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Abstract—Because of the ever-increasing traffic and quality
demands for both internet and television, satellite systems must
aim at designs that use the satellite resources in the most efficient
way possible. In the case of multibeam satellite systems, this is
achieved by making optimal use of the plurality of beams in
terms of frequency reuse, power allocation, and quality of the
layout. That last point is the one addressed in this paper, the
optimisation of the beam layout being a complex but crucial
task for the resulting telecommunication system since it directly
affects its performances and cost. In the case of broadband
systems, the key data is the repartition of the traffic demand
over the zone to be covered which is never rigorously uniform.
Though, it is common for satellite system design tools to rely
on this fairly unrealistic assumption to provide regular coverage
which is therefore often suboptimal : inappropriate beamwidths,
overprovisioned or unsatisfied user stations, unprofitable beams.
Nonetheless, one strong advantage of the regular scheme is that it
is known to be compatible with the single feed per beam antenna
constraint of minimum angular distance for all the couples of
beams coming from the same reflector. The aim of this paper is to
present a randomized multi-start heuristic to build a non-uniform
layout, driven by the different telecommunication mission criteria
and by the aforementioned antenna constraint that is dealt with
by a graph recoloring procedure via local search and simulated
annealing.

I. INTRODUCTION

The optimization of the design of multibeam satellite
systems has received great attention in the past few years,
the efficient exploitation of the resources becoming more and
more determining to comply with a consistently growing need
for better cost/bit ratios in satellite systems. Along with non-
uniform frequency and power allocation that are not treated
herein, one of the necessary steps for approaching the best
possible profitability for the space segment is the optimiza-
tion of the beam layout. Independently of these subsequent
allocations, the performances and cost of a broadband satellite
system are expected to differ notably from one beam layout
to another according to how the heterogeneity of the traffic
demand over the coverable region is handled. Indeed, an
efficient algorithm should tend to a layout with an optimal
number of beams and perfectly appropriate beamwidths and
antenna gains (see Fig. 1 for a simple representation of the
problem). This is the main flaw of the common technique that

Fig. 1: Problem representation

uses a single beamwidth and the hexagonal lattice to cover the
entire region (Fig. 2). That pattern is known to maximize the
density of circle packing (see [3] for instance), but it would
only be optimal for a traffic demand perfectly homogeneous
in space and in intensity. On the other hand, technological
feasibility has been proven for these layouts for a spacecraft
equipped with 3 or 4 reflectors which is a strong enough reason
to continue to rely on them regularly. Under the assumption
adopted throughout this study that single feed per beam (SFB)
antennas are used, the main technological constraint is that
for each layout considered there must exist a mapping of the
beams to the different reflector antennas for which the feeds do
not overlap in the corresponding blocks of sources. In other
words, an acceptable beam layout has corresponding source
layouts that are feasible. This leads to a minimum angular
distance from the satellite point of view between two beams
associated to the same reflector antenna, that distance being
a function of the size of the sources and therefore of the
beamwidths at stake.

In the end, the real challenge here for any algorithmic
procedure is to pertinently choose the beamwidths according
to the density of the traffic demands, to place the beam
centres with an antenna gain criterion while ensuring that the
antenna constraint described above can be satisfied with an
appropriate reflector to beam allocation. To that end, this paper
aims at proposing a mathematical model for this constrained
optimization problem, and a first algorithmic solution based on
a randomized greedy approach to place the beams and graph
coloring for the mapping between beams and reflectors.



