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a b s t r a c t

This article is dedicated to the high cycle fatigue behaviour of cast hypo-eutectic Al–Si alloys. In partic-

ular, the AlSi7Cu05Mg03 alloy is investigated. It presents the results of a vast experimental campaign

undertaken to investigate the fatigue behaviour, and more specifically the fatigue damage mechanisms

observed under complex loading conditions: plane bending with different load ratios, fully reversed tor-

sion and equibiaxial bending with a load ratio of R = 0.1. A specific test set-up has been designed to create

an equibiaxial stress state using disk shaped specimens. A tomographic analysis is also presented with

the aim of characterising the micro-shrinkage pore population of the material.

It is shown that two distinct and coexisting fatigue damage mechanisms occur in this material, depend-

ing on the presence of different microstructural heterogeneities (i.e. micro-shrinkage pores, Silicon par-

ticles in the eutectic zones, Fe-rich intermetallic phases, etc.). Furthermore, it is concluded that the effect

of an equibiaxial tensile stress state is not detrimental in terms of high cycle fatigue. It is also shown that

the Dang Van criterion is not able to simultaneously predict the multiaxial effect (i.e. torsion and equi-

biaxial tension) and the mean stress effect for this material.

Ó 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The need to increase performance while at the same time

reducing costs in the manufacturing and transportation industries

leads to components that are subject to increasingly severe

mechanical loading conditions. As such, it is possible to find com-

ponents submitted to cyclic stress states that have very high mean

stress and a high degree of stress triaxiality. For these conditions,

which can be defined as ‘‘extreme’’, the fatigue damage mechanism

as well as the fatigue strength are, in most cases, completely un-

known. Hence, problems are encountered when designing such

components, as existing fatigue criteria have difficulties predicting

these loading conditions and the fatigue data necessary to identify

the criteria parameters are practically non-existent.

The fatigue design of cast aluminium diesel engine cylinder

heads, used in the automotive industry, is an example of this type

of problem. These components have a very complicated geometry

due to the admission, exhaust and cooling passages and the valve

control system, but are essential to the correct operation of the en-

gine (see Fig. 1). In order to ensure that these components conform

to their required specifications, numerical modelling techniques

are employed [1,2]. The results from these simulations show that

certain zones of these components are subjected to complex mul-

tiaxial cyclic stress–stain states, including high mean stress. This

loading mode is the result of the superposition of residual stresses

caused by the fabrication process (i.e. gravity sand casting) and the

subsequent heat treatment, the thermal stresses resulting from in-

service conditions, stresses due to the assembly of the engine (e.g.

bolting loads) and the alternating stress due to the variation in

pressure of the fluids in contact with the thin wall sections in

the fatigue critical zones. Hence, the high cycle fatigue design of

these components requires the use of a fatigue criterion which is

adapted to the material and the specific loading conditions. The ob-

ject of this work was to develop an appropriate criterion for this

application. This criterion will be presented in a future publication.

The present article focuses on the experimental investigation, with

particular attention given to the investigation of the fatigue dam-

age mechanisms for different loading modes occurring in the cast

aluminium alloy in question.

An extensive literature review has highlighted the fact that

there exists a large amount of uniaxial fatigue data for this mate-

rial, for example in rotating bending, plane bending or uniaxial ten-

sion–compression loading conditions [3–14]. However, this data is

often limited to load ratios of either R = ÿ1 or R = 0.1 and very little,

if any, data is available for biaxial tensile loads and torsion.

The principal aims of the work presented in this article are: (a)

to investigate the effect of different loading modes (i.e. bending

with different load ratios, torsion and equibiaxial bending) on the

fatigue response of the cast aluminium alloy, AlSi7Cu05Mg03-T7

and (b) to highlight the role of the different microstructural
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heterogeneities on the fatigue damage mechanisms observed un-

der the different loading modes.

2. Specimen extraction and the material: AlSi7Cu05Mg03-T7

2.1. Specimen extraction

Fatigue specimens were made from material taken directly

from cylinder heads (see Fig. 1) manufactured by PSA for use in

automotive diesel engines. The cylinder heads were gravity sand

cast. During the casting process titanium and boron are added to

the liquid metal in order to refine the size of the alpha-phase den-

drites. Strontium is added to modify the shape of the silicon eutec-

tic particles. The cast components are subsequently heat treated

using the following procedure:

� Solution heat-treatment for 5 h at a temperature of approxi-

mately 540 �C.

� Water quenching at a temperature of approximately 70 �C.

� Tempering at 200 �C for 5 h.

� Cooling in ambient air.

The resulting mechanical properties of the material are listed in

Table 1.

The casting of specimens using a specific ‘‘specimen shaped

mould’’ can have the disadvantage that the material may not have

the same microstructural and mechanical properties as the mate-

rial resulting from the real industrial manufacturing process. It

was therefore decided, in collaboration with the industrial partner,

PSA, to slightly modify a limited number of cylinder heads in order

to have a much larger volume of material from which fatigue spec-

imens could be extracted. This was done by reducing the length of

the inlet and exhaust cores (see Fig. 2a). The resulting modified

cylinder heads have blocked inlet and exhaust passages on the en-

gine block mating surface (see Fig. 2b). This resulted in a layer of

material with a maximum thickness of approximately 8 mm, from

which the specimens, described in more detail later, were

extracted.

