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Abstract

We interpret the chiral WZNW model with general monodromy as an infinite dimen-
sional quasi-Hamiltonian dynamical system. This interpretation permits to explain the
totality of complicated cross-terms in the symplectic structures of various WZNW defects
solely in terms of the single concept of the quasi-Hamiltonian fusion. Translated from the
WZNW language into that of the moduli space of flat connections on Riemann surfaces,
our result gives a compact and transparent characterisation of the symplectic structure
of the moduli space of flat connections on a surface with k handles, n boundaries and m
Wilson lines.
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1 Introduction

The study of WZNW defects has been quite a hot topic since last ten years [3, 4, 8, 10, 11, 12,
13, 14, 18, 19, 20, 22, 25, 26, 28]. The idea was to modify the standard WZNW dynamics by
consistent boundary conditions on the world-sheet or by defect lines in the bulk where the group
valued WZNW field is allowed to jump in a particular way. In the presence of such defects the
WZNW classical field equations can still be explicitely solved and the corresponding symplectic
structure on the classical space of solutions can be derived starting from the classical WZNW
action in [16, 27]. The resulting explicit expressions for the symplectic forms turn out to be
quite complicated, however.

More conceptual understanding of the WZNW symplectic structures in the presence of defects
was proposed in [17], where the language of flat conections on Riemann surfaces was used.
This insight was motivated by an older result [7] where the symplectic structure of the bulk
WZNW model without defects was identified with that of the moduli space of flat connections
on the annulus. In the paper [17], the phase space of the boundary WZNW model was then
shown to be symplectomorphic to the moduli space of flat connections on the disc with two
Wilson lines inserted. The holonomies of the flat connections around the insertion points lie in
some conjugacy classes in the group manifold G which are interpreted as ”D-branes”, i.e. as
submanifolds of the target space G on which the open strings end.

Following the same philosophy, symplectic structures of several other defects were identified
with those of appropriate moduli spaces of flat connections [27]. Thus the jump of the group
valued WZNW field through a defect line on the world-sheet [13, 18] was shown to lead to the
moduli space of flat connections on the annulus with one Wilson line insertion [27]. In this case,
the holonomy around the insertion point lies in the same conjugacy class as the jump. The
dictionnary between the WZNW defects and the moduli spaces of flat connections was then
enlarged to yet other types of defects still in [27]. For example, the phase space of the boundary
WZNW model with one bulk defect line turns out to be the moduli space of flat connections
on the disc with three Wilson line insertions. Finally, the last example treated in [27] is that of
permutation branes [10, 12, 14, 26, 28] which are the boundary conditions for the n-fold direct
product G×G× ...×G WZNW model on a strip world-sheet. It was conjectured in [27] that the
relevant moduli space for this situation corresponds to the Riemann surface with n boundaries
and two Wilson line insertions.

Although the book-keeping of the WZNW defects via the moduli spaces of flat connections is
very elegant, it is more of conceptual importance than of concrete technical utility. In practice,
one rather needs to have a description of the relevant symplectic structures on the moduli
spaces in terms of group-valued holonomies of the flat connections since they correspond to the
physically interpretable WZNW observables. Such description is, however, quite cumbersome
already in the presence of small number of defects, since there arise many cross terms in the
symplectic forms which correspond to ”interactions” of the defects.

The goal of the present paper is to propose an alternative conceptual bookkeeping of the WZNW
defects which would be technically more friendly and would use quantities with direct physical
interpretation. Our main inspiration comes from the approach of Ref. [2], where the symplectic

2



structures of the moduli spaces of flat connections on closed surfaces (i.e. without boundaries)
were described in terms of the so called quasi-Hamiltonian fusion. Speaking more precisely, the
moduli space of flat connections on the compact closed surface with m Wilson line insertions
and k handles was identified in [2] as the following symplectic manifold

Mmk ≡ (C−1 ~ C−2 ~ . . .~ C−m ~ D(G) ~ · · ·~ D(G)︸ ︷︷ ︸
k times

)e. (1.1)

Here C−i is the conjugacy class to which belongs the holonomy of the connection around the
ith insertion point (the superscript − means the inverse of the standard quasi-Hamiltonian
structure on the conjugacy class), the symbols D(G) stand for the so called internally fused
quasi-Hamiltonian double of the structure Lie group G, the operation ~ is the fusion of two
quasi-Hamiltonian manifolds and the notation (M)e means the symplectic manifold obtained
by the quasi-Hamiltonian reduction of the quasi-Hamiltonian manifold M at the unit level of
the moment map.

The big advantage of the expression (1.1) consists in the fact that not only it gives the explicit
characterization of the symplectic structures of the moduli spaces in terms of the convenient
group-like variables but, at the same time, it remains conceptually neat. Indeed, each handle or
defect brings its building block into the expression and all ingredients are glued together using
the single concept of the quasi-Hamiltonian fusion.

In what follows, we shall generalize the formula (1.1), by allowing the presence of the boundaries
on the Riemann surface. This change involves the transition from the finite dimensional context
to an infinite-dimensional one, since the moduli spaces of flat connections in the presence of
boundaries are smooth infinite-dimensional symplectic manifolds [6]. Indeed, the flat connec-
tions on the closed surfaces correspond roughly to the topological G/G WZNW model and the
surfaces with boundaries take into account the full field theoretical WZNW dynamics. Inspite
of the infinite-dimensional setting, the result of our generalisation is conceptually as simple as
the expression (1.1). Indeed, we shall argue that the moduli space of flat connections on the
surface with n boundaries, m Wilson lines insertions and k handles reads:

Mnmk ≡ (W− ~ . . .~W−︸ ︷︷ ︸
n times

~ C−1 ~ C−2 ~ . . .~ C−m ~ D(G) ~ . . .~ D(G)︸ ︷︷ ︸
k times

)e, (1.2)

where W− is the particular infinite-dimensional quasi-Hamiltonian manifold the points
of which are quasi-periodic maps with values in G. We shall refer to W− as to
quasi-Hamiltonian chiral WZNW model. We shall see, in particular, that the quasi-Hamiltonian
language of formula (1.2) is very well suited for bookkeeping of multitude of terms appearing
in the explicit description of symplectic forms associated to various WZNW defects.