Fig. 2: Regular layout

II. STATE-OF-THE-ART

Concerning the interpretation of the traffic demand density
to determine the beam diameters to use, the authors of [1]
suggest to aim at a load-balanced distribution of these demands
within the different beams through an adjustment of their
widths, the main idea being that imbalances of traffic demands
inside the beams can lead to user stations being in the end
either overloaded or underloaded in terms of offered capacity.
The method proposed uses a partitionning of the region into
evenly loaded polygonal subparts, each one of these being then
treated individually to determine what beamwidth should be
used in it and where the corresponding beam should be placed
through an analysis of its shape and surface, thus defining the
full layout. In that work, the question of the mapping of the
beams to the antenna reflectors is not addressed. Furthermore,
in [2] the authors observed that a drawback of this last method
is that several zones remain uncovered or poorly covered. To
overcome this issue, artificial neural networks are used and
more precisely self-organizing maps that treat all the traffic
demands in order to define sub-areas, each sub-area corre-
sponding to one of the available beamwidths. The reasoning
behind this method is that using narrow beams on the densest
zone is a way to increase the antenna gains and the frequency
reuse where it is the most needed, while using larger beams
in the least dense areas can be sufficient to reach compliance.
Beams are then placed in each sub-area in such a way as to
minimize the uncovered areas, the regular lattice being used
locally. Once the beams are placed over the service zone, the
authors tackle the issue of the antenna configuration with a
reflector allocation to the beams that includes a maximization
of the angular distances between the beams coming from the
same antenna, that NP-hard problem being solved heuristically.
But the major drawback of treating the placement of the beams
and their allocation to the antenna reflectors sequentially is that
one is very likely to discover that, with a layout built regardless
of the antenna constraint, even the optimal mapping of the
beams to the reflectors that maximizes the minimum angular
distance between each couple of beams belonging to the same
reflector can turn out to be technologically infeasible with SFB
antennas. In that case, forcing such an implementation would
require to use smaller sources than advised thus leading to a
deterioration of the antenna performances through spill-over
losses and important side lobes.

For the work presented here, particular attention has been
paid to feasibility through a SFB technology and therefore
to the satisfaction of these antenna constraints (see III for
details) which are taken into account dynamically in the layout
building procedure. Concerning the choice of the beamwidths,

the idea of [2] of treating the input traffic demands is revisited
but adapted to the mathematical model described further in the
article. In practice, statistical discretization is operated on a set
of data representing the density of traffic in the neighborhood
of each possible centre for the beams to define in advance
the beamwidths to use on these positions : narrow beams
where the demand is dense, larger beams elsewhere. Guided
by the combinatorial model of the problem, a heuristic proce-
dure combining a randomized multi-start greedy approach and
graph coloring is applied to find jointly interesting positions for
the beams and an acceptable beam mapping to the reflectors
with the additional constraint that the number of beams can
be bounded.

III. THE ANTENNA CONSTRAINT

When designing a layout with single feed per beam an-
tennas, the angular distance between two beam centres of
two beams generated by the same reflector cannot be lower
than a value determined by the size of the two corresponding
feeds. Indeed, having close beam centres implies having close
corresponding sources in the block of sources of the reflector
in question. When two sources of two given sizes become
tangent, the minimum possible distance between the two horn
centres is reached, situation that leads through the reflection
by the parabola to the minimum angular distance between the
two emitted beams. This optical property is known under the
name “beam deviation” and has led to the definition of the
“beam deviation factor”, denoted here by Γ. The simple offset
reflector system presented in Fig. 3 illustrates the phenomenon.
Here is some notation used in the equations that follow :

Fig. 3: Simple offset reflector system and beam deviation

� δ : source diameter

� ∆i,j : distance between the two horn centres labelled
i and j

� ∆θ : angular distance between the beams

� F : focal length

� Fs : slant focal length

� D : diameter (projection of the parabola diameter on
the focal plane)

� Point O : focus



From [6], for two horns i and j, we learn that there exists
α < 1 such as :
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Furthermore, since Fs

D > 1, 5 in satellite architectures, the
approximation Γ ≈ 1 is known to be legitimate which leads
to the following formula for the angular deviation :

∆θ = arctan
(

∆i,j

Fs

)
The next step would be to derive ∆i,j according to the widths
of the beams i and j, which is not done here. On that regard,
the important property is that using larger beamwidths requires
larger sources to concentrate the illumination on a reduced
reflector surface, which leads to greater minimum inter-sources
distances. Finally, note that since the problem is solved with
a finite number of possible beamwidths fixed in advance, all
the minimum angular separation values can be computed in
preprocessing.

