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Generalized Hierarchical Control

Mingxing Liu, Yang Tan, and Vincent Padois
Most existing techniques to handle strict task priorities in hierarchical control are based on null-space projectors or a sequence

of quadratic programs; whereas non strict task priorities are usually handled by optimization based on a weighting strategy. This
paper proposes a novel approach to handle both strict and non-strict priorities of an arbitrary number of tasks, and to achieve
multiple priority rearrangements simultaneously. A generalized projector, which makes it possible to completely project a task
into the null-space of a set of tasks, while partially projecting it into the null-space of some other tasks, is developed for priority
modulation. Priority transitions are achieved by smooth variations of the generalized projector. The control input is computed by
solving one quadratic programming problem, where generalized projectors are adopted to maintain a task hierarchy, and constraints
can be implemented (e.g. dynamic equilibrium, actuation capabilities, joint limits, obstacle avoidance, contact constraints, etc.). The
effectiveness of this approach is demonstrated on a simulated robotic manipulator in a dynamic environment.

Index Terms—Redundant robots, task hierarchy, priority switching, dynamics, torque-based control.

I. INTRODUCTION

Redundant robots, such as humanoids, are nowadays ex-
pected to perform complex missions in weakly structured
environments (e.g. human environments, construction sites,
nuclear dismantling zones, etc.). Even though robot redun-
dancy makes it possible for these robots to perform multiple
tasks simultaneously, task conflicts may still occur when all the
task objectives cannot be satisfied at the same time. In order
to handle conflicts, tasks are usually assigned with different
priority levels. Therefore, to control a complex robotic system
the controller must be able to handle multiple prioritized tasks
simultaneously and to respect various constraints imposed by
the robot body (joint limits, actuation capabilities, etc.) and the
environment (contacts to maintain, obstacles to avoid, etc.).

A large number of hierarchical control frameworks are
presented in the robotics literature for the management of
multiple operational task objectives.
• Some of them deal with strict task hierarchies, such as

analytical methods based on null-space projectors [1]–
[5] and hierarchical quadratic programming approaches
[6,7]. These approaches can ensure that critical tasks are
fulfilled with higher priorities and lower-priority tasks are
performed only in the null-space of higher priority tasks.

• Other approaches handle non-strict task hierarchies, such
as those using weighting strategies [8]–[12]. In a non-
strict task hierarchy, a lower priority task is not restricted
in the null-space of higher priority tasks, thus it may
still affect their performances. The solution of these
approaches is a compromise among task objectives of
different weights.

In a more general context, the robot may need to deal with
both strict and non-strict hierarchies. Moreover, for robots
acting in dynamically changing contexts, non-strict priorities
between tasks may become strict ones and task priorities may
have to be switched in order to cope with changing situations.

With the aim of handling both strict and non-strict hi-
erarchies simultaneously, a novel control framework called
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Generalized Hierarchical Control (GHC) is presented in this
paper. The contributions of this work are as follows: 1) the
development of a generic dynamic control framework, which
solves a single quadratic program (QP) to account for an
arbitrary number of strict and non-strict task priorities; 2) the
development of a generalized projector, which ensures desired
task priorities, their transitions as well as an elegant way of
inserting and deleting tasks among those to be performed. The
implementation of such a projector is not restricted to the
dynamic control framework presented in this paper. In fact,
it can be implemented in many analytical and optimization-
based control frameworks. Task priorities can be handled by
the modulation of a priority matrix, without the necessity
of modifying the control problem formulation each time the
priorities change.

This paper is organized as follows. Related works are
described in Section II. The robot model considered in this
paper and the tasks and constraints to be handled by the
controller are presented in Section III. The GHC framework
is developed in Section IV, where detailed explanations of the
generalized projector are provided. Some experimental results
are presented in Section V to demonstrate the framework
capabilities, and comparisons with the results using some
other approaches are provided. Several characteristics of this
framework and future research directions regarding the com-
putational aspect and the potential application of the proposed
approach are presented in Section VII.

II. RELATED WORKS

Approaches to maintain a desired task hierarchy using a
multi-objective controller draw a lot of interest. This Section
reviews some classical types of hierarchical control frame-
works, as well as the methods for priority transitions within
these frameworks.

A. Approaches for handling a strict hierarchy

Analytical methods based on null-space projections can
ensure that lower priority tasks are executed only in the null-
space of higher-priority tasks, by means of the appropriate
design of a null-space projector [13]. Such an idea is applied
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in prioritized inverse kinematics [2,14], in acceleration based
control [3,4], and in joint torque based control [1,5,15].
A generic framework, from which several existing control
laws can be derived, is presented in [16]. Projected inverse
dynamics schemes are developed for constrained systems in
[17,18], where the dynamics equation is projected into the
null-space of the Jacobian of constraint equations.

Inequality constraints are usually difficult to be directly
dealt with in analytical approaches using pseudo-inverses
and projection matrices. A common method is to transform
inequality constraints into task objectives by applying artificial
potential fields [19], from which repulsive forces are derived
to prevent the robot from entering into activation zones of the
inequality constraints [19]–[24]. However, performing these
tasks cannot guarantee that these inequality constraints are ac-
tually met. The approach presented in [25] integrates unilateral
constraints at any priority level, albeit time consuming. The
algorithm introduced in [4,26] proposes to disable the most
critical joint and redistribute joint motion commands to guar-
antee the satisfaction of some hard bounds of joint variables.
However, this algorithm deals with inequality constraints only
at the joint level. Furthermore, the optimal solution satisfying
the control problem may require the movement of a joint
which has unfortunately been disabled.

To deal with prioritized inequality constraints more easily,
hierarchical quadratic programming (HQP) approaches use nu-
merical QP solvers to solve a Hierarchical Quadratic Program
[6]. The idea of HQP is to first solve a QP to obtain a solution
for a higher priority task objective; and then to solve another
QP for a lower priority task, without increasing the obtained
minimum of the previous task objective. This prioritization
process corresponds to solving lower-priority tasks in the null-
space of higher-priority tasks while trying to satisfy lower-
priority tasks at best. The HQP algorithm is applied for
solving prioritized inverse dynamics [7] and is also applied to
whole-body motion control under unilateral constraints [27]. It
requires to solve as many QPs as priority levels, which can be
quite time consuming. The computation cost of hierarchical
inverse kinematics with inequality constraints is improved
by an algorithm developed in [28], which permits real time
control of a humanoid robot.

