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COMPLEX PROJECTIVE STRUCTURES: LYAPUNOV EXPONENT,
DEGREE AND HARMONIC MEASURE

BERTRAND DEROIN AND ROMAIN DUJARDIN

Abstract. We study several new invariants associated to a holomorphic projective struc-
ture on a Riemann surface of finite analytic type: the Lyapunov exponent of its holonomy
which is of probabilistic/dynamical nature and was introduced in our previous work; the
degree which measures the asymptotic covering rate of the developing map; and a family
of harmonic measures on the Riemann sphere, previously introduced by Hussenot. We
show that the degree and the Lyapunov exponent are related by a simple formula and give
estimates for the Hausdorff dimension of the harmonic measures in terms of the Lyapunov
exponent. In accordance with the famous “Sullivan dictionary”, this leads to a descrip-
tion of the space of such projective structures that is reminiscent of that of the space of
polynomials in holomorphic dynamics.

Introduction

Our purpose in this paper is to introduce several new objects associated with a CP1-
structure on a Riemann surface X of finite type, and study their relationships. In the
non-compact case, we assume that the projective structure is “parabolic at the cusps”, in
a sense that will be made precise below.

To such a projective structure σ, we associate:

- a Lyapunov exponent χ(σ), which was constructed in [22];
- a degree deg(σ) which is simply the (normalized) asymptotic covering degree of the

developing map X̃ → P1 (X̃ the universal cover of X);
- a family of harmonic measures (νx)x∈X̃ on P1, which generalize the traditional

harmonic measures on the limit sets of Kleinian groups (throughout the paper, P1

stands for CP1).

We will show that the Lyapunov exponent and the degree are related by a simple formula,
and give estimates for the Hausdorff dimension of the harmonic measures in terms of χ.
We give several applications of these ideas to the study of the space P (X) of (parabolic)
projective structures on X, in particular revealing new aspects of the famous Sullivan
dictionary between rational and Möbius dynamics on P1.

Before proceeding to a detailed presentation of these results, let us present the main
characters of the story.
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2 BERTRAND DEROIN AND ROMAIN DUJARDIN

0.1. Parabolic P1-structures. Let us fix a Riemann surface X of finite type (genus g with
n punctures) with negative Euler characteristic eu(X) = 2− 2g − n, as well as a universal

cover c : X̃ → X. Throughout this paper, by definition the (unmarked) fundamental
group π1(X) is the deck group of this covering. Recall that the automorphism group
of the Riemann sphere is the group PSL(2,C) acting on P1 = C ∪ {∞} by the formula
( a bc d ) · z = az+b

cz+d
. By definition a Kleinian group is a discrete subgroup of PSL(2,C).

It is convenient to define a P1-structure on X in terms of the so-called development-
holonomy pair (dev, hol). Consider a non constant locally injective meromorphic map

dev : X̃ → P1, satisfying the equivariance property dev ◦ γ = hol(γ) ◦ dev, where hol is a
representation π1(X)→ PSL(2,C). If A ∈ PSL(2,C), the pairs (dev, hol) and (A ◦ dev, A ◦
hol◦A−1) will be declared as equivalent. By definition, a P1-structure is an equivalence class
of such pairs. We refer here to the survey paper by Dumas, see [27] for a comprehensive
treatment of this notion.

When the surface X is not compact (hence by assumption it is biholomorphic to a
compact Riemann surface punctured at a finite set), we restrict ourselves to the subclass
of parabolic P1-structures. Such a structure has the following well-defined local model
around the punctures: each puncture has a neighborhood which is projectively equivalent
to the quotient of the upper half plane by the translation z 7→ z + 1.

For instance, the canonical projective structure σFuchs induced by uniformization (i.e.
viewing X as a quotient of H under a Fuchsian group) is of this type. More generally, the
proof of the Ahlfors finiteness theorem (see [1, Lemma 1]) shows that if Γ is any torsion
free Kleinian group, and Ω is the orbit of a discontinuity component, then the induced
projective structure on Ω/Γ is parabolic. These have been known as covering projective
structures, because the developing map is a covering onto its image in this case [43, 44].
An important example is given by quasi-Fuchsian deformations of the canonical structure
σFuchs.

There are many other examples of parabolic P1-structures. For instance surgery opera-
tions such as grafting (see Hejhal’s original construction in [37]) may produce a parabolic
P1-structure with holonomy a Kleinian group that is not of covering type. Such projective
structures are usually called exotic. There are yet other examples of P1-structures: a re-
markable theorem of Gallo, Kapovich and Marden [31] asserts that (when X is compact)
a representation π1(X) → PSL(2,C) is the holonomy of a P1-structure on X (for some
Riemann surface structure on X) if and only if it is non elementary and it lifts to a repre-
sentation with values in SL(2,C). In particular, there exist P1-structures with holonomy
a non discrete (or even dense) subgroup of PSL(2,C).

It is also of interest to deal with the case of branched P1-structures, where the local
injectivity assumption on the developing map is dropped. Examples include conical metrics
of constant curvature equal to 1, 0 or −1, with conical points of angle multiple of 2π. It
turns out that some of the results in the paper carry over to this setting. The necessary
adaptations will be explained in Appendix A.

0.2. The degree. Let H denote the upper half-plane {τ,=(τ) > 0}, and gP = 2|dτ |
=τ be

the Poincaré (or hyperbolic) metric on H, that is the unique complete conformal metric of



COMPLEX PROJECTIVE STRUCTURES 3

curvature −1, which is invariant under Aut(H) ' PSL(2,R). Taking the pull-back of this

metric under any biholomorphism between X̃ and H endows X̃ with a complete conformal
metric of curvature −1 invariant under π1(X), therefore this metric descends to X. It is
well known that when X is of finite type, the hyperbolic metric has finite volume.

Recall that a representation π1(X)→ PSL(2,C) is non elementary if it does not preserve
any probability measure on the Riemann sphere. The holonomy of a parabolic projective
structure is always non elementary: see [31, Theorem 11.6.1, p. 695] for the compact case,
and [16, Lemma 10] for a proof in the case of the fourth punctured sphere, which readily
extends to all punctured surfaces.

If σ is a parabolic projective structure, we want to define δ(σ) as a nonnegative number

counting the average asymptotic covering degree of devσ : X̃ → P1. For any x ∈ X̃ we
denote by B(x,R) the ball centered at x of radius R in the Poincaré metric, and by vol
the hyperbolic volume.

Definition-Proposition 0.1. Let X be a Riemann surface of finite type and σ be a par-

abolic projective structure on X. Choose a developing map dev : X̃ → P1. Let (xn) be a

sequence of points in X̃ whose projections c(xn) stay in a compact subset of X, (Rn) be
a sequence of radii tending to infinity, and (zn) be an arbitrary sequence in P1. Then the
limit

(1) δ = lim
n→∞

#B(xn, Rn) ∩ dev−1(zn)

vol(B(xn, Rn))

exists, and does not depend on the chosen sequences (xn), (Rn) nor on the developing map
dev. The number deg(σ) = vol(X)δ is by definition the degree of the projective structure.

The existence of the limit in (1) is not obvious, in particular due to the possibility of
boundary effects. The proof ultimately relies on a result of Bonatti and Gómez-Mont [8]
and will be carried out in §2.1. Observe that this result is reminiscent from Nevanlinna
theory, though the information we obtain is much more precise.We can actually derive the
asymptotics of the Nevanlinna theoretic counting function N(r, dev, z) and characteristic
T (r, dev) of the developing map (see [58]) and show that these quantities are governed by
the degree. Namely, for every z ∈ P1 an easy computation shows that

(2) N(r, dev, z) ∼
r→∞

T (r, dev) ∼
r→1

2πδ log
( 1

1− r
)
.

Besides, Nevanlinna theory is known to have connections with Brownian motion, see [14].
In this paper we will explore this relationship from a different point of view.

The reason for introducing the normalized invariant deg(σ) is that δ(σ) is invariant under
finite coverings, hence does not behave like a degree.

We also show that projective structures with vanishing degree are exactly the covering
projective structures (Proposition 2.3).

0.3. The Lyapunov exponent. The second invariant, the Lyapunov exponent of a par-
abolic projective structure was defined in our previous work [22]. It depends only on the



4 BERTRAND DEROIN AND ROMAIN DUJARDIN

holonomy holσ of the structure, and also on the induced Riemann surface structure on X.
Fix a basepoint ? ∈ X, in particular an identification between the covering group π1(X)
and the usual fundamental group π1(X, ?). As X is endowed with its Poincaré metric,
Brownian motion on X is well-defined. Throughout the paper, Brownian motion will refer
to the stochastic process with continuous time whose infinitesimal generator is the hyper-
bolic laplacian (instead of 1

2
∆, which is another usual convention). Let W? be the Wiener

measure on the set of continuous paths ω : [0,∞)→ X starting at ω(0) = ?.

Definition-Proposition 0.2. Let X and σ be as above. Define a family of loops as follows:
for t > 0, consider a Brownian path ω issued from ?, and concatenate ω|[0,t] with a shortest
geodesic joining ω(t) and ?, thus obtaining a closed loop ω̃t. Then for W? a.e. Brownian
path ω the limit

(3) χ(σ) = lim
t→∞

1

t
log ‖hol (ω̃t)‖

exists and does not depend on ω. This number is by definition the Lyapunov exponent of
σ.

Here ‖·‖ is any matrix norm on PSL(2,C). The existence of the limit in (3) was estab-
lished in [22, Def-Prop. 2.1]. As expected it is a consequence of the subadditive ergodic
theorem. With notation as in [22], χ(σ) = χBrown(hol). Another way to define χ(σ) goes
as follows (see [22, Rmk 3.7]: identify π1(X) with a Fuchsian group Γ and independently
random elements γn ∈ Γ ∩ BH(0, Rn), relative to the counting measure. Here (Rn) is a
sequence tending to infinity as fast as, say nα for α > 0. Then almost surely

1

dH(0, γn(0))
log ‖hol(γn)‖ −→

n→∞
χ(σ).

0.4. The harmonic measures. The third object that we associate to a P1-structure on

X is a family of harmonic measures {νx}x∈X̃ on the Riemann sphere, indexed by X̃. It
can be defined in several ways. The following appealing presentation was introduced by
Hussenot in his PhD thesis [39]:

Definition-Proposition 0.3 (Hussenot). Let X be a Riemann surface of finite type and
σ be a parabolic projective structure on X. Choose a representing pair (dev, hol). Then for

every x ∈ X̃, and Wx a.e. Brownian path starting at ω(0) = x, there exists a point e(ω)
on P1 defined by the property that

1

t

∫ t

0

dev∗
(
δω(s)

)
ds −→

t→+∞
δe(ω).

The distribution of the point e(ω) subject to the condition that ω(0) = x is the measure νx.

For covering P1-structures, we recognize the classical harmonic measures on the limit
set.

Another definition of the harmonic measures is based on the so-called Furstenberg bound-
ary map, which was designed in [30], based on the discretization of Brownian motion in H
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(see also [53, Theorem 3] for a different approach). Furstenberg shows that if Γ ⊂ PSL(2,R)
is a cofinite Fuchsian group and ρ : Γ → PSL(2,C) is a non-elementary representation,
there exists a unique measurable equivariant mapping θ : P1(R)→ P1 defined a.e. with re-

spect to Lebesgue measure (here P1(R) is viewed as ∂H) Choose a biholomorphism X̃ ' H,
thereby identifying π1(X) with a cofinite Fuchsian group. For τ ∈ H, recall that the classi-
cal harmonic measure mτ is a probability measure with smooth density on P1(R), defined
as the exit distribution of Brownian paths issued from τ . The harmonic measure νx is then

defined by νx = θ∗mτ , where x ∈ X̃ corresponds to τ ∈ H, and θ is associated to dev.
From this perspective it is clear that, the measures νx are mutually absolutely continuous
and depend harmonically on x.

0.5. The main results. The main result in this paper is the following formula, relating
the Lyapunov exponent and the degree of a P1-structure.

Theorem A. Let σ be a parabolic holomorphic P1 structure on a hyperbolic Riemann
surface X of finite type. Let as above χ(σ), δ(σ), and deg(σ) respectively denote the
Lyapunov exponent, the unnormalized degree and the degree of σ. Then the following
formula holds:

(4) χ(σ) =
1

2
+ 2πδ(σ) =

1

2
+

deg(σ)

|eu(X)|
.

Surprisingly enough, the proof is based on the ergodic theory of holomorphic foliations.
Indeed, to any representation ρ : π1(X)→ PSL(2,C) one classically associates its suspen-
sion, a flat P1-bundle Mσ → X whose monodromy is ρ. In more concrete terms, it is the

quotient of X̃ ×P1 under the diagonal action of π1(X). The horizontal foliation of X̃ ×P1

descends to a holomorphic foliation on Mσ transverse to the P1 fibers, with monodromy
ρ. This “dictionary” between P1-structures and transverse sections of flat P1-bundles, was
investigated e.g. in [49].

For ρ = holσ, we analyze this foliation from the point of view of Garnett’s theory of
foliated harmonic measures and currents. This interplay was already explored by Bonatti
and Gomez-Mónt [8] and Alvarez [2]. The key of the proof of the theorem is to interpret χ
and δ as cohomological quantities on Mσ. The idea that foliated Lyapunov exponents can
be computed in cohomology stems from the first author’s thesis (see [20, Appendice]).

When X is not compact, to prove the result we compactify both M and the foliation.
The computations then become much more delicate because the compactified foliation is
singular. The details are carried out in Sections 2, 3 and 4.