IV. THE PROBLEM MODEL USED

A. Input data

As already discussed, in broadband satellites the telecom-
munication mission is defined by the traffic requests over
the geographic area treated. The corresponding users are
aggregated in what will be called stations to be in the end
represented by a reasonably large number of points at the
surface of the Earth. Each station can be identified for instance
with its true view angles (θx, θy) ∈ Θx × Θy. One can
therefore define a discrete and finite set S ⊂ Θx ×Θy that
contains all these station coordinates. We can then define a
function T as follows :

T : S → R+

s 7→ T (s) = Traffic of the station at s

B. Set of the possible positions for the beams

The choice of the set of potential beam centres is of
high importance since it determines the type of optimization
procedures that will be usable. The main choice is whether
to use a discrete or a continuous set. As discussed in the
last paragraph, the nature of the traffic demands which are
represented by a finite number of stations on the Earth’s surface
is the source of two determining properties for any function
that returns a value linked to the overall traffic demand inside
the coverable region : it is non-differentiable in most cases
and always non-convex. The discontinuity property is what
makes it impossible to rely on all the non-linear optimization
techniques and the convexity would have been needed to
use convex optimization methods that can deal with such
non-differentiable objective functions. Smoothing the objective
function with an accurate model of antenna gains could solve
the non-differentiability, but then one would have to treat a
highly multi-dimensionnal continuous problem. In the end,
the choice of the discretization of the beam centres set was
probably the most appropriate one. To do so, the idea is to

analyze the S set of all the (θx, θy) station coordinates in
order to define a meshing area. To do so, a margin is taken
on the boundary of that set and a uniform grid is generated
with two tunable space steps in the θx and θy directions. Let
C ⊂ Θx × Θy be the discrete and finite resulting set of
potential centres for the beams that will be used throughout
this study.

C. Combinatorial model

Because of this discretization of the possible positions for
the beams (corresponding set denoted by C), along with the
finite number of reflectors and beamwidths (corresponding sets
R and W respectively), the problem belongs to the class of
combinatorial optimization problems. A modelling phase lead
to a representation where each possible position for the beam
centres is seen as a vertex of a graph in which there is an edge
between each couple of vertices considered to be too close to
be the two centres of two beams assigned to the same antenna
reflector. On that matter, note that the beamwidths to use in
each centre and therefore the minimum angular distances to
be satisfied are preprocessed (see V) for all the couple of
beams. Let k be the number of available reflector antennas
on the satellite, each one of them can be seen as a different
“color” in the graph terminology. Then, extracting from the
graph of the possible positions for the beams a subgraph legally
colored with k colors (assignment of colors to the vertices in
such a way that no adjacent vertices use the same color) is
equivalent to finding an acceptable layout with respect to the
antenna constraints. Note that the cardinality of this subgraph
is also limited by the number maximum of beams than can be
used. Then, one has to define an objective function that can be
computed for each acceptable set of beam positions to define
the optimization problem as follows : find the k-colorable
subgraph that is optimal according to the telecommunication
criteria. On that regard, many different approaches can be
considered, ours being detailed in IV-D. Whatever the objective
function, Fig. 4 provides a visual representation of the decision
variables, of the constraints, and of the criteria. There is not,

(a) (b)

(c) (d)

Fig. 4: (a) Too many beams (b) Impossible assignment to k reflector antennas
(c) Non-optimal acceptable solution (d) Optimal solution

to our knowledge, literature that directly addresses a problem
strictly similar to the one described in this article. The closest
we could find were the k-centre problem [5] and the max k-cut
problem [4]. The former tries to find locations among a finite



number of possibilities for a limited number of warehouses
with an objective linked to the distances to the cities they
have to serve. The warehouses can be seen as the equivalent
of our beams, but their positions do not have to satisfy any kind
of separation constraint comparable to the antenna constraint.
Concerning the k-cut problem, the goal is to partition the set
of vertices of a given graph in such a way that a maximum
number of edges are cut i.e. with corresponding vertices that
belong to two different subsets of the partition. The main flaw
of this approach for our problem is that the resulting coloring
is not legal i.e. adjacent vertices might use the same color
and therefore one would have to treat each output to reach an
acceptable set of beams according to the antenna constraint, so
that option is not entirely satisfactory. In the end, it has been
chosen to turn to an ad hoc heuristic described and analyzed
in the remainder of the article.