Generally, for an approach based on strict hierarchy, the
relative importance of one task with respect to another one of
different priority level is parametrized in a binary way: either
strictly higher or strictly lower. However, in many contexts,
organizing tasks by assigning them with strict priorities is not
generic, i.e. can have some limitations. First, a strict priority is
just an extreme case of the relations of task importance levels.
In fact, a task may not always have a strict priority over another
one and it is usually difficult to define a strict hierarchy among
a set of tasks. Second, strict priorities can sometimes be too
conservative so that they may completely block lower-priority
tasks. Unlike a discrete parametrization of task priorities, a
continuous parametrization is richer and more informative.
Therefore, this work handles task priorities, which can be strict
or non-strict, by using a continuous parametrization. Moreover,
priorities are defined here by pairs of tasks: this choice extends
the classical notion of priority in Robotics while still making it

possible to represent standard lexicographic orders as defined
in [27].

B. Approaches for handling a non-strict hierarchy

Non-strict priorities are usually handled by control ap-
proaches using weighting strategies [8]–[11,29]. These control
frameworks solve all the constraints and task objectives in one
QP and provide a trade-off among task objectives with differ-
ent importance levels. As the performances of higher priority
tasks cannot be guaranteed by simply adjusting the weights
of task objectives, a prioritized control framework is proposed
in [12] to ensure the performance of a higher-priority task
within a user defined tolerance margin. However, this approach
handles priorities of only two levels. In approaches based
on weighting strategies, task priorities can be parametrized
continuously. Nonetheless, even though the work in [30] on
soft constraints in model predictive control could probably be
adapted to provide a way to reach the extreme case of strict
priorities, the existing robotic applications of these frameworks
do not extend to strict hierarchies.

The control framework proposed in this paper is based
on these frameworks: it formulates and solves all tasks and
constraints in one QP. It also largely outperforms them by
permitting priorities to change continuously from a non-strict
case to a strict case.

C. Task transitions

Earlier versions of analytical methods and HQP approaches
can ensure strict priorities among tasks; however, a change
in the task set, such as a switch of task priorities, may
lead to discontinuity. Recently, different methods have been
developed to handle task transition problems. An approach to
smooth priority rearrangement between two tasks is proposed
in [31,32]. Approaches for continuous and simultaneous tran-
sitions of multiple tasks are developed in [33,34]. A specific
inverse operator is proposed in [33] to ensure continuous
inverse in the analytical computation of control laws. The
approach presented in [34] is based on intermediate desired
values in the task space. When the number of task transitions
increases, this approach suggests to apply an approximation
to reduce the computational cost. An approach of hierarchical
control with continuous null-space projections is presented in
[35]. In this approach, an activator associated to directions
in the right singular vectors of a task Jacobian matrix is
regulated to activate or deactivate these directions. However,
the design of such an activator makes this approach difficult
to be implemented for the separate handling of different
task directions. On the other hand, task transitions can be
easily achieved within a non-strict hierarchy by the continuous
variation of task weights [29].

The control framework proposed in this paper allows an
arbitrary number of task priority transitions. This framework
uses continuous priority parametrization, and the extreme case
of strict priorities can be achieved. The idea to achieve this
goal is based on the construction of a novel generalized
projection matrix, which regulates to what extent a lower-
priority task is projected into the null-space of a higher-priority
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task. In other words, this generalized projector allows a task
to be completely, partially, or not at all projected into the null-
space of some other tasks. The priority levels can be changed
by the simple modulation of the generalized projector. The
implementation of this generalized projector in multi-objective
control frameworks based on optimization provide them with
a mechanism to regulate task priorities more precisely, so that
both strict and non-strict priorities can be handled by solving
only one optimization problem.

III. MODELING

Consider a robot as an articulated mechanism with n
degrees of freedom (DoF) including na actuated DoF. The
dynamics of the robot in terms of its generalized coordinates
q ∈ Rn is written as follows

M(q)q̈ + n(q, q̇) = Jc(q)Tχ, (1)

where M(q) ∈ Rn×n is the generalized inertia matrix; q̇ ∈ Rn

and q̈ ∈ Rn are the vector of velocity and the vector of accel-
eration in generalized coordinates, respectively; n(q, q̇) ∈ Rn

is the vector of Coriolis, centrifugal and gravity induced joint
torques; χ =

[
wT

c τ
T
]T

is the vector of the actuation torques
(τ ∈ Rna ) and the external contact wrenches applied to the
robot (wc =

[
wT

c,1 . . . wT
c,nc

]T
), with nc the number of con-

tact points; Jc(q)T =
[
Jc,1(q)T . . . Jc,nc(q)T S(q, q̇)T

]
is

the transpose of a Jacobian matrix, with Jc,nβ (q), the Jacobian
matrix associated to a contact point β and S(q, q̇)T ∈ Rn×na ,
a selection matrix for the actuated DoF. In the control problem
considered in this paper, the vector χ is called the action
variable.

A. Task definition

A task in Robotics can be defined as a function of the
considered robotic systems [36,37]. This function relates the
control level in operational/task space, to the control level in
joint space. More specifically, consider a robot controlled by
joint torques at the dynamics level1, a task i can be defined
by the following characteristics:
• A physical frame Fi, i.e. a frame attached to a part of

the robot body that should be controlled for performing
an operational task.

• An associated task variable ξi ∈ Rmi that can be ex-
pressed in terms of some high level goals to be achieved
by the frame Fi in the task space, such as a desired
position or orientation. mi is the dimension of a task
i.

• A forward model linearly relating the second order
derivative of the vector of generalized coordinates to that
of the task variable for a given state (q, q̇)

ξ̈i = Ji(q)q̈ + J̇i(q, q̇)q̇ (2)

where Ji(q) is the Jacobian matrix, i.e the differential
kinematics mapping from joint space to task space, and
J̇i(q, q̇)q̇ is the task space drift vector.

1The velocity kinematics version of this problem can be trivially derived
from this more general case.

• A local controller ri, the goal of which is to correct task
errors and ensure the convergence of the task variable ξi
towards its desired trajectory ξ?i

ξ̈
d

i = ri

(
ξi, ξ̇i, ξ

?
i , ξ̇

?

i , ξ̈
?

i

)
. (3)

For task motion control, the local controller can take the
form of a proportional-integral-derivative controller with
a feed-forward term

ξ̈
d

i = ξ̈
?

i +Kpe+Kdė+Ki

∫
edt, (4)

where e and ė are errors of ξi and ξ̇i, respectively; and
Kp, Kd and Ki are symmetric, positive definite gain
matrices.
For task wrench control, the local controller can take the
form of a proportional-integral controller with a feed-
forward term

wd
i = w?

i +Kw,pew +Kw,i

∫
ewdt, (5)

where w?
i is the desired task wrench, ew is the error of

task wrench, and Kw,p and Kw,i are symmetric, positive
definite gain matrices. The wrench task can be expressed
as a motion task using the inverse of the operational space
inertia matrix Λi(q) =

[
Ji(q)M(q)−1Ji(q)T

]−1
[38,39]

ξ̈
d

i = Λi(q)−1wd
i (6)

which maps the desired task wrench wd
i to a desired

acceleration ξ̈
d

i at Fi.
• A set of relative importance levels with respect to nt

tasks, including task i, characterized by a priority matrix
αi

αi = diag
(
αi1Im1

, . . . , αijImj
, . . . , αintImnt

)
(7)

where αi is a diagonal matrix, the main diagonal blocks
of which are square matrices: αijImj . Imj is the mj ×
mj identity matrix, and αij ∈ [0, 1]. By convention, the
coefficient αij indicates the priority of task j with respect
to task i.

