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ABSTRACT
The increase in computational and storage capacities leads
to an increasing complexity of the data to be treated: data
can be represented in much more detail (many features) and
in very large amounts : in the context of text categorization
or image classification, the number of labels can scale from
102 to 105, and features range from 104 to 106. The main
trade-off is generally between the accuracy of the predic-
tions and the inference time. A usual methodology consists
in organizing multiple classifiers in a hierarchical structure
in order to reduce the computation cost of the inference.
A popular category of algorithms is to iteratively build the
structure. Inspired by clustering, the iteration scheme is a
splitting (top-down algorithms) or aggregating (bottom-up
algorithms) process. This step uses measures to determine
the split/aggregation rule (like entropy, similarity between
classes, separability . . . ). These kinds of measures are of-
ten computationaly heavy and can not be used in a large
scale context. In this paper, we propose to use a reduced
projected space of the input space to build measures of in-
terest. Preliminary experiments on real dataset show the
interest of such methods. We propose preliminary experi-
ments which integrate a “learnability” measure in hierarchi-
cal approaches.

1. INTRODUCTION
In the context of large scale multi-class classification, the
speed off of the inference time is becoming a real bottle-
neck for the industrial applications. Moreover, the learning
process is quite heavy, computationally intensive, and thus
lighter methods are required to achieve practical use.

Approaches usually rely on reducing the number of classi-
fiers. The trade-off is between the accuracy obtained and the
inference time under the condition of a reasonable learning
time.

Two main approaches exist for this task : reducing the la-
bel space by combining classifier decisions (mainly ECOC

[8, 5]) and organizing classifiers in a graph or tree structure
to speed up decision process [4]. In this latter setting, each
node of the structure represents itself a learning subproblem
consisting in predicting the right successor of the current
node for a data. Mainly three nested optimization problems
occurred : optimizing the architecture of the structure (how
deep, how many children by node, . . . ); optimizing the af-
fectation of learning problems to the structure, i.e. find a
well-adapted labels partition to be mapped into the struc-
ture; and optimizing the classifiers at each node globally.

When an a priori knowledge is available on labels, it can be
used to search the more appropriate hierarchy or combina-
tion of classifiers [14]. However, there is no guarantees that
the label similarity can help at the learning phase; further-
more, such hierarchies are often flat, with many branches per
node, do not respect data balancing, and are often unavail-
able. Building a hierarchy from a large collection of label
without any complementary information (ontologies, seman-
tic similarities) without decreasing severely the accuracy of
the prediction is a real challenge. Due to the large degree of
freedom (in terms of nodes degree, structure, model selec-
tion, . . . ), global optimization is often a very hard problem.

Many heuristics have been studied extensively for the con-
struction of hierarchies for learning : bottom up approaches
[10]; top down approaches [7, 4, 6]; online approaches [3];
global optimization problem [9]. A fundamental aspect of
the large scale classification task is that in a general way,
most naive approaches as the One-versus-Rest performed
the best in term of accuracy [12]. The challenge is still to
find methods that can reach the most expensive options.

In this paper we focus on hierarchical bottom-up strategies
based on a learnability criterion. We introduce an estima-
tion measure of the learnability of two subsets based on di-
mension reduction. We propose in the following to study
an ECOC-like projection to speed-up the criterion compu-
tation by largely reducing the number of dimension and to
improve the accuracy of the computed information. A learn-
ability measure is next proposed which use this projection
to assess the pertinence of our approach. Preliminary em-
pirical results show that our strategy outperforms baseline
aggregating top-down strategies and usual ECOCs.

The paper is organized as follow : Section 2 presents nota-
tions and definitions; section 3 discuss general considerations
on tree architecture for large scale classification. Section 4



presents our algorithm and experiments on real datasets.

2. NOTATIONS AND DEFINITIONS
We consider in the following classifiers organized in a hier-
archical way according to a tree, i.e. without cycles. An
example is classified as in classical decision tree, by follow-
ing from the root a sequence of tests at each node which
indicates the next node of the classification path. The pro-
cess ends when a leaf is reached and the example is classified
according to the leaf (generally a majority vote is used).

