
HAL Id: hal-01068563
https://hal.science/hal-01068563v1

Submitted on 30 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NEW APPROACH FOR SOFTWARE PROCESSES
REUSING BASED ON SOFTWARE

ARCHITECTURES
Fadila Aoussat, Mohamed Ahmed-Nacer, Mourad Chabane Oussalah

To cite this version:
Fadila Aoussat, Mohamed Ahmed-Nacer, Mourad Chabane Oussalah. NEW APPROACH FOR
SOFTWARE PROCESSES REUSING BASED ON SOFTWARE ARCHITECTURES. The 15th
World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI’10,), Jun 2010, Orlando,
United States. �hal-01068563�

https://hal.science/hal-01068563v1
https://hal.archives-ouvertes.fr

NEW APPROACH FOR SOFTWARE PROCESSES REUSING BASED ON

SOFTWARE ARCHITECTURES.

Fadila AOUSSAT,
Department of computer science, Saad Dahlab Blida University, BP270, Route Soumaa, Blida, Algeria.

A_zahoua@yahoo.fr

AND

Mohamed AHMED NACER,
Department of electronique and computer science, University of Sciences and Technology Houari Boumediène

BP32,ElAlia, BabEzzoua, Algeria.
Anacer@cerist.dz

AND

Mourad OUSSALAH,
LINA Laboratoy, CNRS UMR 6241, 2, Rue de la Houssinière, BP 92208, 44322

University of Nantes, France.
Mouard.oussalah@univ-nantes.fr

ABSTRACT

This paper deals with reusing of software process models.

Based on the insufficiencies of existing software process

reusing approaches (limited reusability of the software process

components), we propose a new approach that promotes a large

reuse of existing proven software process models even not

oriented components. Our approach is based on two steps: we

use domain ontology to capitalize the software process

knowledge and we handle the inferred knowledge as software

process architecture. In this paper, we present a related works

on this field and introduce the general outlines of our approach

that is under validation.

 Keywords: Domain ontology, inferring software

process architecture. SPEM metamodel, automatic instantiation

ontology, ADL for software processes.

1. INTRODUCTION

It is agreed that having high quality software process

models has a direct impact on the software product quality. The

main concern of the software process designer is to model

software processes that highlight the characteristics of the

project and that respect the local work tradition. The modeled

software process must reflect the development reality, must be

flexible and must “react” to the unexpected development events.

Modeling high-quality software processes requires experience

and a confirmed expertise. As a solution we explore the reusing

of software processes that have been previously developed,

tested, used and that have proven their efficiency.

Several approaches to modeling software processes based

components have been proposed [1] [2] [3] [4] [16] [15] [7].

These approaches describe the concept of "Component Software

Process" described as a fragment or a part of a software process,

however while reusing components, each approach offers its

own solution, addressing a particular aspect of modeling and

executing software processes.

The major weakness of these approaches is that the

developed software process components are specific to the

environment; the use of the software process components is still

limited to the environment itself. Even if the most existing

approaches advance the same definition for a software process

component, no consensus or metamodel describing the software

process component characteristics is advanced. Thus, the

concept of software process component On The Shelf "ready for

use” has not yet appeared; so the immaturity and newness of

this area is a logical justification for this work.

In the same context of reuse and at M2 of OMG four levels

Architecture, the SPEM metamodel promotes reuse of software

processes on a large scale. SPEM (Software and Systems

Engineering Metamodel) [6], is a metamodel adopted by the

OMG for modeling and executing software processes. Among

other mechanisms of reusing, SPEM introduces the reused

software processes based components by assigning a specific

package: the "Method Plugin” package. SPEM introduces the

architectural concepts (component, port, connector) more

formally, however, reuse based components in SPEM is not yet

mature, several problems must be taken into account, such as

the heterogeneity of the terminology used for the same Work

Product Port, or the lack of architectural concepts like software

process configuration or software process architectural style.

Also, despite the repetitive nature of software processes

(sequence of activities) a large number of software processes

have emerged; each one using its own concepts, formalisms and

terminologies to answer many specific needs. The established

taxonomies and classifications [8] [9] [10] reflect the diversity

of the proposed solutions. Based on the richness of the field in

terms of concepts and experiences, as well as the limitation of

existing approaches (software processes components weakly

reusable, architectural abstraction not taken into account), we

propose a new approach that has as main goal the reuse of

existing proven software process models in term of knowledge.