The plan of the paper is as follows: In Section 2, we expose some basic facts about the quasi-
Hamiltonian geometry; in particular, we define the quasi-Hamiltonian fusion, quasi-Hamiltonian
reduction and explain the contents of the so called equivalence theorem of [2] relating Hamilto-
nian loop group LG-spaces to the quasi-Hamiltonian G-spaces. In Section 3, we define the chiral
WZNW model as the quasi-Hamiltonian system and explain how it can be obtained from the
full WZNW model via that equivalence theorem just mentioned. Section 4 prepares ingredients
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for proving the formula (1.2), namely, it gives an elegant description of the Hamiltonian loop
group space associated by the equivalence theorem to any quasi-Hamiltonian space. The sec-
tion 5 and 6 are respectively devoted to the sides AC and BC of the following triangle diagram
(the side AB was largely discussed in [27]):

Figure 1:

B: WZNW defects C: quasi-Hamiltonian geometry

A: Flat connections

In particular, in Section 5 we review the definition of the symplectic structures on the moduli
space of flat connections and then we prove that those structures are indeed described by the
formula (1.2). Finally, in Section 6, we work out the symplectic structures of the bulk, boundary
and defect WZNW models starting from the formula (1.2) and find agreement with the WZNW
defect symplectic structures obtained in [15, 16, 17, 27] by the detailed analysis of the WZNW
dynamics.

2 Quasi-Hamiltonian geometry

Quasi-Hamiltonian manifold M is acted upon by a simple compact connected Lie group G, it
is equipped with an invariant two-form Ω and with a moment map µ : M → G in such a way
that four axioms must hold:

1. µ intertwines the G action . on M with the conjugacy action on G:

µ(g . x) = gµ(x)g−1, g ∈ G, x ∈M. (2.3)

2. The exterior derivative of Ω is given by

δΩ = − 1

12
µ∗(θ, [θ, θ]). (2.4)

3. The infinitesimal action of G ≡ Lie(G) on M is related to µ and Ω by

ι(ζM)Ω =
1

2
µ∗(θ + θ̄, ζ), ∀ζ ∈ G. (2.5)

4. At each x ∈M , the kernel of Ωx is given by

Ker(Ωx) = {ζM(x) | ζ ∈ Ker(Adµ(x) + Id)}. (2.6)
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Here (., .) is the Killing-Cartan form on G, θ and θ̄ denote, respectively, the left- and right-
invariant Maurer-Cartan forms on G and ζM stands for the vector field on M that corresponds
to ζ ∈ G.

Three examples of quasi-Hamiltonian manifolds will be important for us: the conjugacy class
in G, the so called quasi-Hamiltonian double D(G) of the group G and the internally fused
double D(G). The quasi-Hamiltonian moment map µ for a conjugacy class C ⊂ G is just the
embedding C ↪→ G and the quasi-Hamiltonian form α evaluated at f ∈ C is defined by the
formula [2]

αCf (vξ, vη) =
1

2

(
(η,Adfξ)− (ξ,Adfη)

)
. (2.7)

Here vξ, vη are the vector fields corresponding to the infinitesimal actions of ξ, η ∈ G. There
is another useful way of representing the quasi-Hamiltonian form α in terms of the following
parametrization of the points on the conjugacy class C:

f = ke2πiτk−1, (2.8)

where τ is in the Weyl alcove and k ∈ G. We have then

αCf =
1

2
(k−1δk, e−2πiτk−1δke2πiτ ). (2.9)

As a manifold, the double D(G) is just the direct product G × G. It is the quasi-Hamiltonian
G×G manifold with respect to the G×G action

(g1, g2) . (a, b) ≡ (g1ag
−1
2 , g2bg

−1
1 ), (2.10)

moment map µD = (µ1, µ2) : D(G)→ G×G

µ1(a, b) = ab, µ2(a, b) = a−1b−1 (2.11)

and the quasi-Hamiltonian form ΩD defined by

ΩD =
1

2
(a∗θ, b∗θ̄) +

1

2
(a∗θ̄, b∗θ). (2.12)

As a manifold, the internally fused double D(G) is again the direct product G × G equipped
with the G action

g . (a, b) ≡ (gag−1, gbg−1), (2.13)

the moment map
µ(a, b) ≡ aba−1b−1 (2.14)

and the two-form

Ω =
1

2
(a∗θ, b∗θ̄) +

1

2
(a∗θ̄, b∗θ) +

1

2
((ab)∗θ, (a−1b−1)∗θ̄). (2.15)

Let us now list some of the properties of the quasi-Hamiltonian spaces relevant for this paper
(see [2] for more details):
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• First of all, a quasi-Hamiltonian manifold M equipped with the same G-action, a form
−Ω and a moment map µ−1 is again quasi-Hamiltonian, it is referred to as the inverse
quasi-Hamiltonian space and denoted as M−.

• Suppose that the unit element e ∈ G is the regular value of the moment map µ. The
axioms of the quasi-Hamiltonian geometry imply that G ≡ Lie(G) acts on the unit-level
submanifold µ−1(e) without fixed points and thus µ−1(e)/G is a symplectic orbifold (not
necessarily manifold because there still may be points in µ−1(e) with a discrete isotropy
subgroup). This orbifold is usually denoted as (M)e and it is called the unit-level quasi-
Hamiltonian reduction of M . By construction, the pull-back of the symplectic form ω from
(M)e to µ−1(e) is equal to the restriction of Ω to µ−1(e), however, we stress that ω is the
symplectic form in the usual sense, whilst Ω is neither closed nor globally non-degenerate
in general.

• A direct product of two quasi-Hamiltonian manifolds M1×M2 is again a quasi-Hamiltonian
manifold if it is equipped with the diagonal G-action, a moment map being the Lie group
product µ1µ2 of the respective moment maps µ1 for M1 and µ2 for M2 and with a two-form

Ω12 = Ω1 + Ω2 +
1

2
(µ∗1θ, µ

∗
2θ̄). (2.16)

The quasi-Hamiltonian manifold (M1 ×M2, µ1µ2,Ω12) is called the fusion product and is
denoted as M1 ~M2. In the case of a multiple fusion M1 ~M2 ~ . . .~Mn, the mixed term
in (2.16) gives rise to a multitude of terms in the resulting reduced symplectic form on
(M1~M2~. . .~Mn)e which look quite awkward without the conceptual quasi-Hamiltonian
understanding of their origin. It is indeed the purpose of the present paper to go in the
opposite direction and to give the quasi-Hamiltonian raison d’être for the multitude of
cross-terms in the symplectic structures induced by the WZNW defects.

• Any G-invariant function H on a quasi-Hamiltonian manifold (M,µ,Ω) defines a ”quasi-
Hamiltonian dynamics”, in the sense that there is a unique (evolution) vector field vH
satisfying the conditions

ι(vH)Ω = δH, ι(vH)µ∗θ = 0. (2.17)

Here δ stands for the de Rham differential. The Hamiltonian vector field vH is G-invariant
and preserves ω and µ [2].

