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THE ALMOST BOREL STRUCTURE OF SURFACE
DIFFEOMORPHISMS, MARKOV SHIFTS AND THEIR

FACTORS

MIKE BOYLE AND JÉRÔME BUZZI

Dedicated to Roy Adler, in appreciation

Abstract. Extending work of Hochman, we study the almost-
Borel structure, i.e., the nonatomic invariant probability measures,
of symbolic systems and surface diffeomorphisms.

We first classify Markov shifts and characterize them as strictly
universal with respect to a natural family of classes of Borel sys-
tems. We then study their continuous factors showing that a low
entropy part is almost-Borel isomorphic to a Markov shift but that
the remaining part is much more diverse, even for finite-to-one fac-
tors. However, we exhibit a new condition which we call ‘Bowen
type’ which gives complete control of those factors.

This last result applies to and was motivated by the symbolic
covers of Sarig. We find complete numeric invariants for Borel
isomorphism of C1+ surface diffeomorphisms modulo zero entropy
measures; for those admitting a totally ergodic measure of positive
(not necessarily maximal) entropy, we get a classification up to
almost-Borel isomorphism.
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1. Introduction

Much of the richness of dynamical systems theory comes from under-
standing systems with respect to different structures (smooth, measur-
able, etc.). In this paper we are interested in the almost-Borel structure
of surface diffeomorphisms. More precisely we study them as automor-
phisms of standard Borel spaces up to sets negligible for all invariant,
nonatomic Borel probability measures, following Hochman [23] (see
also [44]).
We analyze Markov shifts (generalizing [23] to the non-irreducible,

non-mixing case) and especially their factors, both under continuous
and what we call Bowen type factor maps. We finally show that this
applies to Sarig’s symbolic dynamics [41] of surface diffeomorphisms.

1.1. Surface diffeomorphisms. We consider surface diffeomorphisms
which are C1+ smooth, i.e., with Hölder continuous derivative. (We
refer to Sec. 2 for definitions and background.) Our main result,
Thm. 8.2, implies:

Theorem 1.1. Any C1+-diffeomorphism of a compact surface is Borel
isomorphic to a countable state Markov shift, up to a subset negligible
with respect to all ergodic measures1 with positive entropy.

We will deduce a classification involving the periods of ergodic mea-
sure-preserving systems (S, µ) defined as follows. Recall that the ra-
tional spectrum is:
(1.1)
σrat(S, µ) := {e

2iπr : r ∈ Q, ∃f ∈ L2(µ), f ◦ S = e2iπrf and f 6= 0}.

A positive integer p is a period if e2iπ/p ∈ σrat(S, µ). In Sec. 8.4, we will
prove the following, using a classification of Markov shifts (Thm. 1.5
below):

Theorem 1.2. Two C1+-diffeomorphisms of compact surfaces are Borel
isomorphic, up to a subset negligible with respect to all ergodic measures
with positive entropy, if and only if the following data are equal for both:
for each p ≥ 1,

(1) the supremum of the positive entropies of ergodic measures which
have a maximum period that is equal to p;

(2) if this supremum is positive, the cardinality of the set of non-
atomic ergodic measures that achieves the previous supremum.

1By measure we will (outside Appendix A) always mean invariant Borel proba-
bility measure.
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1.2. Almost-Borel classification and Markov shifts. We need the
generalization to the non-mixing case of the characterization and clas-
sification of Markov shifts obtained by Hochman [23].
First some definitions. An automorphism of a standard Borel space

is a Borel system (see Sec. 2.3). We denote by P′
erg(S) its set of ergodic,

nonatomic measures.

Definition 1.2. Two Borel systems (X,S) and (Y, T ) are almost-Borel
isomorphic if there exists a Borel isomorphism ψ : X ′ → Y ′ with
invariant Borel subsets X ′ ⊂ X and Y ′ ⊂ Y such that:

• ψ ◦ S = T ◦ ψ on X ′;
• X\X ′ and Y \Y ′ are almost null sets : µ(X\X ′) = ν(Y \Y ′) = 0
for all µ ∈ P′

erg(S) and ν ∈ P′
erg(T ).

Thus two systems are almost-Borel isomorphic if, in the terminology
of [23], their free parts are Borel isomorphic on full sets. We refer to the
discussion in [46, p. 394] for a comparison with Borel and measurable
isomorphisms.
Let T be a Markov shift (a “subshift of finite type over a countable

alphabet”, see Sec. 2.5 for this and related definitions). Up to an almost
null set, it is a disjoint, at most countable, union of irreducible Markov
shifts Ti, i ∈ I, not reduced to periodic orbits. Throughout this paper,
all Markov shifts satisfy:

(1.3) all irreducible components have finite entropy.

For each Ti, let pi be its period, hi > 0 be its entropy and set mi = 1
or 0 according to whether Ti has or not a nonatomic measure of entropy
hi. Define two sequences over N := {1, 2, . . . }:

(1.4)
ūT (p) := sup

(
{hi : i ∈ I, pi|p} ∪ {0}

)
∈ [0,∞] and

η̄T (p) :=
∑
{mi : i ∈ I, (hi, pi) = (ūT (p), p)} ∈ {0, 1, . . . ,∞}.

We can now state the extension of Hochman’s classification proved
in Sec. 4.3:

Theorem 1.5. Two Markov shifts S, T are almost-Borel isomorphic if
and only if (ūT , η̄T ) = (ūS, η̄S). Moreover, sequences u, η coincide with
sequences ūT , η̄T of some Markov shift T if and only if

(1.6) ∀p ≥ 1 u(p) = sup
q|p

u(q) and u(p) =∞ =⇒ η(p) = 0.

In Sec. 4.2, we find a “maximal Markov subsystem” inside an arbi-
trary Borel system:
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Theorem 1.7. Any Borel system (X,S) contains an invariant Borel
subset XU such that:

(1) XU is almost-Borel isomorphic to a Markov shift T with η̄T ≡ 0;
(2) if some subsystem Y ⊂ X satisfies the previous property, then

Y \XU is almost null.

These two properties define XU up to an almost null set.

The condition “η̄T ≡ 0” cannot be removed: consider the product of
a positive entropy shift of finite type with the identity map on the unit
interval. This condition and the above result is very natural from the
point of view of universality discussed in Sec. 1.4.

This leads to a characterization of Markov shifts up to almost Borel
isomorphism. We say that a measure-preserving system (S, µ) is p-
Bernoulli (p ∈ N) if it is isomorphic to the product of a Bernoulli
system and a circular permutation on p points.2 We call it periodic-
Bernoulli if we don’t want to specify p. At the end of Sec. 4.3, we
prove:

Corollary 1.8. A Borel system (X,S) is almost-Borel isomorphic to
a Markov shift if and only if there is a sequence u : N → [0,∞] with
u(p) = maxq|p u(q) such that:

(1) for each p ∈ N and t < u(p), there is an almost-Borel embedding
of an irreducible Markov shift of period p and entropy > t into
X;

(2) the set M of ergodic measures µ ∈ P′
erg(S) such that for every

period p of µ, h(S, µ) ≥ u(p), is at most countable;
(3) each µ ∈M is p-Bernoulli for some p ∈ N and h(S, µ) = u(p).

The mixing case was analyzed by Hochman (see [23, Thm. 1.7] and
the discussion that precedes it).

Remark 1.9. This characterization provides an alternate approach to
results like Theorem 1.1 by splitting the dynamics between: a “top en-
tropy part” which must be shown to carry only very specific measures;
and the rest which carries all possible measures “below some entropy
thresholds”. If S is a C1+ diffeomorphism of a compact manifold and S
has no zero Lyapunov exponents, then this second part can be analyzed
using Katok’s horseshoes (see [11]).

2Note, p is the maximum period of (S, µ) in the terminology of Theorem 1.2.
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1.3. Factors of Markov shifts. Thus we are led to find conditions
guaranteeing that a dynamical system has shifts of finite type as large
(in entropy) subsystems. There is an interest of some vintage in this
problem (e.g. [24, 32, 36]). In Sec. 5, we prove

Theorem 1.10. Let (X,S) be an irreducible Markov shift with period p
and let π : (X,S)→ (Y, T ) be a continuous, not necessarily surjective,
factor map into a selfhomeomorphism of a Polish space. Let

h∗(π) := sup{h(T, π∗µ) : µ ∈ Perg(T )}.

For any h < h∗(π), there is an irreducible shift of finite type X ′ ⊂ X
such that htop(X

′) > h, X ′ has period p, and the restriction of π to X ′

is injective.

Without additional assumptions, π(X) can carry measures with en-
tropy > h∗(π) and unrelated to those of X (see Prop. 7.1). Even when
X is compact and h∗(π) = htop(π(X)) = htop(X), the m.m.e.’s, that
is, the ergodic measures maximizing entropy for π(X), do not have to
be images of m.m.e.’s of X . In fact, we show that they can include
uncountably many copies of measures which are not periodic-Bernoulli
(Cor. 7.6).
Next we assume π to be finite-to-one, continuous and with compact

image. This forces h∗(π) = htop(π(X)) = htop(X) and the m.m.e.’s of
π(X) to be finitely many periodic-Bernoulli measures. However, the
periodic-maximal measures, i.e., the measures maximizing the entropy
among measures with a given period can still be more or less arbitrary
(see Cor. 7.10), in contrast to those of Markov shifts. To control this,
we use the following property.

Definition 1.11. Let π : (X,S)→ (Y, T ) be a Borel factor map from
a Markov shift into a Borel system, and B an invariant Borel subset of
X . Then π is Bowen type on B (or relative to B) if there is a relation
∼ on the alphabet of X such that the following hold:

(1) π(x) = π(w) ⇐⇒ x ∼ w, for all x, w in B , and
(2) x ∼ w =⇒ π(x) = π(w), for all x, w in X ,

where x ∼ w means xn ∼ wn for all n. If B = X , one simply says that
π is Bowen type.

This definition is adapted from a property pointed out by Bowen [8,
p.13] for surjective continuous factor maps from shifts of finite type
to systems associated with Markov partitions. More precisely, these
factors are David Fried’s finitely presented dynamical systems [18, 19];
these are the expansive systems which are continuous factors of shifts
of finite type.
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For a Markov shift Z, the Sarig regular set Z±ret of Z is the subset
of sequences in which some symbol appears infinitely often in the past
and some symbol (not necessarily the same) appears infinitely often in
the future. In Sec. 6 we prove:

Theorem 1.12. Suppose (X,S) is a Markov shift satisfying condition
(1.3) and π : (X,S)→ (Y, T ) is a Borel factor map such that, for each
irreducible component Z of X,

(1) π is Bowen type on the Sarig regular set Z±ret, and
(2) the restriction π|Z±ret is finite-to-one.

Then, letting X̄ be the union of the Sarig regular sets Z±ret of the
irreducible components Z of X,

• π(X̄) ⊂ Y is almost-Borel isomorphic to a Markov shift;
• the induced map P′

erg(X̄)→ P′
erg(πX̄) is surjective.

Condition (1) above is really about the restrictions π|Z.

In Sec. 8 we shall apply this theorem to Sarig’s symbolic dynamics
and deduce Thm. 8.2 from which Theorems 1.1 and 1.2 follow.

1.4. The universality heuristic. A Borel system X is universal with
respect to a class C of Borel systems, if any system in C can be almost-
Borel embedded into X . If, additionally, X belongs to C, it is said
to be strictly universal. Strictly universal systems, when they exist,
are unique up to almost-Borel isomorphism. In this case, universal
systems can be characterized as unions of an essentially unique “max-
imal”strictly universal system and a complementary part (see Sec. 3).
Hochman showed that many systems of entropy h are h-universal,

i.e., universal with respect to the class of Borel systems whose measures
have entropy < h (see Thm. 4.1 and Prop. 4.2). The complementary
system mentioned above then supports exactly the ergodic measures
of entropy h, often a unique measure of maximum entropy which is
Bernoulli.
This provides a general heuristic: in a suitable class of systems, for

a suitable notion of “universal”, analyze each system as the union of a
(large) standard universal part and a complementary part (hopefully
managable). This approach gives our almost Borel results on C1+ sur-
face diffeomorphisms and Markov shifts, with Hochman’s universality
refined to address periods. The details of this universality approach
are spelled out in Sections 3 and 4.
The existence of a large universal part can be rather robust. For

example, any continuous factor Y of a mixing shift of finite type is
h(Y )-universal (by Thm. 5.1). A related result holds for continuous
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factors of Markov shifts (Thm. 1.10). In contrast, as indicated earlier,
the possibilities for the complementary system in Y can vary wildly
without stronger assumptions (see Sec. 7).

Acknowledgments. We thank David Fried, Jean-Paul Thouvenot
and Benjamin Weiss for background and references for Bowen’s work,
the weak Pinsker property and the theory of Bernoulli shifts. We also
thank B. Weiss for referring us to the paper [27] of Kieffer and Rahe,
on which we rely in Appendix A. M. Boyle gratefully acknowledges
the support during this work of the Danish National Research Foun-
dation through the Centre for Symmetry and Deformation (DNRF92)
and the hospitality and support of the Département de Mathématiques
at Orsay (Université Paris-Sud).
This paper is dedicated to Roy Adler, coinventor of topological en-

tropy [1], with gratitude for his kindness and in appreciation of his
mathematical influence. This paper considers entropy and period for
the almost Borel classification of Markov shifts; the seminal result
of this type was the Adler-Marcus Theorem [3], which classified ir-
reducible shifts of finite type up to almost topological conjugacy by
topological entropy and period.

2. Definitions and background

We fix notations and recall some facts that we will use without fur-
ther explanation.

2.1. Dynamical Systems. In this paper, a dynamical system (or sys-
tem) S is an automorphism of a space X . We shall consider:

- topological dynamical systems (or t.d.s.) given by selfhomeo-
morphisms of (not necessarily compact) metrizable spaces;

- measure-preserving systems given by automorphisms of prob-
ability spaces. We shall often abbreviate ergodic measure-pre-
serving systems, to ergodic systems;

- Borel systems given by Borel automorphisms of standard Borel
spaces (see below).

Recall that a factor map, resp. an embedding, is a homomorphism, resp.
a monomorphism, of the spaces that intertwines the automorphisms.
Unless a factor map is said to be into, it is assumed to be surjective.
A subsystem is a system of the same category given by a restriction to
an invariant subspace.
We often use the symbol for the space or for the automorphism to

refer to the system and its domain and suppress the structure (topo-
logical, Borel,. . . ) from the notation, with interpretation by context.
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2.2. Borel spaces. A standard Borel space [26, Sec. 12] is a set X
together with a σ-algebra X generated by a Polish topology, i.e., a
topology defined by some distance which turns X into a separable,
complete, metric space. The elements of X are called the Borel sets of
X .
f : X → Y is a Borel map if X and Y are standard Borel spaces and

the preimage of any Borel subset is Borel. f is a Borel isomorphism
if it is a bijection such that f and f−1 are Borel. Here, no sets are
considered negligible. According to Kuratowski’s theorem (see [26,
(15.6)]), all uncountable standard Borel spaces are isomorphic.
Recall that if f : X → Y is a Borel map and A is a Borel subset

of X such that f |A is injective, then f(A) is Borel and f : A → f(A)
is a Borel isomorphism, according to the Lusin-Souslin Theorem [26,
(15.2)].
We denote by Prob(X) the set of not necessarily invariant probability

measures defined over the Borel sets. We endow it with the σ-algebra
generated by the maps µ 7→ µ(E), E ∈ X . This makes Prob(X) into
a standard Borel space (see [26, (17.24)] and [26, beginning of section
17.E]).

