weights, appearing in the definition of M pαq

n,kn
), leading

to pγ estimators, the L method (for Leurgans-like weights) leading to rγ estima-
tors (the name comes from the mathematician Sue Leurgans who inspired the
weights, see [Worms 2014] for details and a reference), and the EFG method
(for constant weighting by p̂), leading to qγ estimators (the names comes from
the initials of the authors of [Einmahl et al. (2008)]).

There are two main questions addressed in this empirical study : is one of
the 3 methods preferable to the others (and in which conditions) and is there
a better choice for the type of estimator (type 1 , type 2, or classical Moment
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Fig. 3 Comparison between pγp2qn,2 (thick black), rγp2qn,2 (dashed black), qγp2qn,2 (thin black),pγn,Mom (thick grey), rγn,Mom (dashed grey) and qγn,Mom (thin grey) for a Betap1, 4q cen-
sored by a RevBurrp10, 2, 1, 1q (γX � �1{4   γC � �1{2, weak censoring)

estimator) ? Unsurprisingly, after our intensive simulation study, we may say
that the answer is no for the 2 questions, if an overall superiority is looked for.
However, we can make some partial comments concerning the choice of the
method and of the estimator type, whether the censoring is strong or weak,
or the value of |γ| is small or not.

Note first that, if the censoring rate in the tail is very low (say 1� p lower
than 10%), we observed that there was not much difference between the 3
methods (KM, L, EFG), and that it was just a question of choosing between
type 1, type 2, and moment estimator. This is why, in the following, we only
consider cases where the censoring rate is larger than 1/4, and talk about
strong censoring in the tail when this rate is greater than 1{2 (i.e. γX ¤ γC),
and weak censoring otherwise (when γX ¡ γC).

For “high” values of γX , i.e. lower than �1{2, we have most of the time
observed better performance of the KM and L methods with respect to the
EFG method, in strong or weak censoring frameworks. In this context, the type
1 estimators are generally preferable to the type 2 estimators, and comparable
or preferable to the moment estimator.

For values of γX between �1{2 and 0 (sometimes called the “regular” case,
and which is the most frequently encountered in practice), there exists a great
variety of situations. We observed that the moment estimators were generally
better than the type 2 estimators, which were themselves generally better
than the type 1 ones. Concerning the choice of the method, for the moment
estimator, it seems difficult to suggest a particular one, between the KM, L,
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and EFG methods (even though in many cases, at least one among the KM
and L methods was better than the EFG method). Concerning the inferiority
of types 1 and 2 versus the moment estimator, it should be noted that it is
mainly due to the bias, which contributes the most to the MSE (in fact, we
clearly noticed that the variances of the types 1 and 2, for α � 2, are almost
always lower than the variance of the moment estimator).

Let us now present the 3 particular situations we chose as illustrations of
the comments above. They involve 2 classes of distributions : the Reverse Burr
family RevBurrpβ, τ, λ, x�q (with β, τ, λ ¡ 0) with survival function

PpX ¡ xq � p1� β�1px� � xq�τ q�λ,
and which extreme value index is �1{pλτq, and the standard Beta distribution
family Bpa, bq (a, b ¡ 0) with density function pBetapa, bqq�1xa�1p1 � xqb�1

on r0, 1s, which endpoint is 1 and extreme value index is �1{b.
In Figure 1, the value of γX is lower than �1{2, and therefore, as motivated

above, for readability purposes we only kept the type 1 estimators on the
graph, whereas for the other two figures, the value of γX is between �1{2 and
0 and we therefore only kept the type 2 estimator illustrated. Remind here that
these 3 examples are only 3 particular cases of the numerous combinations of
features we have considered in our simulation study. For instance, the KM and
L method yield very similar results in the 3 graphics, but this is not always
the case.

4 Conclusion

In this paper, we applied the methodology introduced in [Worms 2014] to
construct new estimators of the extreme value index for randomly-censored
data with distributions in the Weibull domain of attraction. We proposed, in
particular, a new adaptation of the famous Moment estimator. Our intensive
simulation study shows that the proposed estimators are competitive even if,
in many cases, the bias would need to be reduced. A future possible work would
be to exploit our weighting methodology in order to estimate other parameters
of the tail (for reducing the bias, for example) as well as extreme quantiles.
The asymptotic normality remains a question to be addressed (difficulties come
from the control of the Kaplan-Meier estimates in the tail).

5 Proofs

5.1 Proof of Theorem 1

The proof of Theorem 1 has structural similarities with the proof of Theorem
1 in [Worms 2014]. We shall refer to the latter when necessary. We first need
to state the following technical Lemmas.
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Lemma 1 Let (A) hold and a ¥ 1 and b   0 be given. With all the notations
previously introduced, for 1 ¤ i ¤ kn, set

Qa,bi,n �
1

pan,kqa
�

log
Zn�i�1,n

Zn�kn,n


a�
x� � Zn�i�1,n

x� � Zn�kn,n


b
.

