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Abstract: This article presents an applicative architecture based on a solving method for 

embedded technical diagnosis of complex systems. This architecture is defined in order to provide 

services enabling the evaluation of the health status of complex systems. Diagnostic services 

provide information to the maintenance decision support system that leads to reduce the periods of 

unavailability and determine if their future mission can be carried out. The architecture presented 

in this paper implements a distributed diagnostic function using multi-agent techniques. A 

consistency model-based diagnosis is proposed that leads to the identification of the faulty LRUs 

and the failed functions of complex systems. 

Keywords: Distributed diagnosis, health status, multi-agent system, complex systems, embedded 

systems, solving method, system architecture, system diagnosis. 

1. INTRODUCTION 

For transportation systems, new regulations in terms of 

environment, goods and people protection, and needs of 

new services have consequences on the complexity of 

embedded systems. To face this increasing complexity, 

multiple functionalities of the resources are embedded 

and deployed into networks of functions achieved by 

Line Replaceable Units (LRU). Faulty LRUs are 

replaced when the vehicle is at its base and repaired in 

the maintenance workshops, while the repaired system 

carries on with its mission. The increasing number of 

functionalities of the embedded systems contributes to 

raise the possession and acquisition costs leading the 

resources customers to optimize their availability rate. 

Using the Condition-Based Maintenance (CBM) 

recommendations usually improve the equipment 

availability (Jardine et al., 2006 ; Scarf, 2007)). Indeed, 

the CBM depends on the effectiveness of the system 

state provided by monitoring and diagnostic functions. 

They are carried out in particular from on line data 

generally processed by an embedded centralized 

diagnosis function. However, in the case of system of 

systems also called complex system, the identification of 

the faulty components is difficult using centralized 

architectures. After the mission, the maintenance 

operators must collect information by interactions with 

the embedded diagnostic system, in order to isolate 

possible faulty LRUs, and to apply troubleshooting 

procedures. The drawbacks of such architectures are 

related to the numerous pieces of information to process, 

which might be wrong. The automated diagnostic 

processes combine these errors and lead to useless 

removals of LRUs. Those removals are costly and 

increase the risk of damaging the system. 

Alternatively, a decentralized/distributed diagnosis can 

be proposed to reduce the number of useless removals of 

LRUs. For applications to system of systems, monitoring 

and diagnostic functions can be implemented closer to 

the LRUs thanks to agents that carry out them. In the 

case of a distributed approach, a collaborative 

mechanism between diagnostic agents have to enable the 

convergence of the local diagnoses towards a set of 

accused LRUs which should ideally correspond to the 

true faulty ones. 

This article presents an applicative architecture for 

implementing a distributed diagnostic function. In 

section 2, the problem statement is established. In 

section 3, the difficulties of implementing this diagnostic 

function in such systems due to the various kinds of the 

subsystems and to the necessary knowledge and models 

for its achievement is discussed. In section 4, an 

embedded diagnosis function is proposed. In section 5, 

an applicative architecture and its cooperation protocol is 

presented. Its objective is to carry out the identification 

of a set of faulty LRUs from LRUs declared faulty by 

the local diagnoses. 

2. PROBLEM STATEMENT 

The technical diagnosis of transportation systems 

provides to the maintenance operators a list of LRUs that 

should be replaced. When the diagnosis is done online, 

the maintenance operators prepare the intervention 

sooner, reducing the duration and the costs of 

maintenance actions. The main task of a diagnostic 

function is to deliver an advice on a set of faulty 

components and to determine the severity of the fault. A 

difficulty in diagnosing such a complex system is due to 

their numerous kinds of functions integrating different 

technologies (electronics, data processing, mechanics, 

hydraulics…). Thus, the implemented diagnostic 



  

techniques must be adapted to the knowledge available 

about the system. During its use, various faults may 

impact the resource. Those faults degrade its operating 

modes. Three types of faults are considered: 

Cataleptic, the failure of the system is immediate. The 

fault implies a cataleptic failure. The system is in total 

breakdown. The faults can be simple, multiple or hidden, 

Permanent is a state in which one or several system 

functions are in degraded mode. The faults did not 

involve the failure of the system but degrade its 

performances and make it unable to fulfill all its 

objectives. The degradation of performance can involve 

the system locally (a function for example) or the whole 

system, 

Fugitive, the system switches between a nominal 

operating mode and a degraded one. This mode implies 

the same problems as those quoted previously. This type 

of failure can be not signaled or not explained.  

