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Abstract Multi-modal image sequence regis-
tration is a challenging problem that consists in

aligning two image sequences of the same scene
acquired with a different sensor, hence contain-
ing different characteristics. We focus in this pa-

per on the registration of optical and infra-red

image sequences acquired during the flight of

a helicopter. Both cameras are located at dif-

ferent positions and they provide complemen-

tary informations. We propose a fast registra-

tion method based on the edge information: a

new criterion is defined in order to take into ac-

count both the magnitude and the orientation

of the edges of the images to register. We derive

a robust technique based on a gradient ascent

and combined with a reliability test in order to

quickly determine the optimal transformation

that matches the two image sequences. We show

on real multi-modal data that our method out-
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performs classical registration methods, thanks

to the shape information provided by the con-

tours. Besides, results on synthetic images and

real experimental conditions show that the pro-

posed algorithm manages to find the optimal

transformation in few iterations, achieving a

rate of about 8 frames per second.

Keywords Multi-Modal · image sequence

registration · night vision · optimization

1 Introduction

1.1 Operational context

Multi-modal image registration consists in
aligning several images of a same scene acquired
by different sensors, from a different point of

view or at a different time. It is widely used

in medical applications, for example for com-

paring images of the brain obtained with com-

puter tomography (CT) to positron emission to-

mography (PET) or magnetic resonance (MRI)

images. Multi-modal registration is also stud-

ied in remote sensing applications, for exam-
ple, for the association of a synthetic aperture
radar (SAR) image and an optical one. It is an
important preliminary step for high level analy-

sis such as image fusion, change detection, aug-

mented reality, etc. A survey of most registra-

tion methods can be found in [3,20].

The goal of this paper is to perform multi-
modal registration between optical image se-

quences obtained from a night vision device and

infra-red image sequences, acquired from a heli-

copter, in the perspective of fusing both modal-

ities. Optical images are obtained thanks to a
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Fig. 1 Example of (left) optical (LI) and (right) infra-
red (IR) images simultaneously acquired from a flying
helicopter. The resolution and the information displayed
are different, as well as the intensity distributions.

light intensifier (LI) that multiplies the pho-
tons in order to amplify the luminosity. The
light intensifier is combined with a CCD cam-

era to obtain numerical images. The LI device

is located on the helmet of the pilot and the

images are projected on the visor. They dis-

play natural scenes and are easily interpretable,

but they suffer from classical defaults inher-
ent to night vision devices: they are degraded
by (photon count) noise and they suffer from

artifacts (meshing, changes of illumination...),

they are poorly contrasted while using a wild

dynamic range, and they are saturated around

light sources. An example is showed in Figure 1.

On the other hand, infra-red (IR) images reflect

the temperature of the scene. They are not easy

to interpret because they do not reflect the intu-

itive perception of the scene, as shown on Figure

1. However, they provide precious information

such as vehicles, roads and buildings because

they are hot sources compared to the ground.

The infra-red camera is located at the bottom

of the helicopter, and can be driven by the pilot.

These two video cameras observe the scene from

a different angle, and they can move indepen-

dently from each other, so a careful registration

that takes into account both the difference of

perspective and the relative movement between
the two must be achieved prior to combining
the information.

In the scope of this study, the optical (LI)

image and the infra-red (IR) image are acquired

simultaneously with the same update rate. Each

time a new couple of images (LI, IR) is ob-

tained, the goal is to register the optical image

into the frame of reference of the infra-red im-
age IR. This consists in finding the global spa-
tial transformation T that associates each pixel

of the LI image (referred to as the current im-

age u) to its corresponding location in the IR

image (referred to as the reference image v).

Fig. 2 Detection of SIFT features and associated de-
scriptors on each modality, and matching of the features
obtained from different modalities.

1.2 State of the art

Registration techniques are mostly issued from

medical applications, remote sensing, or com-

puter vision. In computer vision, registration

techniques are often based on the detection and

matching of special features. Among them, the

scale invariant feature transform (SIFT) de-
scriptor proposed by Lowe in [8] combines a

scale invariant region detector with a descrip-

tor based on the gradient distribution in the

detected regions. These descriptors have been

widely studied and adapted [2,10], combined

with classical matching algorithms such as the

RANSAC algorithm [5], in order to estimate the
optimal transformation. The SIFT descriptors

have also been adapted for example for SAR

images in [4] or CT/MRI medical data [12], but

the proposed SIFT implementations cannot in-

trinsically deal with a multi-modal framework.

Indeed, even if each modality benefits from its

own feature descriptors, it is not always possi-

ble to match the descriptors together due to the

different information inherent to each modality

[19]. Figure 2 shows on synthetic images the dif-

ficulty to associate features extracted from dif-

ferent sensors: even though each modality has

its own features, the descriptors do not allow to

perform accurate feature matching, so no trans-

formation can be directly estimated.

An alternative to deal with different modal-
ities consists in finding the optimal domain

transformation T that maximizes a given en-

ergy. The cross-correlation metric [14,15] mea-

sures the correlation between the values of the

current transformed image, denoted u(T ), and
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the reference one v using the following formula:

CC(T ) =

∫
Ω
u0(T (X)).v0(X)dX√∫

Ω
u0(T (X)2dX.

√∫
Ω
v0(X)2dX

.

(1)

where Ω is the (continuous) image domain, and

u0(T (X)) and v0(X) are the centered values of

the images, ie the difference between the im-

age and the average value of the image u(T ) or

v: u0(T (X)) = u(T (X)) − u(T ) and v0(X) =
v(X)− v. However, this metric is based on the

assumption that the intensities of the images to
register are close up to an affine scaling, which
is not the case in our multi-modal problem.

Mutual information [18,9] reflects the re-

lation between the intensity distributions, but

without any assumption regarding the nature

of this relation. Mutual information is issued

from information theory and the notion of en-

tropy. It can also be interpreted in terms of a

Kullback-Leibler distance:

I(T ) =

∫

Ω2

p(u(T (X)), v(Y ))

· log
p(u(T (X)), v(Y ))

p(u(T (X))p(v(Y ))
dXdY, (2)

where p(u, v) is the joint probability distribu-
tions of u and v and p(u) and p(v) are the

marginal distributions. It measures the infor-

mation that one data contains about the other:

the more independent u and v are, the closer

the joint probability p(u, v) is to the distribu-

tion p(u)×p(v). In practice, these distributions
are estimated by computing the marginal and

joint histograms of the values of the images to
register. The registration is then performed by
seeking the transformation that will maximize
the mutual information between both images.

However, it still requires that the intensities of

both modalities are close to be in bijection. Un-

fortunately, this is not satisfied in our problem:

some areas are highly textured on the optical
image but smooth on the IR image, while some
constant areas on the optical image (such as the
sky or the river on Figure 1) are shaded on the

IR image.