2.3. Almost-Borel systems. Let (X,S) be a Borel system. Then
Prob(S) ⊂ Prob(X) is the set of S-invariant Borel probability measures
ofX (henceforth the measures of S) and Perg(S) is the subset of ergodic
invariant measures. Prob(S) and Perg(S) are Borel subsets of Prob(X),
hence they also are standard Borel spaces.
An almost null set for (X,S) is a Borel set of measure zero for every

µ in P′
erg(S), the set of atomless, ergodic measures of S. By an almost-

Borel system, we mean a Borel system up to an almost null set. An
almost-Borel map means a homomorphism of Borel systems defined
on the complement of an almost null set. Almost-Borel embeddings,
factors, and isomorphisms are defined in the obvious way.
We shall need the following Borel maps (see, e.g., [11]), defined on

the complement of an almost null set: (1) a mapM : X → Perg(S) such
that, for any Borel set B ⊂ Perg(S) and any µ ∈ Perg(S): µ(M

−1(B)) =
1 if and only if µ ∈ B;3 (2) the map h : Prob(S) → [0,∞] associating
to each measure its Kolmogorov-Sinai entropy (see below).
The following almost-Borel variant of the well-known measurable

Schröder-Bernstein theorem [26, (15.7)] is fundamental for us :

3For compact t.d.s., we can take M(x) = limn→∞

1

n

∑n−1

k=0
δSkx, defined on the

Borel set of points for which this weak star limit exists.
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Proposition 2.1 (Hochman [23]). Two Borel systems are almost-Borel
isomorphic if and only if there are almost-Borel embeddings of one into
the other.

2.4. Entropy. The topological entropy of a compact t.d.s. (Y, T ) is
denoted by htop(T ). The Kolmogorov-Sinai entropy of a measure-
preserving system (S, µ) is denoted by h(S, µ). We define the Borel
entropy of a Borel system (X,S) to be h(S) := sup{h(S, µ) : µ ∈
Prob(S)}. We shall often call any of these the entropy of T , (S, µ) or
S.
The variational principle for entropy states that if (Y, T ) is a com-

pact t.d.s., its Borel entropy h(T ) coincides with its topological entropy
htop(T ). An ergodic measure of maximum entropy (or m.m.e.) for
(X,S) is a measure µ ∈ Perg(S) such that h(S, µ) = h(S). It does not
need to exist or be unique, even for compact t.d.s.
We will use the Bowen-Dinaburg formulas to compute htop(T ) in

terms of dynamical (ǫ, n)-balls B(p, ǫ, n) = {y ∈ Y : 0 ≤ k < n =⇒
dist(T kp, T ky) < ǫ} . Recall the following for a compact subset C of
Y and ǫ > 0. The integer rspan(ǫ, n, C, T ) is the minimal cardinality of
(ǫ, n)-spanning sets for C and rsep(ǫ, n, C, T ) is the maximal cardinality
of an (ǫ, n)-separated subset of C. We have

(2.2)

hsep(C, T, ǫ) := lim sup
n→∞

1

n
log rsep(ǫ, n, C, T ) ,

hspan(C, T, ǫ) := lim sup
n→∞

1

n
log rspan(ǫ, n, C, T ) , and

htop(Y ) = lim
ǫ→0

hsep(Y, T, ǫ) = lim
ǫ→0

hspan(Y, T, ǫ) .

We refer to [25, 37, 45] for more background.

2.5. Markov shifts. A countable state Markov shift (or just Markov
shift) is (X,S) where X ⊂ V Z for some countable (maybe finite) set
V and for some E ⊂ V 2: X = {x ∈ V Z : ∀n ∈ Z (xn, xn+1) ∈ E}
and S : X → X defined by S((xn)n∈Z) = (xn+1)n∈Z. The directed
graph G = (V,E) is a vertex presentation of (X,S). The distance
d(x, y) = exp (− inf{|k| : xk 6= yk}) turns X into a separable, complete
metric space and S into a homeomorphism.
A finite or infinite sequence x = (xi)i∈I is a path on the graph G if

I ⊂ Z is an interval, each xi ∈ V and each (xi, xi+1) ∈ E whenever
{i, i + 1} ⊂ I. The length |x| of x is the cardinality of I. If |x| < ∞,
then we call it a word and define the cylinder : [x]X (or just [x]) to be
{y ∈ X : ∀i ∈ I xi = yi}.
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If x ∈ X and a ≤ b are two integers, x|ba is the word xaxa+1 . . . xb−1

of length b− a. A loop of length n based at a vertex v is a finite word
ℓ0 . . . ℓn−1 such that ℓ0 = v and ℓ0 . . . ℓn−1ℓ0 is a path on G. We note
that the Gurevič entropy (see [21]) of a Markov shift, defined in terms
of its loops, is equal to its Borel entropy.
The classical shifts of finite type (or SFTs) are the topological dy-

namical systems topologically isomorphic to a compact Markov shift,
or equivalently, to a Markov shift that can be presented by a finite
graph. We refer to [29] for background.
The Markov shift (X,S) is irreducible if it can be presented by a

strongly connected graph G, i.e., such that any two vertices u, v can
be joined by a path from u to v. In this case, its period is the greatest
common divisor of the lengths of all loops on G. (X,S) is mixing if it
is irreducible with period 1.
Any Markov shift (X,S) can be written as the disjoint union of irre-

ducible Markov shifts (Xj, Sj), j ∈ J with J countable (possibly finite),
and a set of measure zero with respect to any invariant measure. This
decomposition is unique (up to the indexing) and the Markov subshifts
(Xj, Sj), j ∈ J , are called the irreducible components of (X,S).
On an irreducible period p Markov shift (X,S) with finite Borel

entropy, the measure of maximal entropy (or m.m.e.), if it exists, is
unique and p-Bernoulli. Moreover:

Fact 2.3. For any h ∈ (0,∞) and p ∈ N, one can find two irreducible
Markov shifts with entropy h and period p: one with a measure of
maximum entropy, one without.

Finally, we note that from a directed graph G = (V,E) (now possibly
with multiple edges from one vertex to another) one has also the edge
shift associated to G. This is a Markov shift whose alphabet is the set
of edges of G. In terms of the earlier definition, the edge shift of G is
defined by a new graph G′, whose vertex set is E, in which there is an
edge from e1 to e2 iff the terminal vertex in G of e1 equals the initial
vertex in G of e2. We will use the edge shift presentation in Sec. 7. We
refer to [28] for more background on Markov shifts.

2.6. Periods of measures and Borel decomposition. Let (S, µ)
be an ergodic system. Recall the notion of periods from eq. (1.1).
Note that if p is a period, then any positive divisor of p is also a
period and that p is a period iff there is a p-cyclic partition modulo
µ, i.e., {X0, X1, . . . , Xp−1} ⊂ X such that µ(

⋃
i=0,...,p−1Xi) = 1 and

µ(Xi ∩Xj) = 0 for all 0 ≤ i 6= j ≤ p− 1.
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Observe that not every measure has a maximum period (consider
odometers). If it exists, then the set of all periods is the set of divisors
of the maximum period. Also having maximum period equal to 1
is equivalent to σrat(S, µ) = {1} and (because (S, µ) is ergodic) it is
equivalent to total ergodicity (i.e., the ergodicity of all (Sn, µ), n ≥ 1).

Fact 2.4. Given an irreducible Markov shift X with period p and en-
tropy h, the supremum of the entropies of ergodic measures with max-
imum period p is equal to h. Conversely, for any ergodic invariant
measure carried by X, the maximum period, if it exists, is a multiple
of p.

In the above definitions, the partition is relative to µ. It is important
for our purposes that we can improve this as follows.

Theorem 2.5 (Borel periodic decomposition). Let (X, T ) be an au-
tomorphism of a standard Borel space. For each integer p ≥ 1, there
exists a Borel partition P (p) := {P1, . . . , Pp, P∗} of X such that:

• T (P∗) = P∗ and T (Pi) = Pi+1 for all i = 1, . . . , p (Pp+1 := P1);
• for any µ ∈ Perg(T ), µ(P∗) = 0 if and only if p is a period of
(S, µ).

Though related results exist (see [46, remark on top of page 399]), we
could not find this statement in the literature, hence a proof is given
in Appendix A.

3. Universal systems

We study Markov shifts as almost-Borel systems. In this section,
we perform the part of the analysis that is conveniently done in the
language of universality (already used by Hochman [23], following Ben-
jamin Weiss, e.g., [47]).

Definition 3.1. Let C be a class of almost-Borel systems. An almost-
Borel system (X,S) is C-universal if it contains (the image of) an
almost-Borel embedding of any system in C. If, additionally, (X,S) ∈
C, then it is said to be strictly C-universal.4

We build and classify “maximal universal parts” of arbitrary almost-
Borel systems. The next section will relate these to Markov shifts by
appealing to Hochman’s theorem [23].

4This is related to but distinct from the notion of a terminal object in category
theory.
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3.1. Period-universal systems. Following Prop. 2.1, ‘the’ strictly
universal system with respect to a given class, if it exists, is unique up
to almost-Borel isomorphism. Hochman identified the strictly universal
systems with respect to the classes B(t), t ≥ 0, of Borel systems (X,S)
such that for all µ ∈ P′

erg(S), h(S, µ) < t.
We consider for each t ≥ 0 and p ∈ N, the class B(t, p) of systems

whose measures µ ∈ P′
erg(S) satisfy: p is a period and h(S, µ) < t. For

short we write that a system is t-universal, resp. (t, p)-universal if it
is B(t)-universal, resp. B(t, p)-universal. We will repeatedly use (see
Prop. 1.4(3) of [23] in the case p = 1 –its proof generalizes):

Lemma 3.2. For p ∈ N and h ∈ [0,∞], a countable union of strictly
(hn, p)-universal systems, is strictly (h, p)-universal with h = sup hn.

The following almost-Borel invariant is important for Markov shifts
and related systems.

Definition 3.3. The (union-entropy-period ) universality sequence of
an almost-Borel system (X,S) is uS : N→ [0,∞] defined by:

uS(p) := sup{t ≥ 0 : (X,S) contains a strictly (t, p)-universal system}.

Remarks 3.4. Prop. 4.2 will show that strictly (t, p)-universal systems
do exist hence the above invariant is not trivial and can be computed
as uS(p) = sup{t ≥ 0 : (X,S) is (t, p)-universal}. Also, uS(p) does not
need to be the supremum of the entropies of measures with a period p.

Observe that if q divides p, B(t, q) ⊃ B(t, p) so (t, q)-universality
implies (t, p)-universality. Hence:

Fact 3.5. For all p ∈ N, uS(p) = maxq|p uS(q).

A condition defines a set up to an almost null set if the symmetric
difference between any two Borel subsets satisfying it, is an almost null
set.

Proposition 3.6. A Borel system (X,S) contains, for each p ∈ N, a
subsystem (XUp, SUp) characterized up to an almost null set by the two
following equivalent properties.
(1) For all µ ∈ P′

erg(S):

(3.7) µXUp = 1 ⇐⇒ p is a period of µ and h(S, µ) < uS(p) .

(2) (XUp, SUp) is a strictly p-universal subsystem and contains any
other strictly p-universal subsystem of X up to an almost null set.
Moreover, (XUp, SUp) is strictly (uS(p), p)-universal.
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Proof. Conditions (1) and (2) separately imply uniqueness up to an
almost null set so it suffices to build a solution (XUp, SUp) to (1) and
check that it satisfies also (2) and the last claim.
Thm. 2.5 gives Borel subsystems Cp, p ≥ 1, such that for any µ ∈

P′
erg(S), µ(Cp) = 1 if and only if p is a period of µ. Recall that the

functions M(·) and h(S, ·) from Sec. 2.2 and Sec. 2.4 are Borel. Hence
for any t ∈ (0,∞] there is an invariant Borel subset V t of X such
that, for all µ ∈ P′

erg(S), µ(V
t) = 1 if and only if h(S, µ) < t. Set

XUp = Cp ∩ V
t with t = uS(p). Clearly XUp is a solution to (1).

We turn to condition (2). First, (XUp, SUp) is strictly (uS(p), p)-
universal by Lemma 3.2. Second, if X ′ ⊂ X is strictly p-universal,
then it must be (t, p)-universal with t ≤ uS(p). Thus X ′ ⊂ XUp up to
an almost null set by (3.7). (2) and the last claim are satisfied. �

3.2. Union-entropy-period universal parts. The following class of
Borel systems will help us analyze not necessarily irreducible Markov
shifts.

Definition 3.8. For a sequence u : N → [0,∞], C(u) denotes the
union-entropy-period class of Borel systems (X,S) such that any µ ∈
P′
erg(S) has some period p such that h(S, µ) < u(p). A strictly u.e.p.-

universal system is a strictly C(u)-universal system for some u : N →
[0,∞].

Considering the subsystems Xp := Cp ∩ V
u(p) as in the proof of

Proposition 3.6 easily yields:

Fact 3.9. For any u : N → [0,∞], (X,S) ∈ C(u) if and only if X =⋃
p∈NXp with Xp ∈ B(u(p), p) for all p ∈ N. If X is strictly C(u)-

universal, then each Xp is strictly (u(p), p)-universal.

An arbitrary Borel system (X,S) contains a ‘maximal’ strictly u.e.p.-
universal subsystem:

Theorem 3.10. For any Borel system (X,S) satisfying:

(3.11) ∀µ ∈ P′
erg(S) h(S, µ) <∞,

there is a subsystem (XU , SU) characterized up to an almost null set by
each of the following three equivalent properties.
(1) XU =

⋃
p∈NXUp up to an almost null set.

(2) For all µ ∈ P′
erg(S),

(3.12) µXU = 1 ⇐⇒ µ has a period p s.t. h(S, µ) < uS(p) .

(3) (XU , SU) is a strictly u.e.p.-universal subsystem that contains any
strictly u.e.p.-universal subsystem up to an almost null set.



14 MIKE BOYLE AND JÉRÔME BUZZI

Moreover, (XU , SU) is strictly C(uS)-universal and its universality
sequence coincides with uS.

Definition 3.13. The subsystem (XU , SU) above is called the (union-
entropy-period) universal part of (X,S).

The following are easy consequences of universality.

Corollary 3.14. Suppose (X,S) and (Y, T ) are Borel systems. Then

(1) There is an almost-Borel embedding (XU , SU)→ (YU , TU) if and
only if uS ≤ uT .

(2) (XU , SU) and (YU , TU) are almost-Borel isomorphic if and only
if uS = uT .