– αij = 0 corresponds to the case where task j has
strict lower priority with respect to task i.

– 0 < αij < 1 corresponds to a soft (non-strict)
priority between the two tasks: the greater the value
of αij , the higher the importance level of task j with
respect to task i.

– αij = 1 corresponds to the case where task j has a
strict higher priority with respect to task i.

B. Constraint definition

Even though the set of task attributes is specific to each
task, the control space to joint space forward mapping is task
independent and can be written as

q̈ = M(q)−1
(
Jc(q)Tχ− n(q, q̇)

)
. (8)

The equation of motion (8) constitutes an equality constraint,
which relates the joint space acceleration to the action variable
for a given state (q, q̇).
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The other constraints considered in this work reflect the
physical limitations of the system in terms of:
• actuation capabilities (maximum actuators torques and

velocities);
• geometrical limits (joint limits, Cartesian space obsta-

cles);
• contact wrenches (contact existence conditions, bounds

on the norms of contact wrenches).
Assuming that approximations such as q̇k+1 = q̇k + ∆tq̈k

and qk+1 = qk + ∆tq̇k + ∆t2

2 q̈k hold for one control period
∆t, these specific constraints can generally be expressed as a
linear inequality of the form

G(q, q̇)

(
q̈
χ

)
≤ h(q, q̇) (9)

where G and h are the matrix and vector which express these
inequality constraints of physical limitations.

IV. CONTROL PROBLEM FORMULATION

In this work, multiple tasks with different priority levels
subject to equality and inequality constraints have to be
handled. This kind of multi-objective control problem can
be formulated as a Linear Quadratic Programming problem
(LQP). This is the approach adopted here, where all the task
objectives and constraints are solved simultaneously in one
LQP.

This Section first briefly reviews the LQP control framework
in IV-A, then developes a generalized projector in IV-B, which
is implemented in a LQP-based control framework in IV-C
for handling both strict and non-strict priorities, as well as for
priority transitions.

A. Control framework based on Linear Quadratic Program-
ming

When only non-strict task hierarchies are considered,
weighting strategies, such as those proposed in [9]–[11,29],
can be applied to handle the relative importance levels of
multiple elementary tasks. In this case, the control problem
can be formulated as a Linear Quadratic Programming (LQP)
problem as

arg min
q̈,χ

nt∑
i=1

∥∥∥f i

(
q̈, ξ̈

d

i

)∥∥∥2

Qi
+

∥∥∥∥[ q̈χ
]∥∥∥∥2

Qr

(10a)

subject to constraints (8), (9) (10b)

where Qi = ωiImi
is a diagonal weighting matrix to regulate

the importance level of task i, Qr = ωrIn+na+3nc is the
weighting matrix of the regularization term, ωi is the weight of
each task objective i, and f i

(
q̈, ξ̈

d

i

)
= Ji(q)q̈+ J̇i(q, q̇)q̇−

ξ̈
d

i is the objective function which measures the error of task
i. The task objective functions are minimized to achieve a
compromise among all the weighted tasks. The regulation term
minimizes the norm of accelerations and action variables. For
a redundant robot with many solutions satisfying the same
task objective, the regulation term is useful for ensuring the
uniqueness of the solution [29]. As this regulation term may

increase task error, its weight value ωr is usually very small
compared to task objective weights. In this optimization prob-
lem, q̈ is an overabundant variable, which can be eliminated
by using the equality constraint defined by (8).

B. Projectors for hierarchical control

The control framework based on weighting strategy (10) can
qualitatively regulate the relative importance levels of tasks by
weighting task objectives, but it cannot ensure strict priorities
among tasks. This control framework is extended in this paper,
the goal of which is to handle both strict and non-strict task
priorities. To achieve this goal, a generalized projector, which
can precisely regulate how much a task is affected by other
tasks, is developed. In other words, this generalized projector
can be regulated to completely, partially, or not project a task
into the null-space of other tasks.

The following part of this subsection first looks at several
forms of projectors, then the analysis of these projectors leads
to the development of the generalized projector.

1) Review of existing projectors for hierarchical control
Strict priorities can be handled by analytical methods using

a null-space projector Nj defined as

Nj = I − J†j Jj , (11)

where J†j is the Moore-Penrose pseudo-inverse of the Jacobian
Jj

2. The projection of a task i into the null-space of another
task j can ensure that task i is satisfied only in the null-space
of task j. Such projection-based approaches can ensure that a
lower-priority task is performed without producing any motion
for a higher-priority task. To handle priorities between one
task i and a set of other tasks with higher priorities, task i is
projected into the null-space of an augmented Jacobian J of
all the higher priority tasks [40,41]

J =
[
JT

1 . . . JT
j . . . J

T
nt

]T
(12)

where the augmented Jacobian concatenates the Jacobian
matrices of all the nt tasks.

To achieve smooth priority transitions, the null-space pro-
jector (11) is replaced by the following matrix in [31,32]

N
′

j(αij) = I − αijJ
†
j Jj , (13)

where a scalar parameter αij ∈ [0, 1] is used to regulate the
priority between two tasks i and j. This matrix leads to smooth
transitions of task priorities through the smooth change of the
scalar parameter αij :
• when αij = 1, JiN

′

j = JiNj , task i is completely
projected into the null-space of task j;

• when 0 < αij < 1, task i is partially projected into the
null-space of task j;

• when αij = 0, JiNj = Ji, task i is not at all projected
into the null-space of task j.

This method can handle priority transitions between only
two levels of tasks, and it can hardly be extended to the
case of simultaneous transitions among multiple levels of task
priorities.