Registration can also be performed using the
edge information of the images. In [17], an edge-

based metric is defined in order to measure the

alignment of the gradient ∇v of the reference

image and the gradient ∇u(T ) of the trans-

formed version of the image to register, where

T is the tested transformation. The edge align-

ment is evaluated at each pixel thanks to the

following edge-based criterion:

CS(T ) =

∫
Ω
wT (X) cos(2∆θT (X)) dX∫

Ω
wT (X) dX

(3)

where wT (X), ∆θT (X) are based on the mag-
nitude M and the orientation θ of the image

gradients at location X:

wT (X) = Mu(T (X))Mv(X),

∆θT (X) = θu(T (X))− θv(X). (4)

The cos(2∆θT (X)) in equation (3) favors the

transformations that align the edge direction,

regardless of the gradient orientation. Besides,

when dealing with multi-modal images, some

discontinuities can only appear in one of the two

modalities, so the weight wT (X) favor strong

edges that occur in both modalities.

In [6], a similar edge-based metric is used,

based on the following quantity:

ωT (X) =

〈
∇u(T (X))

‖∇u(T (X))‖ǫ
,

∇v(X)

‖∇v(X)‖ǫ

〉2

(5)

with ‖∇v(X)‖ǫ =
√

∇v(X)T∇v(X) + ǫ2. The

Normalized Gradient Fields metric is defined as
follows :

CH(T ) =

∫

Ω

ωT (X) dX

=

∫

Ω

cos2(∆θT (X)) dX (6)

This metric uses normalized gradients; it can be
expressed as a scalar product or as the cosine of
the angle between the edges, regardless of the
edge amplitude.

This edge-based metric can be traced back

to [13] where the shape information is combined

to the mutual information. In order to take into
account the edges that appear in both modal-

ities, the scalar product ωT (X) is weighted by

the minimum of the gradient magnitude:

G(T )=

∫

Ω

ωT (X)min(|∇u(T (X))|, |∇v(X)|) dX,

(7)

then G(T ) is combined with mutual information

in order to take into account both spatial and

distribution-based information.
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1.3 Contribution and organization of the paper

We propose to extend the edge-based metrics

of (3) and (6) to a robust night vision frame-

work as follows: we develop a new criterion that

takes into account both the magnitude and the
direction of the edges, and we maximize this cri-
terion using a gradient ascent scheme in order

to find the best transformation that will align

one image with the other.

Our main contributions are the new crite-
rion we propose, that we can express in a con-

tinuous form, and the theoretical and experi-

mental study we conduct in order to validate

the proposed model. We also develop a gradi-

ent ascent optimization combined to a temporal

validation scheme that can proceed up to 8 im-

ages per second, which makes it suitable to an

embedded operational registration.

The proposed model is presented in sec-

tion 2, then section 3 provides an optimization

scheme based on a gradient ascent, and com-

bined with a temporal scheme that guarantees

stability and robustness. Section 4 studies the

performance of the metric: we show that the
maximization of the proposed criterion does al-
low to recover the optimal transformation, both

in theory and in practice, and we study the sta-

bility and robustness of this metric. We also

check that the gradient ascent scheme allows

to recover the optimal transformation param-

eters. Section 5 presents an extension of the
proposed model to the general case of projec-
tive transformations and extends the gradient

ascent accordingly. Finally, section 6 shows re-

sults on real data.

2 Multi-modal framework

2.1 Definition of the criterion

The current image u is registered to the refer-

ence position given by v as follows. Let Mv and
θv be the magnitude and the orientation of the

gradient of the reference image v, computed us-
ing a Sobel edge detector [16]. Mu and θu are

defined similarly in the image to register u.

We define an edge-based metric that is

adapted to the night vision framework and the

characteristics of each modality, and that is
easy to manipulate in an embedded operational

context. We define the following criterion:

C(T ) =

∫

Ω

|∇u(T (X)) · ∇v(X)| dX, (8)

that can also be written under the following

form:

C(T ) =

∫

Ω

wT (X) |cos(∆θT (X))| dX, (9)

where wT (X) and ∆θT (X) refer to the magni-

tude and orientation quantities defined in (4).

This criterion favors strong edges, thanks to

the amplitude ponderation, and it is insensi-

tive to the orientation of the gradient, only

to the direction, thanks to the absolute value

of the cosine. It allows to take into account

edges that occur in both modalities, regard-

less of their orientation. Besides, contrary to

the metric proposed in [17], this criterion is not
normalized. This makes it easier to manipulate

(more stable), and it is more sensitive to the

number of edges that are actually put in cor-

respondence. Indeed, the normalized criterion

performs a weighted average of the score ob-

tained for each edge, so it measures the aver-

age edge alignment that has been performed
on all the edges that occur in both modali-
ties. On the contrary, this un-normalized crite-

rion adds up the score of each aligned edge, so

that the more edges are in correspondence the

higher the criterion is. The normalized criterion

might favor very precise alignments, regardless

of the number of matches, while being sensitive

to mismatches, whereas this un-normalized cri-

terion might prefer slightly less precise matches,

if they occur often enough.

2.2 Transformation model

In the original paper of Sun et al. [17], the

criterion of (3) is optimized by performing an

exhaustive search on all the possible transfor-

mation parameters, that originally consist of

a translation in both directions. In the scope

of our application, we have first considered for

possible transformations a translation in both

directions (horizontal and vertical), and a uni-

form zoom. We denote the zoom parameter z,

and the translation parameters in the horizon-

tal and vertical direction respectively t1 and t2.

If X = (x y 1)T are the coordinates of the im-

age to register (that we can also note in the
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concise form X = (x y)T ), we can define the

transformation matrix T = Tt1,t2,z as :

Tt1,t2,z(X) =




1 0 t1
0 1 t2
0 0 1







1 + z 0 0

0 1 + z 0

0 0 1


X

=




1 + z 0 t1
0 1 + z t2
0 0 1







x

y
1


 (10)

3 Proposed optimization scheme

3.1 Gradient ascent

Thanks to the formulation proposed in equation

(8), an explicit optimization scheme is derived

to maximize the proposed metric at each itera-

tion n, by performing a gradient ascent on the

transformation Tt1,t2,z:





tn+1
1 = tn1 + λ1∂t1C(Ttn1 ,t

n

2 ,z
n)

tn+1
2 = tn2 + λ2∂t2C(Ttn1 ,t

n

2 ,z
n)

zn+1 = zn + λ3∂zC(Ttn1 ,t
n

2 ,z
n)

, (11)

where the derivatives of the function
C(Tt1,t2,z) are at each iteration:

∂t1C(T(t1,t2,z))=

∫

Ω

σD2u(Tt1,t2,z(X))

(

1
0

)

.∇v(X)dX,

∂t2C(T(t1,t2,z))=

∫

Ω

σD2u(Tt1,t2,z(X))

(

0
1

)

.∇v(X)dX,

∂zC(T(t1,t2,z))=

∫

Ω

σD2u(Tt1,t2,z(X))

(

x
y

)

.∇v(X)dX.