(3) Suppose for all µ ∈ P′
erg(X) there is a period p of µ such that

h(S, µ) < uT (p). Then the systems (X,S) ∪ (Y, T ), (X,S) ⊔
(Y, T ), and (Y, T ) are almost-Borel isomorphic.

The proof of Thm. 3.10 relies on the following lemma, whose proof
we defer to the end of the section. Say that a Borel system (X,S) is
stable if there is an almost-Borel embedding of (X ×{0, 1, . . . }, S× id)
into (X,S). Note that the strictly universal systems with respect to
B(t), B(t, p), or C(u), are stable. Moreover, countable unions of stable
systems are stable.

Lemma 3.15. A countable union
⋃

n≥0Xn of stable subsystems is
almost-Borel isomorphic to the corresponding disjoint union

⊔
n≥0Xn.

Proof of Thm. 3.10. Each of the conditions (1), (2) and (3) implies
uniqueness up to an almost null set. It suffices to show that XU as
in condition (1) with SU := S|XU satisfies the two other claims. For
Claim (2) this follows from Condition (1) of Prop. 3.6.
To prove the universality stated in Claim (3), let (Y, T ) ∈ C(uS). By

Fact 3.9, Y =
⋃

p∈N Yp with Yp ∈ B(uS(p), p) and Zp := Yp \
⋃

q<p Yq,

p ∈ N, is a partition. By Prop. 3.6, each XUp is strictly (uS(p), p)-
universal so there is an almost-Borel embedding of Zp ⊂ Yp into XUp

for all p ≥ 1. Now, Lemma 3.15 lets us assume thatXU =
⋃

p∈NXUp is a

partition, proving C(uS)-universality. It is strict since (XU , SU) ∈ C(uS)
by Claim (2).
For the second half of (3), let (Y, T ) be a strictly C(v)-universal

subsystem of (X,S) for some v : N → [0,∞]. Fact 3.9 implies Y =⋃
p∈N Yp and v ≤ uS. By Prop. 3.6, Yp ⊂ XUp ∪ Np for some almost

null Np: Y ⊂ XU ∪
⋃

p∈NNp and Claim (3) follows.

Finally, let uU be the universality sequence of (XU , SU). As XU ⊂ X ,
uU ≤ uS. The converse inequality follows from the strict universality
of each XUp. �
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Proof of Lemma 3.15. It suffices to build an almost Borel embedding
Ψ :

⋃
n≥0Xn × {n} →֒

⋃
n≥1Xn (the reverse embedding is obvious and

the lemma then follows from Prop. 2.1). We claim that there exist
subsystems Z0, Z1, . . . such that:

(1) each set Zn ⊂ X0 ∪ · · · ∪Xn is almost Borel isomorphic to Xn;
(2) φn is an almost-Borel embedding of Xn × {0, 1, . . .} into Zn;
(3) the sets φℓ(Xℓ × {ℓ}), 0 ≤ ℓ < n, are pairwise disjoint.
(4) Zn ∩ φℓ(Xℓ × {ℓ, n+ 1, n+ 2, . . . }) = ∅ for 0 ≤ ℓ < n.

Then, Ψ :
⋃

n≥0Xn × {n} →֒
⋃

n≥0Xn defined by Ψ(x, n) = φn(x, n)
proves the lemma.
We proceed by induction. To begin with, let φ0 : X0 ×{0, 1, . . . } →֒

Z0 := X0 be given by the stability assumption. Properties (1)0, (2)0, (3)0, (4)0
(i.e., (1),. . . ,(4) for n taking the value 0) are satisfied.
For n ≥ 1, we assume (1)m, (2)m, (3)m, (4)m for 0 ≤ m < n and,

letting X̃k := Xk \ (X0 ∪ · · · ∪Xk−1), we set:

(3.16) Zn := X̃n ∪
n−1⋃

k=0

φk((X̃k ∩Xn)× {n}).

First note that, using (1)k for k < n, Zn ⊂ X̃n ∪
⋃

k<nXk ⊂
⋃

k≤nXk.

Second we check that the union in (3.16) is disjoint. Note, X̃n∩φk(Xk×
{0, 1, . . .}) ⊂ X̃n ∩ (X0 ∪ · · · ∪Xk) = ∅ for 0 ≤ k < n. So it is enough
to note that for all 0 ≤ ℓ < k < n, (4)k yields:

φℓ((X̃ℓ∩Xn)×{n})∩φk((X̃k∩Xn)×{n}) ⊂ φℓ(Xℓ×{k+(n−k)})∩Zk = ∅.

The disjointness in (3.16) implies that Zn is isomorphic to Xn so (1)n
holds. Moreover, the stability assumption gives φn as in condition (2)n.
We prove (4)n for 0 ≤ ℓ < n. We use (3.16) to expand Zn. As before

X̃n ∩ Zℓ = ∅ so we need only to show that, for 0 ≤ k < n:

(3.17) φk(Xn × {n}) ∩ φℓ(Xℓ × {ℓ, n+ 1, n+ 2, . . . }) = ∅.

If ℓ = k, (3.17) follows from the injectivity of φk. If ℓ < k, it follows
from (4)k as φk(Xk×{0, 1, . . . }) ⊂ Zk and {ℓ, k+1, k+2, . . .} ⊃ {ℓ, n+
1, n+2, . . .}. If k < ℓ, it follows from (4)ℓ using φℓ(Xℓ×{0, 1, . . . }) ⊂ Zℓ

and n ≥ ℓ+ 1.
(3.17) and therefore condition (4)n are established. Eq. (3.17) also

implies condition (3)n, completing the inductive step. �

4. Finite entropy Markov shifts

In this section, we prove Theorems 1.5 and 1.7 as well as Corollary
1.8 by relating the universal parts studied in Sec. 3 to Markov shifts
using the work of Hochman [23].



16 MIKE BOYLE AND JÉRÔME BUZZI

4.1. Markov shifts and universality. As in [23], for h ≥ 0 the
h-slice of (X,S) is a Borel subsystem which, for µ ∈ P′

erg(X), has µ
measure 1 if and only if h(S, µ) > h. “The” h-slice subsystem is unique
up to an almost null set. Note that the 0-slice is an almost null set and
that a system (X,S) with no measure of maximum entropy, is equal
to its h(S)-slice up to an almost null set. We recall the main result of
[23]:

Theorem 4.1 (Hochman [23]). Let 0 ≤ t < h. Any mixing SFT X
with entropy h is h-universal. In particular, the t-slice of X is strictly
t-universal.

Proposition 4.2. For p ∈ N and h ∈ [0,∞], the following systems are
strictly (h, p)-universal (and therefore isomorphic).

(1) h-slices of irreducible period p, entropy h Markov shifts.
(2) Irreducible Markov shifts with period p and entropy h with no

measure of maximal entropy (which exist exactly when h <∞).
(3) Countable unions of period p irreducible Markov shifts with en-

tropies strictly less than h and with supremum equal to h.

Proof. All of this is in Hochman’s work for the case p = 1 (see Theorems
1.5 and 1.6, Proposition 1.4 in [23]). The remark about almost-Borel
isomorphism follows from Prop. 2.1. For p > 1, observe that a Borel
system (X,S) is (h, p)-universal if it contains a cyclically moving subset
with a period p such that the restriction of Sp to it is h(Sp)-universal.

�

Recall the notions of p-maximal and p-Bernoulli measures (see before
Cor. 1.8).

Lemma 4.3. An irreducible Markov shift (X,S) with entropy h and pe-
riod p satisfying (3.11) has h <∞ and is the disjoint union of a strictly
(h(S), p)-universal system and a system supporting at most one mea-
sure from P′

erg(S), which if it exists is the unique measure of maximal
entropy of S, a p-Bernoulli measure.

Proof. (This follows the proof of [23] for p = 1.) The h(S)-slice of
(X,S) is strictly (h(S), p)-universal (Prop. 4.2). There is at most one
measure of maximum entropy [21], which if it exists is a countable state
Markov chain, and therefore p-Bernoulli (by [34] for p = 1 and then for
general p by the argument of [2]) and is supported on the complement
of the h(S)-slice. �

4.2. Characterizing Markov shifts. Recall that (XU , SU) is the uni-
versal part of (X,S) (Thm. 3.10) and that uS : N → [0,∞] is the
universality sequence (Def. 3.3).
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Theorem 4.4. Let (X,S) be a Borel system satisfying the finite en-
tropy condition (3.11). Then the following are equivalent:

(1) (X,S) is almost-Borel isomorphic to a Markov shift.
(2) P′

erg(X \XU) is at most countable and each µ ∈ P′
erg(X \XU) is

p-Bernoulli with entropy equal to uS(p) <∞ for some p ∈ N.

It will be convenient to define Prob(p) as the collection of p-Bernoulli
measures carried by X \XU and let

(4.5) ηS(p) := #Prob(p).

Proof. First, let (X,S) be a Markov shift. It is a countable union⋃
i∈I Xi where each Xi is an irreducible Markov shift with period pi

and entropy hi.
Applying Lem. 4.3, we get hi < ∞ and Xi = X ′

i ⊔ X
′′
i where X ′

i is
strictly (hi, pi)-universal andX

′′
i is either empty or carries a pi-Bernoulli

measure of entropy hi (and no other measure). Therefore the universal
part of X contains

⋃
i∈I X

′
i. Hence X \XU carries at most the previous

countably many periodic-Bernoulli measures. The period p and entropy
h of any periodic-Bernoulli measure not carried by XU must satisfy
h = hi ≥ uS(p) whenever pi = p (see Thm. 3.10). But uS(p) ≥ hi
whenever pi = p. Hence h = uS(p). This proves (1) =⇒ (2).
Conversely, let (X,S) be a Borel system as in (2). By Thm. 3.10,

XU =
⋃

p∈NXUp. According to Lem. 3.15, this is almost-Borel iso-

morphic to a disjoint union
⊔

p∈N Vp of some strictly (hp, p)-universal
systems Vp. By Prop. 4.2, each Vp is isomorphic to a Markov shift.
Let p ∈ N. Each µ ∈ P′

erg(X \XU) is a periodic-Bernoulli measure.
Pick an irreducible Markov shiftWµ with the same period p and entropy
h = uS(p) as µ. Now X is almost-Borel isomorphic to the Markov shift⊔

p∈N Vp ⊔
⊔

µ∈Prob(p)Wµ. �

This implies (note that Lem. 3.15 does not apply):

Corollary 4.6. If X is the (not necessarily disjoint) union of count-
ably many systems Xn, each of which is almost-Borel isomorphic to a
Markov shift satisfying (3.11), then X is almost-Borel isomorphic to a
Markov shift, itself satisfying (3.11).

We now relate Markov shifts with strictly u.e.p.-universal systems.

Lemma 4.7. For a Markov shift, the conditions (1.3) and (3.11) are
equivalent. For a Borel system (X,S), the sequences ūS, η̄S and uS, ηS
(from (1.4), Def. 3.3, (4.5)) coincide. Moreover, the following are
equivalent:

(1) (X,S) is strictly u.e.p.-universal;
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(2) (X,S) is almost-Borel isomorphic to a Markov shift with η̄S ≡
0.

Proof. We write X =
⋃

i∈I Xi with pi, hi as in (1.4). Any µ ∈ P′
erg(S) is

carried by some Xi by ergodicity. The equivalence of (1.3) and (3.11)
follows. Prop. 4.2 implies uS ≥ ūS and uS(p) > ūS(p) would give
a measure with maximum period p and entropy > ūS(p). ηS ≡ η̄S
follows from Thm. 4.4.
Point (3) of Thm. 3.10 shows that a Borel system is strictly u.e.p.-

universal if and only if it coincides with its universal part. Thm. 4.4
shows that this is equivalent to condition (2) above. �

Given Lemma 4.7, Theorem 1.7 is equivalent to Thm. 3.10.

4.3. Classification of Markov shifts.

Proof of Thm. 1.5. The sequences uS, ηS coincides with ūS, η̄S accord-
ing to Lem. 4.7. Clearly the former are invariants of almost-Borel
isomorphism. To see that these are complete, let (X,S) and (Y, T ) be
two Markov shifts satisfying (1.3) and (uS, ηS) ≡ (uT , ηT ). By Cor.
3.14, SU and TU are almost-Borel isomorphic. By Thm. 4.4, X \ XU

carries only periodic-Bernoulli measures. Let p ∈ N. Using the peri-
odic decomposition Thm. 2.5, one finds a Borel subset X(p) ⊂ X \XU

carrying exactly the p-Bernoulli measures of X \XU . Those measures
have entropy uS(p) by Thm. 4.4. Hence the almost-Borel isomorphism
class of X(p) is defined by (p, uS(p), ηS(p)). To conclude, remark that
X \ U =

⊔
p∈NX

(p) up to an almost null set.

We turn to Claim (1.6). The necessity of its first half follows from
Fact 3.5, while its second half is a consequence of the finite entropy
condition (3.11). Conversely, given (u, η) satisfying (1.6), let us build
a Markov shift (X,S) realizing these invariants.
First, let X ′ :=

⋃
p∈N,u(p)>0 Vp with Vp a strictly (u(p), p)-universal

Markov shift (Prop. 4.2). By Fact 3.5, uS(p) = supq|p uS(q), which is
u(p). Second, letX ′′ :=

⋃
p∈N,η(p)>0Wp×1η(p) whereWp is an irreducible

Markov shift of entropy u(p) and period p with exactly one measure of
maximum entropy and 1η(p) is the identity on a set of cardinality η(p).
This is possible as η(p) > 0 only if u(p) <∞ (Lem. 4.3). The Markov
shift X ′ ∪X ′′ satisfies uS = u and ηS = η. �

Proof of Cor. 1.8. For (X,S) almost-Borel isomorphic to a Markov
shift T , let u := uS its universal sequence. Prop. 4.2 implies Claim
(1). The setM defined in Claim (2) is contained in P′

erg(X \XU) and
Thm. 4.4 implies (2) and (3).
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Conversely, let (X,S) be a Borel system satisfying conditions (1)-
(3) for some u : N → [0,∞]. (1) implies uS ≥ u and therefore M ⊂
P′
erg(X \XU). If u(p) > uS(p),M would be uncountable. Finally, (2)-

(3) with u = uS imply condition (2) of Thm. 4.4 so X is almost-Borel
isomorphic to a Markov shift. �

5. Continuous factors of Markov shifts: universality

We prove Theorem 1.10. We first deal with the following compact
case and then reduce the general case to this one through an entropy
formula.

Theorem 5.1. Let (X,S) be an irreducible SFT with period p and
let π : (X,S) → (Y, T ) be a continuous factor map. Then, for any
0 ≤ h < h(T ), there is a period p, irreducible SFT X ′ ⊂ X such that
h(X ′) > h and the restriction of π to X ′ is injective. In particular,
(Y, T ) is (h(T ), p)-universal.

Remark 5.2. The universality claim of Thm. 5.1 fails badly for Borel
factor maps, even if finite to one. For example, from a mixing shift of
finite type with entropy h > 0, with the Borel Periodic Decomposition
one can show that there is a Borel at most 2-to-1 map which collapses
all ergodic measures with maximum period 2 to ones with maximum
period 1, and is the identity on supports of other ergodic measures.
The image is not h-universal.