It is of course possible that these modifications to the casting

process result in changes to the material properties. In particular,

the Dendrite Arm Spacing (DAS), the hardness and the size and dis-

tribution of micro-shrinkage pores may have been affected. There-

fore, a detailed investigation of these properties, before and after

modification of the casting process was done and very little varia-

tion of these quantities was found.

The DAS was measured in four different zones of the engine

block mating surface. An average DAS of 80 ± 10 lm (based on 10

measurements per zone) was found. The average Brinell hardness

(based on 20 measurements) is 104 ± 3 HB. The size of micro-

shrinkage pores found in 16 different zones (of approximately

20 � 15 mm) randomly positioned on the mating surface were

measured using an optical microscope and the image analysis pro-

gram, Visilog. The surface area of the micro-shrinkage pores was

measured to be between 6� 10ÿ2 and 4� 10ÿ4 mm2. Table 2

shows the comparison of these measurements between a modified

and an unmodified cylinder head for four different locations on the

mating surface.

In addition, measurements of the pore size and distribution

have been done by tomography and are discussed below.

2.2. Material and pore characterization

Fig. 3 shows the material microstructure created as a result of

the process described above. The material is composed of alpha-

phase dendrites with an average Dendrite Arm Spacing (DAS) of

approximately 80 lm. The eutectic silicon particles are fine and

spherical. The dark feature in Fig. 3 is a casting defect (i.e. a mi-

cro-shrinkage pore) caused by the shrinkage of the molten liquid

during solidification. In a complicated gravity cast component

like a cylinder head it is difficult to completely eliminate this type

of defect. The presence of intermetallic phases can also be

distinguished.

In order to characterise the size and spatial distribution of the

shrinkage pores in the cast aluminium alloy used in the cylinder

heads, the tomography technique was used in collaboration with

the MATEIS laboratory of INSA Lyon. The investigation was done

using a Phoenix/X-ray v/tome/x tomography. The analysis was

conducted on a specimen taken from the mating surface of a mod-

ified cylinder head. The volume of scanned material was equal to

3:5� 4� 6:5 mm3. A voxel size of 5� 5� 5 lm3 was used. After

post-treatment of the tomographic images it is possible to deter-

mine the size distribution of the pores as well as their sphericity,

s. The determination of the sphericity is done by the marching cube

Fig. 1. The PSA diesel engine cylinder head. The upper surface is the engine block mating surface. The right end of the cylinder head has been sectioned via a horizontal cut.

Table 1

Mechanical properties of AlSi7Cu05Mg03-T7.

0.2% Yield stress rY

(MPa)

Ultimate tensile strength ruts

(MPa)

% Elongation

A%

250–260 318–330 5.0–5.7



method and requires knowledge of the volume, V, and the surface

area, S, of each pore. The sphericity is defined by:

s ¼ 6V

ffiffiffiffiffi

p

S3

r

ð1Þ

This parameter is equal to 1.0 for a pore that is perfectly spher-

ical and s = 0 for a pore that is very distorted [15].

The pore size distribution, shown in Fig. 4, proves that the great

majority of pores are small. In fact, the number of very large pores

is quite limited. If the pores are assumed to be spherical, the max-

imum pore diameter would be 44 lm. However the pore geometry

is not this simple, as can be seen in Fig. 5a which shows the sphe-

ricity distribution. This figure indicates that 33% of the pores have

sphericities between 0.2 and 0.6.

The spatial distribution of the pores is shown in Fig. 5b which

plots the position of each pore projected onto a plane perpendicu-

lar to the loading axis of the specimen. It can be seen that the pores

are distributed in a quasi-homogeneous manner within the vol-

ume. No particular ‘‘clustering’’ of the defects can be observed.

Fig. 6a shows the pore sphericity as a function of the pore vol-

ume. This figure indicates that the sphericity of the smallest pores

is highly variable, ranging between 0.3 and 1.0, while the largest

pores (with volumes greater that 20,000 lm3) have a smaller sphe-

ricity range of between 0.4 and 0.6. From Fig. 6b it can be seen that

several of these large pores are positioned close to the edge of the

specimen and are therefore possible fatigue crack initiation sites.

Also, the spatial distribution of the largest pores is relatively

homogeneous.

Buffière and co-workers [3] have undertaken a similar investi-

gation of a cast aluminium alloy. The material studied by Buffière

and co-workers was the A356 aluminium alloy. Different degrees

of micro-shrinkage porosity were introduced by these researchers

through the addition of a hydrogen/Argon gas mixture injected

into the liquid metal at 820 °C. The resulting alloys, referred to as

Alloys A, B and C, were cast with 2%, 7% and 10% H2 respectively,

mixed with Ar and lead to different pore sizes and forms. In this

work by Buffière et al. [3], the material is solution heat treated after

solidification for 10 h at 540 �C and then tempered and quenched

for 6 h at 160 �C (corresponding to a T6 heat treatment). The aver-

age DAS of the material is 30 lm. Two geometrical parameters, the

equivalent size k (equal to the diameter of a sphere with the same

volume) and the sphericity, s, were used. These authors highlight

the fact that this treatment results in the existence of two distinct

pore populations. The first includes the vast majority of pores and

is characterised by an equivalent size of k < 50 lm and a small

‘‘size/sphericity’’ ratio. This pore distribution is approximately

equivalent for the three alloys. These are effectively micro-shrink-

age pores and are due to the change in volume that occurs during

the solidification process. The second pore distribution contains

defects of greater size and have high ‘‘size/sphericity’’ ratios. Their

volume fraction increases with the increasing percentage of hydro-

gen injected in the liquid metal. Theses defects are artificial pores

that appear during solidification and have a very tortuous form.