(12)

where σ = sign(∇u(Tt1,t2,z(X)).∇v(X)).

The computation of the derivatives is de-
tailed in appendix A. The functional we seek to

maximize is subject to local maxima, so the ini-
tialization is important. For the first frame, we
can either perform a coarse exhaustive search as

in [17], or perform several gradient ascents with

different initializations and select the result that

gives the best metric value. Then in practice,

the sequence provides temporal regularity, so
the transformation for each frame can be ini-
tialized with the parameters obtained from the
previously acquired frame.

3.2 Temporal implementation

In order to accelerate the convergence, improve

the stability of the algorithm and control the

performance of the registration, the gradient as-

cent has been included into a temporal scheme

Fig. 3 Proposed temporal scheme for a fast conver-
gence of the gradient ascent algorithm, and error con-
trol.

that uses the information from the previously
registered frames to predict and control the reg-

istration for the next frames. Figure 3 displays
the different steps for a fast, in-flight registra-
tion. At time t−1, the LI and IR images respec-

tively called ut−1 and vt−1 are registered with

transformation Tt−1, so that:

ut−1(Tt−1X) = vt−1(X). (13)

Besides, for a single modality between ut−1

and ut or vt−1 and vt, movement estimation can
be achieved with simpler mono-modal methods.

In this case, we have chosen to use Motion 2D
[11] separately on each modality, in order to es-

timate the transformation At−1 between ut−1

and ut and Bt−1 between vt−1 and vt, such that:

{
ut−1(At−1X) = ut(X)

vt−1(Bt−1X) = vt(X)
(14)

Note that in practice in operational conditions,

cameras are equipped with posture detection

systems that can (roughly) estimate the move-

ment of each camera between two acquisitions.

Thanks to these three estimations, it is pos-
sible to predict the estimated transformation T̃t

between ut and vt as:

T̃t = A−1
t−1Tt−1Bt−1 (15)

This estimation T̃t can be used as a close

enough initialization at time t. This ensures

that the gradient ascent will converge in few

iterations, and since the initialization is reason-

able it will lead to a relevant maximum.
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Besides, this procedure can also be used to

control the energy and prevent any divergence
of the gradient ascent process. Indeed, the al-

gorithm can be subject to local maxima and
it is quite sensitive to the gradient steps for
each parameter. The temporal validation can
balance this sensitivity: if the energy at the end

of the gradient ascent is found to be lower than

the initialization, this means that the algorithm

has not converged properly, so we can choose to

stick to the estimation T̃t.

4 Analysis and validation of the
proposed model

4.1 Theoretical analysis

The goal of this section is to study the registra-

tion from a mathematical point of view in order
to show that the maximization of the proposed
criterion does result theoretically in finding the
optimal parameters.

We study the one dimensional case and we

focus on aligning two edges when the signal to
register is subject to a translation and a zoom.
The registration of only one edge is subject to

an aperture problem, since an edge, seen from
different levels of zoom, remains the same. To
remedy this, we use for a reference signal a box
function v0(x) = 1 if x ∈ [−1, 1], 0 otherwise

(see Figure 4).

The signal to register is then defined as

u0(x) = v0(ax− b) where a is the zoom param-
eter with a > 0 (a corresponds to the factor

1 + z in the transformation model described in
section 2, equation (10)) and b the translation

parameter.

Intuition

The reference signal described above is not

differentiable in ±1. However, its derivative

∇v0 can be represented as the sum of two
Diracs at location ±1: ∇v0(x) = δ−1 − δ1. We

can also define ∇u0(x) = a · ∇v(ax − b) =

a
(
δ−1+b

a

− δ 1+b

a

)
, so that the functional that

we seek to maximize can be expressed in a

heuristic way as:

F (a, b) =

∫

R

|∇u0(x) · ∇v0(x)| dX

=

∫

R

a |∇v0(ax− b) · ∇v0(x)| dX

=

∫

R

a
∣∣∣
(
δ−1+b

a

− δ 1+b

a

)
·
(
δ−1 − δ1

)∣∣∣ dX

=

∫

R

a
(
δ−1+b

a

+ δ 1+b

a

)
·
(
δ−1 + δ1

)
dX

(16)

Although it is not formally correct to deal

with Dirac products, one can presume how the
functional is going to behave thanks to this for-
mulation:

• Perfect match between both pairs:
In order for both pairs of Diracs to coincide
at the same time, a and b must satisfy the

following conditions:

{
−1+b

a
= −1

1+b
a

= 1
⇔

{
b = 0

a = 1
(17)

• Match of one pair:

For only one Dirac of ∇u0 to coincide with
one Dirac of ∇v0, a and b need to satisfy

one of the following conditions:

1+b
a

= 1 ⇔ a− b = 1
−1+b

a
= −1 ⇔ a+ b = 1

1+b
a

= −1 ⇔ a+ b = −1
−1+b

a
= 1 ⇔ b− a = 1

(18)

• In any other case, both pairs are separate,

which leads to a null functional.

This heuristic study shows three configura-
tions:

• One unique case (a = 1 et b = 0) for which

both pairs of Diracs masses are perfectly
aligned, meaning that both edges are cor-

rectly registered. Intuitively, this is when the
functional is at its maximum, although it is
not possible to formally evaluate its value
due to the product of Diracs.

• 4 linear relations between a and b for which

the signals have only one pair of edges out
of two that matches. Theses relationships

reflect an infinite number of local maxima,

whose value is assumed to be lower than the

perfect registration.

• No match between any edge, resulting in a

null functional.
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In order to describe mathematically the be-

havior of the functional and separate the global
maximum from the local maxima, we study an

approximation of the problem on differentiable
signals that represents a differentiable approxi-
mation of the box function.

Theoretical registration

In order to deal with differentiable signals, we

use the following approximation of the Heavi-

side function [1]:

Hα(x) =





1
2 (1 +

x
α
+ 1

π
sin πx

α
) if |x| ≤ α

1 if x > α

0 if x < −α

(19)

This function is differentiable, and its derivative

is given by:

δα(x) =

{
1
2α (1 + cos πx

α
) if |x| ≤ α

0 if |x| > α
(20)

When α → 0, δα → δ and Hα → H where

δ refers to a Dirac distribution and H the

Heaviside function. In practice, α would tend
to 0 to simulate a discrete edge.