2The dependence to q is omitted for clarity reasons.
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Another projection matrix N
′′

is proposed in [35] for
continuous null-space projections

N
′′

= I − V AV T (14)

with V ∈ Rn×n the right singular vectors of J and A ∈ Rn×n

a diagonal activation matrix. The j-th diagonal element of A,
ajj , refers to the j-th column vector in V :
• when ajj = 1, the j-th direction in V is activated in N

′′
;

• when 0 < ajj < 1, the j-th direction in V is partially
deactivated in N

′′
;

• when ajj = 0, the j-th direction in V is deactivated in
N
′′

.
As mentioned in [35], for any one-dimensional task j (Jj ∈
R1×n), the matrix (14) becomes

N
′′

j = I − aj,j
JT
j

‖Jj‖
Jj
‖Jj‖

, (15)

which can be applied to achieve smooth activation or deac-
tivation of task j direction in the projection matrix by the
smooth variation of the scalar ajj . When extended to tasks of
m directions (J ∈ Rm×n), this method allows us to apply the
same transition to all the m directions of J , but its application
for achieving the separate regulation of each task direction
is not easy. This is because generally, each activator ajj is
directly referred to the j-th direction in the right singular
vectors V of J , but not directly referred to a specific direction
in J .

2) Generalized projector
In order to achieve variations of multiple task priorities

simultaneously among an arbitrary number of tasks, and to be
able to ensure strict priorities, an approach to the computation
of a novel projector is developed here. Similar to the form of
the matrix N

′′
in the case of considering a one-dimensional

task (15), the form of this novel projector is obtained without
the necessity of the computation of pseudo-inverse matrices.
Its computation is based on orthonormal basis computation,
and it is simple to implement this novel projector. Moreover,
the new projector allows us to regulate the activation of each
task directions in a more intuitive way, by regulating the
priority matrix α that is more closely related to task directions
than the activator A in (14).

Consider a hierarchy of nt tasks, the joint space acceleration
q̈?i for achieving each task i should be modified to account
for the hierarchy information contained in αi. The idea is to
achieve this goal by a generalized projector Pi(αi) ∈ Rn×n,
which projects the joint acceleration (Pi(αi)q̈

?
i ) to satisfy the

desired hierarchy.
In order to compute the generalized projector Pi(αi), a

preliminary processing of the matrices J and αi is carried
out according to the priorities of the nt tasks with respect to
task i. As each row of J is associated to αij , the rows of J
can be sorted in descending order with respect to the values of
the diagonal elements in αi. The resulting matrix Jsi is thus
constructed so that tasks which should be the least influenced
by task i appear in its first rows, while tasks which can be the
most influenced by task i appear in its last rows. The values in
αi are sorted accordingly, leading to αs

i , the diagonal elements

of which are organized in descending order starting from the
first row.

Based on Jsi , a projector into the null space of J can
be computed. This can be done by first computing a matrix
Bi(Jsi) ∈ Rr×n, where r = rank(Jsi) is the rank of Jsi .
The rows of Bi(Jsi) form an orthonormal basis of the joint
space obtained using elementary row transformations on Jsi .
Then this projector can be computed as P

′

i = In − BT
i Bi.

When performing task i by using the projected acceleration
P
′

i q̈
?
i , the projector P

′

i basically cancels any acceleration that
impacts all the nt tasks, including task i itself.

The computation of the projector P
′

i can be modified such
that tasks having strict priority over task i are perfectly
accounted for; tasks over which task i has a strict priority
are not considered; and all other tasks with soft priorities
are accounted for, according to the value of their respective
priority parameters in αi. Inspired by how the matrix N

′′
is

computed in (15), the generalized projector is given by

Pi(αi) = In −Bi(Jsi)
Tαs

i,r(αi,origin)Bi(Jsi), (16)

where αs
i,r is a diagonal matrix of degree r. The vector

origin ∈ Rr is a vector of the row indexes of Jsi selected
during the construction of the orthonormal basis Bi. Each of
these r rows in Jsi is linearly independent to all the previously
selected ones. The diagonal elements of αs

i,r are restricted to
the r diagonal elements of αs

i , which correspond to the r rows
of Jsi , the row indexes of which belong to origin .

Algorithm (1) and (2) summarize the construction of the
generalized projector Pi(αi). As any numerical scheme, tol-
erances are used for numerical comparison, such as ε, which
is defined as the smallest value greater than zero in line #11
of Algorithm (2).

Algorithm 1: Generalized projector computation - task i
Data: αi, J
Result: Pi

1 begin
2 n←− GetNbCol(J)
3 index←− GetRowsIndexDescOrder(αi)
4 αs

i ←− SortRows(αi, index)
5 Jsi ←− SortRows(J, index)
6 Bi,origin , r ←− GetOrthBasis(Jsi) BAlg. (2)
7 αs

i,r ←− GetSubDiagMatrix(αs
i ,origin)

8 Pi ←− In −BT
i α

s
i,rBi

9 return Pi

Note that by varying the value of each αij in αi, one can
regulate the priority of each task j in the nt tasks with respect
to task i separately.

3) Task insertion and deletion
There is a particular case induced by the proposed formula-

tion and corresponding to the influence of task i on itself. Even
though not intuitive, this self-influence has to be interpreted
in terms of task existence, modulated by αii. If αii = 1 then
task i is projected into its own null-space, i.e. it is basically
canceled out. Decreasing αii continuously to 0 is a simple
and elegant way to introduce the task in the set of tasks.
Conversely, increasing αii continuously from 0 to 1 provides
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Algorithm 2: Orthonormal basis computation -
GetOrthBasis(A)

Data: A, ε
Result: B, origin , r

1 begin
2 n←− GetNbCol(A)
3 m←− GetNbRow(A)
4 i←− 0
5 for k ← 0 to m− 1 do
6 if i ≥ n then
7 break
8 B[i, :]←− A[k, :]
9 for j ← 0 to i− 1 do

10 B[i, :]←− B[i, :]−
(
B[i, :]B[j, :]T

)
B[j, :]

11 if norm(B[i, :]) > ε then
12 B[i, :]←− B[i, :]/ norm(B[i, :])
13 origin [i]←− k
14 i←− i+ 1

15 r ←− i
16 return B, origin , r

with a proper task deletion procedure. When being added or
suppressed, the influence of task i with respect to other tasks
also has to be defined but here again this can be done in a
continuous manner.

C. Generalized hierarchical control framework

The control problem that solves one task i, while taking
into account the constraints as well as the influence of a set
of other tasks over it, can be written as follows

arg min
q̈,χ

∥∥∥f i

(
q̈, ξ̈

d

i

)∥∥∥2

+

∥∥∥∥[ q̈χ
]∥∥∥∥2

Qr

(17a)

subject to
Jc(q)Tχ = M(q)Pi(αi)q̈ + n(q, q̇) (17b)

G(q, q̇)

(
Pi(αi)q̈
χ

)
≤ h(q, q̇) (17c)

where the generalized projector defined by (16) is applied in
the constraints to handle task priorities. Here, the task objective
weighting matrix Qi is omitted, as it is set to the identity
matrix; and the matrix Qr = ωrIn+na+3nc is set to a diagonal
matrix with the weight value ωr being very small compared
to 1.