If ε1 and ε2 are arbitrary two positive real numbers, then there exists some
deterministic sequence pcnq tending to 1 and some n0 P N such that, for any
n ¥ n0, we have for every 1 ¤ i ¤ kn,

cnB
�
n ¤ Qa,bi,n ¤ cnB

�
n

where B�
n and B�

n are positive random variables satisfying

B�
n

d� p1� ε2qb
�
Ỹ γkn�i�1,kn

� 1
γ

�a
Ỹ
bpγ�ε2q
kn�i�1,kn

� ε1R�i,n

B�
n

d� p1� ε2qb
�
Ỹ γkn�i�1,kn

� 1
γ

�a
Ỹ
bpγ�ε2q
kn�i�1,kn

� ε1R�i,n

with pỸiq1¤i¤kn denoting an i.i.d. sample of standard Pareto random variables,
and, for every 1 ¤ i ¤ kn and some constant c ¡ 0,

maxt|R�i,n|, |R�i,n|u ¤ c Ỹ
γ�ε1�bpγ�ε2q
kn�i�1,kn

.

Lemma 2 If Y is a standard Pareto random variable, then for every a ¡ �1
and a1   1

E
��

Y γ � 1
γ


a
Y a

1



� |γ|�a�1Beta

�
1� a1

|γ| ; a� 1


.

We now proceed to the proof of Theorem 1. We have the decomposition

M
pαq
n,kn

� AnpWn �Rnq ,
where

An :� 1� pGnpZn�kn,nq
1�GpZn�kn,nq

; Wn :� 1
kn

°kn
i�1Win

Rn :� 1
kn

°kn
i�1pCin � 1qWin ; Cin :� 1�GpZn�i�1,nq

1� pGnpZ
�

n�i�1,nq

and

Win :� δn�i�1,n

�
log

Zn�i�1,n

Zn�kn,n


α 1�GpZn�kn,nq
1�GpZn�i�1,nq .

Since An
PÝÑ 1 as n Ñ 8 (see Theorem 2 in [Csörgő (1996)]), we need to

prove that Rn � oPpaαn,kq and, using the relation γ{p � γX , that

Wn

aαn,k

PÝÑ lα :� p|γ|�α�1Betapp{|γ| ; α� 1q. (10)
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5.1.1 Proof of (10)

Since G P DpHγC q, with γC   0, is equivalent to t Ñ 1 � Gpx� � tq being
regularly varying at 0 with index �1{γC (see the appendix for the definition
of regular variation at 0), the bounds p15q in Corollary 4 (in the appendix)
applied to f � G, x � px� �Zn�i�1,nq{px� �Zn�kn,nq and t � x� �Zn�kn,n,
yield, for ε ¡ 0, n sufficiently large and every 1 ¤ i ¤ kn,

p1� εqW�
i,n ¤Win ¤ p1� εqW�

i,n,

where

W�
i,n :� δn�i�1,n

�
log

Zn�i�1,n

Zn�kn,n


α�
x� � Zn�i�1,n

x� � Zn�kn,n


γ�1
C �ε

,

W�
i,n :� δn�i�1,n

�
log

Zn�i�1,n

Zn�kn,n


α�
x� � Zn�i�1,n

x� � Zn�kn,n


γ�1
C �ε

.

We thus need to prove that, for every given ε ¡ 0, the sequences 1
kn

°kn
i�1W

�
i,n{aαn,k

and 1
kn

°kn
i�1W

�
i,n{aαn,k converge in probability to some deterministic limit lα,ε,

which itself tends to lα as ε goes to 0. Since the proof for W�
i,n is similar, we

will only treat the case of W�
i,n.

Let us introduce, as in the proof of Theorem 1 in [Worms 2014], a sequence
pδ̃iq of i.id. Bernoulli(p) random variables independent of the sequence pZiq and
write 1

kn

°kn
i�1W

�
i,n � J1

n � J2
n, where

J1
n :� 1

kn

°kn
i�1 δ̃n�i�1,n

�
log Zn�i�1,n

Zn�kn,n

	α �
x��Zn�i�1,n
x��Zn�kn,n

	γ�1
C �ε

,

J2
n :� 1

kn

°kn
i�1pδn�i�1,n � δ̃n�i�1,nq

�
log Zn�i�1,n

Zn�kn,n

	α �
x��Zn�i�1,n
x��Zn�kn,n

	γ�1
C �ε

.

We shall treat J1
n and J2

n separately.


