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Locality and Continuity 
in Constitutive Theory 

REUVEN SEGEV 

Communicated by R. G. MUNCASTER 

1. Introduction 

In the theory of constitutive relations in continuum mechanics, various axioms 
of locality are postulated. These axioms restrict the amount of information 
concerning the motion of the body that is needed in order to determine the stress 
at any material point. 

Following NOLL [1], TRUESDELL & NOLL [2] set up the following hierarchy 
of locality axioms (see also [3]). The most general locality assumption, the prin­
ciple of determinism, states that the stress in a body is determined by the history 
of the configuration of that body. A stronger locality assumption is provided by 
the principle of local action which states that the motion outside an arbitrary 
neighborhood of a material point X may be disregarded in determining the stress 
at X. Next, materials of grade n are those for which the stress at any point depends 
only on the history of the values of the first n derivatives of the deformation at X. 
Clearly, materials of grade n satisfy the principle of local action and materials of 
grade one, which are called simple materials, satisfy the strongest locality assump­
tion. 

In this paper I make some observations regarding relations between the three 
types of locality mentioned above. The presentation differs from the traditional 
approach in that I assume that the force acting on a body, rather than the stress, 
is determined by the motion. With this approach, Cauchy's postulate, which is a 
traditional consistency assumption needed for the proof of the existence of the 
stress, implies the principle of local action. Finally, I prove that if all bodies have 
a finite and bounded memory, and if the stress on a body depends continuously 
on the motion, the following results hold. (a) The body satisfies the locality condi­
tion for materials of grade n. (b) The mapping "Px that assigns the stress at X 
to the first n derivatives of the deformation at X is continuous. (c) The mappings 
"Px varies continuously with X. 
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2. Preliminaries 

In this section I present the framework in which the aforementioned consti­
tutive theory is formulated, and I review the basic results of continuum mechanics 
that will be used in subsequent sections. 

A body is modeled mathematically as the closure of an open connected subset 
of R3 having a smooth boundary, and the physical space is modeled by R3. A 
configuration of class n of the body B in space is a mapping "': B _ R3 having 
the following properties: it is one to one; it is n times continuously differentiable; 
if D", is the derivative of "', then det (D",) =f= 0 at all points in the body. Here, 

i thD"'il = "'i,l, where "'i is the componen~ of "', and a comma denotes partial 
differentiation with respect to the body coordinate Xl' The configuration space 
QB is the set of all configurations of class n, where n is some fixed positive integer. 
Let [to, t] be an interval in R. A motion of B in the time interval [to, t] is a conti­
nuous mapping H: [to, t] - QB' The collection of all motions on [to, t] will be 
denoted by MB' 

A triplet I' = (1'\ 1'2, 1'3) of nonnegative integers will be referred to as a 
multi-index and the notation 

II'I = 'i.pp,P, p,! = 1'11 1'2 !1'3 !, X"= (X1y'(X2y'(X3),,3, 

81"1",.
D" ­

"'i - 8X'" !:<X,,2I !:<X,,3'
1 U 2 u 3 

will be used subsequently. 
Let g: B_ R3 be an n times differentiable mapping. For an integer m such 

that 0 < m < n, the mth jet, j"'g(X), ofg at the point X E B is the collection of 
all partial derivatives {D"gi; /1' I <m}. Clearly, for any n times differentiable map­
ping g and any point X in B,rg(X) belongs to the vector space EBo~p~nU(R3, R 3)s, 
where LP(R3, R3)s denotes the vector space of p-multilinear symmetric mappings. 
In addition, for any element X E B and any element ~ E EBo~p~n U(R3, R3)s, 
it is possible to construct a mapping g: B_ R3 such that rg(X) =~. Thus, 
the mth jet space, i.e., the collection of m-jets of functions, will be identified with 
EBo~p~n U(R3, R3)s and it will be denoted by Jm. For an element ~ E J"" ~i"

will denote the component of ~ corresponding to D""'i; this can be regarded as 
the component of an array in LI"I(R3, R3)s. The mth jet space will be endowed 
with the norm II lib such that for every ~ E Jffl, IIHJ = maXI"I~m.i{W" I}. Given 
a motion H: [to, t] - Q B and a material point X, jmHx : [to, t] _ Jm, is the 
continuous mapping that assigns the jet r(H(T» (X) to any time T. 

In terms of the notion of a jet the assumption of nth grade locality can be 
formulated simply by stating that the stress at a point X is determined by the his­
tory of the nth jet of the configuration at X, i.e., by the mapping j"'Hx : [to, t] _ Jm. 
Henceforth, I will use the term nth jet locality as a synonym of nth grade locality. 