Now consider the control problem for solving nt tasks. A
joint acceleration variable q̈′i is associated to each task i, such
that the overall joint space acceleration accounting for the sets
of relative importance parameters (α1, . . . , αnt ) is given by

q̈ =

nt∑
i=1

Pi(αi)q̈
′
i. (18)

The GHC framework solves the LQP problem formulated

as

arg min
q̈′,χ

nt∑
i=1

∥∥∥f i

(
q̈′i, ξ̈

d

i

)∥∥∥2

+

∥∥∥∥[ q̈′χ
]∥∥∥∥2

Qr

(19a)

subject to
Jc(q)Tχ = M(q)P q̈′ + n(q, q̇) (19b)

G(q, q̇)

(
P q̈′

χ

)
≤ h(q, q̇), (19c)

with q̈′ =

 q̈′1
...
q̈′nt

 and P = [P1(α1) . . . Pnt(αnt)]..

This optimization problem minimizes the objective function
of each task as well as the magnitude of the control input,
subject to a set of linear constraints. By solving this optimiza-
tion problem, the solution of joint accelerations and the action
variable χ can be obtained. The solution of joint torques is
extracted from the optimal value of χ. The overall joint space
acceleration q̈ is optimized to achieve all the tasks according to
the set of their relative importance (α1, . . . , αnt ). Especially, it
is proved in Appendix A that this GHC framework can handle
strict task hierarchies represented by standard lexicographic
orders.

This control approach is robust to both kinematic and
algorithmic singularities. In the GHC framework based on
LQP formulation, tasks are expressed in a forward way and
most LQP solvers do not require the explicite inversion of
task Jacobian matrices. Therefore, the GHC framework does
not have problems of numerical singularities due to kinematic
singularities. Moreover, unlike approaches using the pseudo-
inverse of projected Jacobians (JiNj), which requires special
treatment for handling algorithmic singularities when the pro-
jected Jacobian drops rank [42], the GHC framework does not
necessite the inversion of projected Jacobians. Therefore, the
framework does not have to handle such kind of algorithmic
singularities.

V. RESULTS

The proposed GHC framework (19) is applied to the control
of a 7-DoF Kuka LWR robot. The experiments are conducted
in the Arboris-Python simulator [43], which is a rigid multi-
body dynamics and contacts simulator written in Python. The
LQP problem is solved by a QP solver included in CasADi-
Python [44], which is a symbolic framework for dynamic
optimization.

In the experiments, three tasks are defined: task 1 for the
control of the three dimensional position of the end-effector,
task 2 for the three dimensional position of the elbow, and
task 3 for the posture. Any wrench task is transformed into a
motion task by applying (6). Targets of the three tasks are not
compatible with one another. The elbow task target is a fixed
target position and the posture task target is a fixed posture
during all the experiments.

The GHC framework (19) is applied, with nt = 3. For
each task i, an optimization variable q̈′i ∈ R7 is defined.
A local controller (4) is used to ensure the convergence
of each task variable towards its target. More precisely, a
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proportional-derivative controller ξ̈
d

i is applied for each task.
When a task target is static, ξ̈

d

i = Kpei + Kdėi with
Kp = 30s−2 and Kd = 20s−1. When tracking a desired
trajectory ξ̈

∗
i , ξ̈

d

i = ξ̈
∗
i +Kpei +Kdėi with Kp = 100s−2 and

Kd = 20s−1. The priority parameter matrices associated with
the three tasks are: α1 = diag (α11I3, α12I3, α13I7), α2 =
diag (α21I3, α22I3, α23I7), α3 = diag (α31I3, α32I3, α33I7).
The regularization weight Qr is chosen as 0.01.

In the rest of the paper, the notation i . j indicates that
task i has a strict higher priority over task j, and the notation
⇒ stands for a transition of hierarchy setting. The following
function is used for the smooth variation of an αij (conversely
αji) from 0 to 1 during the transition time period ([t1, t2])

αij(t) = 0.5− 0.5 cos

(
t− t1
t2 − t1

π

)
, with t ∈ [t1, t2],

αji(t) = 1− αij(t).

(20)

A. Priority switching subject to constraints

This experiment is carried out to demonstrate that GHC
allows handling task priorities subject to a variety of con-
straints. All the task targets are static. An obstacle plane is
inserted between the initial position of the end-effector and its
target position (see Fig. 1). The robot should avoid penetration
into the obstacle while performing tasks. A threshold value of
0.02m is chosen as the minimum authorized distance between
the end-effector and the obstacle plane.

The optimization variables are q̈′1, q̈′2, q̈′3, and τ . The
inequality constraints (19c) are:
• bounds on joint velocities (bjv), with Gbjv =[

I7 07

−I7 07

]
and hbjv =

[
(q̇ − q̇)/∆t

(−q̇ + q̇)/∆t

]
, where (·)

and (·) denote the upper and lower bounds, respectively;

• bounds on joint torques (bjt), with Gbjt =

[
07 I7
07 −I7

]
and hbjt =

[
τ
−τ

]
;

• and obstacle avoidance (obs), with Gobs = [nT
obsJ1 07]

and hobs = (v1(dobs)− nTobsJ1q̇)/∆t, where nobs is the
unit normal vector pointing from the end-effector to the
obstacle plane, J1 is the Jacobian of the end-effector task,
and v1 is the bound on the end-effector velocity towards
the plane, which depends on the distance (dobs).

For the sake of clarity, joint limits and obstacle avoidance
between the bodies of the robot (other than the end-effector)
and the environment are not considered in this example.

At the beginning, the tasks, in a priority level decreasing
order, are the elbow task, the end-effector task, and the posture
task. Then the end-effector task priority increases and becomes
the task with the highest priority. Afterwards, the priorities
of the posture task and the elbow task are switched. Then
the priorities of the posture task and the end-effector task
are switched. At the end, the posture task becomes the task
with the highest priority. The evolution of the task hierarchy
is defined as: 2 . 1 . 3⇒ 1 . 2 . 3⇒ 1 . 3 . 2⇒ 3 . 1 . 2.

The task errors are presented in Fig. 2. The desired priority
switches are successfully performed and desired task priorities

end-effector target

obstacle plane

Fig. 1: The end-effector moves towards its target position
while avoiding penetration into the obstacle plane.

are well maintained. The resulting end-effector trajectory
and the measured distance between the end-effector and the
obstacle are presented in Fig. 3. The resulting joint velocities
and joint torques are shown in Figures 4 and 5, respectively. It
can be seen from these figures that joint velocity bounds and
joint torques bounds are respected. Also the end-effector does
not penetrate into the obstacle while trying to move towards its
target position. The results of this experiment illustrate the fact
that GHC can maintain desired task priorities while satisfying
all these constraints. A video of this experiment is attached to
this paper.