• Perhaps the most remarkable property of the quasi-Hamiltonian spaces is the equivalence
theorem of Ref. [2]. It states that every quasi-Hamiltonian space determines a standard
Hamiltonian loop group space with proper moment map and vice versa. In this way many
structural questions which can be asked about infinite-dimensional symplectic manifolds
admitting the Hamiltonian actions of loop groups can be reformulated and solved in an an-
alytically more friendly environment, in particular, if the corresponding quasi-Hamiltonian
space turns out to be finite dimensional. Speaking more precisely, the Hamiltonian LG
space N with an equivariant moment map Φ : N → LG∗ and a symplectic form ω gives
rise to the quasi-Hamiltonian structure on the manifold Hol(N) ≡ N/ΩG where ΩG is
the group of based loops (i.e. loops taking the value e at the distinguished point σ = 0).
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In order to make explicite the quasi-Hamiltonian form and the quasi-Hamiltonian mo-
ment map on Hol(N), we need to introduce some technical tools, namely, the space of
quasi-periodic maps W and a map Hol: LG∗ → W .

The space W consists of smooth maps l : R→ G with the property

l(σ + 2π) = l(σ)M, ∀σ ∈ R. (2.18)

The element M ∈ G does not depend on σ and it is called the monodromy of l ∈ W . For
every A ∈ LG∗ there si then a unique element wA ∈ W such that

A = wA(σ)−1∂σwA(σ)dσ, wA(0) = e. (2.19)

We have thus defined the map Hol:LG∗ → W

Hol(A) := wA. (2.20)

The loop group LG acts on LG∗ by gauge transformations (the Hamiltonian moment map
Φ is equivariant precisely with respect to this action!):

g . A = gAg−1 − g∗θ̄, g ∈ LG. (2.21)

The transformation (2.21) then induces the following transformation of the holonomy:

wg.A(σ) = g(0)wA(σ)g(σ)−1. (2.22)

In particular, wA(2π) is gauge invariant with respect to the transformations from the
based loop group ΩG since in this case g(0) = g(2π) = e. It is this gauge invariance which
permits to define the quasi-Hamiltonian moment map µ : Hol(N)→ G as

µ := wΦ(2π). (2.23)

The quasi-Hamiltonian form Ω on Hol(N) is constructed as follows. First of all, consider
a two-form Υ on LG∗ defined by

Υ =
1

2

∫ 2π

0

dσ(Hol∗σθ̄, ∂σHol∗σθ̄). (2.24)

Note that the definition (2.24) makes sense since, for a fixed value of σ, Holσ is a map
from LG∗ → G. The vector fields corresponding to the infinitesimal action of the group
ΩG on N turn out to be the degeneracy directions of the following two-form on N :

ω + Φ∗Υ. (2.25)

This two-form is therefore the pull-back of some form Ω on Hol(N), which is nothing but
the quasi-Hamiltonian form on Hol(N).
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3 Quasi-Hamiltonian equivalent of the WZNW model

The full WZNW model [30] is the standard symplectic dynamical system, the phase space
PWZ of which admits two different Hamiltonian actions of the loop group LG. One of those
actions has the equivariant moment map in the sense of Definition 8.2 of [2] (see also Eq.
(3.30) of the present paper). Following the discussion at the end of Section 2, we can associate
to the equivariant Hamiltonian LG-manifold PWZ the equivalent quasi-Hamiltonian dynamical
system on the space Hol(PWZ) equipped with the corresponding G-action induced by some
quasi-Hamiltonian moment map. It is the goal of this section to show that this equivalent
quasi-Hamiltonian system is nothing but the quasi-Hamiltonian version of the chiral WZNW
model.

Ideologically, we shall describe here the WZNW model in the language of the twisted Heisenberg
double [29, 21]. Thus the phase space PWZ of the WZNW model is the cotangent bundle of the
loop group LG parametrized by JL(σ) ∈ LG and g(σ) ∈ LG, however, the symplectic form is
not the canonical one on the cotangent bundle since it contains the additional term (the twist):

ωWZ = −δ
∫ 2π

0

dσ(JL, δgg
−1)− 1

2

∫ 2π

0

dσ(δgg−1, ∂σ(δgg−1)). (3.26)

Here δ is the de Rham differential on PWZ .

There are two Hamiltonian actions of the loop group LG on the phase space PWZ :

h .L (JL, g) := (hJLh
−1 + ∂σhh

−1, hg), h ∈ LG;

h .R (JL, g) := (JL, gh
−1), h ∈ LG.

(3.27)

The moment maps of these two actions are JL and JR, respectively, where

JR := −g−1JLg + g−1∂σg. (3.28)

Indeed, it is easy to check that it holds

ι(vLξ )ωWZ = δ

∫ 2π

0

(JL, ξ)dσ, ι(vRξ )ωWZ = δ

∫ 2π

0

(JR, ξ)dσ, (3.29)

where ξ ∈ LG and vL,Rξ are the respective vector fields corresponding to the infinitesimal actions
of ξ on PWZ . Note the transformation of the right current JR under the action .R on PWZ by
an element h ∈ LG:

JR → hJRh
−1 − ∂hh−1. (3.30)

We observe that the moment map JR is equivariant following the conventions of Sections 8.1
and 8.2 of [2]. However, the left current JL transforms under the action .L with the opposite
sign of the inhomogeneous term:

JL → hJLh
−1 + ∂hh−1. (3.31)
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We shall refer to the moment map JL as ’anti-equivariant’. We finish the resuming of the
WZNW model by defining its Hamiltonian:

HWZ = −1

2

∫ 2π

0

(JL, JL)dσ − 1

2

∫ 2π

0

(JR, JR)dσ. (3.32)

Since the phase space PWZ with the right action .R of LG is the Hamiltonian LG-space in the
sense of the definition 8.2 of [2], we can construct the corresponding quasi-Hamiltonian G-space
Hol(PWZ) following the recipe described at the end of Section 2. This gives the statement of
the following important Theorem:

Theorem 1: The quasi-Hamiltonian space Hol(PWZ) is the space of quasi-periodic maps W ,
the corresponding quasi-Hamiltonian moment map µ : W → G is the inverse monodromy of the
element l ∈ W

µ(l) = l(2π)−1l(0) (3.33)

and the quasi-Hamiltonian form Ω on W induced by ωWZ on PWZ reads

Ω(l) :=
1

2

[∫ 2π

0

(l−1δl, ∂σ(l−1δl))dσ + (δll−1|0, δll−1|2π)

]
. (3.34)

Proof. Denote by gR ∈ W the element wJR
defined by (2.19), i.e.