Theorem A is mostly interesting for the purpose of studying the space of projective
structures on X. Let P (X) be the space of parabolic projective structures on X which are
compatible with the complex structure. It is well known that P (X) is naturally isomorphic
to an affine space of quadratic differentials on X of dimension 3g−3+n (see §6.1 below for
more details). The Bers simultaneous uniformization theorem implies that the Teichmüller
space of marked conformal structures on X embeds as a bounded open subset B(X) ⊂
P (X) (the Bers slice), whose geometry has been extensively studied.
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The Sullivan dictionary is a very fruitful set of analogies between the dynamics of ratio-
nal transformations on P1 and the theory of Kleinian (and more generally Möbius) groups.
In [55], McMullen draws a fundamental parallel between the Bers slice B(X) and the Man-
delbrot set. We take one step further here by relating P (X) and the space of polynomials.
In this respect, Theorem A should be understood as the analogue of the familiar Manning-
Przytycki formula [51, 61] for the Lyapunov exponent of the maximal entropy measure of
a polynomial. This analogy should be used as a guide for the forthcoming results.

It was shown in [22] that σ 7→ χ(σ) is a continuous (Hölder) plurisubharmonic (psh for
short) function on P (X), hence it follows from Theorem A that deg is continuous and psh,
too. In addition we see that χ(σ) reaches its minimal value 1

2
exactly when deg(σ) = 0.

As already observed, deg = 0 on B(X), so in particular χ = 1
2

there.

A first result which parallels exactly the dynamics of polynomials concerns the Hausdorff
dimension of the harmonic measures.

Theorem B. Let X be a hyperbolic Riemann surface of finite type and σ be a parabolic
projective structure on X. Let as above χ be its Lyapunov exponent and (νx)x∈X̃ be the
associated family of harmonic measures. Then for every x,

dimH(νx) ≤
1

2χ
≤ 1.

Furthermore dimH(νx) = 1 if and only if σ belongs to the closure of the Bers slice B(X).

Notice that since the measures νx are mutually absolutely continuous, dimH(νx) is inde-
pendent of x, so abusing notation, we often simply denote it as dimH(ν). The proof is an
adaptation of Ledrappier [47, Thm 1].

So, as in the polynomial case, Theorem B provides an alternate approach to the classical
bound dimH(ν) ≤ 1 for the harmonic measure on boundary of discontinuity components
of finitely generated Kleinian groups, which follows from the famous results of Makarov
[50] and Jones-Wolff [41]. In addition, with this method we are also able to show that
dimH(ν) < 1 when the component is not simply connected. Indeed we have the more
precise bound dimH(ν) ≤ A

2χ
, where 0 ≤ A ≤ 1 is an invariant of the flat foliation, and

A < 1 when hol is not injective.
We also see that the value of the dimension of the harmonic measures detects exotic

quasifuchsian structures, that is, projective structures with quasifuchsian holonomy which
do not belong to the Bers slice.

As a third application of Theorem A, we recover a result due to Shiga [63].

Theorem C. Let X be a hyperbolic Riemann surface of finite type (of genus g with n
punctures). The closure of the Bers embedding B(X) is a polynomially convex compact
subset of the space P (X) ' C3g−3+n of holomorphic projective structures on X. As a
consequence, B(X) is a polynomially convex (or Runge) domain.
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Recall that a compact set K in CN is polynomially convex if K̂ = K, where

K̂ =

{
z ∈ CN , |P (z)| ≤ sup

K
|P | for every polynomial P

}
.

An open set U ⊂ CN is said to be polynomially convex (or Runge) if for every K b U ,

K̂ ⊂ U . The theorem may be reformulated by saying that B(X) is defined by countably
many polynomial inequalities of the form |P | ≤ 1. This is not an intrinsic property
of Teichmüller space, but rather a property of its embedding into the space P (X) of
holomorphic projective structures on X (as opposed to the Bers-Ehrenpreis theorem that
Teichmüller spaces are holomorphically convex).

Shiga’s proof is based on the Grunsky inequality on univalent functions. Only the
polynomial convexity of B(X) was asserted in [63], but the proof covers the case of B(X)
as well. Our approach is based on the elementary fact that the minimum locus of a global
psh function on CN is polynomially convex.

In [22] we showed that Tbif := ddcχ is a bifurcation current, in the sense that its support
is precisely the set of projective structures whose holonomy representation is not locally
structurally stable in P (X). Equivalently, the complement Supp(Tbif)

c is the interior of the
set of projective structures with discrete holonomy PD(X). A theorem due to Shiga and
Tanigawa [64] and Matsuzaki [54] asserts that Int(PD(X)) = PQF (X), the set of projective
structures with quasifuchsian holonomy, so we conclude that Supp(Tbif) = (PQF (X))c.

Analogous bifurcation currents have been defined for families of rational mappings on
P1. It turns out that the exterior powers T kbif are interesting and rather well understood
objects in that context (see [26] for an account). In particular, in the space of polynomials
of degree d, the maximal exterior power T d−1

bif is a positive measure supported on the
boundary of the connectedness locus, which is the right analogue in higher degree of the
harmonic measure of the Mandelbrot set [25].

For bifurcation currents associated to spaces of representations, nothing is known in
general about the exterior powers T kbif . In our situation, we are able to obtain some
information.

Theorem D. Let X be a compact Riemann surface of genus g ≥ 2. Let Tbif = ddcχ be
the natural bifurcation current on P (X). Then ∂B(X) is contained in Supp(T 3g−3

bif ).

Notice that 3g − 3 is the maximum possible exponent. It is likely that the support of
T 3g−3

bif is much larger than ∂B(X). The reason for the compactness assumption here is that
the proof is based on results of Otal [60] and Hejhal [38] that are known to hold only when
X is compact.

If γ is a geodesic onX, we let Z(γ) be the subvariety of P (X) defined by the property that
tr2(hol(γ)) = 4 (i.e. hol(γ) is parabolic or the identity). As a consequence of Theorem D
and of the equidistribution theorems of [22] we obtain the following result, which contrasts
with the description of ∂B(X) “from the inside” in terms of maximal cusps and ending
laminations ([56, 9], see also [46] for a nice account).
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Corollary E. For every ε > 0 there exist 3g − 3 closed geodesics γ1, . . . , γ3g−3 on X such
that ∂B(X) is contained in the ε-neighborhood of Z(γ1) ∩ · · · ∩ Z(γ3g−3).

We observe that the value 4 for the squared trace is irrelevant here. As the proof will
show, the result holds a.s. when γ1, · · · , γk are independent random closed geodesics of
length tending to infinity.

0.6. Notation.
P1 = P1(C) is the Riemann sphere. z often denotes the variable in P1

H the upper half plane. τ a variable in H
X the finite type Riemann surface on which is defined a projective structure
σ a parabolic projective structure on X.

dev = devσ : X̃ → P1 a developing map
hol = holσ : π1(X)→ PSL(2,C) the holonomy representation
π : Mσ → X the flat P1-bundle over X
P1
x = π−1(x) the fiber over x ∈ X.

$ : X̃ × P1 →Mσ the quotient map.
s : X →Mσ a holomorphic section of π
F the holomorphic foliation defined by the flat connexion
T the harmonic current on Mσ

Mσ, F , s, T , etc. are the compactifications of the corresponding objects when X is not
compact.

1. Harmonic measures and harmonic currents

In this section we introduce a number of geometric objects which that will be fundamen-
tal in our study: the suspension Mσ (as well as its compactification Mσ), and the foliation
F (resp. F). We also study the ergodic theoretic properties of F , by way of three closely
related, though slightly different tools: a family of harmonic measures on the fibers of Mσ,
a foliated harmonic current, and its associated foliated harmonic measure.

1.1. Generalities. We fix once for all a Riemann surface X of finite type, that is, X
is biholomorphic to a compact Riemann surface X with finitely many points deleted.
We assume that X has negative Euler characteristic. If necessary, we endow X with its
hyperbolic metric, which is of finite volume.

A P1-bundle over a Riemann surface X is a holomorphic fibration M → X with P1

fibers. It is always the projectivization of a rank 2 holomorphic vector bundle over X. If
the Riemann surface is compact, the compact complex surface M , being a P1-bundle over
a curve, is algebraic (by the GAGA principle), thus in particular it is Kähler. We refer to
[3, V.4].

A holomorphic P1-bundle always admits a smooth section X → M (and even a holo-
morphic one, see [3, V.4, p. 139]). When X is compact, the parity of the self-intersection
of such a smooth section depends only on the fibration; it is even iff X is diffeomorphic to
the trivial bundle X × P1, and odd otherwise.
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Let s and f respectively denote a smooth section and a fiber of M → X, then we have
that

(5) H2(M,C) := C[s]⊕ C[f ],

where [s] and [f ] are the cohomology classes dual to s and f respectively. (Throughout
this paper, we consistently identify the section s and its graph in M).

In particular, since we can always choose s to be holomorphic, and since M is Kähler,
we obtain an isomorphism between the Dolbeaut cohomology group H1,1

∂
(M,C), the Bott-

Chern cohomology group H1,1

∂∂
(M,C), and H2(M,C).

1.2. Parabolic flat P1-bundles. Given a parabolic projective structure σ on X, we in-
troduce the flat P1-bundle P1 → Mσ

π→ X with monodromy holσ, namely the quotient of

the flat bundle X̃ × P1 under the action of π1(X) given by

(6) γ(x, z) = (γx, holσ(γ)z).

We denote by $ : X̃×P1 →Mσ the natural projection. Also, we let F be the holomorphic

foliation on Mσ obtained by taking the quotient of the horizontal fibration X̃ × {z} of

X̃ × P1.
When X is not compact, we can compactify the bundle Mσ as a bundle over X. The flat

connexion ∇ extends as a meromorphic connexion ∇ on Mσ, and the foliation F extends
as a singular holomorphic foliation F .

Here are the details. Consider the following model for a P1-bundle over the unit disk
equipped with a meromorphic flat connexion having a pole over 0, defined by the differential
equation

(7)
dv

du
=

i

2πu

in coordinates (u, v) ∈ D × C. We denote the induced foliation on D × P1 by Fm. The
monodromy of the connexion around u = 0 is the parabolic map v 7→ v + 1. Since by
assumption the holonomy representation is parabolic, we can glue this local model to each
of the cusps ofMσ to obtain the desired P1-bundleMσ overX equipped with a meromorphic
flat connexion ∇ and singular holomorphic foliation F .

1.3. Parabolic P1-structures and holomorphic sections of flat P1-bundles. Let now

dev : X̃ → P1 be a developing map of the parabolic P1-structure σ. The map X̃ 3 x 7→
(x, dev(x)) ∈ X̃ × P1 is π1(X)-equivariant, hence it descends to a section s : X → Mσ of
the bundle Mσ → X. This section will play an important role in what follows.

Lemma 1.1. The section s extends to a section s : X → Mσ which is transverse to the
foliation F .

Proof. To make the compactification more explicit, consider a neighborhood N of a punc-
ture equipped with a coordinate x in which the projective structure is defined in the
punctured unit disk by its developing map x 7→ log x (see §0.1). Write x = exp(2iπτ) with
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s

F

P1
0

(0, 0)

(0,∞)

Figure 1. Schematic view of the compactified foliation

τ ∈ H. The P1-bundle Mσ over the punctured disk N ' D∗ is the quotient of H × P1 by
the cyclic group generated by (τ, z) 7→ (τ + 1, z + 1). The map

(8) (τ, z) 7−→ (u = exp(2iπτ), v = z − τ)

is invariant under this transformation, and it maps the horizontal foliation to the foliation
defined by dz = dv + dτ =

(
dv + du

2iπu

)
= 0. Hence (8) provides the identification between

the bundle Mσ over N ' D∗ and the model (7).
The section s of Mσ is defined in the coordinates (τ, z) to be the diagonal z 7→ (z, z), so

in the coordinates (u, v) it is given by u 7→ (u, 0). Hence the section s extends as a section
s of Mσ. �

1.4. Fiberwise harmonic measures. Fix an biholomorphism between X̃ and H, thereby
identifying π1(X) with a lattice Γ in PSL(2,R). Recall from [30, 53] that if ρ : Γ →
PSL(2,C) is a non elementary representation, there exists a unique (Lebesgue) measurable
ρ-equivariant map Φ : P1(R) → P1 defined almost everywhere. Likewise, if Prob(P1)
denotes the compact convex set of probability measures on P1 (endowed with the weak*
topology), then the map a ∈ P1(R) 7→ δΦ(a) ∈ Prob(P1) is the unique measurable ρ-
equivariant map.

A measurable family of probability measures (mτ )τ∈H on P1 is said to be harmonic if for
every test function ψ, the function H 3 τ 7→

∫
ψmτ is harmonic.

Proposition 1.2. Let Γ be a lattice in PSL(2,R) and ρ : Γ→ PSL(2,C) be a non elemen-
tary representation. Then there exists a unique measurable family of probability measures
{ντ}τ∈H on P1 such that :
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(i) τ 7→ ντ is harmonic;
(ii) νγτ = ρ(γ)∗ντ for every γ ∈ π1(X) and every τ ∈ H.

In particular, we have the formula

(9) for every τ ∈ H, ντ =
1

π
Φ∗
( =τ da
|τ − a|2

)
,

and these measures coincide with those defined in Definition 0.3.

The family {ντ , τ ∈ H} will be simply referred to as the family of harmonic measures
associated to the P1-structure.

Proof. It will be convenient to view P1(R) as the boundary of the upper half plane. First,
it follows from the Poisson formula and the equivariance of Φ that (9) defines a family of
harmonic measures ντ satisfying (i) and (ii).