Based on the previous definition of the refer-

ence signal v0, we can now rely on its continuous
approximation:

v(x) = Hα(x+ 1)−Hα(x− 1) (21)

which is a box function on the interval [−1 −
α; 1 + α]. Its derivative ∇v is given by:

∇v(x) = δα(x+ 1)− δα(x− 1) (22)

The signal to register and its derivative become:

ua,b(x) = v(ax− b)

= Hα(ax− b+ 1)−Hα(ax− b− 1),

∇ua,b(x) = a (δα(ax− b+ 1)− δα(ax− b− 1)) .

Note that when a > 1, it results in a nega-

tive zoom, which means that the size of the sup-
port is reduced by a factor a, while the height

of the peaks is multiplied by a factor a, hence

heightened. On the contrary when a < 1 it is a

positive zoom: the support is stretched by a fac-

tor 1/a and the height of the peaks is reduced.

Figure 4 shows the effect of a zoom (a > 1 et
a < 1) on the function u and its derivative.

a = 2

−4 −2 0 2 4

0

0.5

1

−4 −2 0 2 4
−0.1

−0.05

0

0.05

0.1

a = 1/2

−4 −2 0 2 4

0

0.5

1

−4 −2 0 2 4
−0.05

0

0.05

Fig. 4 Approximation with α = 0.5 of the box function
(on the left, in blue) and its derivative (on the right, in
blue) and zoom with different values of a (in red).

The functional we seek to maximize be-
comes:

F (a, b) =

∫

R

|∇ua,b(x).∇v(x)| dx

= a

∫

R

(δα(x+ 1) + δα(x− 1))

· (δα(ax− b+ 1) + δα(ax− b− 1)) dx

= a

∫

R

δα(x+ 1)δα(ax− b+ 1)

+δα(x+ 1)δα(ax− b− 1)

+δα(x− 1)δα(ax− b+ 1)

+δα(x− 1)δα(ax− b− 1) dx

= F1(a, b) + F2(a, b) + F3(a, b) + F4(a, b)

(23)

with:

F1(a, b) = a

∫

R

δα(x+ 1)δα(ax− b+ 1) dx,

F2(a, b) = a

∫

R

δα(x+ 1)δα(ax− b− 1) dx,

F3(a, b) = a

∫

R

δα(x− 1)δα(ax− b+ 1) dx,

F4(a, b) = a

∫

R

δα(x− 1)δα(ax− b− 1) dx.

(24)

Each of the sub-functionals F1,...,F4 can be

studied separately in order to determine the

conditions on a and b for the integrals to be

maximal, and the close form of F (a, b).
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Proposition 1 The functional F can be ex-

pressed under the following form:

F (a, b) =





3
2α if a = 1 and b = 0,
1
2α

(
1 + a3

π(a+1)(a−1) sin
π
a

)

if a > 1 and





a+ b = 1
or a+ b = −1

or a− b = 1

or a− b = −1
1
2α

(
a+ 1

π(1+a)(1−a) sinπa
)

if a < 1 and





a+ b = 1

or a+ b = −1

or a− b = 1

or a− b = −1

0 otherwise.

(25)

Besides, it achieves its global maximum 3
2α for

a = 1 and b = 0.

A proof of this proposition is given in ap-

pendix B. This confirms the intuitive study con-

ducted with the Dirac distributions in the first
part, revealing a global maximum at the ex-
pected value (a, b) = (1, 0) and linear subspaces

of local maxima.

4.2 Assessment of the performance of the
proposed criterion

Fig. 5 Synthetic images of IR and LI modalities.

After showing that the proposed criterion is

theoretically able to recover the optimal trans-

formation parameters for the registration prob-

lem, this section aims at validating the pro-

posed metric in practice. For the numerical eval-

uation, we have created synthetic images that
reflect the characteristics of the involved modal-
ities, displayed on Figure 5.

4.2.1 Study of the performances

First, we study on synthetic images the abil-

ity of the proposed criterion to find the op-

timal transformation parameters. We simulate

some transformations with known translation

and zoom parameters, then we estimate the

transformation using an exhaustive search on

the 3-dimensional search parameters space, that

we restrict (given the images to register, and

for obvious computational reasons) to a posi-

tive zoom whose coefficient z is set between -

0.4 and 0.4, and translation parameters that do

not exceed 40 pixels in each direction. We also

study its robustness to noise, since the optical

images are corrupted by a strong non-Gaussian

noise: we add Poisson noise to the LI images

in order to reach a PSNR of about 18dB, to

reflect the natural degradations of this modal-

ity in night vision conditions. Then we com-
pare the performances of the edge-based met-
rics to the classical methods described in section

1.2: the cross-correlation metric (CC) defined

in equation (1), the mutual information (MI)

computed from equation (2) and the combined

edge-based/mutual information (MI-G) based

on equation (7).
This evaluates the ability of each metric to

attain its global maximum with the optimal

transformation. Tables 1 and 2 display the es-

timated parameters with each metric on sev-

eral simulated transformations, on clear then

Poisson-corrupted images. The results show

that the edge-based methods provide a more

reliable estimation, that is also more robust to

noise.

4.2.2 Study of the stability

Since we seek to perform an optimization

scheme for the search for the optimal param-

eters, the stability of the metric and its sensi-

tivity to local maxima is a crucial point.

The next experiment consists in evaluating

the stability of the different metrics regarding

the variation of one parameter. We simulate a

known transformation on the synthetic images,

and we compute the criterion while testing only

one parameter, the other two being fixed to the

correct value. Figures 6 and 7 display the evo-

lution of the metrics as a function of the hori-

zontal translation parameter t1, while the ver-
tical translation parameter t2 and the zoom pa-

rameter z are fixed, in the case of the cross-

correlation metric, the mutual information met-

ric, the edge-based metric of Sun et al. [17], the

combined edge-based/mutual information [13],

the normalized Gradient Fields [6] and the pro-
posed metric. On the top, the experiment was
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Noiseless images

Parameters CC MI MI-G Proposed metric

[0, 0, 0]
√

[−16, 0, 0.05]
√ √

[16,−8, 0.1]
√

[24, 6, 0.05]
√ √

[32, 0, 0.15] [32,−4, 0.10] [26,−2, 0.05]
√ √

[24,−32, 0.3]
√ √ √ √

[8,−8, 0.4]
√ √ √ √

[−40, 40, 0.4] [−38, 36, 0.35]
√ √ √

Table 1 Estimated transform parameters [t1, t2, z] obtained on synthetic images with the cross-correlation (CC),
the mutual information (MI), the combined edge-based/mutual information metric (MI-G) and the proposed metric.√

refers to a correct estimation.