A learning problem is defined by Y a set of labels, a training
set X ⊂ R

d × Y = {(xi, yi)}, with yi the label associated to
the example xi. We choose to formalize the decision function
at each node by a set of classifiers with a probabilistic out-
put, one per child, denoting the probability that an example
belong to the associated children.

A such classification tree is noted T = (N,E, F, L), with N
the set of nodes indexed by {1, . . . , n}, E the set of edges,
F = {f(parent,children),...} the set of decision functions asso-
ciated at each edge, and L the label sets associated to each
node.

The classification path of an example x is the sequence of
nodes that leads to the leaf corresponding to x : path(x) =
{i1, . . . , il} s.t i1 is the root and ik+1 = argmaxj∈ch(ik)fik,j(x),
ch(i) the set of children of node i.

We will focus on the zero-one loss in the following. We note
fT : Rd → Y the decision function associated to the tree T .
The empirical loss is : R(fT ) =

1
|X|

∑
X
I(fT (xi) 6= yi).

3. AGGREGATING ALGORITHM

3.1 Speeding up with tree architecture
In order to compare easily the speed-up of our methods,
we define the compression classification time ratio r that
corresponds to the time needed to infer an example with
the inferred hierarchical model over the time needed for a
flat one-versus-rest SVM1. If r is equal to 1, the inference
time is similar to a flat method. Inference is more rapid for
smaller values of r.

Our approach is based on the main heuristic that without
any accurate fitness measure on the quality of the partition-
ing (indicating the learnability of partition problems at a
node), the best generic structure for a ratio r with bounded

resources 2|Y | classifiers is a first level with a non-fixed num-
ber of children, while all the other subtrees are binaries (thus
all nodes excepting the root have 2 children). From a time
cost point of view, adding branches to deep node has poor
effect, as the impact of the modifications decreases expo-
nentially with respect to the depth. On the other hand,
flat one-versus-rest structure is known to be among the best
classification pattern [12] (very recent researches [1] show
post-processing hierarchies methods getting better results
than flat models). Moreover, the impact of the errors de-
creases exponentially with the distance to the root. Thus,

1The time complexity in the following is the number of clas-
sifiers used to predict the class of an example. In the case
of the one-versus-rest, the time complexity is equal to the
number of classes.

to minimize the loss without prior knowledge, the best ar-
chitecture consists in focusing all the discriminative power
at the root of the tree. These two considerations argue for
the proposed structure, with balanced subtrees complexity
at the first level.

Experiments have been conducted to study empirically the
influence of tree basic structure on the LSHTC dataset2.
Two kind of structures have been considered : a binary first
level and the subtrees are k-ary balanced trees (with same
structure), named structure A; a root with k-children and
each child is a binary tree, named structure B. These two
structures A and B corresponds to tree skeletons. The la-
bels are then affected randomly to the nodes of these two
structures. Over the 10,000 random experiments, for the
same compression time ratio, the structure B showed better
scores than structure A with a difference of 3 to 5 points for
different ratio r targeted.

3.2 Bottom-up algorithm
The general algorithm of a bottom-up agglomerative ap-
proach consists in maintaining a forest of trees and to choose
iteratively 2 trees to merge based on a given measure, i.e.
create a new node which will be the parent of the two se-
lected tree roots, until the forest contains only one tree. At
each step, the process can be stopped and a tree can be ob-
tained by grouping all the trees of the forest under a same
root node.

Algorithm 1 Bottom up agglomerative strategy

1: Init. : Forest = {T1, . . . , T|Y |} the set of 0-depth trees
with one unique node, each one tagged by label li, which
will be the leafs set of the final tree.

2: while Complexity(Forest) < targeted complexity do

3: Find two trees Ti, Tj which minimize a criterion
4: Create a new node i′, remove Ti and Tj from Forest

and add the tree with root i′ and children Ti, Tj . Learn
the classifiers fi′,i and fi′,j corresponding to the two new
edges.

5: end while

6: Merge all the remaining trees together (under the root
node) and learn the associated classifiers.