JR = g−1
R ∂σgR, gR(0) = e. (3.35)

We can also conveniently parametrize the current JL as

JL = ∂σgLg
−1
L , gL(0) = e (3.36)

and the field g(σ) as
g(σ) = gL(σ)b(σ)gR(σ). (3.37)

The relation (3.28) then implies that b(σ) in fact does not depend on σ and it is therefore equal
to g(0). In what follows, we set

l(σ) := gL(σ)b(σ) = gL(σ)g(0) (3.38)

and express straightforwardly the symplectic form ωWZ in terms of the variables l(σ) and gR(σ):

ωWZ =
1

2

∫ 2π

0

(l−1δl, ∂σ(l−1δl))− 1

2
(l−1δl, δgRg

−1
R )

∣∣∣∣2π
0

− 1

2

∫ 2π

0

(δgRg
−1
R , ∂σ(δgRg

−1
R )). (3.39)

Because of the fact that gR(0) = e and

g(2π) = l(2π)gR(2π) = l(0) = g(0), (3.40)
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we conclude that the quasi-Hamiltonian form (2.25) becomes

ωWZ+J∗RΥ = ωWZ+
1

2

∫ 2π

0

(δgRg
−1
R , ∂σ(δgRg

−1
R )) =

1

2

[∫ 2π

0

(l−1δl, ∂σ(l−1δl))dσ+(δll−1|0, δll−1|2π)

]
.

(3.41)
Now Eqs. (2.23) and (3.40) show that the quasi-Hamiltonian moment map is indeed the inverse
monodromy of l ∈ W

µ(l) = gR(2π) = l(2π)−1l(0). (3.42)

Finally, it remains to identify the quasi-Hamiltonian space Hol(PWZ) with W . Note that
Hol(PWZ) is the space of cosets PWZ/ΩG, so starting from the parametrization (JL, g) of PWZ

we see that Hol(PWZ) can be parametrized by means of gL and g(0) as JL = ∂σgLg
−1
L , g = g(0).

Following (3.38), Hol(PWZ) can be parametrized also by l ∈ W since g(0) = l(0). From (3.27),
we conclude that the G-action on W is given by

l(σ)→ l(σ)h−1, l(σ) ∈ W, h ∈ G. (3.43)

Although from the general theorems of Ref. [2] it follows that the triple (W,Ω(l), µ(l)) given by
Eqs. (3.34), (3.42) and (3.43) is the quasi-Hamiltonian G-space, we prefer to provide a direct
proof of this fact in order to make the present paper more self-contained:

Theorem 2: Define a function on W by the formula

H(l) = −1

2

∫ 2π

0

(∂σll
−1, ∂σll

−1)dσ, (3.44)

the G-action on W by
l(σ)→ l(σ)h−1, l(σ) ∈ W, h ∈ G, (3.45)

the moment map µ : W → G by
µ(l) = l(2π)−1l(0) (3.46)

and the two-form Ω(l) on W by

Ω(l) :=
1

2

∫ 2π

0

(l−1δl, ∂σ(l−1δl))dσ +
1

2
(δll−1|0, δll−1|2π) (3.47)

The quadruple (W,Ω(l), µ,H) is then the quasi-Hamiltonian dynamical system.

Proof. We immediately observe from (2.18), (3.45) and (3.46) that

µ(h . l) = hµ(l)h−1, (3.48)

which means that the first defining quasi-Hamiltonian property (2.3) is verified.

A simple bookkeeping of boundary terms gives the second defining quasi-Hamiltonian property
(2.4):

δΩ(l) =
1

12
(l−1δl|2π, [l−1δl|2π, l−1δl|2π])− 1

12
(l−1δl|0, [l−1δl|0, l−1δl|0]) +

1

2
δ(δll−1|0, δll−1|2π) =

10



= − 1

12
(µ−1

l δµl, [µ
−1
l δµl, µ

−1
l δµl]), (3.49)

where we have set µ(l) = µl.

Let us now verify the third property (2.5). First of all, let ξW be a vector field on W induced
by the infinitesimal action of an element ξ ∈ G. We infer easily

ι(ξW )l−1δl = −ξ, ι(ξW )(δll−1|0) = −l(0)ξl(0)−1, ι(ξW )(δll−1|2π) = −l(2π)ξl(2π)−1, (3.50)

hence we find indeed that

ι(ξW )Ω =
1

2
(ξ, δµlµ

−1
l + µ−1

l δµl). (3.51)

It remains to verify the last property (2.6). First of all we note that W is a submanifold of the
group RG consisting of all smooth maps from R to G. Therefore any vector field v at a point l
of W can be written as the left transport −Ll∗ζ of some −ζ ∈ Lie(RG). From this information
we find

ι(v)(l−1δl) = −ζ (3.52)

therefore

ι(v)Ω =

∫ 2π

0

(l−1δl, ∂σζ)dσ − 1

2
(ζ, l−1δl)

∣∣∣∣2π
0

− 1

2
(l0ζ0l

−1
0 , δll−1|2π) +

1

2
(δll−1|0, l2πζ2πl

−1
2π ). (3.53)

If v is to be in the kernel of Ω then obviously ∂σζ = 0 and

ι(v)Ω =
1

2
(ζ, δµlµ

−1
l + µ−1

l δµl) =
1

2
(µlζµ

−1
l + ζ, δµlµ

−1
l ). (3.54)

From the last formula, the wanted property (2.6) readily follows.

We conclude the demonstration by noting that the Hamiltonian (3.44) is evidently G-invariant,
as it should be.

Definition: We shall refer to the quasi-Hamiltonian dynamical system (W,Ω(l), µ(l), H(l)) as
to the quasi-Hamiltonian chiral WZNW model.