 Lemma 1, applied with a � α ¥ 1 and b � γ�1
C � ε   0, yields, by

the independence of the sequences pZiq and pδ̃iq, for ε, ε1, ε2 positive real
numbers and n sufficiently large,

cn p1� ε2qγ�1
C �εξ�n ¤ J1

n

aαn,k
¤ cn p1� ε2qγ�1

C �εξ�n (11)

where
ξ�n

d
:� 1

kn

°kn
i�1 δ̃i

�
Ỹ γi �1

γ

	α
Ỹ
pγ�1
C �εqpγ�ε2q

i � ε1OPp1q,

ξ�n
d

:� 1
kn

°kn
i�1 δ̃i

�
Ỹ γi �1

γ

	α
Ỹ
pγ�1
C �εqpγ�ε2q

i � ε1OPp1q,

and pỸiq are standard Pareto random variables independent of pδ̃iq. There-
fore, applying the weak Law of Large Numbers (using the independence just
mentioned) and Lemma 2 with a � α ¥ 1 and a1 � pγ�1

C � εqpγ � ε2q   1,
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and afterwards, making ε1 and ε2 go to 0, proves that, according to (11),
J1
n{aαn,k converges in probability to

p� |γ|�α�1Beta
�

1�γpγ�1
C �εq

|γ| ; α� 1
	
.

Since p1� γ{γCq{|γ| � |γX |�1 � p{|γ|, this limit tends to lα as ε goes to 0,
which is the desired result concerning J1

n.


 Let us now prove that J2
n � oPpaαn,kq, which will end the proof of (10). If

p ¡ 1 and q ¡ 1 are such that 1
p � 1

q � 1, then Hölder’s inequality yields:

|J2
n| ¤

�
1
kn

kņ

i�1

���δn�i�1,n � δ̃n�i�1,n

����1{p �
1
kn

kņ

i�1

pTn�i�1,nqq
�1{q

,

where Tn�i�1,n :�
�

log Zn�i�1,n
Zn�kn,n

	α �
x��Zn�i�1,n
x��Zn�kn,n

	γ�1
C �ε

.

According to the proof of Theorem 1 in [Worms 2014] (see page 350 there),
we know that (7) and (8) guarantee that 1

kn

°kn
i�1 |δn�i�1,n � δ̃n�i�1,n| �

oPp1q. So it remains to prove that 1
kn

°kn
i�1

�
Tn�i�1,n{aαn,k

	q
� OPp1q, for

an appropriate q ¡ 1.
If we choose q   1 � γC{γX , and we use once again Lemma 1 (with, this
time, a � α q ¡ 1 and b � pγ�1

C � εq q   0), the law of Large Numbers
combined with Lemma 2 (applied with a � α q ¡ 1 and a1 � pγ�1

C � εqpγ�
ε2q q which is   1 with this choice of q and ε small enough) yield the desired
result for J2

n.

5.1.2 Proof of Rn � oPpaαn,kq

Let us use the same decomposition as in the proof of the negligibility of the
term Rn in [Worms 2014] (see subsection 5.1.2 there). In other words : we
define, for some δ1 ¡ 0,

C̃ptq :�
» t
0

dGpxq
p1�Gpxqq2p1� F pxqq and hin :� pC̃pZn�i�1,nqq� 1

2�δ
1

,

and we readily have |Rn| ¤ T 1
nT

2
n , where

T 1
n :� sup

1¤i¤kn

?
n|hinpCin � 1q| and T 2

n :� 1
kn

kņ

i�1

Winh
�1
in n

� 1
2 .

Using sharp results of the survival analysis litterature, we have already proved
in [Worms 2014] that T 1

n � OPp1q. It remains to prove that

T 2
n{aαn,k � oPp1q.
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First, from the definition of hin and C̃, since p1 � Hq � p1 � F qp1 � Gq we
clearly have

h�1
in  

�� logp1�GpZn�i�1,nqq
1�HpZn�i�1,nq


 1
2�δ

1

.

Moreover, under assumption (A), 1 � Hpx� � �q is regularly varying at zero
with index �1{γ and � logp1 � Gpx� � �qq is slowly varying at 0 : therefore,
it can be seen that for any given positive ε and ε1 and n sufficiently large, the
application of bound p14q to � logp1�Gpx���qq, and of bound (15) to f � G
and f � H, implies that T 2

n ¤ 4PnQn where

Pn :� n�
1
2

�� logp1�GpZn�kn,nqq
1�HpZn�kn,nq


 1
2�δ

1

Qn :� 1
kn

kņ

i�1

�
log

Zn�i�1,n

Zn�kn,n


α �
x� � Zn�i�1,n

x� � Zn�kn,n


β
,

where β � p2γq�1�γ�1
C �ε3, for some ε3 ¡ 0 (arbitrarily small for appropriate

small values of ε, ε1 and δ1).
We thus need to prove that PnQn{aαn,k � oPp1q. Lemma 1, applied with a �
α ¥ 1 and b � β   0, yields, for n sufficiently large, and arbitrary small ε1 and
ε2 ¡ 0,