To prove Thm. 5.1, we will use the formulas (2.2) for the topolog-
ical entropy of a t.d.s. in terms of separated and spanning sets. Sec.
2.5 recalls some standard definitions and notations for Markov shifts
including [w]X , [w], |w|, x|

b
a, and |w|.

If v, w are two finite words over the alphabet of X , then |v|, |w| are
their lengths and [v.w] := σ|v|[v]∩[w] is the cylinder {x ∈ X : x|0−|v| = v

and x|
|w|
0 = w}. We define v∞.w∞ as the unique point in all [vn.wn] for

n ≥ 1 and v∞ := v∞.v∞. We shall write v for its length, e.g., ℓA = A|ℓ|.

Proof of Thm. 5.1. Observe that the claim about universality follows
immediately from the embedding claim according to Proposition 4.2.
We assume h(T ) > 0 (otherwise the claim is trivial). Let G be a
strongly connected, finite graph presenting X . Fix 0 < ζ < 1 small
enough and then h′ such that h < (1−ζ)h(Y ) < h′ < h(Y ). Let η1 > 0
small enough such that the separation entropy at scale 4η1 satisfies
hsep(T, π(X), 4η1) > h′ > h. Observe that

(5.3) hsep(T, π(X), 4η1) = sup
v∈G

hsep(T, π([v]), 4η1) .
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G is finite, hence this supremum is achieved at some vertex v, which
we will denote by 0:

(5.4) hsep(T, π([0]), 4η1) > h′ > h .

Claim 1. Let ℓ and ℓ̃ be loops in G based at vertex 0 such that P :=
π(ℓ∞) 6= P̃ := π(ℓ̃∞). Then there are a positive multiple M of p
and a number 0 < η < η1 such that for all integers A,C ≥ M , if
x, y ∈ π([ℓA.ℓ̃C ]) and −ℓA +M ≤ k ≤ ℓ̃C −M , then

(5.5) k = 0 ⇐⇒ max
0≤j≤ℓA−M

d(T−jx, T k−jy) < η.

Moreover, for any x, y ∈ X with x|M−M = y|M−M , d(π(x), π(y)) < η/4.

Proof of Claim 1. Let Z = π(ℓ∞.ℓ̃∞). As Z is a heteroclinic point, its
orbit is discrete. Define r0 = min(d(Z,O(Z) \ {Z}), η1) > 0. The
uniform continuity of π gives M ∈ pN such that, for all u, v ∈ X ,
u|M−M = v|M−M implies d(π(u), π(v)) < r0/16. We will prove Claim 1 for
this M and η = r0/4.

Let x̂, ŷ ∈ [ℓA.ℓ̃C ], x = π(x̂), y = π(ŷ) and −ℓA +M ≤ k ≤ ℓ̃C −M .
Note, x̂|M−ℓA = ŷ|M−ℓA so, if k = 0:

0 ≤ j ≤ ℓA −M =⇒ d(T−jx, T k−jy) < r0/16 = η/4 .

Also, ŷ|k+M
k−M = (ℓ∞.ℓ̃∞)|k+M

k−M , so d(T ky, T kZ) < r0/16 and, for k 6= 0,

max
0≤j≤ℓA−M

d(T−jx, T k−jy) ≥ d(x, T ky)

≥ d(Z, T kZ)− d(Z, x)− d(T ky, T kZ)

> r0 − r0/16− r0/16 = (7/8)r0 > η .

This proves Claim 1. �

We fix M, ℓ, η according to Claim 1. Recall ζ > 0.

Claim 2. There is M0 ∈ N such that for all large M ∈ pN, there is a
family ΓN of N-loops based at vertex 0 such that #ΓN ≥ eh

′N and the
following holds.
If {x̄γ : γ ∈ ΓN} ⊂ X is such that x̄γ |N0 = γ, for all γ in ΓN , then

for all γ ∈ Γn and γ 6= γ′ in Γn, two separation properties are satisfied:

(S1) π(x̄γ) and π(x̄γ
′

) are (η,M +M0, N − (M +M0))-separated;
(S2) π(x̄γ) is (η,M+M0, N − (M +M0))-separated from π(ẑ) when-

ever ẑ ∈ X, k ∈ Z and m := ⌈ζN⌉ satisfy (i) ẑ|k+m
k = ℓ∞|m0

and (ii) [k, k +m] ⊂ [M +M0, N − (M +M0)] .
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Proof of Claim 2. We choose M0 ∈ pN such that, for any vertex v in
the graph G, from which there is a path to 0 of length a multiple of p,
we may fix paths of length M0: p

→v from vertex 0 to v and a path pv→

from v to 0.
Because η < η1 and the inequality in (5.4) is strict, there is an

ǫ > 0 such that for any sufficiently large n there is a (4η, n)-separated
subset Sn of π([0]) such that #Sn ≥ e(1+ǫ)h′n. For each x ∈ Sn, pick
x̂ ∈ π−1(x) ∩ [0] and define the following concatenation:

γ(x̂) := p→x̂−M · x̂|n+M
−M · px̂n+M→ .

Given n, define N = n+2M0+2M ; for x in Sn, γ(x̂) is a loop of length
N based at 0. Define

Γ̂N = {γ(x̂) : x ∈ Sn} ,

ΓN = {γ ∈ Γ̂N : γ satisfies (S2)} .

We will show that for all sufficiently large n, Claim 2 holds for this ΓN .
For distinct w, x ∈ Sn, there is an integer 0 ≤ k < n such that

d(π(σkŵ), π(σkx̂)) > 4η. Hence, given any w̄, x̄ in X such that w̄|N0 =
γ(ŵ) and x̄|N0 = γ(x̂), we have from Claim 1 some k in the interval
[M +M0, n +M +M0] = [M +M0, N − (M +M0)] such that

d
(
T kπ(w̄), T kπ(x̄)

)

> d
(
T k−M−M0π(ŵ), T k−M−M0π(x̂)

)
− 2η/4 > η .

This shows that ΓN will satisfy the separation property (S1).
Let S ′

n be the set of points x ∈ Sn such that γ(x̂) fails the separation
property (S2). Pick H such that htop(Y ) < H < h′/(1 − ζ). By (2.2)
we can find a number C <∞ such that

(5.6) ∀m ≥ 0 rspan(η/2, m, π(X), T ) ≤ CeHm .

As Y = π(X) is compact and π uniformly continuous,

(5.7) ∃C ′ <∞ ∀m ≥ 0 rspan(η/2, m, π[ℓ
[m/ℓ]]X , T ) ≤ C ′ .

Now suppose m := ⌈ζN⌉ with [k, k+m] ⊂ [M +M0, N − (M +M0)]
as in (S2). It follows from (5.6) and (5.7) that the set of all π(ẑ) such
that ẑ|k+m

k = ℓ∞|m0 is contained in at most CekH×C ′×Ce(N−k−ζN)H =
C ′C2e(1−ζ)HN dynamical (η/2, N)-balls. No such set can contain two
(η,M +M0, N − (M +M0))-separated points. Thus, considering the
union over k we have #S ′

n ≤ NC ′C2e(1−ζ)HN and therefore for large
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N = n + 2(M +M0) and for C ′′ = e−2(M+M0),

|ΓN | = |Γ̂N | − |S
′
n|(5.8)

≥ C ′′e(1+ǫ)h′N −NC ′C2e(1−ζ)HN > eh
′N

where the last inequality holds for large N because (1−ζ)H < h′. This
finishes the proof of Claim 2. �

As X has period p, we may fix loops L1, L2 based at vertex 0 such
that |L2| = |L1| + p ∈ pN. We will have markers of the form mi :=

ℓAℓ̃CLi, i = 1, 2, for some integers A,C. Fix N satisfying Claim 2. To
recognize markers, we fix C and then A large enough so that:

(5.9) |ℓ̃C | > ζN +2M +M0 and |ℓA| > ℓ̃C +max
i=1,2

Li+ ζN +2M +M0.

We consider the subshift of finite type XK ⊂ X defined as the set of
paths obtained from concatenations of words of the formmaw1w2 . . . wK .
where K is fixed, but large, a = 1, 2 and w1, w2, . . . , wK ∈ ΓN .
Observe that XK is irreducible and its period is a multiple of p and

divides the two lengths |ma| +K|wi|, for a = 1, 2 (and any i). These
lengths differ by p, hence the period of Xk is equal to p. By (5.8), the
topological entropy of XK has the bound:

htop(XK) ≥
K log#ΓN

KN + |m2|
>

1

1 + |L2|+|ℓAℓ̃C |
KN

h′ ,

with the right side greater than h for largeK (givenN). It only remains
to show that π : XK → Y is injective. Let x̄, ȳ ∈ XK with π(x̄) = π(ȳ).

We first prove M(x̄) = M(ȳ) where M(x̄) is the set of positions

where a marker mi appears. Assume that 0 ∈M(x̄) so: x̄|ℓ
A

0 = ℓA. We
claim that the corresponding subword of ȳ must also be part of marker
(mostly). Indeed, the separation property (S2) from Claim 2 implies
that, if ȳ|n+N

n = wi in ΓN , then [n+M +M0, n+N −M −M0] cannot

overlap [0, ℓA] on a set of length ≥ ζN . Thus, ȳ|ℓ
A−ζN−M−M0

ζN+M+M0
occurs in

ȳ as part of a marker mi = ℓAℓ̃CLi (i = 1 or 2).

It follows that M(ȳ) contains some k with −ℓ̃CLi− ζN −M −M0 ≤
k ≤ ζN +M +M0. Thanks to (5.9), −ℓA +M ≤ k ≤ ℓ̃C −M and

Claim 1 applied to σℓAx̄, σℓA−kȳ ∈ [ℓA.ℓ̃C ] yields k = 0. It follows that
M̄(x) =M(ȳ) by symmetry.

Let n1 < n2 be two consecutive elements of M(x̄) = M(ȳ). Con-
sidering x̄ and ȳ, we have: n2 − n1 = |mi| + KN = |mj | + KN .
Thus |mi| = |mj|, so mi = mj as the lengths are pairwise distinct.
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Let r := n1 + |mi| + sN < n2 for some positive integer s. Ob-
serve x̄|r+N

r = wi, ȳ|
r+N
r = wj for some i, j ∈ IN . If i 6= j, then,

0 = d(π(σr+kx̄), π(σr+kȳ)) > d(π(σkxi), π(σ
kxj)) − 2η but this should

be positive for some k ∈ [M +M0, N − M − M0]. Thus i = j. As
infM(x̄) = −∞ and supM(x̄) =∞, x̄ = ȳ, concluding the proof. �

Theorem 1.10 is now an obvious consequence of the next Proposition
(whose proof follows).

Proposition 5.10. Let π : (X,S)→ (Y, T ) be a continuous factor map
from an irreducible, period p Markov shift into a self-homeomorphism
of a Polish space. For any µ ∈ Perg(S) and h < h(T, π∗µ), there exists
ν ∈ Perg(S) with compact support and h(T, π∗ν) > h. In particular,

(5.11)
sup{h(T, π(Σ)) : Σ ⊂ X, Σ irreducible period p SFT}

= sup{h(T, π∗µ) : µ ∈ Perg(S)}.

To prove the above proposition, we need some definitions and nota-
tions. For a Borel partition P , ∂P denotes the union of the boundaries
of the elements of P . For x ∈ X , P (x) is the unique element of P
containing x. P n is the set of words v = v0 . . . vn−1 on P of length n.
Any such word defines a cylinder [v] := v0 ∩ T

−1v1 ∩ · · · ∩ T
−n+1vn−1.

v is the P, n-name of any point in [v]. P n will also denote the set of
cylinders defined by words on P of length n. Depending on the setting
P n(x) will mean either the P, n-name or cylinder of x.

Proof of Prop. 5.10. Let δh := h(T, π∗µ)−h > 0. As Y is Polish, there
exists a finite Borel partition P such that

(5.12) h(T, π∗µ) < h(T, π∗µ, P ) + δh/10 and π∗µ(∂P ) = 0.

Fix t0 > 0 such that, for all large n, the number of subsets of {1, . . . , n}
with cardinality at most t0n is less than e(δh/20)n. As π is continuous,
there exist an integer M and a Borel set X1 ⊂ X such that µ(X1) >
1−min(δh/(40 log#P ), t0/2) and

∀x ∈ X1 ∀w ∈ X x|M−M = w|M−M =⇒ P (π(x)) = P (π(w)).

Let 0 be a vertex of G with µ([0]) > 0. Define X0 to be the set of
points in X such that xn = 0 for infinitely many positive n and also
for infinitely many negative n. By ergodicity, µ(X0) = 1.

Claim 5.13. There exists a period p SFT X̄ ⊂ X0 and a continuous
factor map p : X0 → X̄ such that, if X2 := {x ∈ X0 : p(x)|0 6= x|0},
then:

(5.14) µ(X2) <
min (δh/(40 log#P ), t0/2)

2M + 1
.
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Proof of Claim 5.13. The loop graph at 0 is the graph Ĝ with vertices:
0 and (w, k) if 0 < k < n and w · 0 is a word of X of length n+ 1 with
w0 = 0 and 0 /∈ {w1, . . . , wn−1}; edges: 0→ (w, 1), (w, k)→ (w, k + 1)
for 0 < k < n − 1 and (w, n − 1) → 0. The loop shift (see, e.g., [9])

for G at 0 is the Markov shift X̂ presented by Ĝ. Note, X̂ like X has
period p. Let ψ : X0 → X̂ be the obvious topological conjugacy.
Given an enumeration w1, w2, . . . , of the words of X , let X̂N be the

SFT defined by the finite subgraph ĜN of Ĝ obtained by restricting
the previous construction to the words wn for n ≤ N . We fix N large
enough so that ĜN has the same period p (g.c.d. of loop lengths)

as Ĝ; for all n ≥ N , np is a sum of lengths of first return loops to
0 in ĜN ; and [0] ∪

⋃
{[(wn, k)]X : n ≤ N, 0 < k < |wn|} has ψ∗µ-

measure close enough to 1 that (5.14) will hold. Then we define the

SFT X̄ = ψ−1X̂N ⊂ X0.
We can define a map q : X̂ → X̂N by replacing each wn, n > N ,

by some concatenation w̃n of wi’s for i ≤ N with total length |wn|
(making choices depending only on |wn|). We define p : X0 → X̄ by
p = ψ−1 ◦ q ◦ ψ. �

We denote by π̄ the restriction of π to X̄ ⊂ X and set ν := p∗µ.
Observe that, for x ∈ X :

P (π̄p(x)) 6= P (π(x)) =⇒ x /∈ X1 or p(x)|M−M 6= x|M−M

p(x)|M−M 6= x|M−M =⇒ x ∈ S−MX2 ∪ · · · ∪ S
MX2.

Hence, by the Birkhoff ergodic theorem, there exists X3 ⊂ X such that
µ(X3) > 9/10 and for all large n, all x ∈ X3,
(5.15)
1

n
#{0 ≤ k < n : P (π̄p(T kx)) 6= P (π(T kx))} < ρ := min

(
δh

20 log#P
, t0

)
.