To establish the uniqueness statement, fix a family of probability measures {ν ′τ}τ∈H on
P1 satisfying (i) and (ii). Then, Fatou’s theorem on boundary values on bounded harmonic
functions implies that there is a measurable map ν̂ ′ : ∂H → Prob(P1) with values in the
set of probability measures on P1, such that the Poisson formula holds, namely for every
τ ∈ H

ν ′τ =
1

π

∫
R

=τ
|τ − a|2

ν̂ ′(a)da.

The map ν̂ ′ is ρ-equivariant since the family {ν ′τ}τ∈H is. Hence by the observations pre-

ceding the proposition, we get that a.s. ν̂ ′(a) is the Dirac mass at Φ(a), and we are done.
The fact that these measures coincide with the ones from Definition-Proposition 0.3

follows from this uniqueness. Indeed, the family of measures defined by Definition 0.3
clearly satisfies the equivariance property (ii). To check (i) we adapt the classical argument
for the harmonic dependence of the harmonic measures with respect to the starting point.
Indeed let e(ω) be the endpoint mapping defined in Definition 0.3. Let B ⊂ P1 be any Borel

set. Let us prove that u : x 7→ Px(e(ω) ∈ B) is harmonic. For this, identify X̃ with the unit

disk and D be a small disk centered at x ∈ X̃. For ω ∈ Ωx, let T = inf {t > 0, ω(t) /∈ D}.
It follows from the strong Markov property of Brownian motion in X̃, that

u(x) = Ex
(
Pω(T )(e(ω(· − T )) ∈ B

)
= Ex

(
u(ω(T ))

)
=

∫
∂D

u.

Therefore u satisfies the mean value property and the result follows. �

Remark 1.3. The map Φ is in general not injective on any full measure subset of P1(R).
However a theorem of Ledrappier shows that this is the case when ρ is faithful and discrete,
see [48]. This result will be used in section 5.

1.5. Harmonic currents. Given a foliated complex surface (M,F) (possibly with singu-
larities), a directed (or foliated) harmonic current (often simply abbreviated as “harmonic
current” in the sequel) is a positive current of bidegree (1, 1) which is ∂∂-closed, and such
that 〈T, ψ〉 ≥ 0 if ψ is a (1,1) form which is positive along the leaves.
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Such currents have the following local structure outside the singular set sing(F): in a
foliation box biholomorphic to the bidisk D × D in which the foliation is the horizontal
fibration, there exists a finite positive measure m on D, and a non-negative bounded
measurable function such that

(10) T =

∫
ϕ [D× {w}] dm(w),

and moreover ϕ(., w) is harmonic for m-a.e. w ∈ D. Here as usual [D × {w}] stands for
the current of integration on D × {w}. The product ϕm is a well-defined object, which
can be thought of as a transverse measure for the foliation F . In particular, if C ⊂M is a
holomorphic curve disjoint from sing(F), we can define the restriction T |C of T to C, also
referred to as the geometric intersection T ∧̇[C] between T and C). Observe that the same
makes sense for any current of the form (10), whenever harmonic or not.

The existence of a harmonic current directed by the foliation is classical when M is
compact and F is non-singular (see e.g. [34]); the singular case was treated in [7].

Assume now that F is the foliation by flat sections of Mσ. There is a 1-1 correspondence
between foliated harmonic currents and the fiberwise harmonic measures of §1.4. Indeed,
consider a foliated harmonic current T on Mσ, normalized so that one (hence all) of its
vertical slices is of unit mass. Lifting T to the universal cover H×P1, we obtain a harmonic

current T̃ directed by the horizontal fibration, that is invariant with respect to the action
of Γ ' π1(X) defined in (6). Restricting to the vertical fibers {τ} × P1 we get a family of
measures ντ which is easily seen to satisfy the assumptions of Proposition 1.2.

Conversely, any family of measures (ντ )τ∈H on {τ} × P1 satisfying the assumptions of
Proposition 1.2 gives rise to a foliated harmonic current on Mσ. For this, working first on

H × P1, we construct from (i) a harmonic current T̃ directed by the horizontal fibration.
Indeed, the Poisson formula asserts that ντ is a convex combination of measures of the form

h(τ, a)δΦ(a), where τ 7→ h(τ, a) is harmonic. Then we get T̃ by taking the corresponding
combination of currents of the form h(τ, a)[H × {Φ(a)}]. From the equivariance property

(ii), T̃ descends to a foliated harmonic current on Mσ and we are done.
The following uniqueness statement will be of utmost importance to us. When X is

compact it was already established in [24].

Proposition 1.4. Let X, σ and Mσ be as above. The singular foliation F on the com-
pactified suspension Mσ admits a unique normalized foliated harmonic current, carrying
no mass on the fibers over the punctures.

Proof. In Mσ, the existence and uniqueness of a foliated harmonic current T giving mass
1 to the vertical fibers follows from the above discussion, together with Proposition 1.2.
Thus, the point is to show that T admits an extension to a harmonic current T on Mσ

with no mass on the fibers over the punctures, which is then necessarily unique.
Recall that the foliation F has a well defined rigid model Fm in a neighborhood of each

puncture, which was defined in §1.2. The key is the following lemma.
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Lemma 1.5. Consider the model foliation Fm on D × P1, as defined in §1.2. Let T
be any foliated harmonic current in D∗ × P1, normalized so that the restriction of T to
any fiber u × P1, u 6= 0 is a probability measure. Then the restriction of T to the curve
s∗ = {0 < |u| ≤ e−2π, v = 0} has finite mass.

From this and Lemma 1.1 (see also Figure 1), we deduce that the harmonic current
extends to D× P1 \ sing(Fm). It then follows from general extension results for harmonic
currents (see e.g. [18, Thm 5]) that it also compactifies at the singular points of Fm. The
proposition follows. �

Proof of Lemma 1.5. The harmonic current T lifts as a harmonic current T̃ on H × P1

which is defined in the (τ, z)-coordinates by a family of measures {ντ}τ∈H satisfying

(11) ντ+1 = (z + 1)∗ντ ,

and depending harmonically on τ . As in the proof of Proposition 1.2, the Poisson formula
implies that there exists a family of probability measures {νa}a∈R defined for a.e. a ∈ R
and depending measurably on a, such that for every τ ∈ H

ντ =

∫
R

=τ
(<τ − a)2 + =τ 2

νada.

The equivariance relation (11) implies that

νa+1 = (z + 1)∗νa

almost everywhere. A canonical example of such a family of measures is given by νcan
a = δa

the Dirac mass at the point a. It defines a harmonic current T can (corresponding to the
harmonic current on the suspension corresponding to the identity representation).

A fundamental domain for the pull-back of s∗ in H × P1 is the subset D × D of the
diagonal in H× P1, where

D =

{
−1

2
≤ <τ ≤ 1

2
, =τ ≥ 1

}
⊂ H.

Therefore, we need to prove that the integral

I =

∫
R
da ·

∫
D

=τ
(<τ − a)2 + (=τ)2

νa(dτ)

is finite. Performing the change of variable a = b+ n yields

I =

∫ 1

0

db ·
∑
n∈Z

∫
D

=τ
(<τ − (b+ n))2 + (=τ)2

νb+n(dτ).

The equivariance relation (z + n)∗νb = νb+n gives∫
D

=τ
(<τ − (b+ n))2 + (=τ)2

(z + n)∗νb(dτ) =

∫
D−n

=τ
(<τ − a)2 + (=τ)2

νa(dτ)
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where D − n = {τ − n | τ ∈ D}, and we conclude that

I =

∫ 1

0

da ·
∫
=τ≥1

=τ
(<τ − a)2 + (=τ)2

νa(dτ) ≤ 1

since νa is a probability measure on P1 and =τ
(<τ−a)2+(=τ)2

≤ 1 if =τ ≥ 1. The proof is

complete. �

Remark 1.6. Identify X̃ with H via a biholomorphism. For any P1-structure σ, the map Φ
can be used to construct a measurable map MσFuchs →Mσ mapping biholomorphically every
leaf of FσFuchs to a leaf of Fσ. At the level of the universal covers, this map is simply given
by (τ, z) 7→ (τ,Φ(z)). Observe furthermore, that the normalized current TσFuchs is mapped
to Tσ (indeed, this holds for the fiber harmonic measures). If in addition the holonomy is
faithful with discrete image, Remark 1.3 shows that the foliations (MσFuchs ,FσFuchs , TσFuchs)
and (Mσ,Fσ, Tσ) are actually measurably conjugated.

1.6. Foliated harmonic measures: Garnett’s theory. In this paragraph we briefly
review Garnett’s theory of foliated Brownian motion [33] (see also [13]), and adapt it to
our non compact situation. Let us define the normalized measure

(12) µ =
1

vol(X)
volP ∧ T.

This measure is a harmonic measure in the sense of Garnett, namely it satisfies the equation
∆Fµ = 0 in the weak sense, here ∆F is the leafwise laplacian relative to the leafwise
Poincaré metric. (This is immediate from the fact that T itself is harmonic.) We will refer
to such measure as foliated harmonic measures.

Let Π = {Πt}t≥0 be the Markov semi-group of operators acting on C0
c (Mσ), whose

infinitesimal generator is ∆F . It is convenient to consider it at the level of the universal

cover X̃ × P1. There it expresses as

(13) Πtf(x, z) =

∫
X̃

p(x, y, t)f(y, z)vol(dy)

where p(x, y, t) is the fundamental solution of the heat equation ∂
∂t

= ∆Poin on the hy-
perbolic plane. Then, since µ satisfies ∆Fµ = 0, it is invariant under the semi-group
Π.

The following is essentially a reformulation of Proposition 1.4. The proof will be left to
the reader.

Proposition 1.7. The measure µ is the only normalized foliated harmonic measure in
the sense of Garnett for F on Mσ. In particular any measurable subset of Mσ which is
saturated by F has zero or full µ-measure.

Consider the Markov process on Mσ induced by the leafwise Brownian motion, with re-
spect to the Poincaré metric (recall that the Brownian motion is generated by the operator
∆). More precisely, we let ΩF be the set of semi-infinite continuous paths ω : [0,∞)→Mσ
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which are contained in a leaf of F , and σ = {σt}t∈[0,+∞) be the shift semi-group acting on
Ω by σt(ω)(s) = ω(t+ s). Let

WF
µ :=

∫
WF
x dµ(x)

on ΩF , where WF
x is the Wiener measure on the subset ΩFx of paths starting at x. We also

sometimes use the Wiener space (ΩX ,WX) of Brownian paths on X.
The following proposition is contained in [13, §6]. For the sake of convenience we sketch

the proof.

Proposition 1.8. The measure WF
µ is σ-invariant and the dynamical system (ΩF , σ,WF

µ )
is ergodic.

Proof. Let us first show that WF
µ is σ-invariant. Let E ⊂ Ω be a measurable subset. By

the Markov property, for every x ∈Mσ and every t ≥ 0 we have that

(14) WF
x (σ−1

t E) =

∫
Lx

p(x, y, t)WF
y (E)dy.

Consider the function f : (t, x) 7→ WF
x (σ−1

t E). Equation (14) shows that f satisfies the heat
equation, with initial condition f(0, x) = WF

x (E), hence for every t ≥ 0, f(t, .) = Πtf(0, .).
Since µ is invariant under the heat semi-group, we deduce that

WF
µ (σ−t(E)) =

∫
Xρ

f(t, x)dµ(x) =

∫
Xρ

f(0, x)dµ(x) = WF
µ (E),

hence proving the first part of the proposition.

We now prove that (ΩF , σ,WF
µ ) is ergodic. Let E be any σ-invariant subset. The function

x 7→ f(0, x) = WF
x (E) is then measurable, bounded, and harmonic along µ-a.e. leaf. We

claim that it is constant. Indeed, observe that for any c ∈ Q, the function g = max(f, c) is
leafwise subharmonic on a.e. leaf, so we get that for every t ≥ 0, Πtg ≥ g on a.e. leaf. On
the other hand,

∫
Πtg dµ =

∫
g dµ, so we infer that on a set of full measure Πtg = g holds

for every rational t ≥ 0. This proves that g is harmonic on µ-a.e. leaf. This being true
for every c, it follows that f is constant along a.e. leaf. Now, since E is shift invariant,
belonging to E is a a tail property, so by applying the 0-1 law [13, Prop. 6.5] we infer
that E has zero or full measure on a.e. leaf. Applying Proposition 1.7 then concludes the
proof. �

2. The degree

In this section we introduce the concept of the degree of a P1-structure on X. We justify
its existence in §2.1 by proving Proposition 0.1. Then in §2.2, we characterize projective
structures with vanishing degree, and in §2.3 we show that it can be expressed in terms of
cohomological data.
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2.1. Existence of the degree and equidistribution of large leafwise discs. This
subsection is devoted to the proof of Definition-Proposition 0.1. Recall that we are given a

developing map dev : X̃ → P1 of a parabolic P1-structure with non-elementary holonomy,
and wish to show that 1

vol(B(xn,Rn))
#
{
B(xn, Rn) ∩ dev−1(zn)

}
converges to some limit δ,

independent of the choices. To ease notation we set vol(Rn) = vol(B(xn, Rn)). Using the
equivariance we may assume without loss of generality that (xn) is relatively compact in

X̃. Recall that the graph of the developing map in X̃ × P1 descends to a section s of Mσ

transverse to F . Recast in geometric language, we need to show that 1
vol(Rn)

#(B(xn, Rn))×
{zn}) ∩ Graph(dev) converges to some value δ. Pushing forward by $, this amounts to
proving that the geometric intersection number∫

Mσ

$∗

(
1

vol(Rn)
[B(xn, Rn)× {zn}]

)
∧̇[s]

converges to δ. Put ∆(Rn) = $∗

(
1

vol(Rn)
[B(xn, Rn)× {zn}]

)
, which is a current with

boundary supported in a leaf of F . It is perhaps useful to stress here that ∆(Rn), may
be decomposed into pieces of varying multiplicities (according to the self- overlapping
properties of $(B(xn, Rn))), and that these multiplicities are taken into account in the
geometric wedge product ∧̇.