Qn{aαn,k ¤ cnQ
1
n where Q1n

d� Q̃n (12)

and

Q̃n � p1�ε2qβ 1
kn

kņ

i�1

�
Ỹ γi � 1
γ

�α
Ỹ
βpγ�ε2q
i �cε1 1

kn

kņ

i�1

Ỹ
βpγ�ε2q
i ¤ c1

1
kn

kņ

i�1

Ỹ
βpγ�ε2q
i

with c1 � |γ|�αp1 � ε2qβ � cε1 and pỸiq denoting a sample of standard Pareto
random variables. We now have to distinguish the case γC ¤ γX from the case
γC ¡ γX (respectively weak and strong censoring in the tail).

piq Case γC ¤ γX

First of all, assumption (K) implies that Pn � oPp1q (see relation p20q in
[Worms 2014]). Since βpγ�ε2q can be made  1 in this case (for appropriate
values of ε2 and ε3, since 1{2 � γ{γC ¤ 1), the upper bound of Q̃n above
converges in probability : consequently T 2

n � oPpaαn,kq, and Rn as well.

piiq Case γC ¡ γX
In this case βpγ�ε2q ¡ 1, which means that Q̃n is unbounded in probability.
However, by relying on the Marcinkiewicz-Zygmund law of large numbers,
it can be seen that k1�q

n Q̃n � oPp1q where q � βpγ � ε2q � η for any given
η ¡ 0. Therefore

T 2
n{aαn,k ¤ kq�1

n PnoPp1q
and using assumption (K) ends the proof (for more details, see relation
p20q in [Worms 2014]). [\
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5.2 Proof of Theorem 2

Let us first state some preliminary lemmas. The notation ξi,n was introduced in (3)
and we note

Z̃i,n :� x� � Zn�i�1,n

x� � Zn�kn,n
.

Lemma 3 Let α ¥ 1 and ui � ui,n � i
kn�1 . Under assumptions (A) and (4)

:
piq if 0   a   1 then

1
kn

kņ

i�1

u�ai
ξi,n
aαn,k

PÝÑ p1� aq|γ|�α�1Beta

�
1� a

|γ| ; α� 1


,

piiq if a ¡ 1, then for any δ1 ¡ 0,

1
ka�δ

1

n

kņ

i�1

u�ai
ξi,n
aαn,k

PÝÑ 0.

Lemma 4 For any given positive exponents θ and θ1 ¡ 0, there exist constants
c ¡ 1, c1   1 both arbitrarily close to 1, and a� ¡ 0, a� ¡ 0, arbitrarily close
to γθ and to γθ1 respectively, such that

lim
nÑ8

P

�
max
i¤kn

Z̃θi,n

cu
�a�
i

¡ 1

�
� lim
nÑ8

P

�
min
i¤kn

Z̃θ
1

i,n

c1u
�a�
i

  1

�
� 0.

We are now ready to proceed to the proof of Theorem 5.2. Similarly to M pαq
n,kn

,

the weighted moment M̃ pαq
n,kn

can be written as follows :

M̃
pαq
n,kn

� AnpWn �Rnq,

where An and Rn are defined as before (see Subsection 5.1) but here

Win :� 1�GpZn�kn,nq
1�GpZn�i�1,nq ξin.

Recall that An
PÝÑ 1 (see beginning of the proof of Theorem 1). We shall

deal with Wn and Rn separately. Let Z̃i,n be defined as in the statement of
Lemma 4, and lα denote the limit in the statement of Theorem 2.
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5.2.1 Proof of Wn{aαn,k PÝÑ lα

Applying bounds p15q to f � G and x � Z̃i,n and t � x��Zn�kn,n yields, for
ε ¡ 0 and n sufficiently large,

p1� εq ξi,n Z̃γ
�1
C �ε
i,n ¤Wi,n ¤ p1� εq ξi,n Z̃γ

�1
C �ε
i,n .

Let η ¡ 0. We first write, for ε sufficiently small,

PpWn{aαn,k � lα ¡ η q ¤ Pp k�1
n

°kn
i�1 Z̃

γ�1
C �ε
i,n

ξin
aαn,k

� lα ¡ η
2 q,

Pp lα �Wn{aαn,k ¡ η q ¤ Pp lα � k�1
n

°kn
i�1 Z̃

γ�1
C �ε
i,n

ξin
aαn,k

¡ η
2 q.