For any two words v, w ∈ P n, define the relation:

v ∼ w ⇐⇒ #{0 ≤ k < n : vk 6= wk} < ρn.

Note that for v ∈ P n for n large enough, by choice of t0 we have

(5.16) #{w : w ∼ v} ≤ e(δh/20)n ×#P ρn ≤ e(δh/10)n .

The theorem of Shannon-McMillan-Breiman applied to (T, π̄∗ν) gives
sets En of P, n-words such that, for all large n, writing [En] :=

⋃
v∈En

[v],

(5.17) π̄∗ν ([En]) > 9/10 and #En ≤ exp(h(T, π̄∗ν) + δh/10)n.

Let Fn := p−1π̄−1([En]) ∩ X3. It is a Borel set. π(Fn) is Borel (up
to a subset included in a set with zero π∗µ-measure). Using π̄∗ν :=
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µ ◦ p−1 ◦ π̄−1,

π∗µ(π(Fn)) = µ(π−1π(Fn)) ≥ µ(Fn) ≥ π̄∗ν([En])− µ(X \X3) > 8/10.

Let n be large and x ∈ Fn ⊂ X3. Eq. (5.15) gives:

P n(π(x)) ⊂
⋃{

[v] : v ∼ P n(π̄p(x))
}
.

By construction of Fn, π̄p(x) ∈ [v] for some v ∈ En. Thus, using eqs.
(5.17) and (5.16), Gn :=

⋃
v∈En
{w : w ∼ v} satisfies [Gn] ⊃ π([Fn])

and therefore:

π∗µ([Gn]) ≥ π∗µ(π(Fn)) > 8/10 and

#Gn ≤ #En × exp(δhn/10) ≤ exp
(
(h(T, π̄∗ν) +

2
10
δh)n

)
.

Applying the Shannon-McMillan-Breiman Theorem this time to π∗µ
and P and recalling (5.12), we get:

(1 + δ)h = h(T, π∗µ) ≤ h(T, π∗µ, P ) + δh/10 ≤ h(T, π̄∗ν) +
2
5
δh.

Hence, h(T, π̄∗ν) > h, proving the first claim of the Proposition.
Observe that the supremum over measures in eq. (5.11) is at least

equal to that over SFTs X̄ ⊂ X : apply the variational principle to
each compact t.d.s. (T, π(X̄)). Conversely, given µ ∈ Perg(S) and
h < h(T, π∗µ), the first claim of the Proposition gives an SFT X̄ ⊂ X
carrying an ergodic measure ν with h(T, π∗ν) > h. But h(T, π∗ν) ≤
h(T, π(X̄)), so h(T, π(X̄)) > h. By enlarging the SFT X̄ ⊂ X , one
can reduce its period to that of X . The equality of the suprema in eq.
(5.11) is now obvious. �

6. Bowen factors of Markov shifts

In this section we prove Theorem 1.12, which states conditions sat-
isfied by Sarig’s symbolic dynamics under which a factor of a Markov
shift is almost-Borel isomorphic to a Markov shift.
Recall Definition 1.11 for Bowen type factor maps. For a factor map

π which is Bowen type on its domain, the set of relations ∼ satisfying
(1) and (2) in Definition 1.11, if it is nonempty, contains a minimal
relation, for which two symbols are related if and only if the images
of their time zero cylinder sets have nonempty intersection. A proto-
typical Bowen type map is a one-block code from an SFT onto a sofic
shift; in this case, the relation ∼ on symbols is transitive. When the
factor system Y is not zero dimensional, the relation ∼ on symbols
cannot be transitive. For our almost-Borel purposes, the condition (2)
in Definition 1.11 is only a notational convenience.
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Definition 6.1. Let X be a Markov shift with alphabet A. For a, b ∈
A, Xa,b is the set of x in X such that xn = a for infinitely many
negative n and xn = b for infinitely many positive n. Xa is the subset
ofX consisting of points x such that xn = a for infinitely many positive
n and infinitely many negative n. The return set of X is Xret := ∪aXa.
The Sarig regular set of X is X±ret := ∪a,bXa,b.

One virtue of the Sarig regular set of a Markov shift X is that it
contains every compact subshift of X .

We will use the following consequence of Theorem 1.10 to establish
the universality claim of Theorem 1.12.

Proposition 6.2. Let π : (X,S)→ (Y, T ) be a Borel factor map, from
an irreducible Markov shift of period p. Assume that it is countable to
one and Bowen type on the Sarig regular set X±ret. Then (π(X±ret), T )
is (h(S), p)-universal.

The Bowen type assumption is key here - compare with Rem. 5.2.

Proof. It suffices to show that π(X±ret) is (h(S) − ǫ, p) universal for
every ǫ > 0 (Prop. 4.2). Given ǫ, let Σ be an irreducible SFT of
period p contained in X±ret such that h(Σ) > h(S) − ǫ. Let Σ be
πΣ, endowed with the quotient topology; as in [19] Σ is a compact
metrizable dynamical system – use, e.g., Prop. B.2 with Σ compact
metrizable and the quotient relation a closed set in Σ×Σ (π is Bowen
type on Σ ⊂ X±ret). It follows from Thm. 5.1 that Σ is (h(S) − ǫ, p)-
universal.
A countable-to-one map from a standard Borel space into another

one has a Borel section [26, (18.10) and (18.14)]. It follows that πΣ is
a Borel set, and a set is Borel in Σ or πΣ if and only if its preimage in
Σ is Borel. Consequently the identity Σ→ πΣ is a Borel isomorphism.
Therefore πΣ, like Σ̄, is (h(S)− ǫ, p)-universal. �

The key step for the proof of Theorem 1.12 is the following. We will
let A(S) or A(X) denote the alphabet (symbol set) of a shift space
(X,S). In the setting of Theorem 1.12, we have:

Proposition 6.3. Let (X,S) be a Markov shift and let π : (X,S) →
(Y, T ) and X̄ be as in Thm. 1.12: X satisfies (1.3), π is a Borel factor
map such that for each irreducible component Z of X,

(1) π is Bowen type on the Sarig regular set Z±ret, and
(2) the restriction π|Z±ret is finite-to-one;

and, X̄ is the union of the Sarig regular sets Z±ret of the irreducible
components Z of X.
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Then the induced map P′
erg(X̄)→ P′

erg(πX̄) is surjective. Moreover,
there is a countable collection of Borel factor maps π′ : (X ′, S ′) →
(Y ′, T ′) ⊂ (Y, T ) for which the following hold.

(1) (X ′, S ′) is an irreducible Markov shift.
(2) π′ is both Bowen type and finite to one on the Sarig regular set

X ′
±ret.

(3) If ν ∈ P′
erg(T |π(X̄)), then there exists some π′ in the collection

and some µ′ ∈ P′
erg(S

′) such that π′ : (S ′, µ′) → (T, ν) is a
measure-preserving isomorphism.

Remark 6.4. Even though measures are supported on the return sets,
our proof of Proposition 6.3 appeals to π being Bowen type on the
(larger) Sarig regular sets.

Proof of Proposition 6.3. Let ν ∈ P′
erg(T |πX̄). The set πX̄ is the union

of the countable collection of invariant sets πZ±ret. Since π|X̄ is at most
countable to one, these sets are Borel. As ν is ergodic, there exists Z
such that ν(πZ±ret) = 1. Because π is finite to one on Z±ret there exists
µ ∈ P′

erg(S|Z±ret) with πµ = ν (Prop. B.1 and ergodic decompositon).

Thus P′
erg(X̄) → P′

erg(πX̄) is surjective, as claimed. The rest of the
proof is devoted to the construction of the factors maps π′ : (X ′, S ′)→
(Y ′, T ′).
Because µ is ergodic, there is a positive integer m and a set E in

Z±ret of µ-measure one such that for every y in πE:

• y has exactly m preimages in E, and
• with νy denoting the measure assigning mass 1/m to each preim-
age point of y in E, for every Borel set B in X

µB =

∫

Y

νy
(
(π−1y) ∩B

)
dν(y) .

If m = 1, π′ := π already satisfies condition (3). Now suppose m > 1.
Let Ek be the set of x in E such that, if x1, . . . , xm are the distinct
preimages in E of πx, then the m words xi[−k, k] are distinct. For
large enough k, µEk > 0. After passing to a higher block presentation
of (Z, S), we may assume k = 0.
Let ∼ be some relation on A(Z) with respect to which π is Bowen

type on Z±ret. Let (Fm, Sm) denote the m-fold fibered product system
of (Z, S|Z) over ∼. Here

Fm := {x = (x1, . . . , xm) ∈ Zm : xi ∼ xj , 1 ≤ i ≤ j ≤ m}

(recall xi ∼ xj means xin ∼ xjn for all n) and Sm is the restriction to
Fm of the product map S × · · · × S. Thanks to the Bowen property,
(Fm, Sm) is a Markov shift, whose alphabet A(Sm) is a subset of the
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set of m-tuples of symbols from A(Z) which are mutually related. For
1 ≤ r ≤ m, let pr : Fm → X be the coordinate projection map x 7→ xr.
Define π̃ : Fm → Y as the composition π̃ = π ◦ pr, for any pr. Here π̃
is well defined since x ∼ y =⇒ π(x) = π(y), for all x, y ∈ Z.
We define an Sm-invariant measure µ̃ on Fm as follows. For each y

in πE, define a measure ν̃y on the π̃-preimages y as follows: ν̃y assigns
mass 1/m! to each m-tuple (x1, . . . , xm) such that the m entries are
distinct preimages of y (there are m! such tuples for µ-a.e. y). Then
for any Borel set B in Fm define

µ̃B =

∫

Y

ν̃y
(
(π−1y) ∩B

)
dν(y) .

Then prµ̃ = µ and π̃µ̃ = πµ = ν . Because µ is ergodic, we may take
µ′′ an ergodic measure from the ergodic decomposition of µ̃ such that
prµ

′′ = µ, for 1 ≤ r ≤ m, and π̃µ′′ = ν.

Claim 6.5. For µ′′-a.e. x = (x1, . . . , xm) ∈ Fm, for all n ∈ Z:
(i) the m symbols x1n, . . . , x

m
n are pairwise distinct;

(ii) for 1 ≤ i, j ≤ m: xinx
j
n+1 is an S-word if and only if j = i.

Proof of Claim 6.5. Because p1µ
′′ = µ and µE0 > 0, the set

E ′′
0 := {(x1, . . . , xm) ∈ Fm : xi0 6= xj0, 1 ≤ i < j ≤ m}

satisfies µ′′E ′′
0 = µE0 > 0. Let a = (a1, . . . , am) be an m-tuple of

distinct symbols such that [a] := {x ∈ Fm : x0 = a} ⊂ E ′′
0 satisfies

µ′′[a] > 0.
We note that (i) follows from (ii) and prove this last assertion of

the claim. For a contradiction, assume that there are symbols b =
(b1, . . . , bm) and c = (c1, . . . , cm) in A(Sm) such that µ′′[bc] > 0 and
(say) b2c1 is an S-word (i.e. the transition b2 → c1 is allowed in S).
The following hold for all x = (x1, . . . , xm) from a set of full µ′′

measure, (1) because, for each r, pr(µ
′′) = µ which is ergodic and (2)

by ergodicity of µ′′:

(1) There is a symbol which in every xi occurs with positive fre-
quency in positive and in negative coordinates.

(2) There are sequences of integers (in), (jn) (depending on x) with
i1 < j1 < i2 < j2 < · · · such that for all n, xjnxjn+1 = bc and
xin = a.

Pick one such x. For each n ≥ 1, define a point z(n) in S by setting

(z(n))t = (x1)t if t ≥ jn + 1

= (x2)t if t ≤ jn .
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Then for all n, z(n) ∼ x1, so π(z(n)) = π(x1). If ℓ > n, then (z(n))iℓ = a1
and (z(ℓ))iℓ = a2, so z

(n) 6= z(ℓ). By condition (1), the points z(n) are
all in Zret. This contradicts π being finite to one on Z±ret, and proves
(ii). �

Let (X̃m, S̃m) be the Markov shift contained in the Markov shift
(Fm, Sm) and which is defined by the following conditions:

(1) A(S̃m) is the set of a = (a1, . . . , am) in A(Sm) such that the
symbols a1, . . . , am from A(S) are distinct.

(2) There is a transition from a = (a1, . . . , am) to b = (b1, . . . , bm)
if and only if the following holds: for 1 ≤ i, j ≤ m there is an
S transition ai → bj if and only if i = j.

The claim 6.5 implies that µ′′ assigns measure one to the Markov shift

X̃m. By ergodicity of µ′′, there is a unique irreducible component

(X ′′, S ′′) of X̃m such that µ′′X ′′ = 1.
Now define (X ′, S ′) to be the shift space (on a countable alphabet)

which is the image of (X ′′, S ′′) under the one-block map ψ defined by
the rule ψ : (a1, . . . , am) 7→ {a1, . . . , am}. The map ψ is right resolving:
i.e., if A0A1 is a word of length two occuring in a point of X ′, and

ψ : ã0 7→ A0, then there exists a unique symbol ã1 following ã0 in X̃m

such that ψ : ã1 7→ A1. The map ψ is likewise left resolving. Therefore
X ′ is a Markov shift and it is also irreducible. Thus, for every x in

X ′, for every ã in A(X̃m) such that ψ : ã 7→ x0, there exists a unique
preimage x̃ of x such that x̃0 = ã. Every point of X ′ has exactly m!

preimage points in X̃m.
The map ψ only collapses points which have the same image under

π̃. Therefore there is a Borel map π′ : (X ′, S ′) → (Y ′, T ′) defined by
π̃ = π′ψ, where Y ′ = π̃(X ′′) = π′(X ′) and T ′ is the restriction of T
to Y ′. Let ∼ also denote the natural relation on the alphabet of X ′:
{a1, . . . , am} ∼ {b1, . . . , bm} iff ai ∼ bj for all i, j. If w

′, x′ are in X ′
±ret,

there are w′′, x′′ in X ′′
±ret such that ψx′′ = x′, ψw′′ = w′. (This is the

one point where the proof would fail if we used Zret rather than Z±ret.)
Then p1x

′′ = x ∈ Z±ret and p1w
′′ = w ∈ Z±ret; and, π

′(x′) = π′(w′) if
and only if π(x) = π(w). Because π is Bowen type on Z±ret, it follows
that π′ is Bowen type on X ′

±ret.
A set in X ′′ of full measure for µ′′ is E ′′ = {(x1, . . . , xm) ∈ X

′′ : xi ∈
E, 1 ≤ i ≤ m}. Points in E ′′ with the same π̃ image are mapped by ψ
to the same point in X ′. Setting µ′ = πµ′′, the map

π′ : (S ′, µ′)→ (T, ν)

is an isomorphism of measure-preserving systems.
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The Markov shift (X ′′, S ′′) constructed above given ν was an irre-

ducible component of the Markov shift obtained by restricting X̃m to
a higher block presentation. The higher block presentation was a no-
tational convenience, but in any case there are only countably many

higher block presentations of a given X̃m. Any Markov shift has only
countably many irreducible components. Consequently, we build only
countably many irreducible Markov shift extensions. �

Proof of Theorem 1.12. Prop. 6.3 implies the surjectivity of the in-
duced map P′

erg(S|X̄) → P′
erg(T |πX̄). The characterization of Markov

shifts in terms of universal subsystems (Thm. 4.4) will yield the almost-
Borel isomorphism of π(X̄) to a Markov shift as follows.
Let ν be an ergodic and invariant probability measure of (π(X̄), T ).