The key is the following equidistribution result for large leafwise discs in parabolic flat
P1-bundles, which is due to Bonatti and Gómez-Mont [8], given the positivity of the foliated
Lyapunov exponent, a fact that was established in this generality in our previous work [22].

Proposition 2.1. Let ρ : π1(X) → PSL(2,C) be a non elementary representation. Let

(xn)n≥0 be a sequence in X̃ such that (c(xn))n→∞ is relatively compact in X. Let (Rn) be
a sequence of positive real numbers tending to +∞, and (zn) be any sequence of points on
the Riemann sphere. Then the projection in Mσ of the sequence of integration currents

∆(Rn) = $∗

(
1

vol(Rn)
[B(xn, Rn)× {zn}]

)
converges to 1

vol(X)
T when n tends to infinity.

Proof. Let vol denote the Poincaré volume form along the leaves of F . Remark that since
all currents are directed by the foliation, the convergence ∆(Rn) −→

n→∞
1

vol(X)
T is equivalent

to that of $∗

(
1

vol(Rn)
vol|B(xn,Rn)×{zn}

)
towards the measure µ := 1

vol(X)
T ∧ vol.

By [8, Thm 2], for this it is enough to show that the top Lyapunov exponent of the
cocycle induced by ρ over the geodesic flow on T 1X is positive. The representation ρ being
non elementary, this positivity was shown in [22, Rmk 2.19]. The result follows. �

We see that to prove the desired result, it is enough to show that

(15)

∫
Mσ

∆(Rn)∧̇[s] −→
n→∞

1

vol(X)

∫
Mσ

T ∧̇[s].

We note that it follows from the previous proposition that if α is any smooth form along

the leaves of F , 〈∆(Rn), α〉 converges to
〈

1
vol(X)

T, α
〉

. The proof of (15) will be carried
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out in several steps. As it is common in such counting issues, special attention must be
paid to boundary effects.

Step 1. Here we prove (15) on compact subsets of Mσ. Since s is a section of Mσ → X, it
is enough to test the convergence on test functions of the form π∗ψ, with ψ ∈ Cc(X), which
we simply denote by ψ, that is, we need to show that 〈∆(Rn)∧̇[s], ψ〉 → 1

vol(X)
〈T |s, ψ〉. Fix

ε > 0. To lighten notation, we put Bn(Rn) = B(xn, Rn)× {zn}.
We first construct a regularization of ψ[s]. Since s is transverse to F we can extend ψ

locally around s to be constant along the leaves. Fix a non-negative smooth function θε :
[0,∞)→ [0,∞) with support contained in [0, ε], and such that

∫
D θε(dPoin(0, x)) vol(dx) =

1. Let now ∆ be a foliated current, expressed as ∆ =
∫
ϕ[D × {w}]dm(w) in a flow box

around a point of s, in which s corresponds to {0} ×D. Define a form along the leaves by

(ψ[s])ε = θε(dF(·, s))ψ volF ,

where dF (resp. volF) is the leafwise Poincaré distance (resp. volume form). If ϕ is
continuous, then clearly ∆ ∧ (ψ[s])ε is close to ∆∧̇(ψ[S]) (when ∆ = ∆(Rn), this will
happen when ∂∆(Rn) is far from s).

We then write

∫
∆(Rn)∧̇ψ[s]− 1

vol(X)

∫
T ∧̇ψ[s] =

(∫
∆(Rn) ∧ (ψ[s])ε −

1

vol(X)
T ∧ (ψ[s])ε

)
+

(16)

+

∫
∆(Rn)∧̇ψ[s]−∆(Rn) ∧ (ψ[s])ε +

1

vol(X)

∫
T ∧ (ψ[s])ε − T ∧̇ψ[s]

as a sum of three terms I + II + III. Since (ψ[s])ε is smooth along the leaves, Proposition
2.1 implies that I converges to zero as n→∞. Since in the representation (10) the density
ϕ of T along the leaves is harmonic, the mean value formula implies that the integral III
vanishes.

We will decompose the integral II as a sum of two contributions. We declare that a
point in Bn(Rn) ∩$−1(s) is a good intersection if the ball BPoin(p, ε) of radius ε relative
to the Poincaré metric is disjoint from ∂(Bn(Rn)). Therefore, Bn(Rn) ∩ $−1 Supp(ψ[s])ε
is a union of good and bad components. Notice that bad components are contained in
a leafwise 2ε-neighborhood of ∂Bn(Rn). Pushing forward again by $ we let ∆bad

n be the
part of ∆(Rn) corresponding to bad components and ∆good

n be its complement (notice that
∆good
n is larger than the union of good components). Since ψ is constant along the leaves

near s, by definition of (ψ[s])ε we get that∫
∆good
n ∧̇(ψ[s]) =

∫
∆good
n ∧ (ψ[s])ε).

To estimate the contribution of the bad part, observe that bad components of ∆(Rn)
become good in $(Bn(Rn + 2ε)) as well as in the annulus $(Bn(Rn + 2ε) \Bn(Rn − 2ε)).
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So we infer that∫
∆bad
n ∧̇ψ[s] ≤

∫
1

vol(Rn)
($∗ [Bn(Rn + 2ε) \Bn(Rn − 2ε)])good ∧̇ψ[s]

=

∫
1

vol(Rn)
($∗ [Bn(Rn + 2ε) \Bn(Rn − 2ε)])good ∧ (ψ[s])ε

≤
∫

1

vol(Rn)
$∗ [Bn(Rn + 2ε) \Bn(Rn − 2ε)] ∧ (ψ[s])ε

−→
n→∞

(
e2ε − e−2ε

) ∫
T ∧ (ψ[s])ε =

(
e2ε − e−2ε

) ∫
T ∧̇ψ[s] = O(ε)

where the convergence in the last line follows from Proposition 2.1 and the fact that
vol(Rn + 2ε) ∼

n→∞
e2εvol(Rn). We thus conclude that the difference of integrals in (16) is

arbitrary small as n→∞, and Step 1 is complete.

Step 2. To show that the convergence (15) holds throughout Mσ, we work in the com-
pactification Mσ. Let P1

p be the fiber of Mσ → X over a puncture p. We know from

Lemma 1.5 that the measure T ∧̇[s] has finite mass. Since T carries no mass on P1
p, from

the local picture of F and s given in §1.2, we infer that the measure T ∧̇[s] has no atom
at s(p). Therefore, to prove the desired convergence it is enough to show that the mass of
∆(Rn)∧̇[s] near s(p) is uniformly small with n.

We use the local model for σ near p. Fix a coordinate z in which N(p) is identified to
D∗ and the projective structure is given by log z. Let Nε(p) = {0 < |z| < ε}. Then any
connected component of c−1(Nε(p)) is the interior of a horocycle in H. The crucial point
is that the developing map is injective in any component of c−1(Nε(p)). In particular the
cardinality of dev−1(zn) ∩ Bn(Rn) ∩ c−1(Nε(p)) is bounded by the number of connected
components of c−1(Nε(p)) intersecting Bn(Rn). Now we observe that there is a universal
constant α > 0 such that if U is such a component, then the area of Bn(Rn + 1) ∩ U is at
least α. From this we infer that

(17) #
{
dev−1(zn) ∩Bn(Rn) ∩ c−1(Nε(p))

}
≤ 1

α
volH

(
Bn(Rn + 1) ∩ c−1(Nε(p))

)
.

It is well known that the image of Bn(Rn + 1) under c becomes asymptotically equidis-
tributed in X as n→∞. This may be obtained as a consequence of Proposition 2.1, but
it already follows from Margulis [52]. From this and (17), we conclude that

1

vol(Rn)
#
{
D−1(zn) ∩Bn(Rn) ∩ c−1(Nε(p))

}
is bounded by C volX(Nε(p)) and the result follows. �

Remark 2.2. This proof shows that rather than a simple number, it is more precise to view
the degree as a positive measure on X, defined by the formula deg(σ) = π∗(T ∧̇[s]). In
particular it makes sense to speak of the degree of dev restricted to some π1(X)-invariant

subset of X̃. This measure is canonically associated to the P1-structure on X (that is it
does not depend on the chosen developing map).
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The support of the degree measure can be described as follows. Let (dev, hol) be a
development-holonomy pair for the structure. Let Λ ⊂ P1 be the limit set of hol. The
closed subset dev−1(Λ) being invariant by π1(X), it defines a closed subset Λσ ⊂ X.
This set is canonically associated to the projective structure and does not depend on the
chosen development-holonomy pair. An instructive example is given by P1-structures with
Fuchsian holonomy. In this case the set Λσ is a union of the boundaries of disjoint annuli
embedded in X. It was studied e.g. by Goldman to prove that such structures are obtained
from 2π-graftings, see [35].

We claim that the support of the degree is the set Λσ. Indeed, at the level of the

universal cover, the pull-back of the degree is the intersection of T̃ with the graph of dev.
In particular ence by the Harnack inequality, it is absolutely continuous with respect to the
pull-back by dev of any harmonic measure, with density bounded from above and below by
positive constants. The claim then follows from the fact that the support of the harmonic
measures is the limit set of hol. This argument shows more: namely, that the degree has the
same Hausdorff dimension of that of the harmonic measures. In particular, our Theorem B
shows that the Hausdorff dimension of the degree measure is always smaller than 1 (since
the equality case happens only when deg(σ) = 0).

Theorem A shows that the mass of the degree defines a psh function on the moduli space
of P1-structures on X. It would be interesting to know if the degree is also psh considered
as a measure.

2.2. Projective structures with vanishing degree. Recall that σ is a covering projec-
tive structure on X if its developing map is a covering of some proper open subset Ω ⊂ P1.
In other words, if σ is the quotient of the orbit of a component of the discontinuity set of
a Kleinian group. Such projective structures were studied e.g. by Kra [43, 44] who showed
that a parabolic projective structure is of covering type if and only if its developing map
is not surjective.

Projective structures of covering type may also be characterized in terms of their degree.

Proposition 2.3. Let X be a Riemann surface of finite type and σ be a parabolic projective
structure on X. Then deg(σ) = 0 if and only if σ is of covering type.

Proof. The proof of Definition-Proposition 0.1 shows that the degree vanishes if and only if
the support of the foliated harmonic current T is disjoint from s. Equivalently, the image
of the developing map is disjoint from the support of the harmonic measures. Hence the
developing map is not surjective and the result follows from the remarks preceding the
proposition. �

2.3. Cohomological expression of the degree. Observe that the harmonic current
T on Mσ naturally defines an element of the dual of the Bott-Chern cohomology group
H1,1

∂∂
(Mσ,C). By the ∂∂-lemma, the natural map H1,1

∂∂
(Mσ,C)→ H1,1

∂
(Mσ,C) with values

in the Dolbeaut cohomology group is an isomorphism. Thus by duality, the current T
defines a cohomology class [T ] in H1,1(Mσ,C). In more concrete terms, if α1 and α2 are
smooth (1,1) forms defining the same class [α] in H1,1(Mσ,C), then α1 − α2 = ddcu for
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some smooth function u, and we get that
〈
T , α1

〉
=
〈
T , α2

〉
. So it makes sense to speak

about the pairing between T and α which we simply denote it by T · α. Observe also that
any curve C ⊂ Mσ admits a class in H1,1(Mσ), which is the cohomology class dual to the
cycle C (or equivalently, that of the integration current [s]).

Recall from §2.1 that deg(σ) is the mass of T ∧̇s. The next result –presumably part of the
folklore– asserts that this geometric intersection number can be computed in cohomology.

Proposition 2.4. Let σ be a parabolic projective structure on a Riemann surface of finite
type, and deg(σ) be be its degree, as defined in Definition 0.1. Then

deg(σ) = T · s.

Proof. The difficulty is that we cannot simply regularize the integration current [s] within
smooth positive forms because, as we will see later, s2 < 0. Pick a smooth closed (1, 1)
form cohomologous to [s], and write [s] = α+ddcu, where u is a quasi-psh function, smooth
outside s, with logarithmic singularities along s. Then by definition, T · s = 〈T, α〉. Recall
that s stays far from the singularities of the foliation F and is everywhere transverse to it.
Consider a tubular neighborhood Nε of s, such that if p ∈ s and Lp is the leaf through p,
then Lp ∩ Nε is a small disk about p, contained in a flow box. We modify u by replacing
it inside Nε by any smooth function uε such that u = uε near ∂Nε. We denote by uε the
resulting function on Mσ. By construction, [s]ε := α+ddcuε is a smooth form cohomologous
to [s], so T · [s] =

〈
T , [s]ε

〉
.

Now consider a flow box B endowed with local coordinates (z, w) ∈ D2 where F becomes
the horizontal foliation and s is a vertical graph. Then in this flow box, [s] = ddcv for some
psh function v and [s]ε = ddcvε with v = vε in a neighborhood of ∂D× D. With notation
as in (10), we see that the local contribution of

〈
T , [s]ε

〉
is equal to〈

T , [s]ε
〉
|B =

∫ (∫
D×{w}

ϕddcvε

)
dm(w) =

∫ (∫
D×{w}

ϕddcv

)
dm(w) = T ∧̇s|B,

where the middle equality follows from the Green formula and the harmonicity of ϕ. The
result follows. �

3. The Lyapunov exponent

In this section we relate the exponent χ defined in Definition 0.2 to a foliated Lya-
punov exponent introduced by the first author in [20, Appendice]. This leads in §3.2 to a
cohomological formula for χ analogous to that obtained for the degree.