Remark 1: Historically, the origin of the concept of the chiral WZNW model lies in the attempt to equip
the left and right movers of the WZNW model with independent dynamics. Recall that every solution of the
WZNW model in the configuration space LG can be described as the product of left and right movers [15, 16]:

g(σ, τ) = l(σ + τ)r−1(σ − τ), σ ∈ [0, 2π[, τ ∈ R, (3.55)

where both left and right movers l and r are the elements of W and can be viewed as almost independent
coordinates on the infinite-dimensional phase space PWZ of the theory. Indeed, l and r are tied only by the
requirement that they must have the same monodromies in order to insure the periodicity of the WZNW field
g(σ). In [15], the symplectic form ωWZ was expressed in terms of the left and right movers as

ωWZ = Ω(l)− Ω(r), (3.56)

11



where the two-form Ω(l) is nothing but our quasi-Hamiltonian friend (3.34). The form of the WZNW symplectic
form (3.56) suggests that it may be possible to separate completely the left and right movers by allowing the
independent monodromies for them. However, the trouble in doing that was remarked already in [15]. The point
is that the exterior derivatives of the forms Ω(l) and Ω(r) do not vanish separately as it can be seen from (3.49)
(in fact, in calculating δωWZ , they cancel with each other precisely when the left and right monodromies are
the same). As the solution to the problem of non-closedness of Ω(l), it was proposed in [15] to add to Ω(l) a
two-form ρ(µ(l)) depending exclusively on the inverse monodromy µ(l) and to define the chiral WZNW model as
a theory on the phase space W , with the symplectic form Ω(l) + ρ(µ(l)) and the quadratic current Hamiltonian
(3.44). The problem with this definition is the ambiguity of the choice of the two-form ρ(µ(l)) as well as the
fact that, strictly speaking, such ρ exists only on a dense open subset of the group manifold G. In this section,
we did not attempt to define the chiral dynamics in the symplectic way, but we adopted the quasi-Hamiltonian
point of view. Said in other words, we have defined the chiral WZNW model as the quasi-Hamiltonian dynamical
system. For this, we did not need to add any term to the two-form Ω(l) on W , but we let it as it stands. Of
course, all this is just a shift of interpretation but it will turn out soon that our quasi-Hamiltonian version of
the chiral WZNW has some good structural properties, namely it is useful for the compact description of the
symplectic properties of the WZNW defects.

4 Loop group equivalent of a quasi-Hamiltonian space

We devote this section to the formulation and proof of a technical Theorem 3, which will be of
big utility in Section 5. It gives a convenient description of the Hamiltonian LG-space equivalent
to a given quasi-Hamiltonian space in the sense of the equivalence formulated in Section 2:

Theorem 3: The Hamiltonian LG-manifold (N,ω,Φ) with equivariant proper moment map
equivalent to a quasi-Hamiltonian G-manifold (M,Ω, µ) is given by N = (M~W−)e, i.e. by the
quasi-Hamiltonian fusion of M and W− followed by the unit-level quasi-Hamiltonian reduction.
The corresponding LG-action on (M ~W−)e is given by

(x, l(σ))→ (x, h(σ)l(σ)), x ∈M, l(σ) ∈ W, h(σ) ∈ LG (4.57)

and the corresponding LG∗-valued moment map Φ is given by

Φ(x, l) = −∂σll−1dσ, x ∈M, l ∈ W. (4.58)

Proof. We start by checking, that the formula (4.57) consistently defines the LG-action on
the quasi-Hamiltonian quotient (M ~W−)e. First of all, the monodromy of the configuration
h(σ)l(σ) is the same as that of l(σ) for every h(σ) ∈ LG therefore the action (4.57) survives
the unit-level reduction constraint µµ−1

l = e. On the top of that, the action (4.57) obviously
commutes with the quasi-Hamiltonian G-action (3.45) on W , it descends therefore to the G-
quotient.

In what follows, we find more convenient to describe the space (M ~ W−)e differently. For
that, consider the quasi-Hamiltonian G × G action on M × W−, that is the G-action on M
and the action (3.45) on W−. Now the diagonal subaction, the quotient with respect to which
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we consider, permits a global slice given by the requirement l(0) = e. We shall denote by l̃
the elements of W for which this requirement is respected, i.e. l̃(0) = 0 and we parametrize
(M ~W−)e as

(M ~W−)e = {(x, l̃) ∈M ×W, l̃(0) = e, µ(x)l̃(2π) = e}. (4.59)

We infer from (3.34) that, in the parametrization (4.59), the symplectic form ω on (M ~W−)e
obtained form the quasi-Hamiltonian reduction reads

ω = Ω− 1

2

∫ 2π

0

(l̃−1δl̃, ∂σ(l̃−1δl̃))dσ. (4.60)

In order to verify that (4.58) gives the moment map of the LG-action (4.57), we have to char-
acterize this action in the parametrization (4.59). We distinguish two cases: the action of the
based loops from ΩG and the action of the constant loops from G. We find

(x, l̃)→ (x, hl̃), h ∈ ΩG; (4.61)

(x, l̃)→ (h . x, hl̃h−1), h ∈ G. (4.62)

Here h . x stands for the G-action on M .

Denote by vξ the vector field corresponding to the infinitesimal action (4.61) of an element ξ ∈
Lie(ΩG). Then we find easily

ι(vξ)ω = −1

2

∫ 2π

0

(l̃−1ξl̃, ∂σ(l̃−1δl̃))dσ +
1

2

∫ 2π

0

(l̃−1δl̃, ∂σ(l̃−1ξl̃))dσ =

= −
∫ 2π

0

(ξ, l̃∂σ(l̃−1δl̃)l̃−1)dσ = −δ
∫ 2π

0

(ξ, ∂σ l̃l̃
−1)dσ (4.63)

We note that all boundary terms in the computation (4.63) vanished because of ξ(0) = 0.

Denote by vξ the vector field corresponding to the infinitesimal action (4.62) of an element
ξ ∈Lie(G). Then we find easily

ι(vξ)ω = ι(vξ)Ω−
1

2

∫ 2π

0

(l̃−1ξl̃ − ξ, ∂σ(l̃−1δl̃)) +
1

2

∫ 2π

0

(l̃−1δl̃, ∂σ(l̃−1ξl̃ − ξ)) =

=
1

2
(ξ, δµµ−1 + µ−1δµ) +

1

2
(ξ, l̃−1δl̃)|2π0 +

1

2
(l̃−1δl̃, l̃−1ξl̃)|2π0 −

∫ 2π

0

(ξ, l̃∂σ(l̃−1δl̃)l̃−1) =

=
1

2
(ξ, δµµ−1 + µ−1δµ) +

1

2
(ξ, δl̃(2π)l̃(2π)−1 + l̃(2π)−1δl̃(2π))− δ

∫ 2π

0

(ξ, ∂σ l̃l̃
−1)dσ. (4.64)

Following (4.59), the first two terms on the r.h.s. of (4.64) vanish because of the constraint
µ(x)l̃(2π) = e. Combining this fact with (4.63), we conclude that Φ = −∂σ l̃l̃−1dσ ∈ LG∗ is
indeed the moment map of the LG-action (4.57) on the symplectic manifold (M ~W−)e.