Let π′ : (X ′, S ′) → (Y ′, T ) be the extension given by Prop. 6.3 with
µ′ ∈ P′

erg(S
′) such that π′µ′ = ν. Letting q denote the period of the

irreducible Markov shift (X ′, S ′), we note:

(1) The set of periods of (T, ν) coincides with that of (S ′, µ′) and
therefore contains q;

(2) The image of (X ′
±ret, S

′) contains a strictly (h(S ′), q)-universal
system (by Proposition 6.2, because π′ is finite to one, Bowen
type on X ′

±ret).

Using that entropy is a Borel function of the measure and the Borel
Periodic Decomposition (Thm. 2.5), we obtain an invariant Borel sub-
set Z ⊂ π′(X ′) such that, for all measures m on π′(X ′

±ret), m(Z) = 1 if
and only if q is a period of m and h(T,m) < h(S ′). It follows from (2)
above that Z is strictly (h(S ′), q)-universal. Note that Z depends only
on the extension π′, hence there are at most countably many such sets
Z, also: uT (q) ≥ h(Z) = h(S ′).
Thus, either µ′ is the measure of maximal entropy for (X ′, S ′), or

h(T,m) = h(S ′, µ′) < h(S ′) so m(Z) = 1. Altogether, then, (π(X̄), T )
is almost-Borel isomorphic to a countable union of:

(1) strictly (uT (p), p)-universal systems (using Lemma 3.2);
(2) systems supporting a single measure µ of P′

erg(T ), such that
there exists p with h(T, µ) = uT (p) and (T, µ) is p-Bernoulli.

Thm. 3.10 implies that π(X̄)\π(X̄)U (in the notation of that theorem)
carries only measures from (2) above. By Thm. 4.4, it follows that
π(X̄) is almost-Borel isomorphic to a Markov shift. �

7. Continuous factors of Markov shifts: pathology

The results of this section will give limits to any strengthening of our
two main theorems (1.12 and 1.10) about continuous factors of Markov
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shifts. Recalling the discussion after Theorem 1.10 we build examples
with large sets of

- measures with entropy greater than the entropy h∗(π) from The-
orem 1.10 in Prop. 7.1.

- m.m.e.’s for a factor which is not finite to one, in Corollary 7.6.
- period-maximal measures for a finite-to-one but not Bowen type
factor in Corollary 7.10.

We also remark that a factor of an irreducible Markov shift by a con-
tinuous map need not be a factor by a Bowen type map, even if it is
a compact expansive system. Indeed, among subshifts (up to topolog-
ical conjugacy, the compact zero-dimensional expansive systems), the
continuous factors of irreducible Markov shifts are exactly the coded
systems [16]. But among these, the factors by one-block codes are the
factors by Bowen type maps, and form a proper subset of the coded
systems [16].

7.1. Arbitrary dynamics in high entropy. It is well known that
the entropy of irreducible Markov shifts can increase under one-block
codes (which are continuous and Bowen type factor maps); see e.g.
[15, 16, 17, 36]. The following construction, resembling [36, Examples
3.3,3.4], further shows that a one-block code image of the nonrecurrent
part of a Markov shift can have virtually no almost-Borel relation to
that Markov shift. The quantity h∗(π) in the statement of Proposition
7.1 comes from Theorem 1.10.

Proposition 7.1. Suppose Y is a subshift of {0, 1}Z and ǫ > 0. Then
there is a locally compact irreducible Markov shift X and a one-block
code π from X into {0, 1, 2}Z such that X is the disjoint union of Borel
subsystems X ′, X ′′, X ′′′ for which the following hold.

(1) π(X ′) is almost-Borel isomorphic to X with π|X ′ one-to-1 ;
(2) π(X ′′) is almost-Borel isomorphic to Y with π|X ′′ countable-to-

1.
(3) π(X ′′′) is a fixed point and X ′′′ is a finite orbit.
(4) h∗(π) = h(X) < ǫ.
(5) π(X) is compact and almost-Borel isomorphic to the disjoint

union of Y and X.

Proof. We build in stages a labeled graph G defining π. The Markov
shiftX will be the edge shift defined by G. Each edge will be labeled by
a symbol from {0, 1, 2}. The one-block code will be the rule replacing
an edge with its label.
First, there is a labeled subgraph G+ which has for every Y -word

W (including the empty word ∅) a vertex vW , and for i ∈ {0, 1} with
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Wi a Y -word, has an edge labeled i from vW to vWi. Then for each z
in Y , there is a unique path from v∅ labeled by the onesided sequence
z[0,∞) = z0z1 . . . . Similarly build a graph G− such that for each y in
Y there is a unique left infinite path into v∅ labeled by y(−∞,−1] =
...y−2y−1.
Let X ′′ be the edge shift presented by G− ∪G+. Note, v∅ is the only

common vertex of G−, G+. The image πX ′′ is the set of all shifts of
sequences that are concatenations y(−∞ − 1]z[0,∞) with y, z in Y .
For n ∈ N, define

Bn = {y ∈ π(X ′′) \ Y : y[−n, n] is not a Y -word} ,

a possibly empty wandering subset of Y . Because π(X ′′) \ Y = ∪nBn,
an almost null set, the inclusion Y ⊂ π(X ′′) gives an almost-Borel
isomorphism. Any x ∈ X ′′ is determined by π(x) and x0, and therefore
π|X ′′ is countable-to-one. Claim (2) ensues.
The definition of X will depend on positive integer parameters to be

specified later: (nk)
∞
k=1, (mk)

∞
k=1 andM . For each integer k ≥ 1 we add

edges labeled by 2 as follows. Let V−
k and V+

k be the sets of vertices
in G− and G+ corresponding to words of length k. For each v− in V−

nk

and each v+ in V+
nk
, add in an otherwise isolated extra path from v+

to v− of length mk. We also add an extra loop based at v∅ with length
M (the loop is used to make the image of π compact).
Now fix (nk) an arbitrary strictly increasing sequence of positive

integers. Then for large M and (mk) any sequence of large enough
positive integers, we have h(X) < ǫ. For a formal proof of this (obvious)
fact, one can use for example the Gurevič entropy formula, which states
that h(X) is the growth rate of the number of loops based at v∅ when
their length goes to infinity. We choose {m1 < m2 < . . . } ∩MN = ∅.
Define X ′′′ = π−1(2∞); X ′′′ is the finite orbit corresponding to the

special M loop at v∅. Then (3) holds. Next we show π is injective
on X ′, the complement of X ′′ ∪ X ′′′. If y ∈ π(X ′), then there is at
least one maximal block of 2s in y which is bordered by a 0 or 1. The
length of the block (∞, mk for some k, or a multiple of M) determines
a vertex in G (more precisely, among the ones with ingoing or outgoing
edge labeled 2) from which the preimage of y is uniquely determined.
Because all nonatomic measures on X are supported on X ′, Claim (1)
follows, and also (4).
The almost-Borel isomorphism claim of (5) then follows from (1) and

(2) because π(X) = π(X ′) ⊔ π(X ′′) ⊔ π(X ′′′).

It remains to check the compactness. Suppose z ∈ π(X). If 2 does
not occur in z, then z must be in π(X ′′), which is compact. Now
suppose z = lim π(xn) for a sequence (xn), 2 occurs in z and z 6= 2∞. If
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a finite maximal block of 2s occurs in z, then by considering the unique
G-path above that block, one sees z ∈ π(X ′). So suppose there is no
such block. Suppose zi 6= 2 and z[i+1,∞) = 2∞. Let vn be the terminal
vertex of (xn)i. If a subsequence (vn) goes to +∞, then z(−∞, i] must
be the left half of a point in Y ; otherwise, a subsequence of (vn) is
constant and z ∈ π(X ′). The argument for the case z(−∞, i] = 2∞ is
essentially the same. �

Remark 7.2. It is an exercise to show that X in Proposition 7.1 can
in addition be chosen to be SPR (positive recurrent, and exponentially
recurrent with respect to its measure of maximal entropy – see [9] for
equivalent conditions and reference to [22] for more). In some ways,
the SPR Markov shifts behave like shifts of finite type – but not here.

7.2. Wild Maximal Entropy. The next result realizes a wide class of
systems T as equal entropy subsystems of continuous factors of SFTs.
This will be used to prove Corollary 7.6.
First, we need to recall some definitions. A system is zero dimen-

sional if its topology is generated by clopen sets. Every such system
is topologically isomorphic to an inverse limit X = X1 ← X2 ← · · ·
where for all n ∈ N, Xn is a subshift and the bonding map Xn ← Xn+1

is surjective. A continuous factor of a system is finite/zero dimensional,
etc. if as a space it is finite/zero dimensional/etc.
The property entropy-expansive was defined by Bowen [7]. A zero

dimensional t.d.s. is entropy-expansive if and only if the above inverse
limit satisfies h(X) = h(Xn) for some n. The property asymptotically
h-expansive was a generalization defined by Misiurewicz [33] (under the
name “topological conditional entropy”, which is now probably best
avoided [13, Remark 6.3.18]). Any asymptotically h-expansive system
has finite entropy and has a measure of maximal entropy [33]. The
asymptotic h-expansiveness property plays an important role in the
entropy theory of symbolic extensions [13]. A zero dimensional compact
t.d.s. is asymptotically h-expansive if and only if it is topologically
isomorphic to a subsystem of a product

∏∞
k=1Xk of some subshifts Xk

such that
∑

k h(Xk) <∞ (see [12] or [13, Theorem 7.5.9]).

Theorem 7.3. Suppose T is a compact zero dimensional topological
dynamical system which is asympotically h-expansive and is not entropy
expansive. Then there is a continuous factor map from a mixing SFT
onto a system Y such that h(T ) = h(Y ) and Y contains a subsystem
topologically conjugate to T .

Proof. Without loss of generality, we assume T ⊂ X =
∏∞

k=1Xk

where each Xk is a mixing SFT with a fixed point, alphabet Ak, and
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∑
k h(Xk) < ∞. Then X is a factor of a mixing SFT [10, Theorem

7.1]. So it is enough to find a continuous factor map γ : X → Y such
that γ|T ≡ id, T ⊂ Y ⊂

∏
k≥1(Ak ⊔ {0})

Z, and h(Y ) = h(T ).
We introduce some notations. Suppose R is a subshift and M is

a positive integer. Then W(M,R) is the set of words of length M

occuring in points of R. We let X̂N = X1 × · · · × XN and TN be the
projection of T in X̂N . We write x ∈ X as (x1, x2, . . . ) with xk ∈ Xk.
We denote by (x1, . . . , xN)|J the restriction of these sequences to an
integer interval J . Given N,M ≥ 1, x ∈ X , we define

I(x,N,M) := {j ∈ Z : (x1, . . . , xN)|[j, j +M) ∈ W(M,TN )}

and let J(x,N,M,L) be the union of integer intervals of length L that
are contained in I(x,N,M).
We shall select two non-decreasing sequences of positive integers

MN , LN , N ≥ 1, and define γN : X̂N → (AN ⊔ {0})
Z by:

γN(x) = (yj)j∈Z with yj =

{
xN |j if j ∈ J(x,MN , LN)
0 otherwise.

We also define γ̂N : X →
∏

1≤k≤N(Ak ⊔ {0})
Z by:

x 7→ (γ1(x1), γ2(x1, x2), . . . , γN(x1, . . . , xN )),

and, finally, γ : X →
∏

N≥1(AN ⊔ {0})
Z by:

γ(x) := (γ1(x1), γ2(x1, x2), . . . ) and let Y := γ(X).

Y is a compact t.d.s. and a factor of X and γ|T ≡ id.
Because T is not entropy expansive, we have for all N (perhaps after

telescoping) that h(TN+1) > h(TN ). Hence, we can fix a sequence of
numbers hN , N ≥ 1 such that h(TN ) < hN < h(TN+1) for all N ≥ 1.

It now suffices to show that there are sequences M,L such that:

Claim. For all N ≥ 1, there is CN <∞ such that, for all ℓ ≥ 0:

(7.4) #{γ̂N(x)|[0, ℓ) : x ∈ X} ≤ CNe
hN ℓ.

We extend the above claim to N = 0, by putting γ̂0(x) := 0∞, so
C0 = 1 and h0 = 0 satisfy it for arbitrary M0, L0. We let N ≥ 1, fix
0 < ǫ < (hN − h(TN ))/3 and assume the claim for N − 1 for some
choice of MN−1, LN−1.
Pick M := MN ≥ MN−1 such that, for some K1(M) < ∞, for all

j ≥ 0:

(7.5) #W(j, TN ) ≤ (#W(M,TN ))
j/M+1 ≤ K1(M)e(h(TN )+ǫ)j.
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By construction, the maximal integer intervals in J(x,N,M,L) have
length at least L. Therefore, letting Jℓ(N,M,L) := {J(x,N,M,L) ∩
[0, ℓ) : x ∈ X}, we have, for L := LN large enough:

(1) for all ℓ ≥ 0, #Jℓ(N,M,L) ≤ K2(L)e
ǫℓ;

(2) CN−1K1(M) ≤ eǫL.

Note that the elements of γ̂N(x)|[0, ℓ−1], x ∈ X , can be determined
by specifying:

(1) J := J(x,N,M,L) ∩ [0, ℓ);
(2) for each maximum integer interval I ′ in J , γ̂N(x)|I

′;
(3) for each maximum integer interval I ′′ in [0, ℓ) \ J , γ̂N(x)|I

′′ =
γ̂N−1(x)|I

′′ × 0I
′′

.

For (1), the number of possibilities is bounded by:

#W(ℓ, ZL) ≤ K2(L)e
ǫℓ.

Fix one of these. Then, there are at most ℓ/L+2 intervals I ′ as in (2),
so writing ℓ′ for the sum of their lengths, the number of possibilities
for (2) is at most:

K1(M)ℓ/L+2eℓ
′(h(TN )+ǫ).

For (3), we similarly get the bound:

(CN−1)
ℓ/L+2eℓ

′′hN−1 .

Thus, the number of possibilities for γ̂N(x)|[0, ℓ− 1) is bounded by:

K2(L)(K1(M)CN−1)
2e(h(TN )+3ǫ)ℓ

As h(TN ) + 3ǫ ≤ hN , (7.4) follows for an obvious choice of CN . The
induction and therefore the proof is complete.

�

Corollary 7.6. For any ergodic, finite entropy, measure-preserving
system Z, there is a continuous factor of a mixing SFT which ad-
mits among its ergodic measures of maximal entropy uncountably many
copies of the product of Z with a Bernoulli system.