The fact remains that the largest pores and thus the pores which

are potentially the most dangerous in terms of fatigue have low

sphericity values (or are very distorted). As such, it does not seem

appropriate to assume that these defects have a spherical geome-

Fig. 2. (a) Modified cores used to shape the inlet and exhaust passages. (b) Cylinder head after modification.

Table 2

Comparison between the modified and unmodified cylinder heads.

Zone 1 Zone 2 Zone 3 Zone 4

Modified Un-modified Modified Un-modified Modified Un-modified Modified Un-modified

DAS ðlmÞ 78.7 80 79 71 89 73 90 77

Hardness ðHBÞ 104 105.8 104 104 104 104 104 107

Max pore size ð
ffiffiffiffiffiffiffiffiffiffiffi

lm2
p

Þ 118.3 100 141 114 245 127 92 134

Min pore size ð
ffiffiffiffiffiffiffiffiffiffiffi

lm2
p

Þ 55.6 48.9 51 61 55 63 48 63

Fig. 3. Microstructure of the cast aluminium alloy AlSi7Cu05Mg03-T7.



try. This is one of the reasons that the proposed modelling ap-

proach which will be presented in a future publication, treats mi-

cro-shrinkage casting defect as pre-existing cracks, with the aim

of determining the loading conditions for which these cracks are

able to overcome the microstructural barriers present in the

material.

3. Experimental conditions: fatigue tests

All of the fatigue tests presented below were conducted at

ambient temperature and pressure in laboratory air.

3.1. Plane bending fatigue tests

A series of uniaxial plane bending fatigue tests were under-

taken, with the aim of identifying the effect of the mean stress. Five

different load ratios have been investigated:

� R = ÿ1 (with zero mean stress, rm ¼ 0 MPa).

� R = 0.1.

� R = 0.62 (with the maximum stress slightly less than the yield

stress, rmax � rY ).

� R = 0.88 (with the mean stress equal to the yield stress,

rmKrY ).

� R = 0.92 (with the maximum stress slightly less than the ulti-

mate tensile strength, rmaxKruts).

For each load ratio, the fatigue strength at 2� 106 cycles was

determined via the staircase method using a minimum of 10 spec-

imens. For the R = ÿ1 load case a staircase with 20 specimens was

done in order to estimate the associated standard deviation. All

tests were done using a RUMUL Cracktronic electro-magnetic res-

onance fatigue testing machine. The test frequency was approxi-

mately 80 Hz. Tests were stopped when a drop in frequency of

0.1 Hz was detected. This corresponds to the presence of a fatigue

crack of approximately 3 mm long.

The geometry of the specimens tested in plane bending are

shown in Fig. 7a.

3.2. Torsional fatigue tests

Torsional fatigue tests, with zero mean stress (R = ÿ1), were

also done. The RUMUL Cracktronic machine was used with the

Fig. 4. Size distribution of micro-shrinkage pores present in the scanned material.

Fig. 5. (a) Sphericity distribution of micro-shrinkage pores and (b) the position of pores with respect to X and Y axes. The Z axis corresponds to the tensile axis of the

specimen. The pore positions are projected onto the XY plane.



same testing conditions as described above. The geometry of the

specimens tested in fully reversed torsion are shown in Fig. 7b.

3.3. Axisymmetrical bending fatigue tests: biaxial stress state

Concerning the biaxial fatigue tests, as the volume of material,

available to fabricate the specimens, was relatively small it was

not possible to make, for example, hollow specimens for tension/

internal pressure type tests. Therefore, an axisymmetrical bending

testing apparatus was developed to undertake these tests (see

Fig. 8). This test setup forms the object of a French national patent

submitted in May 2011 [16]. Disk shaped specimens with a reduc-

tion in thickness on the compressive side of the specimen are

tested (see Fig. 8c and d). The specimens have an outside diameter

of 92 mm and a thickness of 8 mm. The reduced thickness zone in

the centre of the specimen has a diameter of 10 mm and a thick-

ness of 5 mm. A radius of 30 mm is used to make the transitions

between this zone and the compression side of the disk. The tests

were conducted using a servo-hydraulic INSTRON 8802 fatigue

testing machine. An equibiaxial stress state is obtained at the cen-

tre of the specimen. In order to verify the local strain state and to

detect fatigue crack initiation, a uniaxial strain gauge was glued at

the centre of the compressive side of each specimen in the flat part

of the reduced thickness zone (see Fig. 8d). The minimum value of

strain per cycle was recorded. The appearance of a fatigue crack on

the tensile side of the specimen results in a change in the measured

strain field. This method of crack detection was found to be both

reliable and repeatable. For this material and experimental set-

up, a change in strain of 150 micro-strain corresponds to an

approximate crack length of 6 mm.