Let us now consider constants c ¡ 1 and c1   1, both arbitrary close to 1, and
a� ¡ 0 and a� ¡ 0 both arbitrary close to γ{γC . These constants come from
the application of Lemma 4 above with θ � γ�1

C � ε and θ1 � γ�1
C � ε. Using

positivity of ξin, it comes

P

�
Wn

aαn,k
� lα ¡ η

�
¤ P

��max
i¤kn

Z̃
γ�1
C �ε
i,n

cu
�a�
i

¡ 1

�

� P

�
c k�1

n

kņ

i�1

u
�a�
i

ξin
aαn,k

� lα ¡ η

2

�

P

�
lα � Wn

aαn,k
¡ η

�
¤ P

��min
i¤kn

Z̃
γ�1
C �ε
i,n

c1u
�a�
i

  1

�

� P

�
lα � c1 k�1

n

kņ

i�1

u
�a�
i

ξin
aαn,k

¡ η

2

�

where ui � ui,n � i{pkn � 1q for 1 ¤ i ¤ kn. If we call lα,a the limit in the
statement of Lemma 3 piq, and if we apply Lemma 4 as indicated previously,
we have

lim sup
nÑ8

P
�

Wn

aαn,k
� lα ¡ η

	
¤ lim sup

nÑ8
P
�
k�1
n

°kn
i�1 u

�a�
i

ξin
aαn,k

� lα,a� ¡ 1
c pη2 � lαq � lα,a�

	
lim sup
nÑ8

P
�
lα � Wn

aαn,k
¡ η

	
¤ lim sup

nÑ8
P
�
lα,a�� k�1

n

°kn
i�1 u

�a�
i

ξin
aαn,k

¡ 1
c1 pη2 � lαq � lα,a�

	
Since lα � lα,γ{γC , and both a� and a� are arbitrary close to γ{γC   1, it is

easy to see that convergence in probability of Wn to lα thus comes from the
application of Lemma 3 piq to a � a� and a � a�.
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5.2.2 Proof of Rn � oPpaαn,kq

Most of the proof is identical to the case of the first theorem. As in Subsection
5.1.2, we have |Rn| ¤ T 1

nT
2
n where T 1

n is left unchanged and is OPp1q. The
factor T 2

n is bounded by 4PnQn, where Pn is defined as in Subsection 5.1.2
but, this time,

Qn :� 1
kn

kņ

i�1

ξin Z̃
β
i,n,

where, as before, β � p2γq�1 � γ�1
C � ε2, for some ε2 ¡ 0. We now proceed as

in Subsection 5.2.1 to control PnQn{aαn,k.
Let η ¡ 0 and consider constants c ¡ 1 arbitrarily close to 1 and a� ¡ 0

arbitrarily close to γβ � 1
2 � γ

γC
� γε2   1

2 � γ
γC

.

PpPnQn
aαn,k

¡ ηq ¤ P

�
max
i¤kn

Z̃βi,n

cu
�a�
i

¡ 1

�
� P

�
Pn k

�1
n

kņ

i�1

u
�a�
i

ξin
aαn,k

¡ η

c

�
.

(13)
First, Lemma 4 piiq is applied with θ � β and thus the first term of the
right-hand side of p13q tends to 0.

Next, Lemma 3 is applied with a � a�. As in subsection 5.1.2, we need here
to distinguish the case γC ¤ γX (for which γβ   1) from the case γC ¡ γX
(for which γβ ¡ 1 when ε2 ¡ 0 gets small).

piq Case γC ¤ γX

Recall that under assumption (K), Pn � oPp1q. Since a�   1 in this case,
Lemma 3 piiq implies that 1

kn

°kn
i�1 u

�a�
i

ξin
aαn,k

� OPp1q and consequently

the second term of the right hand-side of (13) tends to 0.

piiq Case γC ¡ γX

In this case a� ¡ 1, therefore Lemma 3 piiq implies that, for any given δ1 ¡ 0,
k
�pa��δ

1q
n

°kn
i�1 u

�a�
i

ξin
aαn,k

� oPp1q. Moreover, assumption (K) implies that,

for δ1 ¡ 0 small enough and a� sufficiently close to 1{2 � γ{γC , we have
k
a��δ

1�1
n Pn � OPp1q. Hence, the second term of the right hand-side of (13)

also tends to 0.
[\

6 Appendix

6.1 Regular variation and Potter-type bounds

Definition 1 An ultimately positive function f : R� Ñ R is regularly varying
(at infinity) with index α P R, if

lim
tÑ�8

fptxq
fptq � xα p@x ¡ 0q.



18 Julien Worms, Rym Worms

This is noted f P RVα. If α � 0, f is said to be slowly varying.