Also, we aim to offer a tool that gives a great flexibility to

model new software processes, by being inspired on previous

modeling positive experiences. Our solution is based on the use

of a domain ontology which capitalizes this knowledge to allow

an inference of new software process models.

mailto:A_zahoua@yahoo.fr
mailto:Anacer@cerist.dz
mailto:Mouard.oussalah@univ-nantes.fr

By focusing on the architectural abstraction and addressing

the software process as software architecture, we explore the

automatic use of predefined structure of software processes such

as life cycles or structure of predefined processes such as UP

(Unified Process) to model new software processes. Therefore,

the software processes that we develop are software processes

based on software architectures. That’s why we are interested

on concepts derived from ADL’s and their metamodel (few

ADLs that are specific for software processes were developed

but no metamodels that regroup architectural concepts for

software processes were proposed). So, as first step, we will

inspire from the existing ADL (Architecture Description

Language) that are specific to software architecture.

The paper is organized as follows: Section 2 resumes the

existing approaches for modeling processes based on software

components. Section 3 presents the general outlines of our

approach to modeling software process based software

architecture. Our approach is based on the use of a domain

ontology that contains software process knowledge thus

Section 4 details the essential points for creating the ontology

and discusses the encountered problems and the possible

solutions. We conclude the paper summarizing the work and

describing current works.

2. EXISTING APPROACHES FOR THE REUSE OF

SOFTWARE-BASED METHODS OF COMPONENTS

In addition to the complexity when reusing software

components, the presented approaches are facing more specific

problems such as the rigidity of software process models, often

depending on the modeling environment, and the diversity of

the manipulated concepts [10]. Software process models are

typically human oriented; interactions human/model has a

central position, especially during the execution of software

processes. The human element is the weak point of software

processes; thus, adjustments are often made and must be

integrated in the software process models. Also, software

process models must be understood by their users, the

vocabulary used to describe a “task” or “product” should be

explicit and meaningful to the user, that’s the raison of

difficulties to reuse software processes models, particularly

those coming from diverse sources.

We distinguish tow kind of approaches: approaches of the

model level of the OMG modeling architecture, and approaches

of the metamodel level.

2.1 Model level

2.1.1 Approaches based component concept

Several approaches to software process modeling based

components have been developed. Each approach offers a

particular solution, focusing on the concerns of its user, as the

heterogeneity of languages process modeling software [1] [2],

the heterogeneity of execution platforms [4], the distributed

execution [3] or the conformity with SPEM meta-model.

The major weakness of these approaches is that the

components developed are far from Component On The Shelf

(COTS); in fact, these components are specific and their use is

limited to their original environment. These systems typically

operate so independently and do not reuse "external"

components of their software processes.

The studied approaches (except APEL) use object-oriented

languages for software process modeling; they implement their

components as classes and use the object mechanisms

(inheritance, instantiation ...) (Table 1-line -2 -).Unlike other

environments, in APEL a component is a "product" component

and not a “process” component; it is considered as a "support"

for a local execution engine to execute a given part of the whole

software process. Each software component has its own local

process model [3]. APEL has been introduced into our study to

have a general idea of the different concepts used on software

process components.

Moreover, the notion of software process configurations and

architectures in general, and logic configuration as abstract view

in particular, has not beneficiate of much attention. The

reflexion, often limited to the implementation level, is generally

focused on the “content” of the component than the logic

configuration and assembly. Consequently: 1) the architectural

concepts (components, connectors, configuration, and

architectural style), have been poorly exploited; most of the

properties describing the component as a software component

(dynamicity, non-functional properties etc) are not formally

taken into account 2) the concepts of "connector" and

"configuration" are not treated as first class entities: As the

connector is considered as a function call, an event notification

or an exchange message, its role is simply limited to

communication between components [11], the used connectors

have no independent existence and do not include additional

mechanisms to facilitate and assist the interaction between

components.

Table1: Approach oriented object characteristics.

Component

Characteristics

Environment

RHODES

Framework OPC PYNODE ENDEAVORS APEL

Creating period Before the

reuse(compone

nt repository)

During the reuse During the reuse Before the reuse,

adapted during the

execution.