Note that only positive load ratios can be tested using this setup,

and that the equibiaxial stress state is proportional and in-phase.

The equibiaxial fatigue limit at 2� 106 cycles has been determined

for a load ratio of R = 0.1 using the staircase method (with 9 speci-

mens). The tests were conducted at a frequency of 20 Hz.

4. Mean stress and biaxial effects

4.1. The mean stress effect under uniaxial loading (plane bending and

tension)

Fig. 9 shows the fatigue results obtained by the tests discussed

above, presented as a Wöhler diagram, for the different load ratios

Fig. 6. (a) Pore sphericity as a function of volume and (b) the position of the largest pores (P20,000 lm3). The Z axis corresponds to the tensile axis of the specimen. The pore

positions are projected onto the XY plane.

Fig. 7. The geometry of the specimens tested in (a) plane bending and (b) torsion (dimensions in mm).



tested. Note that previously unpublished results obtained for the

same material, tested in uniaxial tension and for two different load

ratios, are also shown.

It is important to note that even for the high load ratios

(R = 0.88 and 0.92) where the maximum stress is close to the ulti-

mate tensile strength a fatigue limit at 2� 106 cycles exists.

Table 3 summarises the uniaxial results in terms of the fatigue

limits at 2� 106 cycles for 50% probability of failure. The scatter

decreases with increasing mean stress.

4.2. The torsional fatigue behaviour

The staircase method was used to determine the fully reversed

torsional fatigue limit of the cast aluminium alloy under investiga-

tion. A total of 19 specimens were tested. The average fatigue limit

and standard deviation at 2� 106 cycles are shown in Table 4.

As previously discussed the plane bending fatigue limit of the

AlSi7Cu05Mg03 cast alloy for R = ÿ1 is 83 MPa. Hence, the mean

fatigue limit of the material in torsion is greater than that obtained

Fig. 8. (a) Schematic representation of the test; (b) the testing apparatus; (c) view from the tensile side of the specimen; and (d) view from the compressive side of the

specimen.

Fig. 9. Wöhler diagram showing all the uniaxial data for the cast alloy AlSi7Cu05Mg03 (P.B. = plane bending tests and T. = tensile tests).



in plane bending. This is perhaps a surprising result. However, an

investigation of fatigue data taken from the literature, summarised

in Table 5, highlights the fact that metallic materials can be divided

into categories, depending on the ratio of their torsional fatigue

limit, tÿ1, to their uniaxial fatigue limit (sÿ1 in tension and fÿ1 in

plane bending for R = ÿ1).

The first category of materials can be characterised by a fatigue

limit ratio of approximately:

0:6 6
tÿ1

sÿ1

6 0:7 ð2Þ

Many steels belong to this category.

For the second category, the ratio is closer to 1 and this category

includes SG cast iron. Like the cast aluminium alloy studied here,

SG cast iron is a material for which the fatigue strength and crack

initiation mechanisms are controlled by the presence of pores.

For the AlSi7Cu05Mg03 aluminium alloy, the relationship be-

tween the torsional fatigue limit and the plane bending limit is

1.1. If all of the torsional and plane bending fatigue data are plotted

on the same Wöhler curve (see Fig. 10), the difference between

these two loading modes is not significant.

The specimens loaded in torsion and plane bending were ex-

tracted randomly from the mating surface of the modified cylinder

heads. When subjected to these different loading conditions the

volumes of highly stressed material in the specimens is different.

For the torsion case, the toroidal geometry of the specimen may

partly explain the results. The probability of encountering a defect

is much lower as the highly stressed volume is smaller. Taking into

account the stress gradients and the shape of the specimens, it is

estimated that the volume of material loaded between 90% and

100% of the maximum stress is 128 mm3 for the plane bending

specimens and 24 mm3 for the torsional specimens.

In conclusion, the higher value of the fatigue limit in torsion

compared to bending plane is surprising, however, it is probably

due to the test conditions (loading + specimen geometry). The fact

remains that the fatigue behaviour of this material can be charac-

terised as ‘‘brittle’’.

4.3. The effect of an equibiaxial stress state

Fig. 11 shows the comparison between the uniaxial and equibi-

axial fatigue test results for a load ratio of R = 0.1.

This diagram highlights the fact that the scatter for both loading

types is basically the same, and more surprisingly it shows that

there is very little difference between the average fatigue limits

at 2� 106 cycles. This implies that an equibiaxial loading condition

does not result in greater fatigue damage than the uniaxial case (at

least for this material).