Proof. Let B =
∏

n≥1Bn, where the Bn are positive entropy mixing
SFTs with fixed points such that h(B) <∞. B has a unique measure
µ of maximum entropy, the product of the unique maximum entropy
measures µn of the Bn. Each (Bn, µn) is a mixing Markov chain and
therefore Bernoulli (by [20]). It then follows from [35, Theorem 1] that
(B, µ) is also isomorphic to a Bernoulli shift
By the Jewett-Krieger theorem, there is a strictly ergodic subshift

S which is measurably isomorphic to Z. Let W = S ×
∏∞

n=1Wn with
each Wn the identity map on a two point space. Then B × W is
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asymptotically h-expansive and not h-expansive so Thm. 7.3 applies
with T = B ×W . �

Note that the Bernoulli factor is only used to ensure the topological
condition of asymptotic h-expansivity without entropy-expansiveness.
Moreover, if Z in Cor. 7.6 has positive entropy and the weak Pinsker
property5 then (of course) the conclusion holds for Z itself, with no
need to take a product with a Bernoulli system.
The next proposition shows that the assumption that T not be en-

tropy expansive was necessary for it to be embedded as a proper full
entropy subsystem of a continuous factor of a mixing SFT.

Proposition 7.7. Suppose X is a mixing SFT, Y is a zero dimensional
continuous factor of X and T is an entropy expansive subsystem of Y
such that h(T ) = h(Y ). Then T = Y .

Proof. Let Y be given as an inverse limit of subshifts Yn by surjective
bonding maps pn : Yn+1 → Yn. Let πn : Y → Yn be the projection and
let Tn be the subshift πnT . With pn also denoting the restriction of pn
to T , we have T as the inverse limit Tn ← Tn+1 by surjective bonding
maps. Suppose Y 6= T .
Pick N such that h(TN ) = h(T ). We assume by contradiction, TN 6=

YN . Let γ : X → Y be the continuous factor map. Then πN ◦ γ := γN
is a factor map onto YN which is therefore mixing sofic. Hence h(TN ) <
h(YN) ≤ h(Y ), a contradiction. �

7.3. Wild period-maximal measures subsection. We now con-
sider the case that π : X → Y is a bounded to one continuous factor
map from an irreducible SFT X onto a zero dimensional system Y .
In this case, Y has a unique measure of maximal entropy, which must
be period-Bernoulli. If Y is expansive, then Y is irreducible sofic and
almost-Borel isomorphic to a Markov shift. If Y is not expansive then
the Borel structure of Y at a period can be very different from that of
a Markov shift.
Below Y1 and T1 denote the restrictions of Y and T to ergodic mea-

sures with maximum period 1 (see the Borel periodic decomposition
Thm. 2.5).

Proposition 7.8. Suppose T is a subshift. Then there is a period 2
irreducible SFT X and a continuous factor map π from X onto a zero
dimensional metrizable system Y such that the following hold.

(1) |π−1(y)| ≤ 2 , for all y ∈ Y .

5 This property holds for all positive entropy ergodic systems according to the
Weak Pinsker Conjecture [42, 43] (which remains open).
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(2) π−1T = {x ∈ X : |π−1(π(x))| = 2}.
(3) Y \ Y1 is almost-Borel isomorphic to X.
(4) Y1 is almost-Borel isomorphic to T1.

Moreover, X can be chosen with h(X) arbitrarily close to h(T ).

Proof. We choose (X, σ) of the formX = X ′×(Z/2Z), with σ : (x, g) 7→
(σx, g+1), where (X ′, σ) is any mixing SFT into which T continuously
embeds with entropy arbitrarily close to h(T ). Let E ′ be the quotient
relation of the map T × Z/2Z → T defined by (x, g) 7→ x. Let E be
the union of E ′ and the diagonal of X . Define Y as the quotient space
X/E (with quotient topology) and identify the image in Y of T×{0, 1}
with T . Then Y is compact metrizable, since E is a closed equivalence
relation (Proposition B.2). Let us check that Y is zero-dimensional.
For an X ′ word W−n . . .Wn, let Uw = {x ∈ X ′ : x[−n, n] = W}.
If W is not a T -word, then πUW is clopen in Y ; if W is a T -word,
then π(W × Z/2Z) is clopen in Y . Therefore each point in Y has a
neighborhood basis of clopen sets.
The system X ′ \ T contains mixing SFTs with entropy arbitrarily

close to h(X). Hence Y \Y1 is the union of a strictly (h(X), 2)-universal
Borel system and a period-2 Bernoulli measure of entropy h(X). There-
fore Y \ Y1 is almost-Borel isomorphic to X . The rest is clear. �

We’ll give two easy corollaries of Proposition 7.8 which already show
Y1 can be very different from what can arise in a Markov shift.

Corollary 7.9. Suppose (W, ν) is a totally ergodic, finite entropy, mea-
sure-preserving system. Then there is a period 2 irreducible SFT X
and a continuous, at most 2-to-1 factor map π : X → Y such that Y1
is almost-Borel isomorphic to (W, ν).

Proof. This follows from Prop. 7.8 and the Jewett-Krieger Theorem.
�

Let R be the map on T2 defined by (t, y) 7→ (t, y + t). Let P0 =
{(x, y) ∈ T2 : 0 ≤ x ≤ y ≤ 1} and P1 = T2 \ P0. Let Z be the
subshift on symbols 0, 1 which is the closure of R-itineraries through
the partition {P0, P1}. Z is a disjoint union of Sturmian shifts (one
for each irrational rotation) and countably many periodic orbits. Now
Z1 is the restriction of Z to the complement of the periodic orbits of
period greater than 1 (including exactly one copy of each Sturmian
shift and a fixed point).

Corollary 7.10. Suppose (W, ν) is a weakly mixing, finite entropy,
ergodic transformation. There is a period 2 irreducible SFT X and
a continuous at most 2-to-1 factor map π : X → Y , such that Y1 is
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almost-Borel isomorphic to Z1× (W, ν). In particular, the measures of
Y1 are uncountably many and have entropy h(W ).

Proof. By the Jewett-Krieger Theorem, let W ′ be a strictly ergodic
shift, which with its invariant measure is isomorphic to (W, ν). Set T
in Prop. 7.8 to be Z ×W ′. A product of irrational rotation (or fixed
point) and weakly mixing remains totally ergodic so Y1 and T1 are
isomorphic to Z1 ×W

′. �

Obviously, the possible almost-Borel structure of Y1 in Prop. 7.8 can
be much more varied than shown in the two corollaries.

8. C1+ surface diffeomorphisms

8.1. Sarig’s Symbolic Dynamics. For each compact surface C1+-
diffeomorphism f : M → M and number χ > 0, Sarig [41] defined

π̂, Σ̂, Σ̂#,R,∼ such that Σ̂ is a Markov shift with countable alphabet
R; π̂ is a Borel factor map from Σ̂ into M ; and there is a relation
on the elements of R of being “affiliated” (which we will write as ∼).
We note that Σ̂# (the “regular set”) is the Sarig regular set Σ̂±ret of
Definition 6.1.

Summary 8.1. The items above satisfy the following.

(1) If µ ∈ Perg(f) and has both its positive and negative Lyapunov

exponents outside (−χ, χ), then µπ̂(Σ̂#) = 1.

(2) If µ ∈ Perg(f) and h(f, µ) ≥ χ, then µπ̂(Σ̂#) = 1.

(3) Each point z ∈ π̂(Σ̂#) has only finitely many preimages in Σ̂#.

(4) π̂ is Bowen type on Σ̂# for the relation ∼ (see Defn. 1.11).
(5) For all R ∈ R, {R′ ∈ R : R′ ∼ R} is finite.
(6) π̂ is Hölder-continuous.

(7) Σ̂ is locally compact.

This symbolic dynamics is an embarassment of riches. To apply
Theorem 1.12, we only need that π̂ is finite-to-one Bowen type on Σ̂#,
which follows from (3,4). Properties (5,6,7) are given for context.
Properties (1,2) are of course essential to relating the symbolic dy-

namics to the diffeomorphism. We note that the main theorems of
[41] quote property (2). This is weaker than (1): as is well-known (see
[24]), for a surface diffeomorphism, an ergodic measure with nonzero
entropy must have no zero Lyapunov exponent. However the proofs
deal with the set NUHχ(f) which is defined [41, p. 348] in terms of
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the exponents, not the entropy, which is never used in the rest of the
paper.6

We will see below that the properties in the summary are explicitly
or essentially contained in [41].

8.2. The theorem for surface diffeomorphisms.

Theorem 8.2. Every C1+ surface diffeomorphism (X, f) is the union
of two Borel subsystems Y and Z such that:

• Y is almost-Borel isomorphic to a Markov shift;
• Z carries only zero entropy measures.

Moreover, a nonatomic ergodic measure is carried by Z if and only
if it satisfies all of the following conditions:

(i) its entropy is zero;
(ii) at least one of the Lyapunov exponents is zero;
(iii) it has no period which is the maximal period of an ergodic, invari-

ant probability with positive entropy.

Remark 8.3. The conditions (i)-(iii) are not independent. As discussed
above, (ii) implies (i). Also (iii) is equivalent to:

(iii’) the measure has no period which is the maximal period of a
nonatomic, ergodic, invariant probability which has no zero
Lyapunov exponent.

Remark 8.4. Note that the “universal” part of Y above could alter-
nately be argued from Corollary 1.8 and Katok’s horseshoes (see [11],
where this is done in any dimension, assuming no zero Lyapunov ex-
ponents). But to control measures with entropy maximal at a period,
we depend on Sarig’s symbolic dynamics.

Proof of Thm. 8.2. For χ = 1/n, we apply Sarig’s work to get a Markov

shift Σ̂n and factor map π̂n : Σ̂n → X satisfying 8.1(1-4). Let Σn be
the union of the Sarig regular sets of all irreducible components of
Σn. By properties 8.1(3,4) and Thm. 1.12, Ŷn := π̂n(Σn) is almost-

Borel isomorphic to a Markov shift. Let Y0 = ∪nŶn; by Cor. 4.6, Y0 is
almost-Borel isomorphic to a Markov shift.
If µ ∈ P′

erg(f) satisfies neither (i), nor (ii), then, by properties

8.1(1,2), there exists µ̂ ∈ P′
erg(Σ̂n) with π̂∗(µ̂) = µ. In particular,

µ̂(Z) = 1 for some irreducible component of Σ̂n, so µ̂(Z±ret) = 1, and

6The author has confirmed to us that the remark on χ-largeness [41, p.344]
contains a misstatement: there, “both Lyapunov exponents” should replace “at
least one Lyapunov exponent”.
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therefore µ(Y0) = 1. We enlarge Y0 into Y carrying all measures not
satisfying all of (i)-(iii) as follows.
First, let λu(x) := lim supn→∞

1
n
log ‖(fn)′(x)‖. It is a Borel function

such that, for all µ ∈ Perg(f), for µ-a.e. x ∈ X , λu(x) is the largest ex-
ponent of µ. By this observation (and the same applied to the smallest
exponent), we get an invariant Borel subset X ′′ which has full measure
for µ ∈ Perg(f) if and only if µ has a zero Lyapunov exponent.
Now let P be the set of integers p ≥ 1 such that there is some ergodic,

invariant probability measure µ with nonzero entropy with maximal pe-
riod p. For each p in P , Σ contains an irreducible Markov shift Σp with
some period dividing p and positive entropy, and therefore uY0

(p) > 0.
For each p ∈ P , the Borel periodic decomposition (Thm. 2.5) pro-
vides an invariant Borel subset X ′

p of X such that for µ ∈ Perg(X),
µ(X ′

p) = 1 if and only if p is a period of µ. Define Yp := X ′
p ∩X

′′ and
Y := Y0 ∪

⋃
p∈P Yp. Because all measures on Yp have zero entropy and

uY0
(p) > 0 for p in P , by Corollary 3.14(3) the systems Y and Y0 are

almost-Borel isomorphic.
Thus X = Y ⊔ Z, with Z := X \ Y , is an invariant, Borel decom-

position such that Y satisfies (1) and (2) and carries any µ ∈ P′
erg(f)

failing to satisfy one of (i),(ii),(iii). Conversely, µ(Z) > 0 implies (i),
(ii), and µ(Yp) = 0 for all p ∈ P , hence (iii). �

As an invariant, ergodic probability measure with trivial rational
spectrum has maximal period equal to 1, this yields:

Corollary 8.5. Consider a positive entropy, C1+ diffeomorphism of a
compact surface.
It is almost-Borel isomorphic to a Markov shift if it has a totally

ergodic measure with positive entropy.
It is almost-Borel isomorphic to a mixing Markov shift if it has a

totally ergodic measure which is the unique measure of maximum en-
tropy.

Remark 8.6. The situation of the corollary occurs in some natural set-
tings. In particular, Berger [5] has shown that for a positive Lebesgue
measure subset of parameters, Hénon maps have a unique measure of
maximal entropy that is mixing. Their invariant measures are carried
by a forward invariant compact disk and therefore one can apply the
above corollary: these Hénon maps are almost-Borel isomorphic to a
mixing Markov shift. In particular, they are h-universal, where h is
their Borel entropy (equal to their topological entropy after restricting
to the invariant disk).
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8.3. Proof of the properties of Sarig’s construction. We now
discuss how the Summary 8.1 properties come from Sarig’s paper. For
(1,2,3,6,7), see [41, Theorems 1.3, 12.5, 12.8]. Property (5) is a state-
ment within the proof of Lemma 12.7. To explain (4), we need some
facts and notations from Sarig’s paper [41].

The set V of Pesin charts and the Markov shift Σ(G). Sarig builds a
countable collection V of triplets (Ψx, p

s, pu) where ps, pu > 0 and Ψx is
a Pesin chart defined using the Oseledets theorem applied at point x.
Charts are diffeomorphisms on their image with Lipschitz constant at
most 2 and the domain of Ψx contains (−ps, ps)× (−pu, pu). We often
write p for min(pu, ps) and, following Sarig, write the triplet as Ψps,pu

x

and continue to call it a chart (despite the extra information pu, ps).
Sarig defines a graph G over V. In particular, Ψps,pu

x → Ψqs,qu

y in G
implies that, at least on the rectangle (−10p, 10p), fx,y := Ψ−1

y ◦ f ◦Ψx

is uniformly hyperbolic and Ψ−1
y ◦Ψx is very close to 1. More precisely,

for (u, v) ∈ (−ps, ps)× (−pu, pu)

fx,y(u, v) = (Ax,yu,Bx,yv) + h(u, v)

with C−1
f < |Ax,y| < e−χ, eχ < |Bx,y| < Cf and ‖h(0)‖ ≤ ǫq and

‖h′(0)‖ ≤ 2ǫpβ/3 < ǫ (see [41, Prop. 3.4, p.14]).