Before the reuse

Processes Modeling

Language(PML)

PBOOL+

Object oriented

Object oriented

languages

 Object oriented

languages

ObjV based OOP

LISP

Not specific

language.

Heterogeneity Homogeneous Syntaxic Syntaxic Homogeneous Syntaxic/Semantic

Assembling

Static Dynamic and

Incremental.

Dynamic and

Incremental.

Static No assembling

Metamodel Some concepts Use all concepts of the metamodel

SPEM

metamodel

Basic elements

(role/activity/

artifact)

Basic elements Basic elements Basic elements

(activity, resource

artifact)

Executing plateformes Same platform Same platform Same platform Multiple Multiple

 Identification. Not assisted Half assisted Half assisted No identification.

Reusability scope Internal to the system

Configuration

management

No management

(graphical representation of the assembly)

2.1.2 Approaches based architecture concept

Some approaches for software process modeling have been

focused on architecture level:

 Boehm [18] Argues that as software processes can be

viewed as software, we can consider architecture styles for

software processes. In [16] the treated software processes are

evolution software processes. The proposed process architecture

is software architecture for software process evolution. That

consists on process components "evolution" and connectors

specific to software process evolution. The architecture and

components are described using language-specific trends:

EPCDL (Evolution Process Component Description Language)

and EPDL (Evolution Process Description Language). [17]

Describes a method to model software processes based on

object-oriented architecture. The method consists of "phases"

and "concepts processes". The first phase defines the software

process architecture with a large granularity, which is refined

through other phases until obtaining the final software process

model.

The solutions proposed by these approaches are either too

specific to a type of a software process [16], too generic [17], or

too general [18]. Moreover, these approaches don’t allow to

built predefined software process structures or software process

configurations to generate software processes based software

architecture. Our approach described in the next section

manages these lacks.

2.2 Metamodel level

SPEM (Software and Systems Engineering Metamodel [6]

is a metamodel adopted by the OMG, it describes a large range

of software processes. Its organization into multiple packages

offers not only several view points on the software processes

(method view, structure view, reuse view ...) (Figure -1-), but

also, facilitate the expansion and integration of new concepts.

SPEM supports different types of reuse: on one hand, while

specifying "Process Behavior" package to capture external

behavior of software process models that are not conform to

SPEM metamodel, and on the other hand, while introducing

reuse based on software process Components by providing

another package: “the Method Plugin package”. Through the

concepts of "Process Component", "Process Component Use",

"Work Product Ports" and "Work Product Connector" defined

in the Method Plugin package, SPEM introduces more formally

the notion of reuse component-based processes.

However, reusing components in SPEM faces several

"recognized" problems that must be treated. The most important

are the interconnection problems of components: heterogeneity

of the terminology used for the port component "Work Product

Port”, the management of the number of ports per component

creates difficulties for assembling components.

The connectors defined in SPEM are implicit connectors.

For instance, the "Work Product Connector” is a simple link

between ports" Work Product Port ". These connectors don’t

play any role to facilitate the connection between software

components, and their roles are limited to simply ensure

communication between components; no mechanisms to

facilitate connection have been integrated [11]. According to the

SPEM cardinalities (Figure 2), a connector can connect multiple

ports without any constraints, the concept of “connector role” is

absent, and the correspondence port / connector is made

manually; that creates multiple problems of connectivity

between software process components. In addition, some

properties for software connector (semantic, evolution ...) are

not taken into account [12].

Like object-oriented approaches, the architectural

abstraction (in other words, the manipulation of the software

process as a set of software process components) has not been

taken into account, and the notion of «software process

configuration" remains unexplored even in SPEM (Figure-2-).

The assembly of components in SPEM is done manually and

often left to the judgment and experience of the software

process developer. Consequently, the absence of software

process configuration disallows speaking about software

process architectural style.