Noisy LI image, Poisson noise

Parameters CC MI MI-G Proposed metric

[0, 0, 0] [2,−2, 0.05] [2, 4,−0.05] [−4,−14,−0.05]
√

[16,−8, 0.1] [16,−12, 0.05]
√ √ √

[32, 0, 0.15] [32,−4, 0.10] [32, 2, 0.15] [32, 2, 0.15]
√

[24,−32, 0.3]
√ √ √ √

[8,−8, 0.4] [10,−6, 0.4]
√ √ √

[−40, 40, 0.4] [−36, 38, 0.35]
√ √ √

Table 2 Estimated transform parameters [t1, t2, z] obtained on synthetic images with the cross-correlation (CC),
the mutual information (MI), the combined edge-based/mutual information metric (MI-G) and the proposed metric.
The LI image has been corrupted by a Poisson noise, so that its initial PSNR is around 18dB.

√
refers to a correct

estimation.

conducted on noiseless images with optimal pa-
rameters [t1, t2, z] = [0, 0, 0], while on the bot-

tom the LI image was corrupted by Poisson
noise (initial PSNR ≈ 20dB), and with true pa-

rameters [t1, t2, z] = [24,−32, 0.3].

These figures illustrate that the non-

normalized edge-based metrics (bottom line)
are more stable, hence more prone to optimiza-
tion. Both studies on performance and stability

lead us to confirm the theoretical results and to
validate the proposed metric.

4.3 Study of the optimization scheme

The above theoretical and experimental stud-

ies have sought to validate the proposed metric

in terms of performance, robustness and rele-

vance. We have shown that the maximization

of the proposed metric does lead to the opti-

mal transformation, both in theory and in prac-
tice. We have also studied its robustness to noise
and its behavior regarding the evolution of one
transformation parameter, and we have demon-

strated its ability to find the optimal trans-

formation when searching the whole parameter

space.

Now that the performance of the functional
has been validated, we focus on the optimiza-

tion scheme that we have developed. Indeed,

even though the functional is not concave, we

can study its ability to attain the global maxi-

mum within a gradient ascent scheme, provided

that the initialization is close enough to the so-

lution. In our night vision context, we benefit

from a video flux that ensures that the regis-

tration performed for the previous frames is a

good guess for the next couple of images.

Figure 8 displays the map of the metric com-

puted for a fixed zoom parameter. The black

line shows the path of the estimated transla-

tion parameters t1 and t2 at each iteration of

the gradient ascent scheme. We can see that
each step does maximize the metric, and that

the algorithm converges towards the optimum.
Besides, even though the criterion is not strictly
concave, this map shows that around the opti-
mum the metric behaves well, which guarantees

that with a “good” initialization the gradient as-

cent will converge to the global maximum.

Such a “good” initialization is actually guar-

anteed by the fact that we treat videos, so we

can benefit from the estimation of the frame

before as described in section 3.2. Based on the
synthetic images, we have simulated movement
on the IR image with the translation parame-

ters t1 and t2 between -40 and +40 pixels, and

the zoom parameter z between 0 and 0.4, evolv-

ing with time. Then the registration with the LI

image was performed using the gradient ascent

for each frame. We start the first frame with a

coarse exhaustive search, and we use the esti-

mated parameters for each frame as an initial-

ization for the next one. This guarantees that

the initialization is not too far from the opti-
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Cross−correlation

−40 −20 0 20 40

Mutual information

−40 −20 0 20 40

Sun et al. 2004

−40 −20 0 20 40

MI−G

−40 −20 0 20 40

Haber et al. 2006

−40 −20 0 20 40

Proposed metric

Fig. 6 Evolution of the metrics as a function of the
horizontal translation parameter t1, the other two be-
ing fixed to the optimal value. From left to right, top
to bottom: Cross-correlation (1), Mutual information
(2), normalized edge-based metric [17], combined Edge-
based/Mutual information [13], Normalized Gradient
Fields [6] and proposed metric (8). Optimal parameters:
[t1, t2, z] = [0, 0, 0].
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Cross−correlation
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Fig. 7 Evolution of the metrics as a function the hor-
izontal translation parameter t1, the other two being
fixed to the optimal value. The LI image was corrupted
by Poisson noise in order to attain a PSNR of about
20dB. Optimal parameters: [t1, t2, z] = [24,−32, 0.3].
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Fig. 8 Similarity map for a range of translation pa-
rameters, at a fixed zoom, and estimated parameters at
each iteration of the gradient ascent. We can see that
the optimization scheme does maximize the metric, and
that it converges towards the optimum.

mum, and it allows to converge in a limited

number of iterations. Figure 9 shows the evo-

lution of each simulated parameter with time

(blue line), and the red stars show the estima-
tion of these parameters for each frame. The
algorithm performs well on all the sequence. In
fact, the average error on the estimation is less

than 1 pixel for the translation and 0.003 for

the zoom. These experiments show that maxi-

mizing the proposed metric is relevant since it

does lead to the optimum transformation, and

that the proposed gradient ascent scheme is suc-

cessful.

5 Projective model

When the helicopter flies at high altitude, the

assumption that the transformation between

the two modalities can be modeled by a uniform

zoom and a translation (or more generally by an
affine transformation) can be verified. However,
when the helicopter flies at lower altitude, the
perspective is different between both cameras,

so a projective model has to be adopted.

5.1 Projective geometry

A projective transformation [7] is described by
the homography matrix

H =




h11 h12 h13

h21 h22 h23

h31 h32 1


 (26)

that has 8 degrees of freedom.

The equation of the transformation is:




wx′

wy′

w


 = H




x
y

1


 =




h11x+ h12y + h13

h21x+ h22y + h23

h31x+ h32y + 1


 ,

(27)

then we revert to x′ and y′ by normalizing by
w :
{
x′ = h11x+h12y+h13

h31x+h32y+1

y′ = h21x+h22y+h23

h31x+h32y+1 .
(28)

We can simplify the expression using only

the first two coordinates:

X ′ = HX =




h11x+h12y+h13

h31x+h32y+1

h21x+h22y+h23

h31x+h32y+1


 (29)
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Fig. 9 Evolution of each parameter (t1, t2, z) of the transformation during the sequence and estimation (in red
stars) computed using the gradient ascent. Some of the errors are due to the fact the evolution of the parameters is
continuous, so the values are not integers, which generates approximations in the transformation.

This type of transformation is a generaliza-

tion of the affine model, and it includes the

transformation model we considered until then,

but also the rotations and the changes of per-

spective.

Even though it is possible to restrain the

space of the sought parameters, an exhaustive
search would still require a higher number of di-

mensions which makes it computationally diffi-

cult in real-time. The gradient ascent then takes

all its meaning in the extended problem.

5.2 Gradient ascent

The functional F = F (H) that we seek to max-
imize now relies on 8 parameters, so we have

to compute 8 partial gradients regarding each

parameter. We note H11 the variation on pa-

rameter h11 :

H11 =




h11 + α h12 h13

h21 h22 h23

h31 h32 h33


 (30)

so

H11X =




(h11+α)x+h12y+h13

h31x+h32y+h33

h21x+h22y+h23

h31x+h32y+h33




= HX + α




x
h31x+h32y+h33

0


 (31)

We can write in a similar way the variations

H12, ..., H23.