Remark 3 Regular variation (and slow variation) can be defined at zero as
well. A function f is said to be regularly varying at zero with index α if the
function xÑ fp1{xq is regularly varying at infinity, with index �α.

Proposition 1 (See [Haan and Ferreira (2006)] Proposition B.1.9)
Suppose f P RVα. If x ¡ 0 and δ1, δ2 ¡ 0 are given, then there exists t0 �
t0pδ1, δ2q such that for any t ¥ t0 such that tx ¥ t0,

p1� δ1qxα minpxδ2 , x�δ2q   fptxq
fptq   p1� δ1qxα maxpxδ2 , x�δ2q.

If x   1 and ε ¡ 0, then there exists t0 � t0pεq such that for every t ¥ t0,

p1� εqxα�ε   fptxq
fptq   p1� εqxα�ε

and if x ¥ 1 ,

p1� εqxα�ε   fptxq
fptq   p1� εqxα�ε.

Corollary 4 If f is a positive function with end-point x�, such that t Ñ
1� fpx� � tq is regularly varying at 0 with index α, i.e.

1� fpx� � txq
1� fpx� � tq Ñ xα, as tÑ 0,

for some α P R, then for every ε ¡ 0, there exists t0 ¡ 0 such that, @0   t   t0,
@0   x   1,

p1� εqxα�ε ¤ 1� fpx� � txq
1� fpx� � tq ¤ p1� εqxα�ε (14)

and

p1� εqx�α�ε ¤ 1� fpx� � tq
1� fpx� � txq ¤ p1� εqx�α�ε (15)

Below, U corresponds to the quantile function associated to H introduced in
paragraph 2.1.

Corollary 5 If U satisfies condition p6q, then for every ε ¡ 0, there exists
t0 ¡ 0 such that, @0   t   t0, @x ¥ 1,

p1� εqxγ�ε ¤ Up8q � Uptxq
Up8q � Uptq ¤ p1� εqxγ�ε. (16)

Proposition 2 (see [Haan and Ferreira (2006)] Theorem B.2.18)
If U satisfies condition p5q with the positive function a, then there exists a
function q0 equivalent to a{U at infinity such that @ε ¡ 0, Dt0 ¡ 0, @t ¥ t0,
@x ¥ 1,

xγ � 1
γ

� εxγ�ε ¤ logUptxq � logUptq
q0ptq ¤ xγ � 1

γ
� εxγ�ε. (17)
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6.2 Proof of Lemma 1

Let cn :� pq0pn{knq {an,k qa, where function q0 is defined in Proposition 2 of
the Appendix.
If pYiq1¤i¤n is an i.i.d. sequence of standard Pareto random variables, then
Qa,bi,n equals in distribution cnpLLi,kqapUUi,kqb, where

LLi,k :� logpUpYn�i�1,nqq � logpUpYn�kn,nqq
q0pYn�kn,nq

and UUi,k :� Up8q � UpYn�i�1,nq
Up8q � pYn�kn,nq

.

We can write

pLLi,kqapUUi,kqb � pQQi,kqapUUi,kqb � ppLLi,kqa � pQQi,kqaqpUUi,kqb, (18)

where
QQi,k :� ppYn�i�1,n{Yn�kn,nqγ � 1q {γ .

On one hand, using bounds p17q for some ε1 ¡ 0, with t � Yn�kn,n and
x � Yn�i�1,n{Yn�kn,n ¡ 1, and relying on the mean value theorem, we easily
prove that, since a ¥ 1 and γ   0,

|pLLi,kqa � pQQi,kqa| ¤ c ε1
�
Yn�i�1,n

Yn�kn,n


γ�ε1
¤ c ε1 (19)

for some constant c (close to a|γ|1�a). On the other hand, using Potter bounds
p16q for some ε2 ¡ 0, we have (since b   0)

p1� ε2qb
�
Yn�i�1,n

Yn�kn,n


bpγ�ε2q
¤ pUUi,kqb ¤ p1� ε2qb

�
Yn�i�1,n

Yn�kn,n


bpγ�ε2q
. (20)

Moreover, it is known that

pYn�i�1,n{Yn�kn,nq1¤i¤kn
d� pỸkn�i�1,knq1¤i¤kn , (21)

where Ỹ1,kn , . . . , Ỹkn,kn are the ascending order statistics of kn i.i.d random
variables Ỹ1, . . . , Ỹkn with standard Pareto distribution. Combining p19q, p20q
and p21q in p18q finally gives the desired result. [\

6.3 Proof of Lemma 2

Let U be a uniform r0; 1s random variable, then

E
��

Y γ�1
γ

	a
Y a

1
	
� |γ|�aEpU�a1p1� U |γ|qaq,
� |γ|�a ³1

0
u�a

1p1� u|γ|qa du.