D. Objective function considered

The role of the objective function is to translate the needs
into a real-valued function whose minimization (it could have
been a maximization) brings us closer to their satisfaction.
The variables of that function are all the system parameters
that have to be optimally determined. More precisely, with

� nmax ∈ N the maximum number of usable beams

� ∀i ∈ J1, nmaxK, ci ∈ C the position of the centre of
the ith beam

� ∀i ∈ J1, nmaxK, wi ∈ W the beamwidth of the ith
beam

� ∀i ∈ J1, nmaxK, ri ∈ R the index of the reflector
from which is generated the ith beam (only involved
in the constraints, not the cost function)

� ∀i ∈ J1, nmaxK, bi ∈ B = {0, 1} the boolean variable
that indicates whether the ith beam is actually used or
not

we can define the global variable of our problem as follows:

X =



c1
w1

r1

b1
c2
...

cnmax

wnmax

rnmax

bnmax


∈ (C ×W ×R× B)nmax

As it has been already said before, choices on the criteria
to consider had to be made to address the problem. Here is
the list of the properties sought for the minimized functional,
followed by details on their relevance :

1) A functional that decreases when the traffic demands
inside the beams increase.

2) A functional that is additive with respect to the differ-
ent beams, i.e. that computes a certain value for each
beam (linked to the traffic demand inside the beam)
and sums them all up.

3) A functional in which the impact of the traffic of a
given station in a beam decreases with the distance of
that station to the beam centre.

4) A functional in which stations that are covered by
more than one beam at the same time only contribute
to the overall traffic demand (and thus to the corre-
sponding functional decrement) of one of these beams.

The first property is the most obvious one since it is what
will directly lead to a maximization of the traffic coverable
by the beam layout. An additive functional leaves the door
open to easy implementations of greedy type algorithms on
which interesting literature has been found (see [7] and [8]).
The reduced impact of the stations far from their beam centre
is a way to take into consideration the decrease of capacity
resulting from the loss of antenna gain. The last criterion used
is probably the most questionable one : it presupposes that
the traffic demand of a station cannot be dealt with by more
than one beam. Therefore, potentially interesting overlapping
situations are not handled in that first approach and some
station requests might remain partially unsatisfied for that
reason. But this property for the functional is necessary to
avoid an agglomeration of all the beams in the densest area
with a greedy approach. Therefore, for a station covered by
more than one beam, the choice here has been to affect the
corresponding traffic to the lowest-indexed of these beams
(which is adapted to any heuristic that treats the variables in
the order defined by the index i ∈ J1, nmaxK, the greedy type
algorithms being good compatible examples once again). To
explicitly include this choice in the functional expression, let
us denote for all i ∈ J1, nmaxK :

Si =
{
s ∈ S | ‖s− ci‖2 <

wi
2
∧ ∀j < i, ‖s− cj‖2 ≥

wj
2

}
Therefore, to be in Si, a station must be in the zone covered
by the ith beam, but not in any of the zones covered by the
beams whose indices are less than i. Since it has been chosen
to minimize a functional, one last notation is needed. Thus, let

T =
∑
s∈S

T (s)

be the total traffic request over the studied area. Finally, let

F : (C ×W ×R× B)nmax −→ R+

be the minimized objective function, defined as follows for all
X ∈ (C ×W ×R× B)nmax :

F(X) =
1
T

nmax∑
i=1

(
T− bi

∑
s∈Si

T (s)
(

1− 2
‖s− ci‖
wi

))

In F , the traffic coverable by each beam is computed, with
a first linear model of attenuation of the contribution of the



stations far from the center. The global traffic T is used for
two reasons : to transform the maximization of the traffic into
a minimization problem, and to make sure that only positive
values are computed and summed up. One can notice that the
more active beams (i.e. bi = 1 for many i), the lower the
functional, but the constraints will be limiting on that regard.

V. PREPROCESSING FOR THE BEAMWIDTHS

Let us remind that the width of the beams is an important
parameter to determine to use efficiently the satellite resources.
Indeed, using narrow beams in high traffic demand zones re-
sults in interesting antenna gains and frequency reuse schemes
that are needed to comply with the capacity requests. Larger
beams are expected to offer satisfying traffic in less dense
zones. Therefore, the challenge is to be able to pertinently
fit the repartition of traffic demand over the treated zone.
The goal is to divide the entire region into subareas, each
one corresponding to a possible beamwidths, that information
being used afterwards when the beams are placed. Thus, we are
following the idea of the authors of [2] but with the difference
that the data sorting is applied to all the possible positions for
the beam centres that are weighted according to the demand
density in their vicinity, and not on the demanding user stations
themselves. Furthermore, instead of turning to neural network,
simple statistical discretization has been selected for its ease of
implementation and its satisfying results. This technique that
is often used by statisticians to create population density maps
consists in partitioning the set of encountered density values
into as many intervals as there are categories available for the
data sorting, each subset of values being associated to one of
these. In our case for instance, the lowest values of density
will be associated to the largest beams. Concerning the size of
the intervals, two techniques were examined :

- regular discretization : same size for all the intervals
of the partition.