3.1. The foliated Lyapunov exponent. Using [22, Proposition 2.2], we start by in-
troducing a Lipschitz family of spherical metrics on Mσ, simpy denoted by ‖·‖. By this,
we mean a smooth family of conformal metrics of curvature +1 on the fibers, with the
property that there exists C > 0 such that for every smooth path ω : [0, 1] → X,
log ‖Dhρ(ω)‖∞ ≤ Clength(ω), where hρ(ω) is the holonomy of ω and ‖Dhρ(ω)‖∞ is the
supremum of the norm of the fiber derivative relative to the spherical metrics on π−1(ω(0))
and π−1(ω(1)). We will recall some details of the construction below in 3.2. More generally,
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the notation length(ω) will stand for the homotopic length of ω, that is, the minimal length
of a smooth path homotopic to ω with fixed endpoints. In particular this notion makes
perfect sense for a Brownian sample path.

Since F is transverse to the fibers, this induces a smooth metric on the normal bundle
NF . Later on we will study the extension properties of ‖·‖ to a singular metric on the
fibers of Mσ.

Notice that in our situation, the data of a Brownian sample path along a leaf is equivalent
to that of its projection on X, together with its starting point in the initial fiber. So if the
starting point x is given, the projection π gives an identification between WF

x and WX
π(x).

In this way we can speak of the holonomy, or homotopic length of a leafwise Brownian
path, by simply projecting it to X.

We now consider the family of functions

ΩF 3 ω 7−→ Kt(ω) = log
∥∥Dω(0)h(ω|[0,t])

∥∥ .
This is a cocycle, in the sense that Kt+s(ω) = Ks(ω) + Kt(σsω) for every t, s ≥ 0. As
explained above, the estimate

Kt(ω) ≤ C · length(ω|[0,t]),

holds, for some C is independent of ω. The superexponential decay of the heat kernel on
the hyperbolic plane [17, §5.7] then implies that Kt is WF

µ -integrable for every t ≥ 0. The

ergodic theorem shows that for WF
µ -almost every path ω the limit λ = limt→∞

Kt(ω)
t

exists
and does not depend on ω. By definition λ is the foliated Lyapunov exponent.

We can now compare λ and χ.

Proposition 3.1. Let σ be a parabolic projective structure on a Riemann surface of finite
type. Let χ(σ) = χBrown(holσ) be the Lyapunov exponent of σ, as defined in §0.3. Then if
λ is as above we have λ = −2χ(σ).

The proof relies on the following result:

Lemma 3.2. Assume that ρ is non elementary. Then for every x ∈ X and WX
x -a.e.

ω : [0,∞)→ X starting at x, there exists r(ω) ∈ P1
x such that the pointwise convergence

(18) lim
t→∞

1

t
log
∥∥Dyh(ω|[0,t])

∥∥→ −2χBrown(ρ)

holds uniformly on compact subsets of P1
x \ {r(ω)}. Moreover, the distribution of the ex-

ceptional point r(ω) is the harmonic measure νx on P1
x.

Proof. In order to apply the Oseledets theorem, consider a measurable trivialization Mσ '
X × P1 and set χ = χBrown(ρ). For every continuous ω, and every t > 0, the map

ht = hω|[0,t] : P1
ω(0) → P1

ω(t) can be lifted to a matrix h̃t in SL(2,C) which is well defined

up to sign. The family h̃ = {h̃t}t≥0 on Ω is a cocyle modulo signs, namely it satisfies

h̃t+s(ω) = ±h̃t(σs(ω))h̃s(ω) for every ω ∈ Ω and every s, t ≥ 0. Moreover, from [22,
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Proposition 2.5], we have that for every x ∈ X and WX
x a.e. ω,

lim
t→∞

1

t
log
∥∥∥h̃t∥∥∥ = χ,

where ‖·‖ is the matrix norm to the usual hermitian norm ‖·‖2 on C2. Since ρ is non
elementary, by [22, Thm 2.7], χ > 0. Since in addition h takes values in SL(2,C), the
Lyapunov exponents of h over (ΩX , σX ,W

X) are χ and −χ. The Oseledets theorem tells
us that for W -a.e. ω : [0,∞)→ X, there exists a complex line E = E(ω) ⊂ C2 such that

for every Y ∈ C2, Y 6= 0, 1
t

log
∥∥∥h̃t(Y )

∥∥∥
2

converge to −χ as t→∞ when Y ∈ E, while this

quantity converges uniformly to χ on compact subsets of C2 \E. Finally, we observe that
for the usual spherical derivative, we have that

(19) ‖Dht(y)‖s =
‖Y ‖2

2∥∥∥h̃t(Y )
∥∥∥2

2

, where Y is a lift of y,

hence (18) holds, with r(ω) = PE(ω) ∈ P1
ω(0).

It remains to show that the distribution of r when ω is conditioned to start at x is the
harmonic measure νx. For this, we consider the mapping ωF 3 ω 7→ r(ω), which is defined
WF
µ -a.e. The push-forward of WF

µ is a shift invariant measure on Mσ, so we conclude by
the unique ergodicity of F (Proposition 1.7). �

Proof of Proposition 3.1. Let x ∈ Mσ. As observed before, we can identify (ΩX
π(x),W

X
π(x))

in X and (ΩFx ,W
F
x ) in Mσ by lifting. Since the harmonic measure νπ(x) on P1

π(x) has no

atoms, we infer that for WF
x a.e. ω, the point r(ω) defined in Lemma 3.2 is distinct from

x. Hence limt→∞
1
t

log
∥∥Dxh(ω|[0,t])

∥∥→ −2χ for Wx-a.e. ω, and the conclusion follows. �

3.2. Cohomological expression of χ. Let P be the set of punctures of X. To avoid
confusion with the Lyapunov exponent, we denote by eu(X) the Euler characteristic of X,
eu(X) = 2− 2g −#P . Recall the Gauss-Bonnet formula vol(X) = 2π |eu(X)|.

In this section, we begin the proof of the following result, which will be complete only
after proving Theorem A

Proposition 3.3. Let σ be a parabolic projective structure on a Riemann surface of finite

type with puncture set P . Then χ(σ) =
1

2 |eu(X)|
(NF · T + #P ).

When X is compact (P = ∅) this result follows from the cohomological formula derived
in [20, Appendice A] for the foliated Lyapunov exponent, and from Proposition 3.1. The
proof in the non compact case follows the same strategy but serious technical difficulties
arise from the parabolic cusps.

Recall that if X is a complex surface, E → X is a holomorphic line bundle, and ‖·‖
is a hermitian metric on E, its curvature form is defined by Θ(‖·‖) = 1

2iπ
∂∂ log ‖s‖2,

where s is any non vanishing local holomorphic section of E. In our situation we choose
a Lipschitz family of spherical metrics on the fibers of Mσ, which, since F is transverse to
the fibers, induces a hermitian metric on the normal bundle NF . Recall that the value of
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the Lyapunov exponent does not depend on this choice. We denote by Θ the curvature
form of this metric.

The first result is obtained exactly as in the compact case [20, Appendice A] (see also
[13, §8]).

Lemma 3.4. χ(σ) =
π

vol(X)

∫
Θ ∧ T .

Proof. We keep notation as in §0.3. From the fact that K is a cocycle, we deduce that the
function t 7→

∫
Kt(ω)WF

µ (dω) is linear. So its slope is equal to its derivative at 0, and we
get that

(20) λ =
d

dt

∣∣∣
t=0

∫
Kt(ω)WF

µ (dω) =

∫
Mσ

d

dt

∣∣∣
t=0

Ex
(
Kt(ω)

)
dµ(x).

Let x0 be a point of X. We use local coordinates x = (ξ, η), to parametrize points in
Mσ via s(ξ, η), that is, x belongs to the fiber of ξ, η belongs to a neighborhood of η0 in
P1
ξ . and s(ξ, η) = hξ,η(x) is the flat section passing through the point x, defined over a

neighborhood of ξ0 in X. Using the heat equation, the formula (20) can be written in these
coordinates

λ =

∫
Xρ

∆ξ log

∥∥∥∥ ∂∂ηhξ,η(x)

∥∥∥∥ µ(dx)

Observe that the curvature form Θ of the Lipschitz metric on NF , restricted to the tangent
bundle of F , is given by the expression

Θ|TF =
1

2iπ
∂∂F log

∥∥∥∥ ∂∂ηhξ,η(x)

∥∥∥∥2

.

Because we have ∆Poinf · volPoin = 2i∂∂f for every function f defined on the hyperbolic
plane, we infer that

∆ξ log

∥∥∥∥ ∂∂ηhξ,η(x)

∥∥∥∥ volPoin = −2π Θ|TF .

Using the fact that T ∧ volPoin = vol(X)µ, we finally obtain

λ = − 2π

vol(X)

∫
Θ ∧ T,

which, together with Proposition 3.1 finishes the proof of Lemma 3.4. �

When X is compact, it immediately follows from Lemma 3.4 that

(21) χ =
π

vol(X)
T ·NF =

1

2 |eu(X)|
NF · T,

and the proof of Proposition 3.3 is complete.
In the general case, however, this calculation is no longer valid, and in the remaining part

of the argument we need to understand the contribution of the punctures to this formula.
For the moment, we content ourselves with the following weakening of Proposition 3.3.
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Proposition 3.5. Under the assumptions of Proposition 3.3, there exists a universal con-

stant I such that χ(σ) =
1

2 |eu(X)|
(NF · T + I ·#P ).

The proof occupies the remainder of this section. It will be carried out in several steps,
mostly dealing with the local study of the model foliation Fm introduced in §1.2.

Step 1. A smooth metric.
Let p ∈ P be a puncture of X, and let us work in a neighborhood π−1(U(p)) of π−1(p)

in Mσ, in the coordinates (u, v) introduced in §1.2. We claim that the metric

(22) ‖·‖s = |u| |dv|
1 + |v|2

defines a smooth metric on NF . To see this, observe that a non-vanishing holomorphic
section of the normal bundle of F = Fm on D × C in the (u, v)-coordinates is defined by
n = 1

u
∂
∂v

. Indeed, ω = du + 2iπudv is a form defining F , and ω(n) = 2iπ. We see that

‖n‖s = 1
1+|v|2 , so ‖·‖s extends smoothly along the line {0} × C. To analyse what happens

close to the point (0,∞), we introduce the new coordinates (u, V ) = (u, 1
v
). In these

coordinates, the foliation is defined by the equation 2πudV + iV 2du = 0. A non-vanishing
section of the normal bundle is then given by n = 1

u
∂
∂V

, and a straighforward computation

yields ‖·‖s = |u| |dV |
1+|V |2 . Hence the situation is symmetric and we conclude that ‖·‖s defines

a smooth metric on NF , as claimed.

Step 2. The Lipschitz metric.
Here we give an explicit expression for a Lipschitz family of spherical metrics on Mσ

close to p. Recall that a model for the bundle π−1(U(p)) ⊂ Mσ is the quotient of H × P1

by the identification (τ, z) ∼ (τ + 1, z + 1). A Lipschitz family of spherical metrics on this
model is defined by

(23) ‖·‖τ =
=τ |dz|

|z −<τ |2 + =2τ

It is constructed by starting with the spherical metric ‖·‖i = |dz|
1+|z|2 , which is already

invariant by the stabilizer PSO(2,R) of the point i, and then by extending it by the
formula M∗ ‖·‖Mτ = ‖·‖τ for any τ ∈ H and M ∈ PSL(2,R). The proof of [22, Prop. 2.2]
shows that ‖·‖τ is indeed Lipschitz.

The family {‖·‖τ}τ∈H then induces a family of spherical metrics {‖·‖u}u∈D∗ on the quo-
tient bundle ' D∗ × P1 which is given by the formula

(24) ‖·‖u =

1
2π

log
(

1
|u|

)
|dv|

|v + i
2π

log
(

1
|u|

)
|2 + 1

4π2 log2
(

1
|u|

) =
2π

log
(

1
|u|

) · |dV |
| 2π
log( 1

|u| )
+ iV |2 + |V |2

.

Step 3. The induced singular metric on NF .
The family of spherical metrics constructed above on Mσ induces a metric ‖·‖ on the

normal bundle of the foliation F which possesses singularities along the fibers over the
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cusps of X, that we compute here. In the (u, V )-coordinates, we have that

(25)
‖·‖
‖·‖s

=
2π

|u| log( 1
|u|)
· Φ(u, V ) where Φ(u, V ) =

1 + |V |2

| 2π
log( 1

|u| )
+ iV |2 + |V |2

.

The reader can check that Φ has a pole only at the point (u, V ) = (0, 0), extends continu-
ously and extends continuously elsewhere.

Step 4. Defining a foliation index. For any harmonic current T on D × P1 directed by
Fm, we define

(26) I(T ) :=

∫
D∗×P1

1

iπ
∂∂Ψ ∧ T

where Ψ : D∗×P1 is a smooth function supported in a domain D∗r ×P1 for some 0 < r < 1,

and such that Ψ = log ‖·‖‖·‖s
in a neighborhood of 0 × P1. Observe that this number does

not depend on the chosen function Ψ, since the current T is harmonic.

Lemma 3.6. The integral (26) is convergent.

