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Contribution Of Color Information In Visual
Saliency Model For Videos

Shahrbanoo Hamel, Nathalie Guyader, Denis Pellerin, and Dominique
Houzet

GIPSA-lab, UMR 5216, Grenoble, France?

Abstract. Much research has been concerned with the contribution of the
low level features of a visual scene to the deployment of visual attention.
Bottom-up saliency models have been developed to predict the location
of gaze according to these features. So far, color besides to brightness,
contrast and motion is considered as one of the primary features in
computing bottom-up saliency. However, its contribution in guiding eye
movements when viewing natural scenes has been debated. We investi-
gated the contribution of color information in a bottom-up visual saliency
model. The model efficiency was tested using the experimental data
obtained on 45 observers who were eye tracked while freely exploring a
large data set of color and grayscale videos. The two datasets of recorded
eye positions, for grayscale and color videos, were compared with a
luminance-based saliency model [1]. We incorporated chrominance
information to the model. Results show that color information improves
the performance of the saliency model in predicting eye positions.
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1 Introduction

The mechanism of visual attention allows selecting the relevant parts of a visual
scene at the very beginning of exploration. The selection is driven by the
properties of the visual stimulus through bottom-up processes, as well as by the
goal of observer through top-down processes [2], [3]. Visual attention models
tend to predict the parts of the scene that are likely to deploy the attention
[4], [5], [6], [1]. Most of the models are bottom-up models based on the
Feature Integration and Guided Search theories [7], [8]. These theories stipulate
that some elementary salient visual features such as intensity, color, depth
and motion, are processed in parallel at a pre-attentive stage, subsequently
combined to drive the focus of attention. This approach is in accordance
with the physiology of the visual system. Hence, in almost all the models
of visual attention, low level features like intensity, color, spatial frequency
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are considered to determine the visual saliency of regions in static images,
whereas motion and flicker are also considered in the case of dynamic scenes
[4], [6], [1]. More recently, the contribution of different features like color in
guiding eye movements when viewing natural scenes has been debated. Some
studies suggested that color has little effect on fixation locations [9], [10], [11],
which brings to question the necessity of the inclusion of color features in the
saliency models [12]. In this study, we investigated the contribution of color
information in predictive power of saliency model by incorporating color to
a luminance based model of saliency [1]. We also identified and compared
the salient regions of a data set of color videos and same videos in grayscale,
through an eye-tracking experiment.

2 Method

2.1 Saliency model

The luminance-based saliency model of Marat et al. [1] draws inspiration
from human visual system. The model is consisted of two pathways: static
and dynamic. Both pathways are only based on luminance information of
visual scene, processed in two steps: The first step simulates some basic pre-
processing done by the retina cells through a cascade of three linear filters:
a band pass filter for luminance pre processing and two low pass filters for
chrominance. Note that we did not model spatially variant resolution of the
retina photo receptors. The retina separates the input signal into low and
high spatial frequencies that schematically represent the magno- and parvo-
cellular outputs of the retina. At second step each signal is decomposed into
elementary features by a bank of cortical-like filters. These filters, according
to their frequency selectivity, orientation and motion amplitude, provide
two luminance-based saliency maps: static map Mls and dynamic map Mld,
Figure 1.

The model proposed by Marat et al. is only based on the luminance
information. The novelty of our model is to incorporate the color information
to compute the saliency map. The early transformation of the Long, Medium
and Short wavelength signals, absorbed by cones, provides an opponent-color
space in which signals are less correlated [13]. There are several color spaces
proposing different combination of cone responses to define the principal
components of luminance and opponent colors, red-green (RG) as well as
blue-yellow (BY ) [14]. The color space proposed by Krauskpof et al. [15]
is one of the validated representations to encode visual information where
the orthogonal directions, A, Cr1 and Cr2, represent luminance, chromatic
opponent red-green and chromatic opponent yellow-blue respectively. The
following equation is used to compute A, Cr1 and Cr2. In our model we used
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Fig. 1 The spatio-temporal saliency model. Mld is luminance-based dynamic
map, Mls and Mcs are luminance-based and chrominace-based static maps
respectively.