- arithmetic discretization : these sizes follow an arith-
metic progression.

Given that the highest traffic demands are often concentrated
in small areas, we often have to deal with a distribution of
density values that is skewed to the right, so the arithmetic
approach is a better fit in that case to reach a more or less
balanced repartition of the different beam diameters over the
zone. Yet, to make this directly usable, we had to compute
a value representative of the density in the vicinity of every
possible position for the beam centres. That is the role of the
density function D : C → R+ defined as follows for all the
possible centres c ∈ C, where ωmax is the largest beamwidth
envisaged and Dc = {s ∈ S| ‖s− c‖ < 1

2ωmax} is the set of
user stations in a beam of diameter ωmax placed in c :

D(c) =
4

πω2
max

∑
s∈Dc

T (s)
(

1− 2
‖s− c‖
ωmax

)

In the end, D has the following interesting properties :

- when the traffic demand is high in the vicinity of a
given centre, D is also high. These high values can be
due to a multiplicity of stations of low demands or to
a few high demanding stations.

- when a demanding station is far from the centre, its
influence on the density computed is smaller. This
property was needed to choose adapted diameters,
since without it, one could have to place narrow
beams on centres considered as dense only because
of stations on the periphery of the 1

2ωmax radius disk,
none of which being actually coverable by such small
beams.

The results presented all along this article have been
obtained on a realistic but fictitious broadband scenario over
Africa. In Fig. 5, this statistical discretization has been applied
on Africa and Eastern Africa with respectively 2 and 4
available beamwidths.

(a) (b)

Fig. 5: (a) 4 diameters over Eastern Africa (b) 2 diameters over Africa

VI. THE ALGORITHMIC SOLUTION PROPOSED

Let us remind that building algorithmically a layout implies
solving jointly the following subproblems :

- The choice in advance of the beamwidths to use on
each potential position for the beams already detailed
in the last section.

- The progressive positioning of the beams on the
possible centres.

- The allocation of a reflector to each beam, without
violating the constraints.

In the approach proposed, they are tackled more or less
independently with a multi-start greedy algorithm to posi-
tion the beams, statistical discretization to choose appropriate
diameters, and a graph coloring algorithm for the reflector
allocation.

A. Randomized multi-start greedy algorithm

One big challenge of the beam layout problem is to define
procedures that allow to efficiently position numerous beams
from scratch. Different strategies can come to mind :

- defining the layout beam by beam.

- defining the whole layout with predefined patterns and
blocks of beams.

The second option is exactly what is done today with the
regular patterns whose suboptimality has already been dis-
cussed. The strategy here will therefore be to try to define



a layout beam by beam. An exhaustive tree search was clearly
not an option given the size of the search space after a
sufficiently refined meshing of the zone, a greedy approach
being preferred to create acceptable layouts in a reasonable
amount of time. However, constraint programming and more
precisely constraint propagation were inspirational for the
definition of our constructive heuristic. Indeed, to deal with
the minimum angular distance constraint, our choice has been
to propagate it through an update of the non-usable values for
the reflector variable each time a beam is positioned. That way,
we cannot use any value that would lead to a violation of the
constraints. In practice, to apply the greedy approach (optimal
local choice without questioning the previous ones, see [7]),
the increment of the new beam for F is computed for all
the possible centres, which is immediate since the functional
is additive, and a list of the better possibilities is drawn up.
Instead of using a standard greedy approach, randomization is
operated like in [8] through a random choice of the next beam
positioned in a list of the best potential beams. With a “multi-
start”-like approach, each run produces rapidly a new solution
that is different than the previous one, these solutions thus
exploring zones of the search space that the standard greedy
approach could not have seen, the goal being to do better than
the latter. An overall view of the algorithm steps could be :

- Determination of the beamwidths to use in each pos-
sible beam centre

- Random choice of the position of the first beam in a
list of best possibilities

- Reflector assignment to the first beam

- Random choice of the next beam, reflector assignment
to that beam

- And so on until it is not possible to place another beam
(impossible reflector assignment even with recoloring,
or no interesting positions left)

In the end, the algorithm used is the one described in pseu-
docode in Fig. 6.