Proof. It suffices to proves the lemma for Ψ = log ‖·‖‖·‖s
. In this case the integral I(T ) is

nothing but the T -integral of the differences between the curvature of ‖·‖ and that of ‖·‖s.
Because ‖·‖s is smooth and hence T -integrable, it is enough to prove that the curvature of
‖·‖ is T -integrable. We claim that the restriction of the curvature of ‖·‖ along the leaves
is bounded in modulus by the leafwise Poincaré metric. This is sufficient for our purposes
since the Poincaré metric is T -integrable (due to the fact that T projects on the integration
current on D) and that the T -integral of a (1, 1)-form depends only on its restriction to F .

To prove this claim, we work in the (τ, z)-uniformizing coordinates, and use formula (23)
to get that the curvature of ‖·‖ along the leaf H2 × z is

1

i
∂∂τ log

( =τ
|z −<τ |2 + =2τ

)
.

Then, writing τ = x+ iy, we compute

1

i
∂∂τ log

( y

|z − x|2 + y2

)
=
(−1

y2
+

2=2z(
(x−<z)2 + y2 + =2z

)2

)
dx ∧ dy

and the result follows since

0 ≤ 2=2z(
(x−<z)2 + y2 + =2z

)2 ≤
2

y2
.

�

The index is defined so as to have the following formula, which corrects formula (21). For
every puncture p of X, we define I(T, p) to be the index of the canonical foliated harmonic
current defined in subsection 1.5 at the puncture p.
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Lemma 3.7. χ(σ) =
π

vol(X)

(
NF · T +

∑
p

I(T, p)

)
.

Proof. Let Ψ be the function on Mσ, defined in a neighborhood of the exceptional fibers,
as just constructed. Introduce a smooth family of metrics on the fibers of Mσ, which
coincides with ‖·‖s near the punctures. Such a family is not Lipschitz, so we multiply it
by a function of the form eΨ, to make it coincide with the local model discussed above,
‖·‖ = ‖·‖s · eΨ. Then we infer that∫

Θ ∧ T =

∫
Θ‖·‖s ∧ T +

∫
1

iπ
∂∂Ψ ∧ T = NF · T +

∑
p

I(T, p)

and result follows from Lemma 3.4. �

Step 5. An invariance property for the index

Proposition 3.8. The index I(T ) takes the same value on all foliated harmonic currents
T on Fm that give mass 1 to the fibers {u} × P1.

Proof. Let us introduce two families of symmetries for the foliation Fm. They are induced
by the translations (τ, z) 7→ (τ + x, z) and (τ, z) 7→ (τ, z + c) for x ∈ R and c ∈ C at the
level of the universal cover :

(27) Hx(u, V ) = (e2iπxu,
V

1− xV
) and Vc(u, V ) = (u,

V

1 + cV
).

The following result is the key of the argument:

Lemma 3.9. If T is as in Proposition 3.8, then for all x ∈ R and c ∈ C, I((Hx)∗T ) =
I((Vc)∗T ) = I(T ).

Proof. We treat the case of Hx, the proof being similar (and in fact easier) for Vc. We have
that

I((Hx)∗T )− I(T ) =

∫
D∗×P1

1

2iπ
∂∂(Ψ ◦Hx −Ψ) ∧ T.

Let us split this function as a sum

(28) Ψ ◦Hx −Ψ = Γ + Γs,

where Γ and Γs are smooth functions on D∗×P1 supported in D∗r×P1 for some 0 < r < 1 and

such that in a neighborhood of the divisor {u = 0}, Γ = log (Hx)∗‖·‖
‖·‖ and Γs = log

(Hs)∗‖·‖x
‖·‖s

.

Observe that

(29)

∫
1

2iπ
∂∂Γs ∧ T = 0

since ‖·‖s is a smooth metric, thus Γs is a smooth function. Now Γ is smooth if u 6= 0,
tends to 0 uniformly when u tends to 0, and the derivative of Γ along the leaves is bounded
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by the Poincaré metric (since ‖·‖ is a Lipschitz metric). Since the leafwise Poincaré metric

is given in u-coordinates by |du|
|u| log |u| , we get that

(30) |dFΓ| ≤ |du|
|u| log |u|

.

From (28) and (29) we are left to prove that

(31)

∫
1

2iπ
∂∂Γ ∧ T = 0

(the fact that this integral makes sense follows from Lemma 3.6). To do this, we introduce
a family of smooth functions θr : D∗ → [0, 1] such that θr(u) = 1 if |u| ≥ r, θr(u) = 0 if
|u| ≤ r/2, ‖dθr‖∞ = O(1

r
), and

∥∥∂∂θr∥∥∞ = O( 1
r2

). Since ∂∂Γ∧T is of order 0, to get (31),
it is enough to prove that

lim
r→0

∫
θr∂∂Γ ∧ T = 0.

To compute this integral, we observe that since T is harmonic
∫
∂∂(θrΓ) ∧ T = 0 , hence

we get that∫
θr∂∂Γ ∧ T = −

∫
Γ∂∂θr ∧ T − 2<

∫
∂θr ∧ ∂Γ ∧ T =: −Ar −Br.

To conclude the proof, we will show that both integrals Ar and Br tend to 0 with r. To
estimate the former, we write

|Ar| ≤ δ(Γ, r)O(
1

r2
)

∫
r
2
≤|u|≤r

idu ∧ du ∧ T ≤ O(δ(Γ, r))

where δ(Γ, r) = sup r
2
≤|u|≤r,v∈P1 Γ(u, v), and the last inequality holds because T projects on

the current of integration on D. As observed above, δ(Γ, r) = o(1) whence limr→0Ar = 0.
The same argument works for the second integral: indeed by using (30) and the bound on
‖dθr‖∞, we get that

|Br| ≤ O(
1

r2 log(1
r
)
)

∫
r
2
≤|u|≤r

idu ∧ du ∧ T ≤ O(
1

log(1
r
)
),

which completes the proof. �

Let us resume the proof of Proposition 3.8. Recall from §1.5 that a foliated harmonic

current T for Fm lifts as a harmonic current T̃ on H × P1, which by the Poisson formula
is induced by a family of probability measures {νa}a∈R on P1, depending measurably on
a, and satisfying the relation νa+1 = (z + 1)∗νa. From this equivariance, the data of such
a family of measures is in turn equivalent to that of a probability measure on [0, 1) × P1.
Such a measure is a convex combination of Dirac masses on [0, 1) × P1. This shows that
any family {νa} as above is a convex combination of families of the form ν(a0,z0), a ∈ [0, 1),
z0 ∈ P1, where (ν(a0,z0))a = 0 if a 6= a0 mod. Z and (ν(a0,z0))a0+k = δz0+k. (Notice that
the point∞ ∈ P1, corresponding to the separatrix of the singularity of Fm, plays a special
role here. Nevertheless we do not need to take it in to account since our measures and



28 BERTRAND DEROIN AND ROMAIN DUJARDIN

currents are diffuse.) Going back to currents, ν(a0,z0) corresponds to a certain harmonic
current T(a0,z0) and all foliated harmonic currents for Fm are obtained from these by taking
convex combinations.

Now it is clear that (Hx)∗(T(a0,z0)) = T(a0+x,z0) and (Vc)∗(T(a0,z0)) = T(a0,z0+c), hence we
infer from Lemma 3.9 that the index I takes the same value on all the extremal points
T(a0,z0), and we are done. �

4. Proof of Theorem A (and of Proposition 3.3)

The proof is based on some basic cohomological computations in H2(Mρ,C). Recall

from §1.1 that H2(Mρ,C) = C[s]⊕C[f ]. We will need the following fact: if G is a singular
holomorphic foliation on a complex surface, and C is a non singular compact holomorphic
curve that is everywhere transverse to G, then

NG · C = eu(C).

Indeed, under these assumptions, NG|C ' TC = −KC , and by the genus formula, KC ·C =
−Eu(C). Hence in our situation, working in Mσ we get that

(32) NF · s = eu(s) = eu(X) and NF · f = eu(P1) = 2.

The intersection form in H2(Mρ,C) is characterized by the identities

s · f = 1, f 2 = 0, and s2 = eu(X).

The first two equalities are obvious, and the justification of the third one is as follows:
since the section s is everywhere tangent to F and to the fibers, we get an isomorphism
between the tangent bundle and normal bundle to s. Therefore the adjunction formula
yields

s2 = deg(Ns|s) = −deg(Ks|s) = eu(s) = eu(X).

From this and (32) we easily deduce that

(33) [NF ] = 2[s]− eu(X)[f ].

Now Proposition 3.5 asserts that

χ(σ) =
1

2 |eu(X)|
(NF · T + I ·#P ).

Also, from Proposition 2.4 we have that δ = 1
vol(X)

T · s, and it is obvious that T · f = 1.

Using the fact that eu(X) = eu(X) + #P , altogether this yields

χ(σ) =
1

2
+ 2πδ + (I − 1)

#P

2 |eu(X)|
.

Therefore, to finish the proof it is enough to show that I = 1. This is done by considering
the particular case of the canonical projective structure induced by the uniformization of
X, since in this case we have that δ = 0 and χ = 1

2
(see the remarks following [22, Def.

2.1]). The proof is complete. �
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5. The dimension of harmonic measure: proof of Theorem B

In this part we provide the proof of Theorem B. We start with a result originating in
the work of S. Frankel (see [29]).

Proposition 5.1. Let ϕ be the density of the desintegration of T (resp. µ) along the leaves
of F (see (10)). Then the integral

(34) A = −
∫
Xρ

∆F logϕ dµ

is convergent, and moreover

(35) 0 ≤ A ≤ 1.

Notice that ϕ is defined only up to a multiplicative factor which is constant along the
leaves, which shows that ∆F logϕ is well defined. The quantity A is called the action of
T .

Proof. The positivity and harmonicity of the density ϕ implies that ∆F logϕ = −‖∇ logϕ‖2.
Thus by the Harnack inequality for positive harmonic functions we infer that ‖∇ logϕ‖ is
uniformly bounded, whence the convergence of the integral in (34). To get the bound (35),
we observe that ϕ lifts to the universal cover of µ-a.e. leaf as a positive harmonic function,
hence the half-plane version of the Harnack inequality (obtained by taking conjugate har-
monic functions and applying the Schwarz-Pick lemma) yields ‖∇ logϕ‖ ≤ 1. This proves
(35) (see [20] for more details). �

The main step of the proof is the following probabilistic estimate of the measure of a
ball inside a fiber. For every x ∈Mσ, and ρ > 0, we denote by BP1(x̃, ρ) the ball of radius
ρ centered at x̃ inside the fiber P1

π(x). To ease notation, from now on if x ∈Mσ we denote

its fiber by P1
x (resp. the corresponding harmonic measure by νx).

Proposition 5.2. Let A be as in Proposition 5.1. For every ε > 0, there exists rε > 0
such that for every 0 < r < rε,

µ
(
x ∈Mσ, νx(BP1(x, r)) ≥ r

A
2χ

+ε)
)
≥ 1− ε.

Proof. The proof follows an argument of Ledrappier’s [47, Thm 4.1, p. 372], with the
difference that the discrete random walk is replaced by a cocycle over the ergodic system
(ΩF , σ,WF

µ ).
In view of the next lemma it is useful to recall that the data of a foliated Brownian path

is equivalent to that of a Brownian path in X together with its starting point in the fiber.

Lemma 5.3. Let x ∈ X and Cx be a measurable subset of P1
x such that νx(Cx) > 0. Then

for WX
x -a.e. ω : [0,∞)→ X, letting ht = h(ω|[0,t]), we have that

lim sup
t→∞

−
log νω(t)(ht(Cx))

t
≤ A.
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Proof. We first work with foliated Brownian motion. Let us introduce the family of func-
tions (Lt)t≥0, defined on ΩF by

Lt(ω) = − log
(ht)

−1νω(t)

νω(0)

(ω(0)).

It is immediate that L = (Lt)t≥0 is a cocycle, namely it satifies the relations

Lt+s(ω) = Ls(ω) + Lt(σs(ω)), for every s, t ≥ 0 and ω ∈ ΩF .

Moreover, in terms of the densities ϕ, Lt expresses as Lt(ω) = − log ϕ(ω(t))
ϕ(ω(0))

, hence by

applying the Harnack inequality ‖∇F logϕ‖ ≤ 1 we obtain the estimate

(36) |Lt(ω)| ≤ length(ω|[0,t]), for every t ≥ 0 and ω ∈ ΩF

(recall that the length in question here is the homotopic length of π(ω)). Thus the super-
exponential decay of the heat kernel on the upper half plane [17, §5.7] implies that Lt is
WF
µ -integrable. The subadditive ergodic theorem applied to the cocycle L and the ergodic

system (ΩF , σ,WF
µ ) shows that Lt(ω)

t
converges a.s. to a limit independent of ω. Arguing

exactly as in Lemma 3.4 shows that this limit equals A, that is,

(37)
Lt(ω)

t
−→
t→∞

A, for WF
µ -a.e. ω ∈ ΩF .

From this, we infer that for a.e. x ∈Mσ, and WF
x a.e. ω, if Cx ⊂ P1

x is a measurable subset
such that νx(Cx) > 0, then

(38) lim
t→∞

1

νx(Cx)

∫
Cx

−1

t
log

(
(ht)

−1νω(t)

νω(0)

(ω(0))

)
dνω(0) = A.

This follows from (37), Fubini’s theorem and the dominated convergence theorem, since
for a generic ω, length(ω|[0,t]) = O(t) so by (36) the argument of the integral in (38) is
bounded independently of t. We now use the convexity of the function − log which by
Jensen’s inequality implies that

1

νx(Cx)

∫
Cx

−1

t
log

(
(ht)

−1νω(t)

νω(0)

(ω(0))

)
dνω(0) ≥ −

1

t
log

(
νω(t)(ht(Cx))

νω(0)(Cx)

)
,

and so we deduce that for a.e. x ∈ X, as soon as νx(Cx) > 0, we have that

lim sup
t→∞

−1

t
log νω(t)(ht(Cx)) ≤ A.