B. Contact force control

In this experiment, the end-effector is expected to move
towards a plane, and then to apply a desired contact force
against the plane in the vertical direction (see Fig. 6). Before
the establishment of the contact with the plane, the end-
effector task is a motion task with its task target located on the
surface of the plane. Once the end-effector contacts the plane,
the end-effector task is a composition of a position task in the
horizontal plane and a force task in the vertical direction. The
end-effector starts from an initial position, which is above its
target position and pointing upwards, then it moves towards
the target and starts to apply a contact force to the plane.

The evolution of task hierarchy is 2 . 1 . 3 ⇒ 1 . 2 . 3.
At the beginning of this experiment, the elbow task has the
highest priority, then the priorities between the elbow task and
the end-effector task switches. The change of α, the positions
errors, and the actual and desired contact forces are shown in
Fig. 7.

When the end-effector task becomes the task with the
highest priority, the end-effector position error is small and the
generated contact force follows the references of the contact
force, except for when the contact is established between
the two rigid bodies. This result illustrates the fact that the
highest priority task of the end-effector is maintained after the
application of the contact force.

C. Empirical comparison with other approaches

In this Section, the GHC approach is compared with other
approaches dedicated to hierarchical control subject to inequal-
ity constraints.
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Fig. 2: Evoution of αs (top) and task errors (bottom) during
priority switching subject to constraints. Task priorities are
switched continuously with the continuous change of αs.
The end-effector task error is not decreased to 0 when its
task priority is the highest: the obstacle avoidance constraint
is respected, and the end-effector cannot arrive at its target
position behind the obstacle plane.

1) Comparison with HQP
In this experiment, GHC is compared with the HQP ap-

proach [45]. Task hierarchy is changed four times (see Fig. 8)
and joint velocity and joint torques bounds are imposed. The
evolution of the task hierarchy is 3.2.1⇒ 1.2.3⇒ 2.1.3⇒
1.3⇒ 1.2.3. In the beginning, the tasks, in the priority level
decreasing order, are the posture task, the elbow task, and the
end-effector task. Then the end-effector task priority increases
and the posture task priority decreases simultaneously. During
the second priority switching, the priorities of the end-effector
task and the elbow task are switched. Then the elbow task is
removed. Finally, the elbow task is inserted between the end-
effector task and the posture task.

The experiment is carried out first using fixed task targets,
then using a desired end-effector trajectory with a lemniscate
shape.

The results corresponding to the use of fixed task targets are
presented in Fig. 9 to 11. Task errors by using GHC and HQP
are shown in Figures 9 and 10, respectively. Fig. 11 shows
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Fig. 3: The resulting end-effector trajectory (top) and the
distance between the end-effector and the obstacle (bottom).
The end-effector stops moving toward the obstacle plane when
its distance to the obstacle decreases to the threshold value of
0.02m.
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Fig. 4: Evolution of the joint velocities. The upper and lower
bounds of q̇ are 1 rad/s and −1 rad/s, respectively. These
bounds are voluntarily set low in order to easily illustrate the
fact that they are respected.

the integration of the absolute value of each resulting joint

jerk
(∫ t

0

|d3q|
dt3 dt

)
using these two approaches. Steady state

task errors for each task hierarchy configuration are shown in
Table I, where the results using GHC and HQP are included.

When a lemniscate-shaped end-effector trajectory is used,
the end-effector task is to move along this lemniscate orbit
periodically, with an orbital period of 2πs. The desired and
the resulting end-effector trajectory is shown in Fig. 12. In
this case, the results of task errors and the integration of the
absolute values of joint jerks are presented in Fig. 13 and 14,
respectively. A video of this experiment that presents the main
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Fig. 5: The resulting joint torques. The upper and lower bounds
of τ are 2 N ·m/rad and −2 N ·m/rad, respectively. These
bounds are voluntarily set low in order to easily illustrate the
fact that they are respected.

Fig. 6: The target position for the end-effector is on the plane.
The end-effector starts from an initial position, which is above
the target position and pointing upwards, then it moves towards
the target and starts to apply a contact force to the plane.

TABLE I: Steady state task errors for each task hierarchy
configuration

priority 3 . 2 . 1
task 1 2 3
GHC 0.46 0.40 2.2e-30
HQP 0.46 0.40 2.8e-10

priority 1 . 2 . 3
task 1 2 3
GHC 1.0e-6 0.46 1.8
HQP 4.5e-7 0.46 1.8

priority 2 . 1 . 3
task 1 2 3
GHC 0.42 2.6e-6 3.0
HQP 0.42 2.7e-6 3.1

priority 1 . 3
task 1 2 3
GHC 3.9e-6 0.55 0.79
HQP 4.5e-6 0.55 0.79

features of GHC (priority transitions, the insertion and deletion
of tasks) is attached to this paper.

GHC provides similar results in terms of task errors com-
pared with HQP, as can be observed in Fig. 9, 10, and 13. The
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Fig. 7: Results of contact force control. The top figure shows
the change of αs. Task 1 is the end-effector task and task 2
is the elbow task. The figure in the middle shows the end-
effector position error in the horizontal plane as well as the
elbow position error in 3-d. The end-effector starts from an
initial position above the target position, then it moves towards
the target and starts to apply a contact force to the plane. The
bottom figure represents the actual and desired contact forces
between the end-effector and the plane.

end-effector target

elbow target

when the end-effector task 
has the highest priority

when the elbow task 
has the highest priority
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Fig. 8: Experiment of priority switching for the comparison
of the HQP and GHC approaches.

results of task errors in Table I show that both GHC and HQP
can ensure strict priority. When controlled by GHC and HQP,
errors of the task with the highest priority are very small.
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Fig. 9: Evolution of αs (top) and task errors (bottom) using
GHC, with fixed task targets. Priority transitions as well as
the insertion and deletion of the elbow task are performed.
Strict priorities are well respected and the error of the highest
priority task is maintained at 0 during steady states.

2) Comparison with a non-strict hierarchy strategy
The evolution of the task hierarchy in this experiment is

1.2.3⇒ 2.1.3. The priorities of the end-effector task and
the elbow task are switched once. During priority switching,
the task objective weights of the end-effector task (w1) and
the elbow task (w2) are changed smoothly when the weighting
strategy is applied, and the priority parameters α12 and α21 are
changed smoothly when GHC is applied. When the weighting
strategy is used, two pairs of the weights (w1 = 1, w2 = 0.1)
and (w1 = 1, w2 = 0.001) are applied.