It remains to prove that the Hamiltonian LG-space ((M~W−)e, ω,Φ) is equivalent to the quasi-
Hamiltonian G-space (M,Ω, µ) in the sense of the equivalence discussed at the end of Section 2.
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For that we shall determine the equivalent system (M ′,Ω′, µ′) to ((M ~W−)e, ω,Φ) and then
show that (M ′,Ω′, µ′) and (M,Ω, µ) are isomorphic as the quasi-Hamiltonian spaces. Let us
first prove that the quotient M ′ ≡ (M ~W−)e/ΩG indeed coincides with M as manifold. For
that, we use the following well-known parametrization of the space W of quasi-periodic maps
used in [15, 16]:

l(σ) ≡ h(σ)eiτσg−1
0 , (4.65)

where h(σ) ∈ LG, g0 ∈ G and τ is the element of the Weyl alcove. It follows from (4.65), in
particular, that the elements l̃(σ) can be parametrized as

l(σ) ≡ k(σ)g0e
iτσg−1

0 , (4.66)

where k(σ) is in the based loop group ΩG. The quotient M ′ = (M~W−)e/ΩG can be therefore
identified with the set of elements (x, g0e

iτσg−1
0 ) ∈ M ×W such that g0e

i2πτg−1
0 = µ(x)−1 and

this set, in turn, can be directly identified with M .

Following Eq. (2.25), the quasi-Hamiltonian form Ω′ on M which corresponds to the Hamilto-
nian LG-space ((M ~W−)e, ω,Φ) is given by the formula

Ω′ = ω−1

2

∫ 2π

0

(δgRg
−1
R , ∂σ(δgRg

−1
R )) = Ω−1

2

∫ 2π

0

(l̃−1δl̃, ∂σ(l̃−1δl̃))dσ−1

2

∫ 2π

0

(δgRg
−1
R , ∂σ(δgRg

−1
R )),

(4.67)
where gR ∈ W , gR(0) = e is defined by

g−1
R ∂σgRdσ = Φ = −∂σ l̃l̃−1dσ. (4.68)

We thus see that gR = l̃−1 and
Ω′ = Ω. (4.69)

The fact that the induced G-action on M ′ is clearly given by the restriction of the action
(4.62) on the first term, i.e. by the G-action on M . Finally, the moment map µ′ is given by
gR(2π) = l̃(2π)−1 = µ(x) which finishes the proof.

Repeating step by step the proof of Theorem 3, we obtain also

Corollary: The manifold (M ~W )e is the Hamiltonian LG-space with the LG-action given by
(4.57) and the anti-equivariant moment map given by

Φ− = ∂σll
−1dσ. (4.70)

Remark 2: Theorem 3 can be easily generalized to the case where the manifold M is the quasi-
Hamiltonian G×G-space and we transform to the loop group language only one copy of G. We
find then that the resulting fusion/reduction (M ~ W−)e does not give a symplectic manifold
but it yields the quasi-Hamiltonian G-space with respect to the copy of G which we ”did not
touch”. For example, if M is the quasi-Hamiltonian double D(G) then a one-line computation
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shows that (D(G) ~ W−)e = W−, or, said in other words, D(G) acts as identity with respect
to the partial fusion.

To a given Hamiltonian LG-space (N,ω) with the equivariant moment map Φ, one can canon-
ically associate its ”loop-reversal” Hamiltonian LG-space (N,ω) with the anti-equivariant mo-
ment map Φ− (the term anti-equivariant was defined by means of Eq. (3.31)). To do that, we
define the loop-reversal map I : S1 → S1 as

I(σ) = 2π − σ, σ ∈ [0, 2π[. (4.71)

Let now act the loop group LG on N as

h .I y := (I∗h) . y, h ∈ LG, y ∈ N, (4.72)

where . stands for the original LG-action with the equivariant moment map Φ and .I stands
for the new action defined in terms of the original one and of the pull-back I∗ of the map I. It
is easy to see that the new action .I has the anti-equivariant moment map Φ− = −I∗Φ. Indeed,
we have

ι(I∗ξ)ω = δ

∫
(Φ, I∗ξ) = δ

∫
(−I∗Φ, ξ). (4.73)

We have now the following proposition

Theorem 4: The anti-equivariant Hamiltonian LG-space (M ~W )e is isomorphic to the loop
reversal of the equivariant space (M ~W−)e.

Proof. The quasi-Hamiltonian space (W,Ω(l), µ(l)) corresponding to the chiral WZNW model
has an interesting property that its quasi-Hamiltonian inverse (W,−Ω(l), µ(l)−1) is isomorphic
to the original space (W,Ω(l), µ(l)). This isomorphism I∗ : W → W is simply the extension of
the pull-back of the loop reversal map and, with a slight abuse of notation, we have denoted it
again by I∗:

(I∗l)(σ) := l(2π − σ). (4.74)

To see that this is isomorphism, we just check that the G-action (3.45) commutes with I∗ and
it holds I∗Ω = −Ω and µ(I(l)) = µ(l)−1.

The existence of the isomorphism I∗ obviously implies that the reduction/fusion (M ~W )e is
isomorphic to (M ~W−)e as symplectic manifold, but not necessarily as LG-space. Indeed, the
symplectic form Ω + Ω(l) on (M ~ W )e can be rewritten in the coordinates l̂ ≡ I∗l on W as
Ω− Ω(l̂) and in the same coordinates the action (4.57) of the loop group becomes the action

(x, l̂(σ))→ (x, h(2π − σ)l̂(σ)), x ∈M, l̂(σ) ∈ W, h(σ) ∈ LG. (4.75)

Thus we see that the change of coordinates l → l̂ gives the loop reversed action .I of LG on
(M ~W−)e.
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5 Flat connections and the proof of formula (1.2)

In this section, we wish to deal with the side AC of the triangle on Fig. 1 and to prove the
formula (1.2).

Let G be a compact simple connected and simply connected Lie group, G its Lie algebra and Σ
be a Riemann surface with boundaries ∂Σ. Denote by G(Σ) the group of smooth maps from Σ
to G. The group G(Σ) naturally acts on the space of connections on the trivial bundle Σ × G
which we denote as Ω1(Σ,G):

Ag = gAg−1 − g∗(θ̄), A ∈ Ω1(Σ,G), g ∈ G(Σ). (5.76)

The space Ω1(Σ,G) is symplectic; its symplectic form ω is defined by

ω =

∫
Σ

(δA ∧, δA), (5.77)

where δ stands for the de Rham differential on the infinite-dimensional manifold Ω1(Σ,G) and
(., .) is the Killing-Cartan form on G. It turns out [1] that the action (5.76) is symplectic with
the moment map Ψ given by

〈Ψ(A), ξ〉 ≡
∫

Σ

(dA+ A2, ξ) +

∫
∂Σ

(A, ξ), (5.78)

where ξ ∈Lie(G(Σ)) ≡ Ω0(Σ,G) and d is the de Rham differential on the surface Σ. Note that
we take the orientation on ∂Σ opposite to the induced orientation on Σ as in [2, 24].