A widely used measure to perform the tree pairing is based
on a confusion matrix computed from a set of linear one-
versus-rest SVM. The final measure we used is a trade-off
between the confusion matrix information and the size dif-
ference (in term of number of training examples) of the two
trees.

4. SCALABLE LEARNABILITY MEASURE
The criterion to pair at each step two trees requires to be fast
to compute in very large scale context. [11] has shown that
current methods are not sufficiently accurate nor scalable to
perform good classes pairing. We propose in the following
to study an ECOC-like projection to speed-up the criterion
computation by largely reducing the number of dimension
and to improve the accuracy of the computed information.
A learnability measure is next proposed which use this pro-
jection to assess the pertinence of our approach.

2http://lshtc.iit.demokritos.gr/



4.1 ECOC projection
In order to tackle the problem of scalability, we propose to
estimate measures in a space with many less dimensions than
the original one. We use for that an ECOC-like projection.
Given a random vector v = {−1, 0, 1}|Y | which affect -1, 0
or 1 to each label of the learning set (uniformly according
to a ratio of sparsity), a binary classifier with probabilistic
output φv : X → [0, 1] is learnt such that examples from la-
bels tagged by −1 (resp. 1) are considered negatives (resp.
positives) and the 0 examples are ignored. The new feature
for an example x ∈ R

d is the output of φv(x). Considering
m random vectors, the projection of an example x is the vec-
tor [φv1(x), . . . , φvm(x)]. This projection allows to produce
random projected space but the projection is guided by the
labels.

4.2 Learnability measure
Recent studies pointed out theoretically that sparse separa-
bility is highly related to the complexity of boosting trees
[13]. We propose to use the overfitting capabilities of boost-
ing trees and their computational effectiveness in large scale
context to regroup classification problems by increasing dif-
ficulty. We consider that given two comparable learning
problem settings, the easiest one is the one which requires
the less boosting epochs to overfit.

In order to integrate our criterion, we propose the following
modification of the bottom up algorithm: at each step, a
filter is first apply in order to select trees of the forest such
that each binary classification problem resulting from any
two merge of the roots have the same low difficulty among
all the possible merge. After that, the measure presented in
3.2 is used to select the two trees to be merged.

In practice, we consider {B1, . . . , Bb} a set of classifiers fam-
ily, such that the complexity and the expressiveness of Bi

is increasing. An example of such family is boosting trees
where each Bi corresponds to an upper bounded allowed
epochs (or number of trees considered), increasing with i.
Set the boolean predicate learnk(i, j) between two nodes
i, j s.t. it is true if the binary learning problem which con-
sists in discriminating examples from node i and node j is
overfitted by Bk. If learnk(i, j) is true, then for k′ > k
learnk′(i, j) is true. The filtering step consists in finding
the maximal clique for this relation s.t. k is minimal and
the set of candidates to merge is not empty.

4.3 Experiments/analysis
We tested our method on real data that comes from the
challenge LSHTC. We made sub-datasets of 100 classes of
the original one that contains more than 12,000 classes and
300,000 features. In order to keep challenging datasets,
the 100 classes of the sub-datasets were picked by selecting
classes close from each other.

Each set is composed of approximately 10,000 examples which
are then decomposed into a train, test and validation set ( 3

5
,

1
5
and 1

5
). The mean number of features is 50,000. The pa-

rameters guiding the partitioning were tuned by using the
validation set.

We assessed two methods of our own. One is a naive version
of our High Complexity Structure Tree with naive bottom-up

agglomerative algorithms (HCST Greedy). The other one
use complexity family to guide the merges (HCST Complex-
ity). We compare our methods to a naive classical ECOC
method, to a top-down partitioning based on spectral clus-
tering on a confusion matrix (Bengio’s partitioning [2]) and
finally, to a One-Versus-Rest linear SVM.

For all the tree partitioning methods, a linear SVM is trained
at the end for each node of the tree hierarchy.

For the ECOC projection, we use a code of length 20 (to
compare with the original space size of 50000 features), a
sparsity of 1/3 and balanced distribution of 1 and −1. For
the set of classifiers family {B1, . . . , Bb}, we consider boost-
ing trees with the number of trees limited by the series
{1, 2, 4, 8, 16}.