Notice that this property makes no reference to the starting point in the fiber, so it can
be stated as well for a.e. x ∈ X and WX

x a.e. ω ∈ ΩX
x

To finish the proof it remains to see that this statement holds for every x. For this,
we first observe that if Cx has positive measure, then for WX

x -a.e. ω, νω(1)(h1(Cx)) >
0. Furthermore, the distribution of ω(1) is absolutely continuous, so that the previous
estimates hold when x is replaced by ω(1). The assertion then follows from the Markov
property of Brownian motion. �
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Let us resume the proof of Proposition 5.2. Fix ε > 0, and put η = 4χ+A
4χ2 ε. By Lemma

3.2, for WF
µ -a.e. ω, the convergence 1

t
log ‖Dht(y)‖ −→

t→∞
λ, holds uniformly on compact

subsets of P1
ω(0) \ {r(ω)}. So if we let R = 1

2
dP1(ω(0), r(ω)), there exists t1 = t1(ω, ε) such

that if t ≥ t1,
ht(B(ω(0), R)) ⊂ B(ω(t), e(λ+η)t).

On the other hand by the previous lemma, for WF
µ a.e. ω, there exists t2 = t2(ω, ε) such

that for t ≥ t2,
νω(t)(ht(B(ω(0), η)) ≥ e−(A+η)t.

So we infer that for t ≥ max(t1, t2),

(39) νω(t)(B(ω(t), e(λ+η)t)) ≥ e−(A+η)t.

For every t > 0 let Ωt be the set of paths ω ∈ Ω such that max(t1, t2) ≤ t. Clearly
WF
µ (Ωt) ≥ 1 − ε for t ≥ t(ε). Setting r = e(λ+η)t, if ω ∈ Ωt and x = ω(t), for t ≥ t(ε) we

have that

νx(B(x, r)) ≥ r−
A+η
λ+η = r

A+η
2χ−η .

This finishes the proof since the image of WF
µ under ω 7→ ω(t) is the measure µ, and η

was chosen so that A+η
2χ−η <

A
2χ

+ ε. �

An estimate similar to that of Proposition 5.2 holds in every fiber.

Corollary 5.4. Let x ∈ X and ε > 0. There exists rε > 0 such that if 0 < r < rε then

νx

(
x̃ ∈ P1

x : νx(BP1(x̃, r)) ≥ r
A
2χ

+2ε
)
≥ 1− ε.

Proof. This is due to the fact that the holonomy map hγ corresponding to a path γ :
[0, 1] → X of length ` is bilipschitz with constant depending only on `, and moreover it
sends the measure νx to a measure absolutely continuous with respect to νy, whose density
is bounded from above and below by positive constants depending only on `. Now if ` is
fixed, the proportion of points in a given fiber lying at leafwise distance ` from a point
satisfying the conclusion of Proposition 5.2 tends to 1 when ε→ 0, so we are done. �

We are now ready to finish the proof of Theorem B. Fix a real number s > A
2χ

and ε

such that 0 < 2ε < s− A
2χ

. With rε as in Corollary 5.4, for every r < rε, consider the set

Er,ε =
{
x̃ ∈ P1

x, νx(B(x̃, r) ≥ r
A
2χ

+2ε
}
.

From Corollary 5.4 we know that νx(Er/5,ε) > 1 − ε. Furthermore, a classical covering
argument gives an estimate of the s-dimensional Hausdorff measure of Er/5,ε. Indeed by
the Vitali covering lemma there exists a covering of Er/5,ε by balls BP1(x̃i, r) centered on
Er/5,ε and of radius r such that the corresponding balls of radius r

5
are disjoint. This

disjointness together with the measure estimate imply that this set of balls has cardinality
at most

N ≤
(r

5

)−( A
2χ

+2ε)
.
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Therefore,

(40) Hs(Er/5,ε) ≤
∑
i

(2r)s ≤ 2s5
A
2χ

+2εrs−
A
2χ
−2ε.

We now set εn = 2−n, rn = r(εn)/5 , and put Fk =
⋂
n≥k Ern,εn . Since for every n ≥ k,

Fk ⊂ Ern,εn , from (40) we infer that Hs(Fk) = 0. On the other hand νx(Fk) ≥ 1−
(

1
2

)k−1
,

so if we let F =
⋃
k≥1 Fk we have that νx(F ) = 1 and Hs(F ) = 0, hence dimH(νx) ≤ s.

Since s > A
2χ

was arbitrary, we conclude that dimH(νx) ≤ A
2χ
≤ 1

2χ
, as asserted.

In particular, it follows from Theorem A that dimH(νx) ≤ 1, and if equality holds then

δ = 0 and A = 1. Lemma 5.5 below shows that if dimH(νx) = 1, then σ ∈ B(X). Con-

versely, if σ ∈ B(X), it follows from Makarov’s celebrated theorem [50] that the harmonic
measures are supported by a set of dimension 1 (the measures νx coincide with the classi-
cal harmonic measure in this case, see the next lemma). This completes the proof of the
theorem. �

Lemma 5.5. Let σ be a parabolic projective structure with deg(σ) = 0. Let (my)y∈dev(X̃)

be the usual harmonic measure of the open set dev(X̃) ⊂ P1. Then for every x ∈ X̃,
νx = mdev(x).

In addition the action A equals 1 if and only if dev is injective, that is, σ ∈ B(X) (see
the discussion on the density theorem in §6.1).

Proof. The first part is proved by using the conformal invariance of Brownian motion.
Indeed, any Brownian path η : [0,∞[ (relative to the spherical metric on P1, say) starting

at y hits a.s. the boundary of dev(X̃) at a first moment S > 0. We denote by p = η(S).
The distribution of p is by definition the harmonic measure my. The path η|[0,S) can be

lifted to a continuous path η̃ : [0, S)→ X̃ starting at η̃(0) = x, and satisfying dev ◦ η̃ = η.

Let ω : [0, T )→ X̃ be the reparametrization of η̃ defined by ω(t) = η̃(s), where

(41) t =

∫ s

0

∥∥Ddev−1(η(u))
∥∥2
du.

Here dev−1 is understood as the analytic continuation along η of the inverse of dev defined
at the neighborhood of y and such that dev−1(y) = x. The conformal invariance can be
stated in the following form: ω is a model for a Brownian path starting at x for the Poincaré

metric (see e.g. [14, Section 1]). Since ω tends to infinity in X̃ when t tends to T , we see
that T = +∞ a.s. Moreover, a.s. limt→+∞ dev(ω(t)) = p, which implies using Definition-
Proposition 0.3 that my = νx.

Let now address the second part of the lemma. We first prove that A < 1 if dev is not
injective. We need the concept of an extremal positive harmonic function on the universal

covering of X̃. Such a function is (by definition) the composition of a biholomorphism from

X̃ to H with the imaginary part function = : H → (0,∞). It will be important to notice

that the subgroup of Aut(X̃) that preserves an extremal positive function is abelian (this is



COMPLEX PROJECTIVE STRUCTURES 33

the group of translations in the coordinate where the function is the imaginary part). The
following statement is a consequence of the case of equality in the Schwarz-Pick lemma:

A function ϕ : X̃ → (0,∞) is an extremal positive harmonic function if and only if at

some (and hence all) point x ∈ X̃ one has ‖∇ logϕ(x)‖ = 1.
Now assume that dev is not injective. In such a situation, the covering group ker(hol)

is a non trivial normal subgroup of π1(X). Recall (item (ii) of Proposition 1.2) that the
family of harmonic measures {νx}x∈X̃ satisfies the equivariance relation νγx = hol(γ)∗νx for

every x ∈ X̃ and every γ ∈ π1(X). Hence, the density of the disintegration of T̃ along the

leaves is a function ϕ : X̃ × P1 → (0,∞) which belongs to L1
loc(vol ⊗ ν) and is invariant

under the group ker(hol). This subgroup being non trivial and normal, its limit set as a

subgroup of isometries of Aut(X̃) for the Poincaré metric is the whole ∂X̃. In particular,
it contains non abelian free subgroups [5]. As a consequence, the density ϕ(·, z) of the
disintegration of T cannot be extremal. In particular, ‖∇F logϕ‖ < 1 a.s. This proves
that A < 1, as required.

It remains to prove that if dev is injective, then A = 1. In this case, the holonomy
representation is injective with image a discrete subgroup of PSL(2,C). In particular,
using Remark 1.6 we see that the foliated bundle (Mσ,Fσ, Tσ) is measurably conjugate to
the bundle (MσFuchs ,FσFuchs , TσFuchs) where σFuchs is the uniformizing structure on X. Hence
A = AFuchs. But the densities of the disintegration of TFuchs along the leaves are given
by the Poisson kernel in the uniformization coordinates, in particular these are extremal
positive harmonic functions. We conclude that A = AFuchs = 1, and the proof of the lemma
is complete. �

Remark 5.6. Let Ω0 ⊂ P1 be any component of the discontinuity set of a finitely generated
Kleinian group Γ. Using Theorem B we can recover the classical Jones-Wolff theorem [41]
that the dimension of the harmonic measure of ∂Ω0 is bounded by 1, with strict inequality
unless Ω is simply connected (see [62] for another dynamical proof of this fact). Indeed,
from Lemma 5.5, it is enough to show there exists a Riemann surface X of finite type and a

parabolic projective structure on X with zero degree such that Ω0 = dev(X̃). This simply
follows from the Ahlfors finiteness theorem: first take a finite index torsion free subgroup
Γ′ ⊂ Γ, and define X := Γ′0\Ω0 where Γ′0 ⊂ Γ′ is the stabilizer of Ω0.

6. Applications to Teichmüller theory

6.1. Preliminaries. All this is well-known, but not so easy to locate in the literature
when X is non-compact.

Recall that X is assumed to be a Riemann surface of finite type, that is biholomorphic
to X \ P where X is compact and P is a finite set of punctures. Introduce a projective
structure σ on X, which can always can be done e.g. by uniformization.For every projective
structure σ on X, consider the holomorphic quadratic differential on X defined by

q = {w, x}dx2

where x and w are projective coordinates for the projective structures σ and σ respectively,
and as usual {w, x} is the Schwarzian derivative. By the cocycle property of the Schwarzian,
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we infer that {w, x}dx2 = {z, x}dx2 + {w, z}dz2. Remembering that {w, x} vanishes if w
is a Moebius transformation, we see that the differential q is well-defined, that is does
not depend on the chosen coordinates x and w. Moreover, a result due to Fuchs and
Schwarz shows that a projective structure on X is parabolic if and only if the Laurent
series expansion of q at the neighborhood of every point of P takes the form q(x) =(

1
2x2

+l.o.t.
)
dx2, see [19, Théorème 10.1.1, p. 291]. Hence, the space of parabolic projective

structures on X is an complex affine space directed by the set of meromorphic quadratic
differentials having poles on P of order at most 1. This space is the set of sections of the
line bundle L = 2K +O(P ), where K is the canonical divisor of X. By Riemann-Roch

h0(X,L)− h0(X,K − L) = deg(L) + 1− g.

Since K − L = −K − O(P ) has no non trivial sections, and that deg(L) = 4g − 4 + |P |,
we deduce

h0(X,L) = 3g − 3 + |P |.
Thus the set of parabolic projective structures on X is a complex affine space of dimension
3g−3 +n, where n is the number of punctures. Observe that for the once punctured torus
or the fourth punctured sphere, the dimension equals 1.

We denote by Tg,n the Teichmüller space of equivalence classes of marked Riemann
surfaces biholomorphic to a compact Riemann surface of genus g punctured at n distinct
points. Here a marking of the Riemann surface Y will refer to the data of a universal

covering Ỹ → Y together with an identification of the covering group π1(Y ) of this covering
with π1(X). Two marked surfaces are considered as equivalent if there exists an equivariant
holomorphic diffeomorphism between the universal covers.

Let Y ∈ Tg,n. Denote by c(Y ) the complex conjugation of Y , keeping the marking
fixed. The Bers simultaneous uniformization theorem [10, Theorem 1] asserts that there
exists a faithful discrete representation ρX,Y : π1(X)→ PSL(2,C), uniquely defined up to
conjugation, such that the Riemann sphere admits a ρ-invariant partition of the form

(42) P1 = DX ∪ Λ ∪DY ,

where DX and DY are two simply connected domains, Λ is a topological circle, and such
that the marked Riemann surfaces ρ(π1(X))\DX and ρ(π1(X))\DY are respectively equiva-
lent to X and c(Y ). A representation with an invariant decomposition such as (42) is called
quasi-Fuchsian. Thus an element Y ∈ Tg,n produces a parabolic P1-structure b(Y ) ∈ P (X)

on X, defined as the ρ-equivariant identification between X̃ and DX .
It turns out that the map Y ∈ Tg,n 7→ b(Y ) ∈ P (X) is a holomorphic embedding onto

a bounded open subset B(X) ⊂ P (X), known as the Bers embedding (or Bers slice) of
Tg,n. The holomorphicity of b follows from the holomorphic dependence of the solution of
the Beltrami equation with respect to parameters. The boundedness of B(X) follows from
Nehari’s estimate for the Schwarzian of univalent meromorphic functions defined on the
hyperbolic disc, and its openness from the so-called Ahlfors-Weill extension lemma (see
e.g. [32]).
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Due to deep recent advances in Kleinian group and 3-manifold theory, there is a now
good understanding of the structure of B(X). To be precise, the density theorem (formerly
known as the Bers density conjecture), specialized to our context, asserts that σ ∈ B(X)
if and only if devσ is injective. This means in particular that the image of dev is a simply
connected component of the discontinuity set of holσ(π1(X)), which uniformizes X. An

equivalent formulation is that σ ∈ B(X) if and only if deg(σ) = 0 and holσ is faithful.
When X is compact, this was explicitly proved by Bromberg [11]. In the general case,
this statement is generally accepted by the experts as being a consequence of the ending
lamination theorem of Minsky [56] and Brock, Canary and Minsky [9] (see Ohshika [59] and
Namazi-Souto [57] for the derivation of the density theorem from the ending lamination
theorem in the whole character variety). It seems, however, that no detailed proof of this
fact has appeared yet.