The object of central interest for us is obtained by a partial symplectic reduction of the full
connection space Ω1(Σ,G) by the subgroup G∂(Σ) of G(Σ) consisting of map sending the bound-
aries to the unit element e of G. The moment map of this action is given just by the first term
in (5.78) with ξ ∈ Lie(G∂(Σ)) ⊂ Ω0(Σ,G) . Setting the moment map to the zero value (flat
connections!) and factoring the corresponding 0-level set by the partial gauge group G∂(Σ) we
obtain the principal actor of our game:

M(Σ) ≡ Ω1(Σ,G)//G∂(Σ) (5.79)

It was proved in [6], that in the case of non-empty boundary the moduli space M(Σ) is a smooth
symplectic manifold. Needless to say, for Σ being the annulus, M(Σ) is the phase space of the
standard WZNW model.

Denote by G(∂Σ) the factor group G(Σ)/G∂(Σ). Obviously, G(∂Σ) can be identified with the
group of smooth maps from ∂Σ to G and it acts on the moduli space M(Σ) in the Hamiltonian
way. The equivariant moment map of this residual action is given by the second term on
the r.h.s. of (5.78) where A is the restriction of the representant of the class [A] ∈ M(Σ) to
Ω1(∂Σ,G).

If the boundary ∂Σ has r+1 connected components then to each one corresponds the equivariant
Hamiltonian action of a copy of the loop group LG on M(Σ). The explicit description of the
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manifold M(Σ) with k-handles was given in [23] as

M(Σ) =

{
(a, c, ζ) ∈ G2k ×Gr × (LG∗)r+1

∣∣∣∣ 2k∏
i=1

[a2i−1, a2i] =
∏
i=1

Hol(ζi)

}
. (5.80)

where c0 = e and [., .] stands for the group commutator. In this description, the action of
h = (h0, . . . , hr) ∈ (LG)r+1 is given by

h . ai = Adh0(0)ai, h . cj = h0(0)cjhj(0)−1, h . ζj = Adhj
ζj − dhjh

−1
j . (5.81)

The equivariant moment map is the projection to the (LG∗)r+1-factor.

The expression for the symplectic form on M(Σ) in the parametrization (5.80) is complicated
and it was not given in [23]. We shall find now an alternative description of the space M(Σ) in
which the structure of the symplectic form becomes transparent and it is given in terms of the
quasi-Hamiltonian fusion.

Theorem 5: Let Σ be a Riemann surface with k handles and r + 1 boundaries. Then

M(Σ) =

(
W− ~W− ~ . . .~W−︸ ︷︷ ︸

r+1 times

~ D(G) ~ D(G) ~ . . .~ D(G)︸ ︷︷ ︸
k times

)
e

, (5.82)

where D(G) is the internally fused quasi-Hamiltonian double of G.

Proof. We shall start with the quasi-Hamiltonian G×G× ...×G︸ ︷︷ ︸
r+1 times

-equivalent of the Hamiltonian

LG× LG× ...× LG︸ ︷︷ ︸
r+1 times

-space M(Σ) as obtained in [2]:

Hol(M(Σ)) = D(G) ~D(G) ~ ..~D(G)︸ ︷︷ ︸
r times

~ D(G) ~ D(G) ~ . . .~ D(G)︸ ︷︷ ︸
k times

. (5.83)

Here D(G) is the standard quasi-Hamiltonian double. Using Theorem 4 and Remark 2, the
quasi-Hamiltonian representation (5.82) of M(Σ) follows directly.

Corollary: The moduli space of flat connections on the surface with n boundaries, m Wilson
lines insertions and k handles reads:

Mnmk(Σ) ≡ (W− ~ . . .~W−︸ ︷︷ ︸
n times

~ C−1 ~ C−2 ~ . . .~ C−m ~ D(G) ~ . . .~ D(G)︸ ︷︷ ︸
k times

)e. (5.84)

Proof. Suppose that r + 1 = n + m. First of all, we convert into W− via Theorem 4 and
Remark 2 only n − 1 factors D(G) in the fusion product (5.83). Then we use the fact proved
in [2], that the inclusion of the Wilson line with holonomy in a conjugacy class Ci amounts to
the reduction of D(G) at Ci and it is equal to C−i . On the remaining m factors D(G) we thus
perform the reduction at a tuple of the conjugacy classes C = (C1, ..., Cm) to obtain the desired
formula (5.84).
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6 Symplectic geometry of defects

So far we have been dealing with the side AC of the triangle on Figure 1 and we have proved
the quasi-Hamiltonian formula (1.2) expressing the symplectic structure of the moduli space
of flat connections on the surface with n boundaries, m Wilson lines insertions and k handles.
We shall now turn to the side BC of the triangle and perform the explicit evaluation of the
symplectic structures of several particular WZNW defects starting from the formula (1.2) and
applying successively the formula (2.16). In all cases, we shall find the perfect agreement with
the results obtained before from the detailed analysis of the WZNW dynamics [15, 16, 17, 27].
This fact confirms that the concept of the quasi-Hamiltonian fusion is the unique structural
ingredient explaining the multitude of terms in the defect symplectic forms. Before doing the
actual calculations, we should comment on two things: 1) We note that the fusion product
introduced in Section 2 is commutative only on the isomorphism classes of quasi-Hamiltonian
spaces. Although the isomorphism between M1 ~M2 and M2 ~M1 is described explicitely in
[2], in practice it turns out to be more convenient to reshuffle the order of the fused manifolds
to ensure a direct comparison of the symplectic forms issued from the formula (1.2) with the
symplectic forms of the corresponding WZNW defects as obtained previously in [15, 16, 17, 27].
2) In physical literature the loop group actions on symplectic manifolds related to the WZNW
dynamics are often considered with the anti-equivariant moment map [15, 16, 17, 27]. We
already know from Section 4, that this is a mere convention since the loop reversal map changes
the anti-equivariant moment map into the equivariant. In order to match the same convention,
sometimes we perform the transition from equivariant to anti-equivariant at the level of the
formula (1.2). As it was proved in Theorem 4, this amounts simply to replacing W− by W .