The change of variable v � u|γ| yields the result. [\
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6.4 Proof of Lemma 3

Let cn :� pq0pn{knq{an,kqα (which tends to 1 as nÑ8) and pYiq be a sequence
of i.i.d standard Pareto random variables. Let also LLi,k and QQi,k be defined
as in the proof of Lemma 1. For every 1 ¤ i ¤ kn, we thus have

c�1
n

ξi,n
aαn,k

d� i ppLLi,kqα � pLLi�1,kqαq

� αi,n � βi,n
where

αi,n :� i ppQQi,kqα � pQQi�1,kqαq
βi,n :� ipBk,npiq �Bk,npi� 1qq

Bk,npiq :� pLLi,kqα � pQQi,kqα,
with Bk,npkn � 1q � 0.

Our first step will be to prove that (with δ1 ¡ 0)

1
kn

kņ

i�1

u�ai βi,n or
1

ka�δ
1

n

kņ

i�1

u�ai βi,n is oPp1q whether 0   a   1 or a ¡ 1.

Since α ¥ 1, from relation p19q with α replacing a, it comes that |Bk,npiq| �
oPp1q, uniformly on 1 ¤ i ¤ kn. Since |Bk,npiq| �

���°kn
j�i

βj,n
j

���, we thus have,
when 0   a   1,��� 1

kn�1

°kn
i�1 u

�a
i βi,n

��� � ���°kn
i�1

βi,n
i u1�a

i ds
���

� p1� aq
���°kn

i�1
βi,n
i

³ui
0
s�a ds

���
¤ p1� aq°kn

i�1

���°kn
j�i

βj,n
j

��� ³uiui�1
s�a ds

� oPp1q
°kn
i�1pu1�a

i � u1�a
i�1 q

¤ oPp1q 1
kn

°kn
i�1 u

�a
i

� oPp1q.
The proof for a ¡ 1 is similar (see end of subsection 5.2.1 in [Worms 2014] for
more details, with the difference that now Bk,npiq � oPp1q uniformly in i).

Since we have dealt with the βi,n part, the lemma will be proved as soon as
we obtain that, when 0   a   1,

1
kn

kņ

i�1

u�ai αi,n
PÝÑ p1� aq |γ|�α�1Beta

�
1� a

|γ| ; α� 1



(22)

and, when a ¡ 1,
1

ka�δ
1

n

kņ

i�1

u�ai αi,n
PÝÑ 0. (23)
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From now on we may write k instead of kn. Let pEiq be a sequence of i.i.d
standard exponential random variables. According to p21q, and by applying the
mean value theorem, there exist some random variables E�i,k P rEk�i,k, Ek�i�1,ks
such that (remind below that γ is   0 and α ¥ 1)

αi,n
d� i

��
eγEk�i�1,k�1

γ

	α
�
�
eγEk�i,k�1

γ

	α	
� α i pEk�i�1,k � Ek�i,kq eγE

�

i,k

�
1�e

γE�
i,k

|γ|


α�1

� α|γ|1�α � i pEk�i�1,k � Ek�i,kq
!
u
|γ|
i p1� u

|γ|
i qα�1 � ∆i,n

)
(24)

where
∆i,n :� eγE

�

i,kp1� eγE
�

i,kqα�1 � u
|γ|
i p1� u

|γ|
i qα�1.

We will prove later that
max
i¤kn

|∆i,n| � oPp1q. (25)

For the moment, note that p i pEk�i�1,k �Ek�i,kq qi¤kn d� pfiqi¤kn due to the
Renyi representation, where pfiq denotes a sequence of i.i.d standard exponen-
tial random variables. Moreover, application of the law of large numbers for tri-
angular arrays of independent random variables (cf [Chow and Teicher (1997)]
; details are omitted) implies that, when 0   a   1,

1

kn

kņ

i�1

u�ai fi � OPp1q and
1

kn

kņ

i�1

u�ai fi u
|γ|
i p1�u

|γ|
i qα�1 P

ÝÑ

» 1

0
x|γ|�ap1�x|γ|qα�1 dx

(26)

and, when a ¡ 1 (and δ1 ¡ 0 is given),

1
ka�δ

1

n

kņ

i�1

u�ai fi � oPp1q. (27)

Considering first the situation 0   a   1, combining (24), (25) and (26) shows
that relation (22) will hold as soon as» 1

0

x|γ|�ap1� x|γ|qα�1 dx � α�1 p1� aq |γ|�2Beta

�
1� a

|γ| ; α� 1


.