B. First-fit like graph coloring with simulated annealing for
reflector allocation

The strength of the algorithm proposed is to take into
account the antenna constraint dynamically which is a way
to ensure that the layouts obtained are feasible. To build
such an algorithm, it has been decided to define for each
possible centre c ∈ C a matrix of ones and zeroes M c ∈
Mcard(R),card(W)({0, 1}) in which the impact of the already
positioned beams in terms of usable reflectors for the potential
beam centre c can be stored and read. All these matrices are
updated each time a beam is added. Thus, at any moment
during the algorithm, for a given centre c and for the jth

beamwidth, M c
i,j indicates whether the ith reflector can be

used to place a new beam without violating a minimum angular
distance constraint. When positioning a new beam at c, the
subgraph described in IV-C evolves, and when at least a
reflector is naturally available for this new node according to
the M c matrix, the less used by the already placed beams
is picked (random choice when there are ties). At that point,
we had to decide what to do when facing a situation where

nb of greedy layouts= 0
while nb of greedy layouts<nb of greedy layouts wanted
do

nb of beams placed= 0
while nb of beams placed< nmax do

if ∃beam positions with non-zero traffic demand then
Greedy establishment of the list of best candidates
Random choice among this list
Allocation of reflector (potential recoloring)
if Beam not rejected then

nb of beams placed++
traffic covered+=traffic covered by new beam

end if
else

Break while loop
end if

end while
nb of greedy layouts++

end while

Fig. 6: Multi-start randomized greedy layout generation

none of the satellite reflectors is usable. The natural reflex
would be to forbid such centres and try those where there
are available reflectors. However, it is important to notice that
there is absolutely no reason that the way the graph has been
colored until that moment should be optimal (in terms of
minimum number of colors used), and even if it was, the newly
added node and the corresponding edges have every chance
to modify completely the structure of the optimal coloring.
Therefore, trying to recolor the already existing beams may
be a way to find a correct reflector allocation that includes the
new beam. To do so, one has to decide which nodes have to
be discolored. The choice here has been to define a tunable
complexity h ∈ N+∗ for the heuristic :

- For h = 1, the direct neighbors of the problematic
node are discolored.

- For h = 2, the direct neighbors of the problematic
node, as well as the direct neighbors of each one of
them are discolored.

- etc...

This is illustrated in Fig. 7 where it is assumed that four
reflector antennas are available.

As far as what concerns the graph recoloring algorithms
themselves, each time a problematic node is found, it has
been decided to use the first-fit algorithm and the simulated
annealing algorithm on the subgraph constituted of all the
discolored nodes and their direct neighbors (some of them
being possibly already colored). The principle of the first-fit
algorithm is to follow an ordered list of nodes that have to
be colored, treat them one by one by assigning the first color
available among an unlimited number of ordered colors. The
order in which the nodes are colored is determining for the
number of colors that will ultimately be needed (see Fig. 8 with
the order red<blue<yellow<green). The simulated annealing
algorithm is only used with a local search on the order of the
nodes when the first-fit algorithm did not provide a satisfying
coloring of the graph.



(a) (b)

(c) (d)

Fig. 7: (a) No reflector available (b) h = 1 (c) h = 2 (d) h→ +∞

(a) (b)

Fig. 8: (a) First-fit applied to the order [1,2,3,4,5,6,7,8], 4 colors (b) First-fit
applied to the order [7,6,2,5,4,8,3,1], 3 colors