1. Bulk WZNW model with no defects.

This is an important warm up case to start with. It is well-known that the phase space
of the standard WZNW model is the moduli space of flat connections on the surface with
two boundaries [7]. Conventionally, the action of the loop group corresponding to one of
the boundaries is taken to be anti-equivariant and the other one equivariant. Following
our main formula (1.2), this phase space should therefore coincide with the symplectic
manifold (W ~ W−)e. Let us see that this is indeed true. Following the fusion formula
(2.16) we obtain

ΩW~W− = Ω(l)− Ω(r)− 1

2
(µ−1

l δµl, µ
−1
r δµr). (6.85)

Note the opposite sign of Ω(r) and the inverse of the moment map µr related to the fact
that the right sector correspond to the inverse quasi-Hamiltonian space W− in the sense
explained in Section 2. Now the quasi-Hamiltonian reduction of W ~W− at the unit level
of the fused moment map µlµ

−1
r = e makes the last term on the r.h.s. of (6.85) disappear

and we are left with

ΩW~W−

∣∣∣∣
µl=µr

= Ω(l)− Ω(r), (6.86)

where the configurations l, r ∈ W have the same monodromies. But this coincides with
the expression of the standard WZNW symplectic form ωWZ in terms of the left and right
movers as given by (3.56) (cf. also [15]).
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2. Bulk WZNW model with one defect.

The defect in the bulk WZNW model means that the WZNW configuration field g(σ)
is allowed to jump at some point σ0 of the loop; we choose σ0 = 0. As shows the
analysis of [13], the preservation of the full LG × LG symmetry requires that the jump
of the configuration field must lie in some conjugacy class C ⊂ G. Following our general
philosophy of relying on the formula (1.2), the WZNW symplectic form in the presence of
the defect should be given by the unit-level reduction of the fusion product W ~W−~ C.
Following the formulae (1.2), (2.7), (2.16) and (3.34), we find that the quasi-Hamiltonian
form on W ~ W− ~ C restricted to the unit value of the product moment map µlµ

−1
r µ

reads:

ΩW~W−~C

∣∣∣∣
µ=µrµ

−1
l

= Ω(l)− Ω(r) + αC
µrµ

−1
l

+
1

2
(µ−1

l δµl, δµ
−1
r µr). (6.87)

Here we recall that αC
µrµ

−1
l

is the quasi-Hamiltonian form (2.7),(2.9). Our expression (6.87)

coincides with Eq. (106) of [27], where the symplectic structure of the WZNW model with
one defect was described (µl,r ≡ γ−1

L,R, αC = −1
2
ω in the notation of [27]).

3. Bulk WZNW model with two defects.

Again from the formulae (1.2), 2.7), (2.16) and (3.34), we find the quasi-Hamiltonian form
on the fusion product W~W−~C1~C2 restricted to the unit value of the product moment
map µlµ

−1
r µ1µ2:

ΩW~W−~C1~C2

∣∣∣∣
µrµ

−1
l =µ1µ2

= Ω(l)−Ω(r)+αC1µ1
+αC2µ2

+
1

2
(µ−1

l δµl, δµ
−1
r µr)+

1

2
(µ−1

1 δµ1, δµ2µ
−1
2 ).

(6.88)
This expression is equivalent to Eq. (121) of [27], where the symplectic structure of the
WZNW model with two defects was derived. To see this, some more work is needed. First
of all, we have to identify the notations here and in [27]: µl,r ≡ γ−1

L,R, µ1 ≡ d̃β and µ2 ≡ dα.
Then we have to reexpress Ω(l) in terms of the parametrization (4.65) of l ∈ W :

l(σ) ≡ h(σ)eiτσg−1
0 , (6.89)

where h(σ) is strictly periodic (therefore it is an element of LG), τ is in the Weyl alcove
of G and g0 is in G. With this parametrization, we obtain

Ω(l) =
1

2

∫ 2π

0

[
(h−1δh, ∂σ(h−1δh))− 2iδ(τ, h−1δh)

]
dσ+

+2πi(δτ, g−1
0 δg0) +

1

2
(g−1

0 δg0, e
2πiτg−1

0 δg0e
−2πiτ ). (6.90)

Inserting (6.90) into (6.88), we obtain the formula which coincides with Eq. (121) of [27].

4. Boundary WZNW model with open string ending on the conjugacy classes C1 and C2.

It was found in [17], that the symplectic structure of the boundary WZNW model with
open string ending on two conjugacy classes C1 and C2 is the same as that of the moduli
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space of flat connections on the disc with two Wilson lines insertions with the holonomies
in C1 and C2. Following our quasi-Hamiltonian dictionnary, we shall evaluate the unit-level
reduction of the fusion product C2 ~ C−1 ~ W . Thus, assembling the quasi-Hamiltonian
form on the conjugacy classes (2.7), the expression of the quasi-Hamiltonian form issued
from the fusion (2.16) and the chiral WZNW form (3.34), we find the following formula
for the quasi-Hamiltonian form on the fusion product C2 ~ C−1 ~W restricted to the unit
value of the product moment map µ2µ

−1
1 µl:

ΩC2~C−1 ~W

∣∣∣∣
µ−1

l µ1=µ2

= Ω(l) +
1

2
(µ1δµ

−1
1 , δµlµ

−1
l )− αC1µ1

+ αC2µ2
. (6.91)

This expression coincides with Eq. (53) of [17], where the symplectic structure of the
boundary WZNW model was first determined (to see it, one must identify µ−1

l ≡ γ,
µ1 ≡ h0 and µ2 ≡ γh0).

5. Boundary WZNW model with one defect.

From the formulae (1.2), (2.7), (2.16) and (3.34), we find the quasi-Hamiltonian form on
the fusion product C−1 ~ C2 ~W ~ C3 restricted to the unit value of the product moment
map µ−1

1 µ2µlµ3:

ΩC−1 ~C2~W~C3

∣∣∣∣
µ1=µ2µlµ3

= Ω(l) +
1

2
(µ1δµ

−1
1 , δµ2µ

−1
2 ) +

1

2
(µ−1

l δµl, δµ3µ
−1
3 )−αC1µ1

+αC2µ2
+αC3µ3

.

(6.92)
In order that this expression coincide with Eq. (139) of [27], where the symplectic structure
of the boundary WZNW model with one defect was computed, we must insert (6.90) into
(6.92) and identify µ1 ≡ h0, µ2 ≡ dα, µ3 ≡ hπ and µl ≡ γ−1.
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