Use of the formulas Betapu, vq � Γ puqΓ pvq{Γ pu � vq and uΓ puq � Γ pu � 1q
proves the latter relation. When a ¡ 1, relation (23) is a consequence of (24),
(25) and (27) .

It remains to prove relation (25) . For this purpose, we introduce the
sequence pViq of i.i.d. standard uniform random variables such that Vi,k �
e�Ek�i�1,k , and we note V �

i,k :� e�E
�

i,k . If we set Wi :� V
|γ|
i,k , W�

i :� pV �
i,kq|γ|

and vi :� u
|γ|
i , then relation (25) is now

Mn :� max
1¤i¤kn

��W�
i p1�W�

i qα�1 � vip1� viqα�1
�� � oPp1q,
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with 0  Wi ¤W�
i ¤Wi�1   1. Unfortunately, the function x ÞÑ xp1�xqα�1

is not uniformly continuous on s0, 1r if α is smaller than 2. Until the end of
the proof we will note maxi instead of max1¤i¤kn . Since |x � a| ¤ maxt|y �
a|, |z � a|u whenever |x � y| ¤ |z � y| (this yields the first inequality below),
we have

Mn ¤ max
 

maxi |Wip1 �Wi�1q
α�1 � vip1 � viq

α�1| ;
maxi |Wi�1p1 �Wiq

α�1 � vip1 � viq
α�1|

(
¤ max

 
maxi |Wip1 �Wi�1q

α�1 �Wip1 �Wiq
α�1| ;

maxi |pWi�1 �Wiqp1 �Wiq
α�1| ; maxi |Wip1 �Wiq

α�1 � vip1 � viq
α�1|

(
¤ max

 
maxi |p1 �Wi�1q

α�1 � p1 �Wiq
α�1| ; maxi |Wi�1 �Wi| ;

maxi |Wi � vi| ; maxi |p1 �Wiq
α�1 � p1 � viq

α�1|
(

�: max t Mn,1 ; Mn,2 ; Mn,3 ; Mn,4 u .

Now, since |xa� ya| ¤ pa^ 1q|x� y|a_1 whenever x and y belong to r0, 1s and
a ¡ 0, we have Mn,1 ¤ cM c1

n,2 and Mn,4 ¤ cM c1

n,3 for some positive constants
c and c1 . On the other hand, Mn,2 is bounded by 2Mn,3 �maxi |vi�1 � vi| �
2Mn,3 � op1q. Therefore, it remains to prove that

Mn,3 � max
1¤i¤kn

���V |γ|
i � u

|γ|
i

��� � oPp1q.

This property is proved in details in [Beirlant et al. (2002)] (page 164, with
�ρ instead of |γ|), so we do not reproduce it here. [\

6.5 Proof of Lemma 4

Once again, if Y1,n, . . . , Yn,n denote the ascending order statistics of n i.i.d
standard Pareto random variables, we have

Z̃i,n
d� Up8q � UpYn�i�1,nq
Up8q � UpYn�kn,nq

.

Applying bounds p16q, it comes, for some given ε1 ¡ 0, and n sufficiently large,�
Up8q � UpYn�i�1,nq
Up8q � UpYn�kn,nq


θ
¤ p1� ε1qθ

�
Yn�i�1,n

Yn�kn,n


a�
�
Up8q � UpYn�i�1,nq
Up8q � UpYn�kn,nq


θ1
¥ p1� ε1qθ1

�
Yn�i�1,n

Yn�kn,n


a�
where

a� � pγ � ε1qθ and a� � pγ � ε1qθ1.
We finish the proof as for Lemma 1 of [Worms 2014]. [\
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[Csörgő (1996)] S. Csörgő . Universal Gaussian approximations under random censorship.
In Annals of statistics 24 (6), pages 2744-2778 (1996)

[Diop et al. (2014)] A. Diop, J-F. Dupuy and P. Ndao. Nonparametric estimation of the
conditional tail index and extreme quantiles under random censoring. In Computational
Statistics & Data Analysis 79, pages 63-79 (2014)

[Einmahl et al. (2008)] J. Einmahl, A. Fils-Villetard and A. Guillou . Statistics of extremes
under random censoring. In Bernoulli 14, pages 207-227 (2008)

[Gomes and Neves (2011)] M.I. Gomes and M.M. Neves . Estimation of the extreme value
index for randomly censored data. In Biometrical Letters 48 (1), pages 1-22 (2011)

[Haan and Ferreira (2006)] L. de Haan and A. Ferreira . Extreme Value Theory : an Intro-
duction. Springer Science + Business Media (2006)

[Worms 2014] J. Worms and R. Worms New estimators of the extreme value index under
random right censoring, for heavy-tailed distributions. In Extremes 17 (2), pages 337-
358 (2014)