SPEM is a UML profile; so it is clear that its gaps

concerning some architectural concepts are inherited from the

shortcoming of the UML2.0 metamodel about these concepts

[12]. Indeed, UML allows specifying multiple fields through

extension mechanisms; however, it is not the most suitable

language for modeling software architectures. The UML2.0

metamodel lacks show clearly the shortcomings in the

architectural concepts "Configuration" and "connector" in

ProcessWith
Method

Figure 1 : SPEM metamodel structure [6]

MethodPlugin

Process Structure MethodContent

ManagedContent

Core

« Merge »

« Merge »

« Merge

»

« Merge » « Merge »

« Merge »

« Merge »

« Merge »

« Merge »

Reusing view

Using view

Process
Behavior

External behavior
view

Documentation and
assistance view

Structural view Method view

Abstract

concept view

SPEM.

SoftwareComponent

WorkProducPort

+portKind: ParameterDirectionKind
+IsOptionnal: boolean

SPEM ProcessWithMethods ProcessPackage

SPEM ProcessStructure
Activity

0..1

1

ProcessComponentUse

SPEM ProcessWithMethods MethodContentUse

SPEM ProcessWithMethods WorkBeakdownElement

SPEM MethodContent WorkProductDefiniton

+ownedPort

0..1

*

WorkProductConnector

+connectedPort

*

*

processComponent

+process

1

*

+portType

0..1

+usedPort

1

*

Figure 2: Architectural concepts for reuse based on

components in SPEM [6]

3. OUR APPROACH

The approach for reusing software processes based on

components that we offer is original because, it exploits every

opportunity for reusing software processes to its extreme:

firstly, while merging two research areas advocating the reuse at

a large-scale (software architectures and ontologies) in the

service of the software processes reuse, and secondly, exploiting

all that was previously designed and used, as existing

conceptualizations as SPEM metamodel, existing software

process models, ATL module transformation model as

UML2OWL [13].

The main contribution of our approach lies in the fact that

we model software processes as software architectures. We

model the logical structure independently from the software

process implementation. The architecture knowledge is inferred

independently from the software process component knowledge

and the result is saved as an XML file. The results will be

described with a particular ADL. Also, we model the content of

software process components regardless of the assembling

structure, by developing pertinent queries that can infer a

pertinent knowledge. The results will be used on the software

process architecture deployment.

 This separation is one of the characteristics of software

architectures; that’s allows us greater flexibility during the

modeling process management and better control when

modeling different kinds of software processes.

Unlike the discussed approaches, our approach covers both

engineering “for reuse” and “by reuse”.

- “For” reuse by providing an ontology which incorporates

all "positive" experiences of previous software

processes models.

- “By” reuse, allowing the inference of new software

processes and their deployment.

3.1 Engineering for reuse
Using a domain ontology including most concepts of the

software process field is the chosen solution to capitalize the

software process knowledge. The ontology will form a support

that contains the knowledge of this area, which will be reused

regardless of their original environment. The instantiated

ontology becomes a knowledge base, from which we can infer

principally new software process models based on software

architecture (Figure-3-). This step attempts to remedy the low

reusability of software processes and to take advantages of the

maturity of the field in terms of experiences and

conceptualization. Our purpose is to infer using knowledge 1)

issued from previous proven software processes models even

not oriented components, 2) tailored to specific situations, and

thus to have software process models with high-quality that

meet the specific needs of software process developers.

To capture the experience of this area, the instantiation of

this ontology must be based on existing proven software

processes models. To capture such knowledge, a phase of

reengineering is necessary and software process model

analyzers must be developed for this purpose. The inconvenient,

is that each modeling language for software process must have

its corresponding analyzer to allow the capture of the

knowledge. The instantiation from several software process

models faces the problem of vocabulary heterogeneity; a

relevant instantiation must identify distinctively each instance

of the ontology. So, it is important to define a strategy to

manage these synonymous instances (instances with their

aliases). We think that a pertinent instantiation is the first step to

achieve, in order to guarantee the success of our solution.

Figure 3: Capitalize proven knowledge in the software

process engineering field.

3.2 Engineering by Reuse

Engineering by reuse is done by the inference of new

software process models from the ontology knowledge. The

query must consider the request of the process developer, and

then infers the knowledge that matches developer requirements.