Cr1 and Cr2 to compute a chrominance saliency map. A
Cr1
Cr2
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where, L, M and S signals are calculated from tristimulus values of 1931 CIE
XY Z color space as follows:L

M
S

 =

 0.4002 0.7076 −0.0808
−0.2263 1.1653 0.0457
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
It is known that the human visual system is sensitive to the high spatial frequen-
cies of luminance [16] and the low spatial frequencies of chrominance [17]. The
amplitude spectra of the two color-opponent Cr1 and Cr2 images do not have
as many specific orientations as the amplitude spectra of the luminance image
[18]. Hence the retinal and cortical processing of chrominance information
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is different from luminance information. We integrated to the Marat et al.
[1] spatio-temporal saliency model, the chrominance processing steps first
introduced by Ho-Phuoc et al. [19]. The retinal processing step of chrominance
information starts with low pass filtering illustrated by the contrast sensitivity
functions (CSFs) for chrominance information [6]. Following these CSFs, the
two color opponents are processed by two low-pass filters. Then the cortical
like filters extract the spatial information of Cr1 and Cr2 color opponents
according to 4 orientations (0, 45, 90, and 135 degrees) and 2 spatial frequencies,
providing a chrominance static saliency map Mcs. Chrominance saliency map
Mcs, luminance-based static saliency map Mls and dynamic saliency map, Mld,
after normalizing, are combined, according to the following equation, to obtain
a master spatio-temporal saliency map per video frame. This map predicts the
salient regions i.e. the regions that stand out in a visual scene.

Saliency map = αMls + βMld +Mcs + αβ(Mls ·Mld)

Where, α and β are the max of Mls and skewness of Mld respectively, and
Mls ·Mld is a pixel to pixel multiplication. Figure 3 shows an example frame
and its intermediate and final saliency maps.
In addition, we compared the performance of the model with one of the

Fig. 2 Saliency maps: (a) An example frame, (b) luminance-based static map
Mls, (c) luminance-based dynamic map Mld, (d) chrominance-based static map
Mcs, (e) fusion of Mls and Mld, (f) fusion of Mls, Mcs and Mld.

reference saliency models, Itti and Koch saliency model [20], [4].

GPU implentation The saliency model presented above with static (luminance-
based), dynamic (luminance-based) and chrominance pathways is compute-
intensive. Rahman et al. [21] have proposed a parallel adaptation of luminance-
based pathways onto GPU (http://www.gipsa-lab.fr/projet/perception/).
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They applied several optimizations subtending to a real-time solution on multi-
GPU. We included the parallel adaptation of chrominance pathway to this GPU
implementation maintaining the real time solution.

NSS metric A common metric to compare experimental data to computational
saliency maps is the Normalized Scanpath Saliency (NSS ) [3]. We used this
metric to compare C and GS eye positions to their equivalent saliency maps. To
compute this, first the saliency maps were normalized to zero mean and unit
standard deviation. The NSS value of frame k corresponds to averaged saliency
values at the locations of eye positions on the normalized saliency map M as
shown in the following equation:

NSS(k) =
1

N

N∑
i=1

1

σk
(M(Xi)− µk)

where N is the number of the eye positions, M(Xi) is the saliency value of the
eye position (Xi), µk and σk are the mean and standard deviation of the initial
saliency map of frame k. A high positive value of NSS indicates that the eye
positions are located on the salient regions of the computational saliency map.
A NSS value close to zero represents no relation between eye position and the
computational saliency map, while a high negative value of NSS means that
eye positions were not located on the salient regions of computational saliency
map.

2.2 Eye-tracking experiment

To investigate whether the inclusion of color information into saliency model
improves its performance, we compared the luminance based and the luminance-
chrominance based model to the eye positions of 45 volunteers (25 women
and 20 men, range 25 − 39 years old) recorded while freely viewing videos
in two conditions: Color and Grayscale. To simplify, the eye positions recorded
when viewing color stimuli and grayscale stimuli are called C positions and
GS positions respectively. We also studied the eye positions to determine
whether color information influences the eye positions. An Eyelink 1000 from
SR research was used to record the eye positions in a pupil tracking mode.
The stimuli consisted of 65 short video extracts of 3 to 5 seconds, called video
snippets. Video snippets were extracted from various open source color videos.
The stimuli measured 640 × 480 pixels, subtending a visual angle of 25 × 19
degrees at a fixed viewing distance of 57 cm. The temporal resolution of
video snippets was 25 frames per second. The video data set was converted
to grayscale using following equation.