For the parameters that intervene in the de-
nominator, we need to perform a linearization

and we have:

H31X =




h11x+h12y+h13

(h31+α)x+h32y+h33

h21x+h22y+h23

(h31+α)x+h32y+h33


 , (32)

which leads to the following result:

H31X = HX − α
x

h31x+ h32y + h33
HX + o(α)

= HX

(
1− α

x

h31x+ h32y + h33

)
+ o(α)

And also:

H32X =




h11x+h12y+h13

h31x+(h32+α)y+h33

h21x+h22y+h23

h31x+(h32+α)y+h33




= HX − α
y

h31x+ h32y + h33
HX + o(α).

We can then re-inject each of this variation

calculation in the computation of the metric,

leading to a 8-dimensional gradient.

6 Results

6.1 Computational time and implementation

The proposed method has been implemented

first on Matlab, then in C++ and GPU to ac-

celerate the registration time. The initial LI im-

ages are of size 1600 × 1200 pixels and the IR

images are of size 768 × 576. First we resize

the images to the same dimensions (using bicu-

bical interpolation), then we perform a down-

sampling in order to reduce the size of the im-

ages, hence the computational time.

For an exhaustive search resolution, we need
to compute the value of the metric for each
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Exhaustive search Gradient ascent Gradient ascent
(Zoom/Translation) (Projective)

Matlab C++ GPU Matlab C++ GPU Matlab C++ GPU

Iteration time (ms)

1600 × 1200
800 × 600
400 × 300

756.37 153.15 7.46
175.53 37.26 2.99

46.5 9.19 0.998

1455.71 195.01 9.38
328.52 44.56 3.28
88.36 11.38 1.22

1657.97 255.23 12.59
394.28 56.36 4.91
99.05 15.09 1.66

Total registration time (s)

≈ 10000 iterations ≈ 100 iterations ≈ 100 iterations

1600 × 1200
800 × 600
400 × 300

7563.7 1531.5 74.6
1755.3 372.6 29.9

465 91.9 9.98

145.571 19.501 0.938
32.852 4.456 0.328
8.836 1.138 0.122

165.797 25.523 1.259
39.428 5.636 0.491
9.905 1.509 0.166

Frame rate (Hz)

1600 × 1200
800 × 600
400 × 300

0.0001 0.0007 0.0134
0.0006 0.0027 0.0334
0.0022 0.0109 0.1002

0.0069 0.0513 1.0661
0.0304 0.2244 3.0488

0.1132 0.8787 8.1967

0.0060 0.0392 0.7943
0.0254 0.1774 2.0367

0.1010 0.6627 6.0241

Table 3 Registration time computed for the exhaustive search, the standard gradient ascent scheme (dealing with
only a zoom and a translation), and the projective gradient ascent scheme, depending on the size of the image and
the implementation. A GPU implementation of the gradient ascent scheme allows to perform registration in less
than a second.

tested set of parameters, which implies apply-

ing the associated transformation to the current
image, then computing the metric (which in-
volves calculating the gradient of each image).

This step is repeated for every set of parame-

ters of the search space, that includes at least

10000 possibilities (in the non-projective case)!

For a gradient ascent resolution, for each it-
eration step the registered image is computed

in order to evaluate the gradient of the met-

ric, which also involves computing the image

gradients. Experiments have shown that 100 it-

erations allow the gradient ascent to converge,

and this number can even be reduced when as-

sociated to a temporal scheme as in section 3.2

where the initialization is refined by a mono-

modal registration.

The gradient ascent scheme is all the more

interesting when the number of parameters to

optimize becomes important, for example in the

projective case. In order to illustrate the compu-

tational complexity involved with each resolu-

tion method, we display in table 3 the computa-
tional time as a function of the image size (that
depends on the down-sampling factor) needed
for one step of the resolution: either one itera-

tion of the gradient ascent ascent or one compu-

tation of the metric for one set of parameters.

Then by taking into account the average num-

ber of iterations needed (number of iteration
steps for the gradient ascent scheme or size of
the parameters search space), it gives an indi-
cation of the registration time for one image,

depending on the size. The computational time

can then expressed in terms of frame rate, ie

Reference image

1
23

4

Registered image

1
23

4

Fig. 10 Example of control points selected on the ref-
erence IR image, and associated points localized on the
registered image.

Img Orig. CC MI MI-G Edge

1 31.48 42.34 9.89 9.50 8.44
2 18.38 20.75 6.02 4.22 3.30
3 24.91 26.43 7.67 5.13 4.97

Table 4 Average distance between the pixel coordi-
nates of the control points from the reference image to
the image to register and to the registered image, using
either the cross-correlation metric, the mutual informa-
tion, the combined edge-based/mutual information or
the proposed metric.

the number of frames that can be processed in

a second, that is shown to be up to 8 frames per

second.

6.2 Experimental validation on real

experimental conditions

In order to evaluate the different metrics on

real images without knowing the optimal trans-
formation, we have developed a method based
on manually selected points. We select on the

reference IR image and the LI image to regis-

ter four pairs of characteristic points (the whole

difficulty being to find reference points that can
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Fig. 11 Results obtained on a real data sets using the proposed metric. Edges extracted from the IR images
are superimposed on each image for visual assessment of the quality of the registration. The complete registered
sequences are available at http://image.math.u-bordeaux1.fr/Registration.

be identified in both images), and we measure
the distance (in pixels) between the pixel coor-
dinates for each pair of points. Then we mea-

sure the distance between the pixel coordinates

from the reference image and those from the

registered image. We repeat this measurement

for a short sequence of images, then we aver-

age the distances to produce an average reg-

istration error (in pixels). Figure 10 displays

an example of characteristics points manually

selected on the reference IR image, and the

corresponding points in the registered image.

This experiment has been conducted on im-

ages registered with the cross-correlation, the
mutual information and our proposed method.
Table 4 displays the average distance between

the pixel coordinates of the reference image and

the registered ones using different registration

metrics (cross-correlation, mutual information,

combined edge-based/mutual information and

proposed metric). The edge-based method is
shown to perform a more accurate registration,
the remaining errors being also due to the diffi-

culty to select control points that are in perfect
correspondence between the two modalities.

6.3 Registration on real data

Figure 11 displays an infra-red image, an op-

tical image and the registered optical image

in the IR coordinates issued from three differ-

ent sequences. For each sequence, the images

have been resized to the common resolution of

1024× 768 pixels, then down-sampled by a fac-
tor 2. The parameters for the gradient ascent

have been initialized using a coarse exhaustive

search, then the gradient steps are set to 1e− 4

for the translation parameters and 1e−8 for the

zoom parameters. These steps have been man-

ually optimized, but they are fixed for all the

data we have tested. In order to illustrate the

accuracy of the registration, we have performed

an edge detection on the IR image, and we have

printed these edges on the optical images, to

check that the edges are correctly aligned. The

http://image.math.u-bordeaux1.fr/Registration
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Fig. 12 Simulation of a rotating LI image sequence
with varying zoom and rotation angle parameters (blue
line) and estimation for the registration (red stars).