The query should allow the software process architecture

inference, should identify software process components and

their configuration (assembly). The assembly can be conform to

a software process architectural style or not. The configuration

of the software process at ontology level is a logical

configuration. In fact, our approach separates the logical

configuration from the operational configuration. In order to use

and to reuse the inferred software process configurations, a

support that model formally this knowledge as pure software

architecture, in one hand, and tools that manipulate software

process architectures, in other hand, are required. These tools

must allow, firstly, to manage the software processes as logical

software architectures without worrying about their

implementation details, and secondly, to ensure their

deployment.

Automatic instanciation

Software
process
domain
ontology

Know how for
and by software

process
engineering

Software
process model
1 written with

PML1

Software
process model
2 written with

PML2

SPM3

Failed project not
for reusing

PML : Process
Modeling Language.

PML Analyzer
for SPM1

Analyser
SPM for
MPL2

::

:: ::

::

::

::

::

::

Figure 4: Software process modeling based on software architecture inferring.

To estimate the feasibility of this approach, it is necessary to

evaluate the suitability of the architectural concepts to model

the specific concepts of software process models.

Boehm highlighted the duality between the software product

and the software process regarding software architectures [18].

He addressed a comparison between architectural concepts and

software process concepts, concluding the interest to use

software architectures styles to model software processes.

Thus, based on the identified concepts of existing

approaches, an initial assessment gives us the possibility to

underline that the software process models concepts (activity /

product / activity sequence / process structure / life cycle) can

be formally modeled as architectural concepts (component / port

/ connector / software configuration/ architectural style).

However, it is clear that a deep study is needed to determinate

formally the architectural representation of software processes.

4. DOMAIN ONTOLOGY FOR THE INFERENCE OF

PROCESSES BASED SOFTWARE ARCHITECTURE

To capitalize the knowledge of software process

engineering, our solution is based on a domain ontology. Our

software process ontology must:

- Be consistent, unambiguous, and above all, commonly

accepted,

- Be large and allow reasoning about different types of

software processes.

- Represent explicitly software process architectures,

including concepts and rules necessary for that purpose.

- Infer different software process configurations, respecting

(or not) specific software process architectural styles.

- Infer software process components that match predefined

constraints specific for software processes.

- Describe “assemblies” constraints for software process

components and specific constraints for software process

models.

To collect the concepts of our ontology, it is possible to

exploit existing conceptualizations involving the basic concepts

for modeling and executing software processes. Based on

several established metamodels, the basic concepts of our

ontology can then be obtained by projection of these meta-

concepts. However, most of the existing metamodels are generic

and represent the concepts of a particular environment; so,

building an ontology from these metamodels is not adequate.

That’s why our work was oriented to the SPEM metamodel, that

is more general, not specific to an environment and includes the

concepts of several software process types.

4.1 Generation of the ontology by processing SPEM

model

We developed a java application that generates our ontology

“SPEMOntology” automatically from the SPEM metamodel,

we use the models transformation language ATL [5]. ATL

(Atlas Transformation Language) is a model transformation

language based on the constraints languages OCL (Object

constraints language) proposed by the OMG. It’s defined to

perform model transformations within the MDA (Model Driven

Architecture).

An ATL transformation is composed of ATL modules. For our

transformation we use three existing transformation modules:

UML2OWL OWL2XML and UML2Copy.

UML2OWL and OWL2XML are modules that provide

rules for transforming a UML model into an OWL model.

However, this transformation is not sufficient for our work, as it

does not transform a "stereotyped" UML model conforms to a

UML profile into an OWL model. The transformation

UML2OWL does not contain transformation rules applied to

profiles and their constituents (stereotypes, constraints and

tagged values). In fact, the model is that we transform is a UML

model (SPEM model) conforms to a UML profile (SPEM

Profile). Thus, a previous ATL transformation is necessary

(ATL1), this transformation must applied the SPEM Profile to

the SPEM model, each element to its stereotype (UML class or

association) to have stereotyped elements with constraints and

tagged values.

Therefore, we define a new transformation (ATL1) which

applies the profile SPEM to SPEM model. This transformation

Ontology domain
for sortware

processes

Know how for and by

software process

engineering

Request

3- Final
proposition

finale

Result

Software process
developer

2- Negociation

I want … , And …., Particulary … , But not…

I have it

Inferred software process

structure

1- request :
-Basic caracteristics.
-Qualitative requirements
-Qualitative values and accepted level

Software process model
based software

architecture

4- software architecture
modeling

Stereotyped

SPEM

Model (UML

editor Plugin

java)

SPEM Model

(UML editor)

SPEMOntology
(protégé editor)

SPEM Profile

(UML editor

plugin java)

Figure 5: Steps of the SPEMOntology generating.