L = 0.5010×R+ 0.4911×G+ 0.0079×B (1)

The weights of R, G and B channels were calculated according to the exper-
imental display characteristics to fit V (λ), the CIE 1931 luminosity function
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of standard observer. Display characteristics were obtained by measuring the
light emitted from computer-controlled display, using a Photo Research PR650
spectrometer. Figure 3 presents the spectral power distributions of R, G and B
channels.

Fig. 3 Spectral power distribution for light emitted by the red, green, and blue
phosphors of experimental display and the CIE 1931 luminosity function of
standard observer, V (λ).

2.3 Eye position analysis metrics

Dispersion. To evaluate variability of eye positions between observers, we used
a metric called dispersion [1], [22]. Dispersion was calculated separately for
each frame for C positions (DC) and GS positions (DGS). Lower values of
dispersion correspond to subjects’ eye positions located close to one another,
interpreted as high inter-subject consistency.

Clustering. Salient regions of a visual scene can be identified as the locations
fixated by a group of subjects at the same moment of observation. These
regions can be estimated by clustering the eye positions of different subjects
on each frame [23], [24], [25]. Here, we clustered the eye positions to compare
the experimental salient regions in color and grayscale conditions using mean-
shift clustering method [24]. This method requires a distance parameter to be
adjusted. Because the size of video clips was constant, we empirically set this
distance to 75 pixels, equal to nearly 3 degrees of visual angle.
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3 Results

3.1 Saliency model

First, we studied whether luminance based saliency model [1] predicts the
eye positions in both conditions with equal efficiency. Then we performed
NSS analysis, but using the model of saliency with chrominance. As shown in
table 1 color information improves significantly the performance of presented
model for both C and GS positions (GS : t(63) = 4.5, p < 0.01, C : t(63) =
4.86, p < 0.01), while it improves slightly the performance of the model of Itti
and Koch [4].

Table 1 NSS results for Marat et al. model and Itti and Koch saliency model
with and without color features.

Marat Itti

luminance luminance luminance luminance
+chrominance + chrominance

NSS C positions 0.59 1.18 0.91 0.95
GS positions 0.60 1.17 0.93 0.97

In addition the GPU implementation of chrominance pathway, similar to
luminance-based static pathway results in a speedup of 166× over matlab
implementation, while the speedup of dynamic pathway is about 184× over
matlab.

3.2 Analysis of eye positions

The dispersion of color eye positions is significantly higher than grayscale (5.1
vs. 4.8, t(63) = 2, 5804, p < 0.01). This raw result shows that there is more
variability between the eye positions of observers when viewing color videos.
Yet, a large dispersion might be observed in two different situations: (i) when
all observers look at different areas, or (ii) when there are several distant
clusters of eye positions. The mean number of clusters on color snippets was
significantly higher than grayscale (5.1 vs. 4.8, t(63) = 2.6, p < 0.01). The
result indicates that the high dispersion value of C positions is not due to the
high variability of the eye positions, but it is related to the higher number of
regions of interest in color stimuli. However, main clusters were superimposed
between C and GS positions. Figure 4 shows the subjects regions of interest on
an example frame identified by clustering the C positions and GS positions.

3.3 Conclusion

In the present manuscript, we have compared eye positions recoded while
viewing dynamic stimuli in two conditions: color and grayscale. We observed
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Fig. 4 Example of the regions of interest identified by clustering the eye
positions. From left to right, first row: an example frame in color and grayscale.
Second row: the corresponding regions of interest of C positions and GS
positions.

that the main regions of interest such as faces [26], [27], [28], and moving objects
[29], [30], [1] are common in color and grayscale stimuli, but there exist more
regions of interest in color stimuli.

We have integrated color information into our bio-inspired saliency model.
Results show that indeed color information improves significantly the perfor-
mance of the model in predicting eye positions for both grayscale and color
stimuli while a better prediction power was expected for color stimuli. This
might be due to the fact that the major regions of interest are common in both
stimuli conditions, but are better enhanced when employing color information.
Yet, the incorporation of color information into the model is not optimized.
Because the regions of interest are not always located on colored zones, but
their neighboring[6]. Whether reinforcement of luminance saliency according
to the color information of neighboring zones can improve the predictive power
of saliency model remains to be determined.
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