LI Registered IR

Fig. 13 Example of a transformed LI image subjected
to a zoom and a rotation, and the associated registered
IR image. The edges of the LI image have superimposed
onto the IR one in order to illustrate the accuracy of the
registration.

LI Registered IR

Fig. 14 Example of a transformed LI image subjected
to a zoom, a translation in both directions and a hori-
zontal projection, and the associated registered IR im-
age. The edges of the LI image have superimposed onto
the IR one in order to illustrate the accuracy of the reg-
istration.

complete registered sequences are available for
download1.

6.4 Projective simulations

We have simulated transformations on already
registered (real) images. Since the projective ge-
ometry includes rotations and changes of per-

spective, we have simulated such movements on

a LI image sequence, then performed the reg-

istration of the IR image for each frame. The

knowledge of the true transformation parame-

ters allows to check that the estimation is accu-

rate.

1 http://image.math.u-bordeaux1.fr/

Registration

Figure 12 displays the simulated and es-

timated zoom and rotation angle parameters
during the sequence. Figures 13 and 14 show

the transformed LI image subjected to either a
zoom and a rotation or a zoom, translation and
horizontal projection, and the corresponding IR
registered images.

These figures illustrate that the general

projective model can accurately encompass all

kinds of transformations that are likely to be

encountered in-flight.

7 Conclusion and perspectives

In this paper, we have presented a new multi-
sensor registration method based on the edge
alignment principle. We have developed a new

algorithm that aligns the edges that appear in

both modalities by performing a gradient ascent

scheme that provides a fast resolution. Coupled

with a temporal implementation that ensures

stability and provides error control, our pro-

posed method is shown to be robust and fast

compared to a standard resolution with an ex-

haustive search, and the algorithm can proceed

up to 8 frames per second. Theoretical and ex-

perimental studies show that the criterion is rel-

evant and liable, and results on real data vali-

date the night vision application.

This model is well adapted to the night vi-

sion operational context, and its general prop-

erties make it suitable for any multi-modal ap-

plication.

A Computation of the gradient of
Functional (12)

We focus on the continuous form of the func-
tional:
F (T ) =

∫
Ω
|∇u(T (X)).∇v(X)| dX,

where T is the transformation we seek to opti-

mize.

If we define a small displacement S, we have:

F (T +S) =
∫
Ω
|∇u(T (X) + S(X)).∇v(X)| dX

and:
∇u(TX+SX)) = ∇u(TX)+D2u(TX)(SX)+

o(S).

We have:

F (T + S) =

∫

Ω

|∇u(T (X) + S(X)).∇v(X)| dX

(33)

http://image.math.u-bordeaux1.fr/Registration
http://image.math.u-bordeaux1.fr/Registration
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Using the first order expansion, we have:
∫

Ω

|∇u(T (X)).∇v(X)

+D2u(TX)(SX).∇v(X)
∣∣ dX

=

∫

Ω

|∇u(T (X)).∇v(X)|

×

∣∣∣∣1 +
D2u(TX)(SX).∇v(X)

∇u(T (X)).∇v(X)

∣∣∣∣ dX

=

∫

Ω

|∇u(T (X)).∇v(X)|

×

(
1 +

D2u(TX)(SX).∇v(X)

∇u(T (X)).∇v(X)

)
dX (34)

so that

F (T + S) = F (T )

+

∫

Ω

σD2u(TX)(SX).∇v(X)dX + o(S). (35)

with σ = sign(∇u(T (X)).∇v(X)). We now fo-

cus on a variation on each parameter t1, t2, z

and we see the functional F as a function of

each parameter:

F (t1 + α, t2, z)− F (t1, t2, z) = α∂1F (t1, t2, z)

and we denote by Tα the perturbation on T of
α on the first parameter t1, ie:

Tα =




1 + z 0 (t1 + α)

0 1 + z t2
0 0 1


 , and we have:

TαX = TX + α




1
0
0




Hence,

∇u(TαX)) = ∇u(TX) + αD2u(TX)

(
1
0

)
+

o(α) and:

F (t1 + α, t2, z)− F (t1, t2, z)

= α

∫

Ω

σD2u(TX)




1
0
0


 .∇v(X) + o(α) (36)

and we deduce that:

∂1F (t1, t2, z) =

∫

Ω

σD2u(TX)

(
1

0

)
.∇v(X)

(37)

We obtain an analogous result for the second
parameter t2:

∂2F (t1, t2, z) =

∫

Ω

σD2u(TX)




0

1

0


 .∇v(X)

(38)

For the zoom parameter z, we consider:

Tγ =




1 + z + γ 0 t1
0 1 + z + γ t2
0 0 1


 , so:

TγX = TX + γ




x
y

0




Hence,

∇u(TγX)) = ∇u(TX) + γD2u(TX)




x

y
0


 +

o(γ)

and:

F (t1, t2, z + γ)− F (t1, t2, z)

= γ

∫

Ω

σD2u(TX)




x

y

0


 .∇v(X) + o(γ) (39)

So we have:

∂3F (t1, t2, z) =

∫

Ω

σD2u(TX)




x

y

0


 .∇v(X)

(40)

Putting those three differentials together,

we obtain an explicit form for:

∇F (t1, t2, z) =




∂1F (t1, t2, z)
∂2F (t1, t2, z)

∂3F (t1, t2, z)


 . (41)

B Proof of proposition 1: Theoretical
analysis of the criterion

We have expressed the functional F (a, b) that

we seek to maximize as the sum of four sub-

functionals:

F1(a, b) = a

∫

R

δα(x+ 1)δα(ax− b+ 1) dx,

F2(a, b) = a

∫

R

δα(x+ 1)δα(ax− b− 1) dx,

F3(a, b) = a

∫

R

δα(x− 1)δα(ax− b+ 1) dx,

F4(a, b) = a

∫

R

δα(x− 1)δα(ax− b− 1) dx.

(42)

We can study each sub-functional separately in

order to determine the conditions on a and b for

each of them to be maximal.

Note that the parameter α that represents

the width of the peaks is meant to tend to 0.

The peaks issued from the derivative of the ref-

erence signal v are located at +1 and -1, and
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their support is [±1−α,±1+α]. For the trans-

formed signal ua,b, the peaks are located in
±1+b

a
and the support is [±1+b−α

a
, ±1+b+α

a
], of

half-width α/a.

Hence, when α tends to 0, the width of each
peak tends to 0 (for the transformed signal, this

implies that a > 0, which is relevant in prac-

tice).