In figure 1, a typology is displayed showing the multiple 

faults and their consequences on the health status of the 

equipment. 

 

Fig. 1. Considered fault typology and consequences on 

health status. 

The diagnosis, according to the various types of faults 

(typology) occurring in the system, classify the failure 

and determine the operating mode of the system (normal 

mode, degradated mode, exception mode…). A FMEA 

(Failure Modes, Effects and Analysis) can address this 

problem by the construction of causal trees. 

Different implementation of the monitoring and 

diagnosis functions associated to the LRUs, are 

described in figure 2. The LRU1 hosts its monitoring and 

diagnostic functions, the diagnostic function can also be 

hosted in another platform (Diagnosis2) or, the 

monitoring and diagnosis functions can totally be 

distributed in different platforms as for Diagnosis3 and 

Monitoring3. 

 

Fig. 2. Structure of a networked embedded supervised 

system.  

In the case of aircrafts, the Centralized Maintenance 

System (CMS), provide a list of likely faulty LRUs for 

the maintenance operator. This list is established 

according to information from the built-in test 

equipments that collect information from the LRUs and 

generate tests if needed. The CMS correlates data to 

provide a “pre-diagnosis” of the LRUs. The flight 

warning system provides to the cockpit crew information 

on aircraft failed functions (Ramohalli, 1992 ; Byington 

et al., 2003). 

Complex systems can be considered as sets of systems 

that depend more or less on each other. A system 

implements one or several functions. For safety 

purposes, functions can be redundant as well as the 

LRUs that implement them. That is why several models 

are necessary to classify the different operating modes of 

the LRUs and their health status. 

3. SYSTEM OF SYSTEMS MODELING 

Generally, the system is analyzed from different models 

in order to obtain a satisfying representation for 

diagnosis purpose. This analysis enables to collect the 

available knowledge on the complex systems. Many of 

them are helpful to design their diagnostic functions. In 

the literature, these models can be functional (Abu-

Hanna et al., 1991), structural and behavioral (Chittaro 

& Ranon, 2003 ; Keuneke, 1991), teleological (Chittaro 

et al., 1993). They enable to model the behavior of 

components, of functions and of their interactions 

according to normal or degraded modes. In other studies, 

models are added to evaluate the diagnosis confidence 

(Bonarini & Sassaroli, 1997). 

A Complex System (CS) can be defined by a finite set of 

m system ∑i. CS = {∑1, ∑2,.., ∑m}. A system ∑i can be 

defined as a set of n function Fi,j. ∑i = {Fi,1, Fi,2,..,Fi,n}. A 

function Fi,j can be defined as a set of k LRUs 

implementing this function. Fi,j = {LRUi,j,1, …,LRUi,j,k}. 

If a LRU contribute to the implementation of more than 

one function, a decision has to be taken when defining 

the system. A LRU should be part of one and only one 

function. After defining the hierarchical decomposition 



  

of the system, a system modeling has to be formalized to 

ensure system diagnostic.  

In this paper, the set of necessary System Knowledge to 

diagnose the complex system is collected in the set SK 

made of four types of knowledge: functional, structural, 

behavioral and topological. The Functional Description 

(FD) is the set of functions ensured by every system. FD 

represents links between LRUs, functions and system. 

The Structural Description (SD) is dedicated to the 

identification of the set of LRUs and of physical 

connections between them. SD introduce predicate 

CONNECT(X,Y) that means that X is connected to Y. S : 

CONNECT(LRUi,j,q, LRUp,r,s) with q and s respectively 

one of the LRUs implementing Fi,j and Fp,r. The 

behavioral models are used in order to identify the 

relevant indicators that are used to generate symptoms 

for the various faults that may affect the LRUs. They 

help to classify the faults of the LRUs from their 

symptoms. For diagnostic purpose, the knowledge BM 

provides the relationships between the symptoms, the 

LRUs and their faults. The Topological Dependencies 

(TD) determines the proximities of components that may 

be the origin of indirect failures or faults of a LRU due 

to the proximity of another failed one. TD introduce 

predicate TOPO(X,Y) that means that X is close to Y and 

that some faults of X may affect the functioning of Y. 