The classification accuracy computed is the mean of per-
class accuracy. To assess the computational gain, we com-
puted the mean of the number of classifier evaluations for all
train instances. Then, we compared all these methods for
a fixed computational gain. This computational gain is ex-
pressed as a ratio between 0 and 1 called Complexity Ratio.
It is the ratio of the mean of the number of classifier used for
inference over the number of classes. Though, the complex-
ity ratio for the One-Versus-Rest method is 1 and every ratio
below 1 has a quicker inference time than One-Versus-Rest.

As expected, One-vs-Rest model achieves the best perfor-
mances. The naive baseline (HCST Greedy) underperforms
generally One versus Rest by 2 to 3 points (except on set
3). Our approach ranges between these two boundaries, and
in some sets achieving very close to the One-vs-Rest. The
ECOC and top-down partitioning are beaten in every exper-
iments, but these two algorithms were used in their naive
version without any tunning of the parameters.

Figure 2: Accuracy with respect to Complexity Ra-

tio for Set4 experiment

These preliminary results show first of all that a measure of
learnability can be used successfully in the large scale clas-
sification setup by estimating a such criterion on a reduced
dimensional space. It appears more stable than other sim-



Computational LSHTC: Acc% (std)
Classifier Ensemble Type Ratio Set1 Set2 Set3 Set4

One-vs-Rest Flat 1 60.5% (0.2) 75.05% (0.6) 81.9% (0.2) 59.4% (0.5)
HCST Complexity Tree 0.2 58.75% (0.3) 74.56% (0.4) 81.34% (0.1) 58.7% (0.6)
HCST Greedy Tree 0.2 58.12% (0.5) 73.3% (0.7) 81.5% (0.1) 56.6% (0.4)
Top-Down Tree Tree 0.196 | 0.194 | 0.202 |0.198 54.47% (1.3) 71.65% (0.8) 79.47% (0.6) 53.6% (1.1)

ECOC Flat 0.2 47.07% (3.0) 61.38% (8.6) 73.1% (1.7) 44.8% (3.0)
ECOC Flat 0.5 57.27% (0.9) 72.93% (0.9) 80.6% (0.7) 56.1% (1.1)

Figure 1: Flat versus Tree Results

ilarity measures as confusion matrices. One explanation is
that the space reduction allows to denoise globally the par-
titions and thus the information extracted is more stable
than in the original space. On the other hand, few tries on
a datasets of 1000 classes shows no difference between the
HCST greedy and HCST complexity. One could expects this
phenomenon as the dimensionality reduction tends to pro-
duce more uniform features as the merging process progress
: the encoding is not recomputed and the dispatch between
positive and negative classes for the codeword is fixed at
the beginning of the process; at the end of the merging pro-
cess, positive and negative classes are generally uniformly
distributed in the different partitions, and thus loose their
compression competence. Moreover, our detection of over-
fitting is very naive and does not adapt well under different
learning settings. These preliminary results show however
that learnability criterion can achieve good performances
and projection of input space can be used not only to learn
or clusterise, but also to estimate in a very efficient way
properties of the input space.

5. CONCLUSION AND PERSPECTIVES
In this work we show experimentally the interest to use a
learnability measures to improve the accuracy in a particu-
lar setting of many classes classification. More interesting,
the experiments shows that the criterion can be estimated
in a projection space through dimensionality reduction and
thus be scalable. It is particularly important in the con-
text of exploration strategies for large scale classification :
the context involves many simulations and estimations to
deal with the number of partitions available and estimating
accurate fitness measure quickly and scalable is a real bot-
tleneck to many approaches. Further studies are needed to
explore intensively the exact role and use of the dimension-
ality reduction. We want to extend this work in two main
ways : considering recoding schema in order to tackle the
problem of the increasing inaccuracy of the measure in the a
priori fixed projected space; adapting this kind of measures
to assess quality of partition with respect to others. The
long-term goal is to design top-down or bottom-up strate-
gies adaptable to the decomposition of the combinatorial
problem aspect of large scale classification.
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