5. Fatigue damage mechanisms

5.1. Uniaxial loads

Much research has been reported in the scientific literature con-

cerning the fatigue initiation mechanisms in cast aluminium al-

loys, which is generally related to uniaxial loads at low R-ratios

(i.e. R = ÿ1 or 0.1) [3–14]. The porosity, the secondary dendrite

arm spacing, the Al-matrix, Si-particles, and Fe-rich intermetallic

phases have been experimentally identified as the major factors

affecting the alloys resistance to fatigue. This work shows that

due to the different microstructural heterogeneities present in

the material, fatigue crack initiation sites can be varied. However,

when micro-shrinkage pores are present they play the fundamen-

tal role in controlling fatigue behaviour. Their size, position, distri-

bution, etc., have a large impact on the fatigue resistance of the

Table 3

Experimental values for the fatigue strength of the cast aluminium AlSi7Cu05Mg03 at

2� 106 cycles for different uniaxial loading conditions.

rmean (MPa) ramp (MPa) Load ratio Standard deviation (MPa)

Plane bending

0 83 ÿ1 18

77 63 0.1 –

196 45 0.62 –

251 15 0.88 –

284 12 0.92 –

Uniaxial tension

83 51 0.25 –

172 26 0.73 –

Table 4

Torsional fatigue strengths for cast aluminium AlSi7Cu05Mg03 at 2� 106 cycles.

Torsion

smean (MPa) samp (MPa) Load ratio Standard deviation (MPa)

0 92 ÿ1 14

Table 5

Torsional/uniaxial fatigue ratios for different materials taken from the literature.

Material Reference Tensile fatigue

limit sÿ1 (R = ÿ1)

Torsional fatigue

limit tÿ1 (R = ÿ1)

tÿ1

sÿ1

Ratio

XC48 [17] 423 287 0.67

25CrMo4 [18] 361 228 0.63

34Cr4 [19] 410 256 0.62

St35 [20] 206 123 0.59

ER7 Steel [21] 271 198 0.73

Material Reference Plane bending fat.

limit fÿ1 (R = ÿ1)

Torsional fatigue

limit tÿ1 (R = ÿ1)

tÿ1

fÿ1

Ratio

S65A [22] 584 371 0.64

30NCD16 [23] 690 428 0.62

Material Reference Tensile fatigue

limit sÿ1 (R = ÿ1)

Torsional fatigue

limit tÿ1 (R = ÿ1)

tÿ1

sÿ1

Ratio

Cast iron

EN-

GJS800-2

[24] 245 220 0.9

SG Cast iron [25] 225 217 0.96

Fig. 10. Wöhler diagram for AlSi7Cu05Mg03 showing torsional and plane bending

fatigue data.



material [3–9]. When specific treatments, such as HIP (Hot Iso-

static Pressing), are used to obtain a microstructure which is prac-

tically free of micro-shrinkage pores, crack initiation occurs at

other microstructural heterogeneities, such as oxide inclusions, sil-

icon eutectic particles or intermetallic phases [10–13] or takes

place in the ductile primary a-Al phase [14].

Fig. 11. Wöhler diagram for AlSi7Cu05Mg03 (R = 0.1, plane bending: uniaxial stress state and R = 0.1, axisymmetrical bending: equibiaxial stress state).

Fig. 12. Fatigue crack initiation from a micro-shrinkage pore in AlSi7Cu05Mg03, loaded uniaxially with an R-ratio of R = ÿ1. (a) Surface observation; (b) an SEM image of a

failure surface.

Fig. 13. (a) Fatigue crack initiation at Si-particles in the eutectic zones. (b) Initiation from a micro-shrinkage pore for which the crack propagation has been stopped by the

presence of microstructural barriers (intermetallic phases) in AlSi7Cu05Mg03 for uniaxial loads with an R-ratio of R = ÿ1.



In this work, numerous fatigue damage observations have been

undertaken using specimens made from material extracted from

cylinder heads cast by PSA. Both surface observations (using an

optical microscope during cycling) and observations of the fatigue

failure surfaces (using a Scanning Electron Microscope, SEM) have

been done. These observations show that for plane bending and

uniaxial tensile loads with an R-ratio of R = ÿ1, initiation of the fa-

tigue crack, resulting in final failure of the specimens, almost al-

ways occurs at a micro-shrinkage pore (see Fig. 12).

However, it is very important to note, that in the same speci-

mens, micro-cracks are observed to initiate at Silicon particles in

the eutectic zones or at intermetallic phases (see Fig. 13a). For

the material and loading conditions in question, this type of dam-

age is not generally responsible for the final failure of the speci-

men, but it does exist.

It is therefore concluded that fatigue damage in this material is

controlled by two different fatigue crack initiation mechanisms:

One mechanism is associated with relatively large micro-shrinkage

pores and the other is controlled by much smaller microstructural

heterogeneities or the material matrix.

It is proposed that the first mechanism is basically a problem of

crack propagation, or more precisely, of crack arrest or non-propa-

gation. That is, fatigue cracks initiate very quickly at micro-shrink-

age pores and the fatigue strength is then controlled by the ability

of the microstructure to prevent the propagation of these cracks

(see Fig. 13b). In a future publication, a fracture mechanics ap-

proach is proposed to describe this damage mechanism.

For the second mechanism, in which fatigue damage occurs at a

smaller scale, it is assumed that crack initiation is controlled by

localised plasticity, related to the micro-structural heterogeneities

in question, or simply the material matrix. A multi-scale fatigue

criterion, based on the concept of elastic shakedown, will be used

to describe this fatigue damage mechanism in a future publication.

5.2. Torsion loads

In order to characterise the initiation and propagation mecha-

nisms associated with torsional loads, cyclic tests were interrupted

after a certain number of cycles and the specimen is examined for

fatigue damage. The applied shear stress amplitude at R = ÿ1 was

equal to sxy ¼ 80 MPa and the test frequency was 50 Hz.