It follows that, for any sequence v = (Ψ
psn,p

u
n

xn )n∈Z ∈ Σ(G), there is a
unique sequence t ∈ (R2)Z such that

fxn,xn+1
(tn) = tn+1 ∈ B(0, pn+1)

for all n ∈ Z. The projection π : Σ(G) → M defined by Sarig [41,
Proposition 4.15, Theorem 4.16] satisfies: π(v) = Ψpu,ps

x0
(t0) and tn ∈

B(0, pn/100) for all n ∈ Z.
According to [41, Theorem 5.2], if π(v) = π(w) for v, w ∈ Σ(G)#,

then, for each integer n ∈ Z, the charts vn = Ψ
pun,p

s
n

xn and wn = Ψ
qun,q

s
n

yn

are very close: on B(0, ǫ) (ǫ is much larger than p, q, see [41, Def.2.8
and Lem.2.9])

(8.7) Ψ−1
yn ◦Ψxn(t) = ±t + δ(u) where ‖δ(0)‖ < qn/10, ‖δ

′‖ ≤ ǫ1/3.

Cover Z by large rectangles. Sarig then defines a cover:

Z := {Z(v) : v ∈ V} with Z(v) := {π(v) : v ∈ Σ(G)#, v0 = v}

Proposition 4.11 of [41] implies that Ψ−1
x (Z(v)) ⊂ B(0, q/100), well

inside the domain of the chart.
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PartitionR by small rectangles. Sarig refines the cover Z into a “Markov
partition” R, following an elaborate version of the Bowen-Sinăı con-
struction used in the uniformly hyperbolic case. Σ̂ is then the Markov
shift defined by the countable oriented graph with vertices R ∈ R and
arrows (R,R′) ∈ R2 if and only if f(R)∩R′ 6= ∅. The map π̂ : Σ̂→ M
satisfies:

{π̂((Rn)n∈Z)} =
⋂

n∈Z

f−n(Rn) =
⋂

n∈Z

f−n(Zn)

for some Zn ∈ Z, Zn ⊃ Rn.

Affiliated small rectangles. Sarig defines two small rectangles R,R′ ∈ R
to be affiliated (see before Lemma 12.7 in [41]) when there are two
large rectangles Z,Z ′ ∈ Z such that:

R ⊂ Z, R′ ⊂ Z ′ and Z ∩ Z ′ 6= ∅.

Proof of 8.1(4). Claim 2 in the proof of Theorem 12.8 in [41] asserts

precisely that, for R,R′ ∈ Σ̂, if π̂(R) = π̂(R′) ∈ π̂(Σ̂#) then Rn and
R′

n are affiliated for each n ∈ Z. Thus, it suffices to prove: for all

R,R′ ∈ Σ̂, if Rn and R′
n are affiliated for each n ∈ Z, π̂(R) = π̂(R′).

Let x = π̂(R), y = π̂(R′). For each n ∈ Z, writing Zn = Z(Ψ
psn,p

u
n

xn ),

fnx ∈ Rn ⊂ Zn and tn := Ψ−1
xn
(fnx) ∈ Ψ−1

xn
(Zn) ⊂ B(0, pn/100).

Likewise,
un := Ψ−1

yn (f
ny) ⊂ B(0, qn/100).

Now, using qn ≤ eǫ
1/3
pn and eq. (8.7), we get, for all n ∈ Z,

u′n := Ψ−1
xn
◦Ψyn(un) ∈ B(0, pn/10 + (1 + eǫ

1/3

)pn/100) ⊂ B(0, pn)

so u′n+1 = Fn(u
′
n) where Fn := Ψ−1

xn+1
◦ f ◦Ψxn. The uniform hyperbol-

icity of these maps on their domains B(0, pn) implies that u′n = tn for
all n ∈ Z. In particular, x = y. �

8.4. Classification from measures of given maximum period.

Proof of Theorem 1.2. Isomorphic diffeomorphisms have equal data (1)
and (2), since those only depend on positive entropy measures. We turn
to the converse. By Theorem 1.1, it suffices to classify the isomorphic
Markov shifts up to almost-Borel isomorphism. By Theorem 1.5, it
suffices to show that the data (1) and (2) are equal to ūS(·) and η̄S(·)
for any isomorphic Markov shift S. We fix p ≥ 1 and use Fact 2.4.
First the Fact implies that ūS(p) is indeed equal to the supremum in

(1). Second, letM(p) be the measures counted in (2) and S(p) be the
irreducible subshifts counted by η̄S(p). Associate to any µ ∈M(p) the
irreducible shift Σi carrying its image in S.
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The Fact implies pi|p, hence hi ≤ ūS(p) so µ is a m.m.e. of Σi. Thus
pi = p and Σi ∈ S(p). Since the m.m.e. of Σi is unique, µ 7→ Σi is
injective. Conversely, for any Σi ∈ S(p), (the image on the surface
of) its m.m.e. belongs to M(p). Hence, µ 7→ Σi is a bijection and
#M(p) = η̄S(p). �

9. Open problems

We select and discuss a few open problems. Observe that the uni-
versality results in this paper and [23] address only systems with topo-
logical embeddings of positive entropy SFTs (often as the consequence
of hyperbolicity). However, the following result of Quas and Soo sug-
gests that this strong kind of hyperbolicity is not necessary for Borel
universality.
Recall that a toral automorphism arising from matrix A is quasi-

hyperbolic if A has an irrational eigenvalue on the unit circle [30]. It
is irreducible if the characteristic polynomial of A is irreducible. Lin-
denstrauss and Schmidt [31] showed that irreducible quasihyperbolic
toral automorphisms cannot contain nontrivial homoclinic points, and
therefore cannot contain (or be a continuous factor of) any positive
entropy SFT.
Nevertheless, Quas and Soo [39] have proven an analogue of the

Krieger generator theorem (which is the starting point of Hochman’s
result) for this class. This generalization raises the following:

Problem 9.1. Suppose (X, T ) is a mixing quasihyperbolic toral auto-
morphism7. Must (X, T ) be h(T )-universal (as in Theorem 4.1)?

A different question related to the absence of hyperbolicity is:

Problem 9.2. Complete the almost-Borel classification of C1+ surface
diffeomorphisms (i.e., extend Theorem 1.1 to address all nonatomic,
ergodic measures).

In another direction, our proofs require C1+-smoothness (for the ap-
plication of Sarig’s [41] symbolic dynamics and ultimately Pesin theory
[38, 6]). Rees’ examples [40] (see also [4] and references therein) show
that our results do not extend to homeomorphisms.

Problem 9.3. Are C1 surface diffeomorphisms Borel isomorphic to
Markov shifts away from zero entropy measures? In positive topolog-
ical entropy, can they have ergodic period-maximal measures that are

7More generally, the question can be asked about the class of maps considered
by [39]: compact t.d.s. that satisfy almost weak specification, asymptotic entropy
expansiveness, and the small boundary property.
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not period-Bernoulli, or have uncountably many ergodic period-maximal
measures?

Finally, in light of Theorem 1.1, we ask the following.

Problem 9.4. Which Markov shifts of finite positive entropy can be
almost-Borel isomorphic to a C1+ surface diffeomorphism?

We are not able to rule out the possibility that every Markov shift
of finite positive entropy is almost-Borel isomorphic to a surface diffeo-
morphism.

Appendix A. Borel periodic decomposition

This Appendix provides a proof of Thm. 2.5. We freely use the
notations of the Theorems and definitions and facts from Sec. 2.6. We
assume p ≥ 2, the case p = 1 being trivial.
The space of finite measurable partitions of X into p+ 1 atoms is:

P = {(P1, . . . , Pp, Pp+1) : Pi is Borel; Pi ∩ Pj = ∅ if i 6= j; ∪iPi = X}.

If C := (C1, . . . , Cp) is a p-cyclic partition for some measure µ ∈M,

set Ĉ := (Ĉ1, . . . , Ĉp, X \ ∪iĈi) where

C ′
i = Ci \ ∪j 6=iCj and Ĉi = C ′

i ∩ (∩n∈ZT
n(∪pj=1C

′
j)),

so Ĉ ∈ P. Moreover, µ(Ĉi∆Ci) = 0 and T (Ĉi) = Ĉi+1 (again Ĉp+1 =

C1) for all i = 1, . . . , p and (Ĉ1, . . . , Ĉp) is still a p-cyclic partition for
µ.
Finally each µ ∈ P(X) defines a pseudometric ρµ on P: ρµ(P,Q) =

1
2

∑p+1
j=1 µ(Pj△Qj) . We will appeal to the following theorem of Kieffer

and Rahe.

Theorem A.1. [27, Thm. 5] Let D be a Borel subset of Perg(T ) and
let {Pµ : µ ∈ D} be a collection of nonempty subsets of P such that

(1) each Pµ is ρµ-closed, and
(2) for each P in P, the map ρP : D → [0, 1] defined by µ 7→

inf{ρµ(P,Q) : Q ∈ Pµ} is Borel measurable.

Then ∩µPµ 6= ∅ .

Proof of Thm. 2.5. Let D = {µ ∈ Perg(T ) : e
2iπ/p ∈ σrat(T, µ)}.

Given µ ∈ D, let Pµ be the set of Ĉ ∈ P for all p-cyclic partitions
C for µ. It remains to show ∩µPµ 6= ∅ . Note, each Pµ is ρµ-closed, so
condition (1) of Theorem A.1 is satisfied.
Given µ ∈ D, there are distinct νi in Perg(T

p), 1 ≤ i ≤ p, such
that µ = 1

p

∑
i νi and Tνi = νi+1, 1 ≤ i ≤ p (νp+1 means νp). Given
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µ, let C1, . . . , Cp be disjoint sets such that νi(Ci) = 1, 1 ≤ i ≤ p.
Observe that the ergodicity of µ implies that elements of Pµ coincide
modulo µ up to a cyclic permutation of their first p elements. Thus,
modulo µ, Pµ contains exactly p elements, the cyclic permutations
(C1+d, . . . , Cp+d, C∗), d = 0, . . . , p− 1.
To check that D is a Borel subset of the Borel set Perg(T ), we appeal

to some background facts. An injective Borel measurable map into a
Borel space has a Borel image, and a Borel measurable inverse [26,
(15.2)]. The fixed point set of a Borel automorphism is Borel. For E a
separable metric space, the Borel field of P(E) (and hence of any Borel
subset of P(E) is the smallest field for which the maps µ 7→ µ(A), A
ranging over the Borel sets of E, are measurable [26, Theorem 17.24].
Consequently, the sets Fi, G1, G2, G3 below are Borel:

Fi = {µ ∈ P(T i) : T iµ = µ} G1 = Perg(T
p) \ ∪p−1

i=1Fi

G2 = {
1

p
µ : µ ∈ G1} G3 =

{
p∑

i=1

T iµ : µ ∈ G2

}
.

We claim that D = G3. If ν ∈ D and γ is the assumed factor map
onto {e2πi/k : k = 0, 1, . . . , p− 1}, let µ be p times the restriction of ν
to γ−1(1). Then µ ∈ G1 (because µ is ergodic for T ) and ν =

∑p
i=1 µ.

Therefore D is contained in G3. For the other direction, suppose µ ∈
G1. Given 1 ≤ i ≤ p − 1, write the measure T iµ as νc + νs, where
νc = fµ (f the Radon-Nikodym derivative) and νs is singular with
respect to µ. The function f is T p-invariant, because the measures µ
and T iµ are T p-invariant, so by ergodicity of µ for T p, f is constant
µ a.e. Because T iµ 6= µ, there is then a set Ci of µ-measure 1 and
T iµ-measure zero. Let C = ∩p−1

i=1Ci and Di = T iC, 0 ≤ i ≤ p − 1. It

follows that µ(Di ∩ Dj) = 0 for 0 ≤ i < j ≤ p − 1. Now
∑p−1

i=0
1
p
T iµ

is a T invariant probability eigenfunction defined a.e. by x→ e2πi/p if
x ∈ Di. Therefore G3 is contained in D.
It remains to verify condition (2) of Theorem A.1. We will construct

a Borel selection β for the Borel map φ : G2 → D defined by ν 7→∑p
i=1 T

iν (i.e., β : D → G2 is Borel and φ ◦ β is the identity on D).
Define a Borel measurable order ≺ on G2 (for example, via a Borel

injective map G2 → R). Let B = {m ∈ G2 : m ≺ T jm, 1 ≤ j < p}, a

Borel set in G2. Then the restriction B
φ
−→ D is a Borel bijection and

β = (φ|B)−1 is our selection.
Now suppose P = (P1, . . . , Pp+1) ∈ P. For µ ∈ D, set µ′ = β(µ).

Given Q = (Q1, . . . , Qp+1) in Pµ, there is some d ∈ {1, . . . , p} such that
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for 1 ≤ j ≤ p we have

(T j+dµ′)(Qj) = µ(Qj) ,

(T j+dµ′)(X \Qj) = 0 ,

and µ(Qp+1) = 0. Therefore

ρµ(P,Q) =
1

2

p+1∑

j=1

µ(Pj △Qj) =
1

2

p+1∑

j=1

µ(Pj) + µ(Qj)− µ(Pj ∩Qj)

= 1−
1

2

p∑

j=1

µ(Pj ∩Qj) = 1−
1

2

p∑

j=1

(T j+dµ′)(Pj) := φd(µ) .

We conclude that inf{ρµ(P,Q) : Q ∈ Pµ} = min{φd(µ) : 1 ≤ d ≤ p},
which is a Borel function of µ. �

Appendix B. Miscellany

We include in this section some basic results for lack of a direct
reference.

Proposition B.1. Let π : (X,S)→ (Y, T ) be a Borel factor map. Let
ν ∈ Prob(T ) satisfy: for ν-a.e. y ∈ Y , 0 < #π−1(y) <∞. Then there
exists µ ∈ Prob(S) such that π∗µ = ν.

Proof. Observe that we can replace Y by
⋂

n∈Z T
−nY ′ where Y ′ is a

Borel set of full ν-measure implied by the assumption.
We claim that there are a Borel map N : Y → N, N(y) := #π−1(y),

and a Borel isomorphism ψ : X → Ŷ := {(y, k) ∈ Y × N : 1 ≤ k ≤

N(y)} such that π ◦ ψ(y, k) = y on Ŷ . This follows from the uni-
formization theorem for Borel maps with countable fibers [26, (18.10)
and (18.14)].
Now, ψ ◦ S ◦ ψ−1(y, k) = (T (y), σy(k)) where

σy : {1, . . . , N(y)} → {1, . . . , N(Ty)}.

S and T being automorphisms, N ◦ T = N and σy is a permutation of
{1, 2, . . . , N(y)}. Hence, S must preserve

µ :=
∑

n≥1

(ψ−1)∗
(
(ν|N−1(n))× 1

n
(δ1 + · · ·+ δn)

)
.

�

Proposition B.2. Suppose f : X → Y is a continuous surjection,
Y has the quotient topology, X is compact metric and E := {(x, w) :
f(x) = f(w)} is closed in X ×X. Then Y is compact metrizable.
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Proof. Let p1, p2 be the projections from X × X to X . If K is a
closed subset of the compact Hausdorff space X , then f−1(f(K)) =
π2(π

−1
1 K)) is closed in X . Now f is a closed map with compact fibers

and X is metrizable, so Y is metrizable [14, Theorem 5.2]. �
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