TD: TOPO(LRUi,j,q, LRUp,r,s) with q and s respectively 

one of the LRUs implementing Fi,j and Fp,r. Finally, 

BMTDFDSDSK   

4. EMBEDDED TECHNICAL DIAGNOSIS 

In this paper, the diagnostic function consists of several 

activities: to condition, to detect and to identify failures 

and their causes. Relevant and significant indicators are 

generated by the function “to condition” and are based 

on measurements of the system. These indicators can be 

statistics (mean, standard deviation, …), signals values 

(magnitude, power, frequency, …), parameters 

(structural or physical parameters), state observers, 

residuals, errors, etc. The function “to detect symptoms” 

uses these indicators to generate values, called “detected 

symptoms”, which are provided when a fault occurs. The 

decision can be made thanks to a decision-making 

support technique. The outputs can be digital and define 

which fault occurred. “To identify failures” is done by 

two sub-functions: “To identify failed function(s)” and 

“To identify faulty component(s)”. The user (pilot, 

driver, …) cares about the failed functions of the system 

whereas the maintenance operator cares about the faulty 

components that must be replaced. In figure 3, the 

activity diagram of the function “To identify failure” is 

detailed. 

 

Fig. 3. Activity diagram A3 of the function “To identify 

failure”. 

Ideally, the diagnosis identifies a set ∆2 of failed function 

and locates their causes, i.e. a set ∆1 of faulty LRUs from 

a set of symptoms S and a set of tests T. This leads to the 

next relationship where Diag is the diagnostic function: 

(∆1, ∆2) = Diag(SK, S, T) 

The function Diag can be implemented thanks to two 

sub-functions as presented in figure 4. The function 

Diag1 allows, starting from a set of symptoms and a set 

of tests, to identify the set of faulty LRUs of the system 

∆1 = Diag1(SK, S, T), where ∆1 = 

{AB(LRUi,j,q),…,AB(LRUp,r,s)} and the function Diag2 

enables to locate the set of failed function from tests and 

the set of failed LRUs: ∆2 = Diag2(SK, ∆1, T) where ∆2 = 

{AB(Fi,j),…,AB(Fp,r)}. AB(.) enables to denote either a 

faulty LRU or a failed function.  

5. APPLICATIVE ARCHITECTURE 

Distributed approaches of Information and 

Communication Technologies (ICT) often provide good 

enough solutions to face complexity. The diagnostic 

function was implemented in a distributed structure 

according to the multi-agent system concept. The agents 

of the structure cooperate and exchange data whatever 

the language used to model the information they contain 

is. This implementation requires data and models that 

have been collected and organized. In the case of the 

complex systems some works show the feasibility to 

implement an embedded diagnostic function by 

distributed architectures with or without cooperation 

between its elements (Biteus, 2005 ; Heck et al., 1998 ; 

Wörn et al., 1998). 



  

The conceptual framework of the proposed applicative 

architecture is depicted in figure 4, the architecture 

presented herein is based on a distributed 

implementation. The local diagnosis agents cooperate to 

provide the diagnosis of the system. This implies the use 

of multi-agent system techniques. As shown in figure 4, 

a facilitator agent can be introduced, to ensure the 

convergence toward a solution within a given time. The 

applicative architecture does not imply the 

implementation of a distributed diagnostic function. It 

depends on the “solving method”. The middleware 

solution eases the implementation of the services 

provided by the agents that are software entities 

exchanging data by abstracting the way they are hosted 

on different hardware entities. 

The architecture consists of several LRUs that are 

gathered into several functions which is the LRU layer. 