6.2. Holomorphic convexity of Bers slices. Here we prove Theorem C. It is known
that every component of the interior of a polynomially convex set is polynomially convex
(i.e. a Runge domain) (see e.g. [28, Prop. 2.7]), but the converse is false (this fails e.g.
for U = D(0, 2) \ D(1, 1) ⊂ C). In particular the second statement of the theorem (the

polynomial convexity of B(X)) follows from the first (the polynomial convexity of B(X)).
Actually, one may derive the polynomial convexity of B(X) from a simple, direct ar-

gument. Indeed, consider in X the set {deg = 0} of projective structures with vanishing
degree. Equivalently, by Proposition 2.3 such a structure is of quotient type. It was shown
in [45] that {deg = 0} is a compact subset of P (X). Since in Cn convexity with respect
to polynomials and psh functions coincide [66, Thm 1.3.11], we infer that {deg = 0} is
polynomially convex. Now it is a result due to Shiga and Tanigawa [64] and Matsuzaki
[54] that the interior in P (X) of the set of projective structures with discrete holonomy is
the set of projective structures with quasifuchsian holonomy. Thus Int {deg = 0} = B(X),
and the polynomial convexity of B(X) follows.

We now turn to the polynomial convexity of B(X). A connected component of a poly-
nomially convex set is polynomially convex [66, Cor. 1.5.5], so it is enough to show that

B(X) is a connected component of {deg = 0}. This will be based on the following amusing
lemma.

Lemma 6.1. Let (ρλ)λ∈Λ be a holomorphic family of representations of a finitely generated
group G into PSL(2,C), parameterized by some complex manifold Λ. If K ⊂ Λ is a compact
connected set of discrete and non-elementary representations then ker(ρλ) is constant over
K. In particular if K contains a faithful representation, then all representations in K are
faithful.

Admitting this result for the moment, let us finish the proof. Let K be the connected
component of {deg = 0} containing B(X). By Proposition 2.3 for every σ ∈ K, holσ is
discrete. Applying Lemma 6.1, we infer that all representations in K are faithful. By the
density theorem (see the end of §6.1), the inclusion K ⊂ B(X) holds, hence K = B(X),
and the proof is complete. �
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Proof of Lemma 6.1. Without loss of generality we may assume that Λ is connected. Con-
sider the set of subgroups ker(ρλ) as λ ranges in Λ. Our first claim is that this set is at most
countable. The argument is based on basic finiteness (Noetherian) properties in analytic
geometry. Let λ0 ∈ Λ and put K0 = ker(ρλ0). Define

Z ′(K0) = {λ ∈ Λ, ∀g ∈ K0, ρλ(g) = id} ,
and let Z(K0) be the component of Z ′(K0) containing λ0. If λ ∈ Z(K0), ker(ρλ) ⊃ K0

nevertheless equality needn’t hold. On the other hand we observe that if λ is a generic
point in Z(K0), that is, chosen outside a countable family of proper analytic subvarieties,
then ker(ρλ) = K0. Indeed for every g ∈ G \ K0, the set {λ ∈ Z(K0), ρλ(g) = id} is a
proper subvariety of Z(K0), since it does not contain λ0.

Conversely, a similar argument shows that if V ⊂ Λ is any irreducible variety, the
subgroup

K(V ) = {g ∈ G,∀λ ∈ V, ρλ(g) = id}
is the kernel of generic representations in V .

So if K0 is as above, Z ′(K0) has at most countably many irreducible components, each
of which associated with a generic kernel (for Z(K0), this is precisely K0). Now we observe
that locally Z ′(K0) is defined by finitely many equations, that is there exists a finite number
of elements gi ∈ G, i = 1 . . . N , such that for Λ′ b Λ,

Z ′(K0) ∩ Λ′ = {λ ∈ Λ′, ∀i = 1 . . . N, ρλ(gi) = id} .
This leaves only countably many possibilities for the generic kernels, and our claim is
proved.

Under the assumptions of the lemma, label all kernels of representations in K as (Hi)i∈N
and write accordingly K as a disjoint union K =

⋃
Ki, where K = {λ, ker(ρλ) = Hi}.

The next claim is that for every i, Ki is closed. For this we use the precise version of
the Chuckrow (Margulis-Zassenhaus-Jorgensen) theorem stated in [42, Thm 8.4 p.170]:
if ρp is a sequence of discrete faithful representations of some non-radical group Γ into
PSL(2,C), algebraically converging to some representation ρ of Γ, then ρ is also discrete
and faithful. Recall that a group Γ is said non-radical if it does not admit infinite normal
nilpotent subgroups. A non-elementary subgroup of PSL(2,C) contains rank 2 non abelian
free subgroups and in particular is non-radical.

Let now (λp) ∈ KN
i be sequence converging to some λ ∈ K. For every p, ρλp is a discrete

faithful non-elementary representation of G/Hi, which is therefore non-radical. It is clear
that Hi ⊂ ker(ρλ) so ρλ can be viewed as a representation of G/Hi. Hence by Chuckrow’s
theorem ker(ρλ) = Hi, and we conclude that Ki is closed.

We have thus written K as an at most countable union of disjoint closed sets Ki. A
(not so well-known!) theorem of Sierpiński [65] asserts that such a decomposition must be
trivial. The result is proved. �

Remark 6.2. If dim(P (X)) = 1, it is not necessary to use the density theorem. Indeed in
dimension 1, polynomial convexity simply means thatKc has no bounded component (there
is no such simple topological characterization in higher dimension). What our argument
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says is that B(X) is contained in a polynomially convex set K with K̊ = B(X). This

directly implies that B(X)
c

has no bounded components (this is left as an exercise to the
reader).

6.3. Exterior powers of the bifurcation current.

Proof of Theorem D. The argument is based on the fact that an isolated minimum of the
continuous psh function δ must belong to Supp(ddcδ)3g−3. This is a consequence of the
so-called comparison principle for psh functions [6, Thm A]. A similar idea appears in the
work of Bassanelli and Berteloot (see [4, Prop. 6.3]).

It is a theorem due to Hejhal [38, Thm 6] that covering projective structures with
Schottky holonomy are isolated points of {δ = 0}. Therefore, for such a σ0, we infer that
σ0 ∈ Supp(T 3g−3

bif ). Finally, we use a result due to Otal [60] (see also Ito [40]): when X is
compact, ∂B(X) is contained in the accumulation set of projective structures with degree
0 and Schottky holonomy. We conclude that ∂B(X) ⊂ Supp(T 3g−3

bif ). �

Corollary E is an immediate consequence of the following equidistribution result in the
spirit of [22, Thm C]. If γ is a closed geodesic on X we let

Z(γ, t) =
{
σ ∈ P (X), tr2(holσ) = t

}
(notice that since holσ is well-defined up to conjugacy, so it makes sense to speak of its
trace). Fix a sequence (rn)n≥1 such that for every c > 0, the series

∑
e−crn converges.

The notion of a random sequence of geodesics of length at most rn was discussed at length
in [22]. We say that a holomorphic family of representations (ρλ)λ∈Λ is reduced if the
associated mapping Λ→ X (π1(X),PSL(2,C)) to the character variety has discrete fibers.
Notice that since hol : P (X)→ X (π1(X),PSL(2,C)) is injective, this property is satisfied
in the context of Corollary E.

Proposition 6.3. Let X be a hyperbolic Riemann surface of finite type and (ρλ)λ∈Λ be a
reduced holomorphic family of non-elementary representations of π1(X), with dim(Λ) ≥ k.
Let (rn) be as above, and fix t ∈ C. For i = 1, . . . , k fix a sequence (γin) of independent
random closed geodesics of length at most rn. Then almost surely,

(43) lim
n1→∞

· · · lim
nk→∞

1

4k
∏k

i=1 length(γini)

[
Z(γ1

n1
, t) ∩ · · · ∩ Z(γknk , t)

]
= T kbif ,

Note that in (43) the intersections are counted with multiplicity (i.e. in the sense of
holomorphic chains, see [15, Chap. 12]).

Proof. The proof is similar to that of [25, Thm 6.16]. We argue by induction on k. For
k = 1 this is [22, Thm C]. Now assume that the result has been proved for k. Since Tbif

has continuous potential, it follows from (43) that

1

4k
∏k

i=1 length(γini)

[
Z(γ1

n1
, t) ∩ · · · ∩ Z(γknk , t)

]
∧ Tbif
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converges to T k+1
bif as nk, . . . , n1 → ∞ successively. Now, when n1, . . . , nk are large and

fixed, we apply [22, Thm C] to the family (ρλ)λ∈Z(γ1n1 ,t)∩···∩Z(γknk
,t) (the reducedness as-

sumption is used here to ensure that this family is non constant) to get that

lim
nk+1→∞

1

4k+1
∏k+1

i=1 length(γini)

[
Z(γ1

n1
, t) ∩ · · · ∩ Z(γk+1

nk+1
, t)
]

=
1

4k
∏k

i=1 length(γini)

[
Z(γ1

n1
, t) ∩ · · · ∩ Z(γknk , t)

]
∧ Tbif

and we are done. �

Appendix A. Branched projective stuctures

A branched P1-structure on X is by definition an equivalence class of development-
holonomy pairs (dev, hol), where hol is a representation of π1(X) with values in PSL(2,C)

and dev : X̃ → P1 is a hol-equivariant (non constant) meromorphic map. Two development-
holonomy pairs are considered as equivalent if they are of the form (dev, hol) and (A ◦
dev, A ◦ hol ◦ A−1) for some A ∈ PSL(2,C). Thus the only difference with the classical
(unbranched) case is that the developing maps are allowed to have critical points. These
points are organized as a finite number of orbits under π1(X), and their projections in
X are called the branched points. If X is a punctured Riemann surface, we can define a
notion of branched parabolic P1-structure exactly as before, by specifying it to be induced
by log z near the cusps.

Examples of branched P1-structures come from conformal metrics with constant cur-
vature −1, 0, 1 on X and conical angles multiple of 2π. In particular, a non constant
meromorphic map from X to P1 defines a branched P1-structure with trivial holonomy.
Quadratic differentials are other kind of examples associated with a flat metric. We re-
fer more generally to [68]. Those examples of non negative curvature have elementary
holonomies. Nevertheless, the holonomy of a branched P1-structure induced by a confor-
mal metric of curvature −1 and conical angle multiple of 2π is always non elementary. We
refer to [67] for the construction of many examples.

When X is compact, Gallo, Kapovich and Marden [31] showed that if ρ : π1(X) →
PSL(2,C) is a non elementary representation which does not lift to SL(2,C), then ρ is the
holonomy of a branched P1- structure with exactly one branch point of angle 4π (for a
certain Riemann surface structure on X which depends on ρ). On the other hand ρ is not
the holonomy of a unbranched P1-structure.

Some of our results extend mutatis mutandis to branched projective structures with non
elementary holonomy. For instance, the degree of a branched P1-structure is defined ex-
actly as in Definition-Proposition 0.1, the proof being identical to the unbranched case.
The Lyapunov exponent depends only on the Riemann surface structure and on the holo-
nomy representation, hence it has already been defined in our previous work [22]. Finally,
Hussenot’s definition of the harmonic measures was actually introduced in the context of
branched P1-structures with non elementary holonomy.
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In this appendix we indicate how our formula relating the Lyapunov exponent to the
degree needs to be modified in the branched case.

Theorem F. Let σ be a parabolic branched P1 structure on a hyperbolic Riemann surface
X of finite type. Let k denote the number of branched points, counted with multiplicity.
Then, with notation as in Theorem A, the following formula holds:

χ(σ) =
1

2
+ 2πδ(σ)− k

|eu(X)|
=

1

2
+

deg(σ)− k
|eu(X)|

Sketch of proof. Introduce as in the unbranched case the flat bundle (Mσ,Fσ), the holo-
morphic section s (the compactification of the graph of the developing map at the level of
the universal cover) and the normalized harmonic current T giving mass 1 to the generic
fibers. Proposition 3.5 holds without modification, as well as the computation of the index
I made in §4 (which is local near the punctures), so we infer that

χ(σ) =
1

2 |eu(X)|
(NF · T + #P ).

Now if G is a singular holomorphic foliation on a complex surface, and C is a non singular
compact holomorphic curve not everywhere tangent to G, and not intersecting the singular
set of G, we have

NG · C = eu(C) + |tang(G, C)|,
where the tangency points are counted with multiplicities (see [12] for details). Hence
formula (32) has to be replaced by

(44) NF · s = eu(s) + |tang(F , s)| = eu(X) + k and NF · f = eu(P1) = 2.

We also have

s2 = eu(s) + |tang(F , s)| = eu(s) + k.

So we infer that

[NF ] = 2[s]− (eu(X) + k)[f ],

and we conclude as in the proof of Theorem A. �

References

[1] Ahlfors, Lars, Finitely generated Kleinian groups, American Journal of Mathematics 86 (1964)
413–429
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