After 150,000 cycles, initial observations showed cracks that

had initiated at Si-particles of the eutectic zones. Fig. 14 shows

an example of a crack that has initiated in the eutectic zone which

is approximately 200 lm long. This crack has clearly initiated on

the plane of maximum shear stress. Its propagation is clearly influ-

enced by the microstructure as its preferential propagation path is

in the eutectic zone. This crack also branches at 90° onto another

plane of maximum shear stress, while remaining in the eutectic

zone.

Observations during the second interruption at 250,000 cycles

showed that this crack had not propagated any further. However,

several other crack initiation sites were detected where surface

pores, of size less than 100 lm, gave rise to fatigue cracks.

At 400,000 cycles, the first crack that was detected was still

non-propagating and remained so until rupture of the specimen.

The cracks that appeared at the surface pores also became non-

propagating.

The final failure of the specimen occurred at 1:2� 106 cycles

due to a crack that was not observed during the previous interrup-

tions. The initiation site of this crack was a surface pore that was

visible with the naked eye. The direction of crack propagation

was perpendicular to the axis of the specimen, in a plane of max-

imum shear stress (mode III).

5.3. Equibiaxial loads

The initiation of fatigue cracks at microstructural heterogene-

ities and their subsequent propagation due to an equibiaxial stress

state has been investigated via surface observations during inter-

rupted tests and on failed specimens.

Surface observations on non-failed specimens subjected to

2� 106 cycles with a load ratio of R = 0.1 have shown that the same

two fatigue initiation mechanisms, observed in the uniaxial case,

are present. Certain cracks grow from micro-shrinkage pores posi-

tioned on the surface of the specimens (Fig. 15) other fatigue cracks

initiate at silicon particles (or intermetallic phases) in the eutectic

zone of the microstructure (Fig. 16). However, unlike the uniaxial

loading case, no preferential crack growth direction can be dis-

cerned. Several cracks can grow in different directions from the

same pore (Fig. 15c) and cracks can be observed to branch at all

crack sizes (Fig. 17).

Theses observations have shown that crack initiation princi-

pally occurs at micro-shrinkage pores however sometimes cracks

initiate at silicon particles or intermetallic phases. An investigation

of the evolution of one of these cracks, loaded at the same R-ratio

of 0.1, has been done. The results are summarised in Fig. 17. It can

be seen that after 2,002,000 cycles a crack has initiated at a micro-

shrinkage pore, with a size of less than 50 lm and that the crack

has propagated through an a phase dendrite to reach another pore,

so that the crack length is approximately 300 lm. The propagation

is approximately along a straight line during 70,000 cycles. After

2,287,000 cycles the crack is seen to branch twice. Once close to

the top of the crack and once close to the bottom. The length of

the crack is slightly greater than 1 mm. At 2,487,000 cycles the

crack size is greater than 3 mm.

The observed crack initiation sites are almost exclusively asso-

ciated with micro-shrinkage pores. These pores are of variable size

but they are relatively small (i.e. less than 100 lm). The failure sur-

faces around these pores are similar to these observed in uniaxial

case for this type of cast material (Fig. 12b).

6. Analysis

The microstructural heterogeneities present in this cast alumin-

ium alloy result in different crack initiation mechanisms and fati-

gue behaviour for different applied loading conditions.

For torsional loads, it is observed that cracks propagate in mode

III and do not tend to branch at any crack length. When the tor-

sional fatigue limit (in terms of shear stress) is approximately
Fig. 14. Crack initiation, due to torsional loads, in the eutectic zone (150,000 cycles,

samp ¼ 80 MPa, R = ÿ1).



equal to the uniaxial fatigue limit (in terms of principal stress) it

could be expected that the fatigue behaviour should be dominated

by the maximum principal stress. However, the crack path ob-

served in torsion is directed along the direction of maximum shear

stress (see Fig. 14). This appear to be a contradiction, however sim-

ilar observations have been made for other materials in which

macroscopic shear cracks can be formed in high cycle fatigue. This

has been shown by Pinna and Doquet for M250 maraging steel [26]

and by Socie for Inconel 718 [27]. Hence, an independent mode II

or III fatigue crack development is possible, provided the range of

the stress intensity factor lies above a given threshold. A tentative

explanation for the crack paths observed in the cast aluminum al-

loy loaded in torsion can be based on the idea of a competition be-

tween mode I and mode II crack kinetics, as discussed by Pinna and

Doquet [26]. For the load levels applied in the present work, it can

be assumed that the mode I kinetics are slower than in mode II for

the complete K range. This can explain why cracks both initiate and

propagate in a shear mode up until failure under these conditions

and why unlike most metallic materials there is no branching from

the planes of maximum shear stress to the plane of the maximum

normal stress.

A common point between the maraging steel studied by Pinna

and Doquet [26] and the cast aluminium alloy studied here is that

the macroscopic fatigue behaviour of both materials can be classi-

fied as ‘‘brittle’’ (i.e. tÿ1=sÿ1 � 1). For other materials not demon-

strating this brittle fatigue behaviour, crack initiation under

torsional loads occurs in the planes of maximum shear stress (i.e.