Fig. 15 presents how task errors change with the priority
parameters using GHC, as well as how they change with
different task objective weights using the weighting strategy
described by (10). It can be seen in this figure that a continuous
change of corresponding values of αs can generate similar
variations of task errors as a continuous change of task weights
does. The priority of the end-effector task decreases gradually
with respect to the elbow task, either by the continuous
decrease of the weight of the end-effector (w1) and the
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Fig. 10: Task errors using HQP, with fixed task targets. HQP
provides similar results in terms of task errors as GHC (Fig.
9).
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Fig. 11: Integration of the absolute values of joint jerks using
GHC (top) and HQP (bottom), with fixed task targets. GHC
generates smaller joint jerks than HQP does, while the latter
one provides larger jerks each time task hierarchy is changed.

increase of the weight of the elbow task (w2), or by the
continuous increase of α21 and decrease of α12. Moreover, the
larger the difference between the maximum and the minimum
values of task weights are, the closer the task performances
are to those generated by GHC. This is because an increase
of the difference between task weights makes non-strict task
hierarchies evolve towards the extreme case of strict task
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Fig. 12: The desired and the resulting end-effector trajectory
provided by GHC, when the end-effector task has the highest
priority. The end-effector moves along the lemniscate-shaped
trajectory with an orbital period of 2πs.

hierarchies. However, if a large number of importance levels
has to be handled, then a huge difference between the weight
of the highest priority task and the one of the lowest priority
task has to be used. On the contrary, when GHC is applied,
strict priorities can be easily achieved by setting the relevant
αij to its limit values 0 or 1.

VI. DISCUSSION

In this section, the computation cost and the continuity
aspects of this approach are discussed.

A. Computation time

For a robot of n DoFs performing k priority levels of tasks
with a total dimension of m, the computation cost by using
the HQP solver [46] is dominated by the hierarchical complete
orthogonal decomposition, whose cost is equivalent to n2m+

nm2 +
k∑

i=1

(mi−ri)m2
i , with mi and ri being respectively the

dimension of tasks and the rank of task jacobian in the i-th
hierarchy. By using the GHC strategy, the magnitude order of
optimization variables is kn, since a joint acceleration variable
q̈′i ∈ Rn is associated to each task i. In this case, one level
of QP (19) needs to be solved, so the computation cost is in
O((kn)2m+ knm2 + (m− r)m2), with r being the rank of
the augmented task jacobian.

The computational cost of the current GHC strategy is
sensitive to the number of DoFs of the robot and the number of
tasks. For a fixed-based KUKA robot with 7 DoFs performing
n1 motion tasks of different priority levels, a set of joint
acceleration variables q̈′ ∈ R7n1 and the joint torques τ ∈ R7

needs to be solved for. For a fixed-based humanoid robot iCub
with 32 DoFs performing n2 tasks, the number of variables
would be 32(n2 + 1). Fig. 16 shows the computation time
of using GHC to solve randomly selected hierarchical control
problems for the KUKA robot and the iCub robot performing
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Fig. 13: Task errors using GHC (top) and HQP (bottom), with
the end-effector tracking a lemniscate-shaped trajectory. Both
approaches achieve desired priority transitions as well as the
insertion and deletion of the elbow task, and both of them can
maintain strict priorities.

different numbers of tasks. Each control problem consists of
the constraint (19b), a posture task with random joint goal
positions, and a set of 3-dimensional Cartesian motion tasks
with random goal positions. For the KUKA robot performing
totally 5 tasks, the mean computation time per iteration is 2.7
ms; for the iCub robot performing the same number of tasks,
the mean computation time is 88ms. These results correpond
to a C++ implementation of the controller on a standard Linux
PC.

B. Continuity

It can be seen in Fig. 11 and 14 that GHC generates
smaller joint jerks than HQP does, which implies that GHC
provides smoother priority transitions. Basically, the solution



12

using GHC

using HQP

0 10 20 30 40 50 60
t im e(s)

0

100

200

300

400

500

j1

j2

j3

j4

j5

j6

j7

0 10 20 30 40 50
t im e(s)

0

10

20

30

40

50

60

70

80
j1

j2

j3

j4

j5

j6

j7

Fig. 14: Integration of the absolute values of joint jerks using
GHC (top) and HQP (bottom), with the end-effector tracking
a lemniscate-shaped trajectory. GHC generates smaller joint
jerks than HQP does, while the latter one provides larger jerks
each time task hierarchy is changed.

of GHC is continuous, even during hierarchy rearrangements,
if the vector origin in (16) remains the same before and
after the rearrangements. Indeed, in this case, the basis Bi

used to compute the generalized projector varies continuously
with Ji, and the generalized projector varies continuously
with Bi and αi. However, similarly to the HQP algorithm,
discontinuity may still occur during the switch of priorities
or during the insertion and deletion of tasks. In GHC, such
a discontinuity is due to the change of the basis Bi during
hierarchy rearrangements.

VII. CONCLUSIONS AND FUTURE WORKS

This paper proposes a novel and unifying generalized
hierarchical control approach for handling multiple tasks with
strict and soft priorities. A generalized projector is developed.
It can precisely regulate how much a task can influence or
be influenced by other tasks through the modulation of a
priority matrix: a task can be completely, partially, or not
at all projected into the null-space of other tasks. Multiple
simultaneous changes of task priorities can be achieved
by using this generalized projector and, using the same
mechanism, tasks can be easily inserted or deleted. Moreover,
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Fig. 15: Evolution of task errors with respect to the evolution
of αs using GHC (top) and with respect to different weights
by using the weighting strategy (middle and below).

the GHC approach can maintain and switch task priorities
while respecting a set of equality and inequality constraints.

Several experiments are conducted to demonstrate that GHC
allows task insertion and deletion, as well as the handling
of task priorities subject to constraints. Both motion and
contact force tasks can be handled by GHC. These experiments
emphasize several characteristics of this approach:

1) Priorities among tasks can be maintained by applying the
generalized projectors. Through the modulation of the
priority matrices α1, . . . , αnt (and consequently of the
associated generalized projectors), GHC can behave as
a controller that takes into account a strict hierarchy (by
setting some αij = 0 or 1) and as a controller that uses a
weighting strategy (by setting some αij ∈]0, 1[). In other
words, the controller can be configured to control simul-
taneously tasks assigned with strict priorities, as well as
tasks with different weights (non-strict priorities).
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Fig. 16: Computation time per iteration when using GHC to
solve randomly selected hierarchical control problems for a
fixed-based KUKA robot and a fixed-based iCub robot. Each
control problem consists of a posture task and a set of 3D
Cartesian motion tasks (0 to 4 motion tasks for KUKA and
0 to 6 motion tasks for iCub), subject to the whole-body
equilibrium constraint (19b). The computation time tends to
increase with the number of DoFs of the robot and the number
of tasks.

2) Simultaneous rearrangements of multiple task priorities
can be achieved easily by the variations of relevant
entries in the generalized projectors associated to these
tasks.