Each LRU is observed by a monitoring function 

designed by the supplier. The monitoring functions are 

represented by the monitoring layer in figure 4. Then, 

the monitoring agents send their symptoms to a 

Diagnostic Agent (DA), which is in charge of 

elaborating the set of faulty LRUs. One or more 

databases (KB) contain the structural, the topological, the 

functional and the behavioral knowledge in order to 

provide a support for the different agents. A 

Human/Machine Interface (HMI) ensures the 

information displayed to users. The HMI displays, 

according to the type of operators, the failed functions of 

the system (for the production operators) or the LRUs 

that need to be replaced or fixed (for the maintenance 

operators). If the collaboration is correct the global 

diagnosis of the system in terms of faulty LRUs is a 

union of each local diagnosis. 

The solving method of the distributed architecture is 

represented by the activity diagram shown in figure 5. 

These activities are carried out by cooperation between 

the DAs and the HMI. This cooperation is represented by 

sequence diagrams shown in figures 6 and 7. The 

reception of a symptom by a DA launches the process. 

The corresponding DA begins by defining the symptom 

received. If the symptom is generated by the monitoring 

layer, it is declared as a “failure symptom” and if it is a 

symptom generated from the function “To propagate 

symptom”, it is called a “propagation symptom”. If the 

symptom is a failure symptom, this one is diagnosed as 

described by the sequence diagram in figure 6 where the 

DA sends a request to the database to know if the 

symptom is known or unknown. A known symptom is a 

symptom for which the cause is already identified by 

studies made at the system design stage (FMEA). If the 

symptom is known, the database returns the result and 

the DA declares the cause of failure of the LRU as 

known, otherwise, the cause of failure of the LRU is 

declared as unknown. Then the fault is propagated as 

described by the sequence diagram shown in figure 7. 

This activity begins by a request of the DA to the 

database to know if it exists structural dependencies with 

other LRUs. If it is the case, “propagation symptoms” 

are sent to advice the DA in charge of diagnosis of the 

involved LRUs that they may not operate correctly. 

Therefore, those LRUs are declared as out of order. 

Furthermore, the supervision of the diagnostic agents is 

ensured during a cooperation task and more precisely 

during “the fault propagation” function. If an agent did 

not confirm that it receives the message during the 

propagation task, the diagnostic process accuses and 

declares the agent as failed. So, the diagnosis of the DA 

also contains information about the DAs that did not 

answer the request. By this way, the diagnostic of the 

DAs is carried out. 

Every DA of the architecture diagnoses LRUs 

implementing a function. Every time a DA receives a 

symptom the last diagnosis is copied and updated 

according to the new received symptom. This ensures 

the elaboration of an historic of the evolution of the 

diagnostic process. This enables a non monotone 

diagnostic process. 

 

Fig. 4. Conceptual framework of applicative architecture for embedded distributed diagnosis



 

 

  

 

If the symptom received by the DA is a “propagation 

symptom”, this one is used for a “diagnosis refinement” task. 

To explain the activity, let us considered the example 

composed of 3 LRUs ( 1,1,1LRU , 2,1,1LRU and 3,1,1LRU ) 

structurally dependant. SD contains, which the only 

considered knowledge about the system: 

CONNECT( 1,1,1LRU , 2,1,1LRU ), 

CONNECT( 2,1,1LRU , 3,1,1LRU ). Each LRU has its own 

monitoring period for each of its symptom. For example, if 

we consider one symptom per LRU, we suppose that the 

symptom emitted from the monitoring of 1,1,1LRU can be 

send to the DA every 5 minutes, the one of 2,1,1LRU every 

minute and the one of 3,1,1LRU every second. In such a case, 

we consider that only 1,1,1LRU failed, 2,1,1LRU and 

3,1,1LRU should be defined as out of order. But the 

symptoms are not received in the order they occur because of 

the different monitoring periods. Considering symptoms 
t

tkjiS ,,,  of the qjiLRU ,,  that occurs at time t and 

321 ttt   it can be infer that
3

1,3,1,1

2

1,2,1,1

1

1,1,1,1

ttt SSS  . It 

is important to make a difference between the time the 

symptom occurs and the time the symptom is send. At the 

first step, because of the monitoring periods, the DA 

receives
3

1,3,1,1

tS . So, 3,1,1LRU is declared has failed. Then, 

the DA receives
2

1,2,1,1

tS . As 32 tt   and because of the 

structural dependencies, 2,1,1LRU is declared failed and 

3,1,1LRU is updated to a out of order status. Finally, the DA 

receives
1

1,1,1,1

tS . Because of the timestamp ( 321 ttt  ) 

and the structural dependencies, LRU1,1,1 is declared failed 

and 2,1,1LRU and 3,1,1LRU are declared as out of order. 