ATL1 Transformation
(First Step)

ATL2 Transformation

(Second step)

UML2Copy
Module

Apply
SPEMProfile

2SPEMModel
Module

OWL2XML module

UML2OWL module

Java application

is composed on two modules: 1) UML2COPY that copy not

stereotyped elements from the source model to the target model,

and 2) “AppplySPEMProfil2SPEMmodel” module that we have

developed and that (as its name indicate) treats the stereotyped

elements. Our java application executes the ATL1

transformation first; the target model “stereotyped spemModel”

will constitute the source model of the next transformation

(ATL2). The modules of the ATL2 transformation are executed

in parallel, as they treat different elements (stereotyped and not

stereotyped elements). Finally the SPEMOntology is generated

and can be consulted with an ontology editor (figure 5).

5. CONCLUSION

This paper treats the reusing of software process models.

We first identified the shortcomings of existing approaches:

many approaches were proposed for modeling software

processes based components, focusing however on a particular

problem. Also, the defined software process component is low

reusable and no consensus on the software process component

characteristics is done. Also, as the reasoning on the

architectural abstraction level is not being a priority; the

representation of architectural concepts is insufficient.

Our paper introduces the general outlines of a new approach

to modeling software processes based on software architecture.

Our approach tempts to remedy the shortcomings of existing

approaches (low reusability of software components,

architectural concepts poorly exploited) and to exploit the reuse

to its extreme: in fact, due to the rigidity and the dependency of

software process to their development environment, high quality

process models are developed and are not "re" exploited.

Our approach exploits the logic of software architectures:

software processes are handled as software architectures. Thus,

our approach derives its power from the separate handling of

content, logical structure and deployment (that are inherited

from the software architecture field). Our solution is very

ambitious and aims to offer the opportunity to create new

software process models from existing knowledge, by using a

pertinent ontology, generated from a well accepted

conceptualization (SPEM metamodel).

We believe that the exploitation of the architectural level of

software processes will not only allows the effective reuse of

knowledge in software process domain, but also, contributes

significantly to facilitate and to resolve the modeling problems,

the execution and the simulation of different software process

structures:

- For traditional structures: by identifying architectural

styles that are specific to software processes, based on software

process and software life cycles [18].

- For specific structures: Such as dynamic, distributed,

incremental and evolution software processes... allowing the

management of architectural configurations for software

process.

The validation of our proposition is under work. Multiple

points remain to be developed: the extension of the ontology

and the extension of SPEM with architectural concepts for

software processes are the next targets of our work, we focus on

definition of explicit connectors and styles specific to software

process models.

REFERENCES

[1] Gary, K., Lindquist, T., Koehnemann, H., Derniame, J.-C.

Component-based software process support. 13th IEEE

International Conference on Automated Software

Engineering. 1998, Page(s):196- 199.

DOI:10.1109/ASE.1998.732637.

[2] Avrilionis, D., Belkhatir, N., Cunin, P.-Y, A unified

framework for software process enactment and improvement.

Fourth International Conference on the Software Process.
1996, Page(s):102 – 111. DOI:10.1109/ICSP.1996.565028.

[3] Dami, S., Estublier J., Amiour, M. APEL: A Graphical Yet

Executable Formalism for Process Modeling. ASE’98,

Automated Software Engineering. Vol. 5, No. 1, January

1998. pp. 61-96. DOI :10.1023/A:1008658325298.

[4] Hitomi, A. S., Bolcer G. A., Taylor, R. N., Endeavors: A

Process System Infrastructure. ICSE’96, 19th International

Conference in Software Engineering. 1996.

http://doi.ieeecomputersociety.org/10.1109/ICSE.1997.610424

[5] ATLAS group LINA & INRIA ATL: Atlas Transformation

Language, ATL User Manual, version 0.7, Nantes, 2006.

[6] Object Management Group, Software & Systems Process

Engineering Meta Model, v2.0 http://www.omg.org/cgi-

bin/doc?Formal/2008-04-01.