Let Cn(B, R3) denote the Banach space of n-times continuously differentiable 
mappings u:B_R3 equipped with the norm II ullcn = SUPXEB{maxl"l~n{ID"Ui(X)n. 
It can be shown (see [4]) that QB is an open subset of Cn(B, R3), and it will be 
endowed with the induced topology given by the metric 

dQ: QBx QB- R with do("', ",') = SUPXEB {maxl"l~n {I Di''''i(X) - D"",;(X) In· 
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Similarly, MB will be endowed with the topology of uniform convergence, 
i.e., a metric dM on MB is used such that for two motions Hand H' 

dM(H, H') = sUPrE[to,t]{dQ(H(r), H'(r))} 

= sUPrE['o,,]{suPxEB{maxll'l:;;n{1 ff'H(r); (X) - DI'H'(r); (X) 1m. 

Clearly, MB can be identified with the set 

endowed with the metric dM as defined above. For any material point X, rHx 
belongs to C([to, t], r), the space ofcontinuous mappings [to, t] --+ Jm on which 
the metric de defined by dde, n = sUPrE[IO,I] II err) - (r)/lJ is used. 

Let X be a point in B and let u, v E C(B, R3). The mappings u and v are germ 
equivalent at X if there is an open subset U of B containing X such that for every 
Y E U, u(Y) = v(Y). Clearly, germ equivalence of functions is an equivalence 
relation. The equivalence class of the mapping u will be denoted by germx(u) 
and will be termed the germ of u at X. The quotient space, i.e., the collection of 
all germs at X, will be denoted by Gx . In the language of germs the principle of 
local action described in the introduction states that the stress at a point X is 
determined by the history of the germ of the motion at X, i.e., the stress at X is 
determined by the mapping [to, t] --+ Gx given by -r --+ germx(H(-r)). Henceforth, 
I refer to this as germ locality. 

Recalling that forces in continuum mechanics are given in terms of body force 
fields and surface force fields, by a force f I mean a pair of vector fields: the body 
force field b defined in B and the surface force field t defined on the boundary 
oB of B. The collection of forces acting on B will be denoted by WB • Thus, WB 
can be identified with the collection {(b, t)} of pairs of vector fields, where the first 
is defined on the body and the second is defined on its boundary. 

A body P is a subbody of the body B if P is a subset of B. Aforce system on B 
is a mapping that assigns to each subbody P of B a force Fp, and (bp, t p) will 
denote the corresponding body force field and surface force field on P. A force 
system satisfies Cauchy's postulate if the following conditions hold: the total 
force of each subbody vanishes; tp(X) depends on the subbody P only through the 
unit normal n to the boundary of P at X, i.e., tp(X) = t(X, n); t(X, n) is a con­
tinuous function of its arguments. It is noted that a given force on B cannot be 
restricted uniquely to subbodies of B. 

The basic result concerning stresses and forces in continuum mechanics states: 
if a force system satisfies Cauchy's postulate, there exists a unique continuous 
(two point) tensor field (Jli defined on B such that tp(X); = (Jli(X) nj. Denote by 
EB the vector space of continuous stress fi~lds (two point tensor fields) on B, 
and for any stress field (Jli define the norm 

This makes EB into a Banach space. 
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3. The Basic Postulates 

In this section I postulate the basic principles of constitutive theory and pre­
sent their immediate consequences. Since continuity plays no role in this section, 
no use is made of the topological structures defined in the previous section. In 
addition, there is no need to specify the time interval on which a motion is defined. 
Thus, in this section I extend the definition of a motion to include these defined 
on (- 00, t]. M B denotes the collection of such motions, and no topology is 
introduced on MB' 

The Principle ofBody Self-Determinism: Theforce acting on a body at the time t 
is determined by the motion H: (- 00, t] -+ QB' 

From this principle it follows that for any body B there is a mapping 

A B : MB -+ WB , 

called the loading of B, that assigns to any motion H of B the force f = AB(H) 
acting on B at the time t. Let P be a subbody of B. For any motion H of B, let 
HIP: (- 00, t] -+ Qp be the motion defined for all X E P by HIP(T) (X) = 
H(T) (X). Since the restriction Hlp of the motion H to any subbody P deter­
mines, by the principle of body self determinism, a force Ap(HIP) on P, it 
follows that a motion H of the body B determines a force system on B at the time t. 
The second basic postulate is concerned with this force system. 

The Principle of Consistency: The force system {Ap(HIP); PCB} generated 
by the motion H of the body B satisfies Cauchy's Postulate. 