 

Fig. 5. Activity diagram of the considered solving method. 

Diagnosis 
Agent

Database

1: Query a known fault

2: Answer the request

3: Change LRU status according to answer

 

Fig. 6. Sequence diagram of the function “To diagnose”. 

Diagnosis 
Agent

DatabaseOther Diagnosis 
Agents

1: Query for a list of Diagnosis agents struturally dependent

2: List of Diagnosis agents

3: Send of propagation symptom to the Diagnosis agent

4: Propagation Symptom received

 

Fig. 7. Sequence diagram of the function “To propagate 

fault”. 

In figure 8, the presented case study consists of 3 systems 

each implementing one function. Every function is 

implemented by 3 LRUs. Function 31 is independent while 

Function 11 and Function 21 are functionally dependent. 

Structural dependencies between LRUs are described in the 

set SD which is the only considered knowledge. The 

knowledge is recorded in XML files, which is an input of the 

solving method for symptom generation and diagnostic 

support. 

 

Fig. 8. Case study of a monitored system of systems. 



 

 

  

 

Four different status describe the state of a LRU:”OK” where 

the LRU is not faulty at all, “UF” when the LRU is faulty but 

the cause is unknown (Unknown Failure), “KF” when the 

cause of the failure is known (Known Failure) or “OO” when 

the LRU does not work in nominal mode or is failed because 

of the failure of a LRU structurally dependent of it (Out of 

Order). 

The symptoms received by DAs are recorded in a field linked 

to the corresponding LRU. The state of the LRU changes and 

the diagnostic timestamp of the LRU is updated with the 

current one. At the end of the symptom generation session, a 

list of faulty LRUs with its cause and a list of failed functions 

are available. The cause of faulty LRU is described in terms 

of sentences from FMEA studies or of faulty LRU in the case 

of “OO” state. The cause of failed function is described in 

terms of faulty LRUs. 

For example, if LRU2,1,1 and LRU3,1,1 failed and the cause of 

the failure of LRU2,1,1 is known to be a power failure and the 

cause of LRU3,1,1 unknown. After symptom generation, the 

diagnosis result is given by: 

∆1 = LRU2,1,1(status: KF, cause: power failure, timestamp: 

2009/07/05 15h26min56s) & LRU3,1,1(status: UF, cause: 

unknown, timestamp: 2009/07/05 15h27min05s) & 

LRU1,1,2(status: HS, cause LRU2,1,1 failure, timestamp: 

2009/07/05 15h26min57s) & LRU3,1,2(status: HS, cause: 

LRU3,1,1 failure, timestamp: 2009/07/05 15h27min06s) 

∆2 = Function11 (status: HS, cause: function12 failure, 

timestamp: 2009/07/05 15h26min58s) & Function21 (status: 

KF, cause: LRU2,1,1 failure, timestamp: 2009/07/05 

15h26min57s) & Function31 (status: KF, cause: LRU3,1,1 

failure, timestamp: 2009/07/05 15h27min06s) 

In each set ∆1 and ∆2 is listed the LRUs or functions that do 

not work in a nominal mode with their current state, the cause 

of their failure and the timestamp their state changed. 

All pieces of diagnostic data and their timestamp are recorded 

to ensure performance evaluation at the end of the diagnostic 

process. Performance indicators are therefore defined. These 

indicators use the timestamps of the different data that are 

exchanged between the agents on the middleware to be 

evaluated like: speed of convergence, data flow, and 

computational load. 

6. CONCLUSION 

The proposed distributed diagnostic architecture provides a 

solution to diagnose faulty LRUs and failed functions in the 

case of system of systems. This architecture is based on DAs 

that receive symptoms from monitoring layer. The proposed 

distributed implementation of the technical diagnostic 

function is based on a distributed resolution method and 

system knowledge. Future work will deal with the 

comparison between decentralized and centralized diagnostic 

functions. 
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