0� and 90� to the specimen axis) and then branch to the planes

of maximum principal stress, orientated at �45� to the specimen

axis (see Fig. 18). This has been observed for C35 steel by Flacelière

and Morel [28] and for ER7 steel by Benabes [21].

From the tests conducted on the disk shaped specimen, leading

to an equibiaxial stress state, it can be concluded that the cast alu-

minium material is not sensitive to the biaxiality in the high cycle

fatigue regime. The biaxial results are effectively equivalent to

those obtained in plane bending. This tendency was also observed

by Poncelet et al. [29] concerning the fatigue behaviour of austen-

itic stainless steel 304L. Tests undertaken by these authors using a

triaxial machine resulted in the conclusion that equibiaxial tensile

loads are not detrimental compared with uniaxial fatigue. The re-

sults for the equibiaxial loading condition at R = ÿ1 are very close

to those obtained under imposed stress, uniaxial loading condi-

Fig. 15. Crack initiation from pores loaded in equibiaxial tension with a load ratio of R = 0.1 in AlSi7Cu05Mg03.

Fig. 16. Crack initiation at silicon particles or intermetallics in the eutectic zone under equibiaxial tensile loads with a load ratio of R = 0.1 in AlSi7Cu05Mg03.



tions. The authors highlight the fact that this result should be

viewed with caution given the small number of tests and the scat-

ter encountered. However, the tests conduced in the present work

permit the confirmation of this tendency. Another conclusion

made by these authors is the penalizing effect of the mean stress,

which they highlight by comparing either the equibiaxial tests at

R = 0.1 and R = ÿ1, or uniaxial tests with different mean stress

(Fmean = 38, 19 and 0 kN).

As a result of this work it is clear that the effect of an equibiaxial

stress state is not harmful, in terms of high cycle fatigue. This is

contrary to many preconceived ideas and is also contrary to the

predictions of most multiaxial fatigue criteria.

The many observations conducted under this loading mode

have highlighted the fact that the crack initiation and propagation

mechanisms are similar to those observed under uniaxial loads.

Crack initiation in the eutectic zones and crack growth for micro-

shrinkage pores are observed, however it appears that the shrink-

age pores are more often the origin of the principal crack or the

crack leading to final failure. The only real difference between

the uniaxial and biaxial loading modes is the orientation of the mi-

cro and macro-cracks. For plane bending, the cracks are principally

orientated perpendicularly to the loading direction, whereas under

equibiaxial loads no privileged crack growth direction is observed

and cracks often branch.

Among the many multiaxial fatigue criteria found in the litera-

ture, certain, like the Dang Van criterion [30–32], which will be dis-

cussed in the following, are based on the concept of elastic

shakedown. More exactly, they assume that the fatigue limit oc-

curs when the component or structure tends to an elastic shake-

down state, at all scales. In order to verify this hypothesis (at

least at the macroscopic scale) for cyclic loads at high mean stress,

tests were undertaken by Bellett and Morel [33] using the same

cast aluminium studied here at R � 0:8. A typical result is pre-

sented in Fig. 19 which shows two stress–strain curves measured

during the test. Fig. 19a shows the stress–strain behaviour of the

specimen after 2� 106 cycles for a load level slightly below the fa-

tigue limit. It can be seen that a state of elastic shakedown is

achieved. Fig. 19b shows a specimen loaded slightly above the fa-

tigue limit. A cyclic ratcheting effect can be seen to lead to the final

failure of the specimen at 1:15� 106 cycles. These observations

were repeatable and seem to validate the hypothesis of elastic

shakedown, at the macroscopic scale, when the material is loaded

with a high mean stress.

As the condition of elastic shakedown has been experimentally

validated, in the following all the fatigue data obtained for the cast

aluminium material is plotted in the Dang Van diagram in order to

test the capacity of the criterion to predict the trends observed for

the different loading modes (see Fig. 20). The Dang Van criterion is

Fig. 17. Evolution of the propagation of a fatigue crack that initiated at a surface pore under an equibiaxial loading condition at R = 0.1.



based on a two scale approach [30–32] and the two mechanical

parameters used are the mesoscopic resolved shear stress, ob-

tained in the elastic shakedown state s and the hydrostatic stress

rH . The criterion is expressed as a linear combination of the two

parameters:

sþ arH 6 b ð3Þ

where s and rH are both functions of time. In the criterion plane,

the loading path changes with the mean stress level and the stress

state. All of the loading conditions, previously discussed, lead to

proportional load paths. The uniaxial (i.e. bending and tension),

the torsional and the equibiaxial load paths are shown in Fig. 20.

The uniaxial loads with different mean stress levels have the same

load path shape but are horizontally translated to the right as the

mean stress level increases. The torsional path is vertical and cen-

tred at rH ¼ 0 while the equibiaxial path has a lower path slope

due the higher hydrostatic stress inherent to this loading condition.

The most critical points are the ones close to the Dang Van criterion

threshold line defined by the slope a and the y-axis intercept of

s ¼ b. The two coefficients a and b are identified by means of two

fatigue limits. In most cases, the torsional and uniaxial (tensile or

bending) fatigue limits are used.