In this work, the GHC approach is illustrated at the
dynamic level; however, the generalized projector introduced
here is not restricted to this case. In fact, it can also be used
in other types of controllers, such as a velocity kinematics
controller. The basic idea is to associate each task with a
task variable in joint space (q̇′i, q̈

′
i, τ

′
i , etc.), then to apply

generalized projectors to these task variables, and finally the
global joint space variable is the sum of each projected task
variables(Pi(αi)q̇

′
i, Pi(αi)q̈

′
i, Pi(αi)τ

′
i , etc.).

Immediate future work includes the reduction of the compu-
tational cost of GHC to achieve real-time control of complex
robots with a high number of DoF. The continuity problem
also clearly remains an open problem to tackle in future work.
Finally, the use of robot learning techniques to incrementally
learn and improve the tuning of the relative influence of each
task with respect to others is also of great interest. Finally,

APPENDIX A
PROOF OF THE MAINTENANCE OF STRICT HIERARCHIES
REPRESENTED BY STANDARD LEXICOGRAPHIC ORDERS

SUBJECT TO CONSTRAINTS

This section proves that the proposed GHC approach (19)
can maintain strict task hierarchies represented by standard
lexicographic orders while accounting for linear constraints.

Suppose there are nt tasks that should be organized in a way
such that each task i has a strict lower priority than task i− 1
with i = 2, ..., nt. In this case, the generalized projector Pi of
a task i is in fact a null-space projector, which projects a task
Jacobian into the null-space of all the previous i−1 tasks, and
each αi is an identity matrix. The dependence of Pi to αi is
omitted in this proof for clarity reasons. Let each task objective
function be f i = Jix

′
i − xd

i , with x′i being a joint space task
variable. Moreover, the global variable x =

∑
i Pix

′
i should

satisfy linear equality or inequality constraints Ax ≤ b.
At the first stage, the regulation term is neglected, and the

optimization problem can be written as follows

arg min
x′(nt)

nt∑
i=1

∥∥Jix′i − xd
i

∥∥2

subject to A
nt∑
i=1

Pix
′
i ≤ b

(21)

where x′(nt) =
{
x′1,x

′
2, . . .x

′
nt

}
, and the solution to (21) is

denoted as x∗(nt) =
{
x∗1,x

∗
2, . . .x

∗
nt

}
.

Consider the case of nt = 1, then the optimization problem
can be written as

arg min
x′(1)

∥∥∥J1x
′
(1) − x

d
1

∥∥∥2

subject to Ax′(1) ≤ b.
(22)

The solution to this problem x∗(1) is the same as the one to
the problem formulated by HQP.

When nt = k, then the optimization problem is formulated
as

arg min
x′(k)

k∑
i=1

∥∥Jix′i − xd
i

∥∥2

subject to A
k∑

i=1

Pix
′
i ≤ b.

(23)

Suppose the solution x∗(k) can maintain the strict task hierar-
chy: if a task k+1 is inserted with lowest priority with respect
to the set of k tasks, then the optimization problem with the
k + 1 tasks can be written as

arg min
x′(k+1)

k∑
i=1

∥∥Jix′i − xd
i

∥∥2
+
∥∥Jk+1x

′
k+1 − xd

k+1

∥∥2

subject to A

(
k∑

i=1

Pix
′
i + Pk+1x

′
k+1

)
≤ b.

(24)

As PkPk+1 = Pk+1, the term
k∑

i=1

Pix
′
i + Pk+1x

′
k+1 in the

constraint in (24) is equivalent to
k−1∑
i=1

Pix
′
i + Pkςk, with

ςk = x′k + Pk+1x
′
k+1. (25)
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Then problem (24) can be written as

arg min
x′(k),ςk,xk+1

k−1∑
i=1

∥∥Jix′i − xd
i

∥∥2
+
∥∥Jkςk − xd

k

∥∥2
+

∥∥Jk+1x
′
k+1 − xd

k+1

∥∥2

subject to A

(
k−1∑
i=1

Pix
′
i + Pkςk

)
≤ b

ςk = x′k + Pk+1x
′
k+1.

(26)

x′k in (26) is a free variable, and this problem can be separated
into two sub-problems. The first sub-problem is

arg min
x′(k−1),ςk

k−1∑
i=1

∥∥Jix′i − xd
i

∥∥2
+
∥∥Jkςk − xd

k

∥∥2

subject to A

(
k−1∑
i=1

Pix
′
i + Pkςk

)
≤ b.

(27)

The optimal solution
k−1∑
i=1

Pix
∗,′
i + Pkς

∗
k to this problem is

equivalent to the one of (23). Indeed, these two solutions have
the same effect on task k

Jk

k∑
i=1

Pix
∗,′
i = Jk

(
k−1∑
i=1

Pix
∗,′
i + Pkς

∗
k

)
. (28)

To prove (28), one needs to notice that JiPj = 0 with j ≥ i.
The second sub-problem is given by

arg min
xk+1

∥∥Jk+1x
′
k+1 − xd

k+1

∥∥2
. (29)

Therefore, the insertion of a lower priority task k + 1 does
not change the optima of the k previous task objectives. In
other words, the strict task hierarchy of an arbitrary number
of tasks subject to linear constraints can be maintained.

We have proved that each lower priority task will not
increase the obtained optima of all the previous tasks. The
rest of this proof explains the roles of the regulation term.
As mentioned in Section IV-A, the use of a regulation term,
which minimizes the norm of each task variable, helps to
ensure the uniqueness of the solution. As each task objective
i is assigned with the weight ωi = 1, which is much greater
than the weight of the regulation term (ωr << 1), the
task variables are optimized to mainly satisfy task objectives.
Moreover, in GHC, this regulation term also helps to improve
the performance of lower priority tasks. Consider k+ 1 levels
of tasks to handle, as JiPj = 0 with j ≥ i, the final solution

is
k∑

i=1

Pix
∗
i + Pk+1x

∗
k+1. Denoting the elements required by

task i as xi,∗
i and the rest elements that are are not effectively

handled by task objective i as xf,∗
i , the final solution can be

rewritten as S =
k∑

i=1

P i
ix

i,∗
i +

k∑
i=1

P f
i x

f,∗
i + Pk+1x

∗
k+1, with

P i
i and P f

i the columns in Pi that correspond to xi,∗
i and xf,∗

i

respectively. The term
k∑

i=1

P f
i x

f,∗
i that is not required by the

k previous tasks may contribute to task k + 1 and affect its
task performance. The minimization of the norm of xf

i in the

regulation term improves the performance of task k + 1 by

making S closer to
k∑

i=1

P i
ix

i,∗
i +Pk+1x

∗
k+1, where P i

ix
i,∗
i are

used to perform the k previous tasks and Pk+1x
∗
k+1 is used to

perform the (k+ 1)-th task in the null-space of all the higher
priority tasks.
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