VII. RESULTS

A. The antenna constraint and its corresponding graph color-
ing problem

As it was already said, a first-fit algorithm was used for
the recoloring and when it was not enough to free space in
the reflectors source blocks it was combined with a simulated
annealing procedure. The first thing to do was to calibrate
empirically the heuristic complexity h presented above in order
to optimally use the program during the campaign of tests on
typical scenarios that followed. On figure 9, the evolution of
the mean number of situations resolved by the graph coloring
problem with the complexity h is visible. The conclusion is
immediate : h = 3 should be used. It seems indeed to be a good
tradeoff between situations where too few beams are discolored
leaving not many options to try to find a valid recoloring and
situations where too many nodes are discolored making the
recoloring problem bigger and therefore harder to solve, at
least with our first-fit like algorithm. A campaign of 1000 runs
on a broadband scenario over Africa where 150 beams could
be placed at most allowed to obtain the following results for
the recoloring procedure with a complexity h = 3 : in average,

Fig. 9: Mean percentages of resolved situations with the graph coloring
procedure for different h values

42% situations where no reflectors were available were solved
by the first-fit recoloring, and 44% of those it did not solve
were then solved by the simulated annealing recoloring. In the
end, the results are encouraging and strengthen the idea that
finding good recoloring algorithms can lead to layouts where
interesting beams are less rejected.

B. Results on the randomized multi-start approach

The multi-start approach was the one chosen to try to
improve the performances of the standard greedy algorithm.
To measure the added value of that algorithm, we asked for
200 different greedy solutions on the same scenario and we
compared all the resulting objective function values to the one
we get after applying a standard greedy algorithm. The results
are shown in figure 10. We observe that only 3 greedy so-

Fig. 10: Multi-start results compared to the standard greedy algorithm

lutions produced by the multi-start randomized approach beat
the performances of the standard greedy algorithm, and the
difference isn’t really pronounced. At that point of the study,
it is premature to conclude whether this slight improvement is
significant for the telecommunication system, complete system
designs using the greedy layout and its improved versions
needing be compared.

C. Global results on typical scenarios

Several scenarios were tested : North Africa, Austral
Africa, Eastern Africa and Africa (whole continent). The
corresponding solutions returned by the algorithm can be seen
on the figures that follow. The North and Eastern Africa



Angular beamwidth 0, 5◦ 1, 08◦

0, 5◦ 0, 82◦ 1, 28◦

1, 08◦ 1, 76◦

TABLE I: Angular constraints for the tested scenarios

scenario have been treated with only one possible beamwidth.
For Austral Africa and the entire continent, two beamwidths
were used. More precisely, we had :

• inhomogeneous traffic demand over the region (the
colored background map in the figures)

• 4 reflector antennas available

• the maximum number of beams equal to 175

• 0, 5◦ and 1, 08◦ as available beamwidths

• the minimum angular distances of Table I

Fig. 11: Beam layout with one beamwidth generated over North-Africa

Fig. 12: Beam layout with two beamwidths generated over Africa

In all the scenarios presented, the coloring constraint (com-
bined with the obvious constraint to not position beams that do
not cover any station) is the one that ends the generation proce-
dure. As a consequence, we can observe that some dense zones
remain uncovered (see Fig. 12), and a finer analysis showed
that the algorithm tried to place beams but failed because of the
antenna constraints. Once again, the conclusion is that trying
to implement better recoloring algorithm would have a direct
impact on the quality of the layout. Fig. 13 provides the layout
returned by the program when the constraint isn’t taken into
account : one can notice that the greedy algorithm is indeed
attracted by these zones but with the minimum angular distance
constraint, most of these beams have to be rejected.

Fig. 13: Beam layout over Africa returned by the unconstrained algorithm

VIII. CONCLUSION

In the end, this paper provides an alternate option for
building non-uniform layouts with a dynamic consideration
of the single feed per beam antennas constraints, the good
RF performances of this technology making it an interesting
solution for the multibeam systems. What has been presented
here is the first step of a work that will include frequency
and power allocation to the beams, link budget assessments
and capacity computations to finalize this system optimization
but even without that level of accuracy regarding the system
performances, this work provides a tool to build irregular
layouts algorithmically with a guarantee of feasibility for an
implementation with SFB antennas. Also, the difficulties of
satisfying predefined angular separation constraints for the
beams of the same antenna while simultaneously trying to
ensure the contiguity of coverage have been highlighted. At
that point, layouts that use beam diameters adapted to the
density of the zones covered and that optimize the antenna
gains for the user stations can be reached but they might have
the main flaw of leaving some economically important regions
or cities uncovered. Though, improvements on the graph
coloring procedure might solve some of these unacceptable
situations making this approach more efficient.
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