If the criterion is capable of perfectly predicting the different

loading modes, the most critical points of the different loading

paths, should fall on the same line (with a negative gradient). It is

obvious from Fig. 20 that this is not the case.

By considering the loading paths for fully reversed torsion and

plane bending with different load ratios, it can be concluded that

the mean stress effect under uniaxial loading cannot be modelled,

for this cast aluminium material and this identification procedure,

by the Dang Van criterion.

Another way to identify the criterion coefficients would be to

use only the uniaxial results with different R-ratios. The deduced

slope (i.e. coefficient a) would be much lower but the mean

stress effect for uniaxial loads would be correctly predicted since

the critical points of the uniaxial paths fall roughly on the same line.

However, if this identification procedure is used, the predicted tor-

sional fatigue limit is too low compared to the experimental one.

Concerning the equibiaxial tensile loading condition, it can also

be seen that the effect of the biaxiality does not result in a reduc-

tion of the fatigue strength. Indeed, the use of the hydrostatic

stress seems to result in an overestimation of the effect of the

biaxiality.

The totality of the experimental results obtained for the

AlSi7Cu05Mg03 alloy, which has a brittle fatigue behaviour, high-

lights without ambiguity that a criterion that uses the maximum

hydrostatic stress as a mechanical parameter will not be capable

of taking into account the different loading modes investigated

here.

Fig. 18. Orientation of macro-cracks on the surface of a specimen loaded in torsion (a) for C35 Steel [28] and b) for ER7 Steel [21].

Fig. 19. Stress–strain curves measured during cyclic tests with high mean stress at R � 0:8. (a) A specimen that has not failed at 2� 106 cycles. The specimen has achieved a

state of elastic shakedown. (b) A specimen loaded at slightly higher stress amplitude that failed at 1:15� 106 cycles showing the phenomena of cyclic ratcheting [33].



7. Conclusion

The principal objective of this work was to better understand

the HCF behaviour of the aluminium alloy AlSiMg05Cu03-T7 under

various uniaxial and multiaxial loading modes: plane bending with

different load ratios, fully reversed torsion and equibiaxial bending

with a load ratio of R = 0. A specific test set-up has been designed to

create an equibiaxial stress state using disk shaped specimens.

All tests were conducted on specimens extracted directly from

cylinder heads, manufactured by PSA using the real industrial cast-

ing process. However, the geometry of the components was

slightly modified to allow the extraction of fatigue specimens.

It should be noted that in this work the fatigue strength has

been investigated at 2 � 106 cycles and that a diesel engine cylin-

der head would be expected to have a fatigue life in the giga-cycle

domain. This could have important consequences in terms of the

fatigue damage mechanisms, especially as it is generally accepted

that the fatigue strength of aluminium alloys continues to decrease

in the this domain. However, given the limitation of the available

testing equipment (especially those in which it is possible to apply

multiaxial loads) and in agreement with PSA (Peugeot Citron) the

scope of this work was limited to 2 million cycles.

A X-ray tomography analysis of the material extracted from the

cylinder heads was used to characterise the size, the form and the

spatial distribution of the casting defects (i.e. shrinkage pores)

present in the material. This analysis indicates that it is not reason-

able to use a hemisphere to model the pore geometry, as the larg-

est (and probably the most dangerous) pores have a very distorted

shape.

Based on the vast experimental campaign undertaken by the

authors, it has been shown that the experimental scatter drops sig-

nificantly as the mean stress increases and that two coexisting

damage mechanisms occur in this material.

Under uniaxial and biaxial tensile loading modes, initiation of

the fatigue crack, resulting in final failure of the specimens, almost

always occur at a micro-shrinkage pore. It is very important to note

however, that in the same specimens, micro-cracks are observed to

initiate at silicon particles in the eutectic zones or at intermetallic

phases. The only real difference between the uniaxial and the biax-

ial loading modes is the orientation of the micro and macro-cracks.

For plane bending, the cracks are mainly orientated perpendicular

to the loading direction, whereas under equibiaxial loads no priv-

ileged crack growth direction is observed and cracks often branch.

It is also observed that the fatigue limits for these two loading

modes are very close. Implying that there is no detrimental effect

of the biaxiality on the fatigue strength.

Under fully reversed torsional loads, the fatigue limit is very

close to the plane bending fatigue limit. This is characteristic of a

quasi-brittle behaviour. Moreover, after initiation, torsion cracks

tend to propagate on a plane of maximum shear stress (mode III)

until failure of the specimens.

Finally, it is shown that the Dang Van criterion is not able to

simultaneously predict the multiaxial effect (torsion and equibiax-

ial tension) and the mean stress effect for this cast aluminium

alloy.

In a future publication a probabilistic high cycle fatigue model,

adapted to this cast aluminium alloys, will be presented. This mod-

el uses a weakest link concept to model the competition between

the two experimentally observed mechanisms. The approach leads

naturally to a probabilistic Kitagawa type diagram, which in this

case explains the relationship between the fatigue behaviour of

the material and the different casting processes (i.e. gravity casting

and HIP). It will be shown that the proposed model is capable of

reproducing the experimentally observed tendencies, reported in

this article, with respect to both the mean stress effect and the

loading mode (torsion, uniaxial tension and equibiaxial tension).
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