[7] Belkhatir, N., Estublier, J., 1996, Supporting Reuse and

Configuration for Large Scale Software Process Models.

ISPW’96,10th International Software Process Workshop.

DOI : 10.1109/ISPW.1996.65436.

[8] Zamli, K. Z., Process Modeling Languages: A literature

review, Malaysian Journal of Computer Science, ISSN

0127-9084, Vol. 14 No.2, 2001.pp.26-37.
http://ejum.fsktm.um.edu.my/ArticleInformation.aspx?ArticleI

D=100

[9] Silvia, T. Acuña, Xavier Ferré. Software Process Modelling.

World Multi conference on Systemics, Cybernetics and

Informatics (SCI), Orlando USA. 2001. DOI:10.1.1.23.5438
[10] Zamli, K. Z., Mat Isa. N. A., A survey and analysis of process

modeling languages. Malaysian Journal of Computer

Science, ISSN 0127-9084 Vol.17 No. 2, 2004. pp. 68-89.

http://ejum.fsktm.um.edu.my/ArticleInformation.aspx?ArticleI

D=310

[11] Nikunj, R. Mehta, Medvidovic, N., Understanding Software

Connector Compatibilities Using a connector taxonomy,

SoDA '02, Proceedings of the First Workshop on Software

Design and Architecture, Bangalore, India. 2002.
DOI :10.1.1.74.2629

[12] Medvidovic, N., Taylor R.N., A Classification and

Comparison Framework for Software Architecture Description

Languages. IEEE Trans. Software Eng. 2000. 26 (1): 70-93.

DOI:10.1109/32.825767
[13] ATL transformation list,

 http://www.eclipse.org/m2m/atl/atlTransformations/

[14] Medvidovic, N., Rosenblum D. S., Redmiles D. F., Robbins, J.

E., Modeling Software Architectures in the Unified Modeling

Language. ACM Transaction on Software Engineering and

Methodology, Vol.11, N°.1, January 2002. page 2-57.
http://doi.acm.org/10.1145/504087.504088

[15] Kellner, M. I., Connecting Reusable Software Process

Elements and Components. ISPW’96, 10th International

Software Process Workshop, 1996, pages: 08-11.http://

doi.ieeecomputersociety.org/10.1109/ISPW.1996.654356
[16] Dai, F., Li, T., Zhao, N., Yu, Y., Huang B., Evolution Process

Component Composition Based on Process Architecture.

International Symposium on Intelligent Information

Technology Application Workshops. Volume 00, 2008.

Pages, DOI: 1097-1100. 10.1109/IITA.Workshops.2008.153

[17] Borsoi, B. T., Becerra J. L. R., A Method to Define an Object

Oriented Software Process Architecture. ASWEC’08, 19th

Australian Conference on Software Engineering, Perth,

WA, 2008. pages: 650-655.

http://doi.ieeecomputersociety.org/10.1109/ASWEC.2008.20

[18] Boehm, B. Wolf S., An Open Architecture for Software

Process Asset Reuse. ISPW’96, 10th International Software

Process Workshop, 1996. Pages:02-07.

 http://doi.ieeecomputersociety.org/10.1109/ISPW.1996.654354

http://doi.ieeecomputersociety.org/10.1109/ICSE.1997.610424
http://www.omg.org/cgi-bin/doc?formal/2008-04-01
http://www.omg.org/cgi-bin/doc?formal/2008-04-01
http://portal.acm.org/browse_dl.cfm?linked=1&part=series&idx=SERIES429&coll=portal&dl=ACM
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Taylor:Richard_N=.html
http://www.informatik.uni-trier.de/~ley/db/journals/tse/tse26.html#MedvidovicT00
http://dx.doi.org/10.1109/32.825767
http://doi.acm.org/10.1145/504087.504088
http://portal.acm.org/browse_dl.cfm?linked=1&part=series&idx=SERIES429&coll=portal&dl=ACM
http://doi.ieeecomputersociety.org/10.1109/ASWEC.2008.20
http://portal.acm.org/browse_dl.cfm?linked=1&part=series&idx=SERIES429&coll=portal&dl=ACM
http://doi.ieeecomputersociety.org/10.1109/ISPW.1996.654354