This remark simplifies the problem: we can

consider that if the centers of the peaks are not

perfectly aligned, then it is possible to consider

a small enough α such that the supports are dis-

joints. Hence, we split the proof into five steps

and the study of the 4 sub-functionals is limited
to the conditions on a and b for the centers of

the peaks to be aligned.

Step 1:

F1(a, b) = a
∫
R
δα(x+ 1)δα(ax− b+ 1) dx

The support of δα(x+1) is [−1−α;−1+α],

centered in -1, and the support of δα(ax−b+1)

is [−1+b−α
a

; −1+b+α
a

], centered in −1 + b/a.

For the function F1 to be non-null, we solve:

−1 + b

a
= −1 ⇔ a+ b = 1 (43)

Besides, when condition (43): a + b = 1 is ful-

filled, F1 can be expressed in closed form:

• a > 1 :
If a > 1, the half-size of the support of ua,b

is α/a < α, so the computation of F1 is re-

stricted to the interval [−α/a, α/a], and we

have:

F1(a, b) = a

∫

R

δα(x+ 1)δα(ax− b+ 1) dx,

=
a

4α2

∫ α

a

−
α

a

(
1 + cos

πx

α

)
·
(
1 + cos

πax

α

)
dx,

=
1

2α

(
1 +

a3

π(a+ 1)(a− 1)
sin

π

a

)
. (44)

• a < 1 :
If a < 1, the half-size of the support of ua,b

is α/a > α, so the computation of F1 is re-

stricted to the interval [−α, α], and we have:

F1(a, b) = a

∫

R

δα(x+ 1)δα(ax− b+ 1) dx,

=
a

4α2

∫ α

−α

(
1 + cos

πx

α

)
·
(
1 + cos

πax

α

)
dx,

=
1

2α

(
a+

1

π(1 + a)(1− a)
sinπa

)
. (45)

• a = 1 :

If a = 1, the condition (43): a+b = 1 implies
that b = 0, so u = v, and we have:

F1(1, 0) =

∫ α

−α

[
1

2α

(
1 + cos

πx

α

)]2
dx =

3

4α

(46)

Conclusion :

F1(a, b) =





3
4α

if a = 1 and b = 0
1
2α

(
1 + a3

π(a+1)(a−1) sin
π
a

)

if a+ b = 1 and a > 1
1
2α

(
a+ 1

π(1+a)(1−a) sinπa
)

if a+ b = 1 and a < 1

0 otherwise.

(47)

Step 2:

F2(a, b) = a
∫
R
δα(x+ 1)δα(ax− b− 1) dx

An analogous study on the support of δα(x+

1) and δα(ax − b − 1) leads to solving the fol-

lowing conditions on a and b for the support to

intersect:

1 + b

a
= −1 ⇔ a+ b = −1 (48)

When condition (48): a+b = −1 is satisfied,

F2 can be computed in a similar way to F1:

F2(a, b) =





3
4α

if a = 1 and b = −2
1
2α

(
1 + a3

π(a+1)(a−1) sin
π
a

)

if a+ b = −1 and a > 1
1
2α

(
a+ 1

π(1+a)(1−a) sinπa
)

if a+ b = −1 and a < 1

0 otherwise.

(49)

Step 3:

F3(a, b) = a
∫
R
δα(x− 1)δα(ax− b+ 1) dx

Similarly, we solve:

−1 + b

a
= 1 ⇔ a− b = −1 (50)
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and we obtain the following expression:

F3(a, b) =





3
4α

if a = 1 and b = 2
1
2α

(
1 + a3

π(a+1)(a−1) sin
π
a

)

if a− b = −1 and a > 1
1
2α

(
a+ 1

π(1+a)(1−a) sinπa
)

if a− b = −1 and a < 1

0 otherwise.

(51)

Step 4:

F4(a, b) = a
∫
R
δα(x− 1)δα(ax− b− 1) dx

We solve:

1 + b

a
= 1 ⇔ a− b = 1 (52)

and we have:

F4(a, b) =





3
4α

if a = 1 and b = 0
1
2α

(
1 + a3

π(a+1)(a−1) sin
π
a

)

if a− b = 1 and a > 1
1
2α

(
a+ 1

π(1+a)(1−a) sinπa
)

if a− b = 1 and a < 1

0 otherwise.

(53)

Step 5: back to the whole functional F

The study of each sub-functional has put

forward the conditions for which two peaks

are aligned. Putting back together the results

leads to focusing on the conditions when

both pairs of peaks are aligned at the same

time. By comparing the conditions on a and
b for each sub-functional, the only simul-

taneous association is between F1 and F4,

with a = 1 and b = 0. In this case, we have

F (1, 0) = F1(1, 0) + F4(1, 0) =
3
4α + 3

4α = 3
2α .

Conclusion :

F (a, b) =





3
2α if a = 1 and b = 0,
1
2α

(
1 + a3

π(a+1)(a−1) sin
π
a

)

if a > 1 and





a+ b = 1

or a+ b = −1

or a− b = 1

or a− b = −1
1
2α

(
a+ 1

π(1+a)(1−a) sinπa
)

if a < 1 and





a+ b = 1

or a+ b = −1

or a− b = 1

or a− b = −1
0 otherwise.

(54)

To conclude, we need to show that F (a, b) ≤
3
2α so that the couple (a, b) = (1, 0) is the opti-

mum. To this aim, we focus on:

f1(a) = 1
2α

(
1 + a3

π(a+1)(a−1) sin
π
a

)
for a > 1

and f2(a) =
1
2α

(
a+ 1

π(1+a)(1−a) sinπa
)

for 0 <

a < 1 and we split the proof on three parts:

• 0 < a < 1
In order to show that f2(a) ≤

3
2α , we need to

assess that 1
π(1+a)(1−a) sinπa ≤ 2. We have:

1

π(1 + a)(1− a)
sinπa

=
1

π(1 + a)(1− a)
sinπ(1− a)

≤
1

(1 + a)
≤ 1 (55)

on the interval [0; 1].

• 1 < a < 2

In order to show that f1(a) ≤ 3
2α on the

interval [1; 2], we need to verify that
a3

π(a+1)(a−1) sin
π
a
≤ 2. We have:

a3

π(a+ 1)(a− 1)
sin

π

a

=
a3

π(a+ 1)(a− 1)
sin

π(a− 1)

a

≤
a3

π(a+ 1)(a− 1)
×

π(a− 1)

a

≤
a2

a+ 1
≤

4

3
(56)

on the interval [1; 2].

• a > 2

a3

π(a+ 1)(a− 1)
sin

π

a
≤

a2

a2 − 1
≤

4

3
(57)
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on the interval [2; +∞].

This concludes the proof by showing that

the functional has a unique global maximizer

for the sought parameters (a, b) = (1, 0).
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