As a consequence of this principle it follows immediately that any motion of 
the body determines a stress field on the body at time t. The corresponding 
mapping lJ'B: MB -+ EB is called the constitutive relation for B. 

Proposition 3.1. Let 'liB: MB-+EB and 'lip: Mp-+Ep be constitutive relations 
for Band P, where PCB. Then, for any motion H: (- 00, t] -+ QB and any 
XEP, 

'Pp(HIP) (X) = 'PB(H) (X). 

Proof. For any motion H: (- 00, t] -+ QB, 'Pp(HIP) is a stress field on P. 
Assume that 'PB(H) (X) =f= 'Pp(HIP) (X) for some X E P. Then, for some 
subbody P' of P whose boundary contains X, 

Here n is the unit normal to the boundary of P' at X. However, since the restric­
tion of H to P' is a configuration of P' that induces, by the principle of body 
self determinism, a unique force on P', and since each of the two unequal terms 
above represents the traction acting on P' .at X, one obtains a contradiction. 
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It follows from this proposition that the stress at a point is determined by 
the motion of any subbody containing that point. In other words, given a point 
X in B and two motions H and H', the stresses at X due to H and H' will be equal 
if there exists a subbody P of B such that HIP = H'IP. Since any subbody 
P of B contains by definition some open subset of B, and any open subset of B 
contains some subbody of B, the last statement is equivalent to germ locality. 

Corollary 3.2. The principle ofbody selfdeterminism and the principle ofconsistency 
imply germ locality. 

Remark. The basic principle of body self-determinism as postulated here is differ­
ent from the principle of determinism stated in TRUESDELL & NOLL [2] and 
TRUESDELL [3]: it is forces rather than stresses that are determined by the history 
motion of the body. Together with the principle of consistency, the principle of 
body self-determinism is equivalent to the principle of determinism. My reason 
for deviating from tradition is that thus I can avoid the unnecessary repetition 
of Cauchy's postulate. As suggested here, Cauchy's postulate is a constitutive 
hypothesis, and once it is stated in the context of constitutive theory there is no 
need to restate it. In addition, as can be seen in TRUESDELL [3], Cauchy's postu­
late can be proved on the basis of some mild assumptions. 

4. The Consequences of Continuity 

In this section I make the following additional assumption: 

For any time t there is a time to < t such that the force acting on any body B 
at the time t is determined by the motion H: [to, t] -+ QB' 

Remark. This principle implies that bodies have a limited memory, and that the 
motion outside the interval [to, t] can be disregarded. Henceforth, it is assumed 
that a motion is defined on the interval [to, t], and the topology defined on M B 

in Section I is used. 

Proposition 4.1. If a constitutive relation 'PB : MB-+EB on B is continuous, then 
'PB is jet local, i.e., for any point X E B there is a function "Px: C([to, t], r) -+ 

L(R3, R3), which will be referred to as the local constitutive relation, such that 

Remark. Since "Px is defined only on the collection of jets of configurations, i.e., 
jets of embeddings, the notation here is somewhat inaccurate. However, since this 
set is open in r (see [4]), this abuse of notation will not affect the arguments. 

Lemma 4.2. Let X E B and :x E QB' Then, given any (J > 0, there exists a 
e > 0 such that dQ(:xlp,jn(x, X) IP) < (J for every subbody P contained in a 
closed ball of radius ecentered at X. Here r(:x, X) E Cn(B, R 3) denotes the nth order 
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Taylor expansion of x about X, i.e., rex, X)j = r(xj, X), where 

(Y X)" 
rev, X)(Y) = L -, D"v(X) 

1,,1::;;;" Jt. 

is the nth order Taylor expansion of the mapping v: B -+ R. 

Proof of Lemma 4.2. Taylor's theorem states that for a p-times continuously 
differentiable mapping u: B -+ R3, if the line segment between X and Y is 
contained in B, one has 

(Y - X)"
Uj(Y) = L r D"Ui + Dj(Y - X) = F(uj, X) (Y) + tlj(Y - X). 

I,,!::;;;p Jt. 

where OJ is a continuous function such that 

Thus, for the configuration x, a given point X E B and a 0 > 0, one can find 
a eo> 0 such that for any Yin Bwith 1Y - XI < eo, /"i(Y) - j"(Xj, X) (Y) 1< O. 
Similarly, for any Jt such that IJt I<n, D"Xi is an n - iJt i times continuously 
differentiable mapping, and it follows that for any 0 > 0 there exists an r" > 0 
such that for any Yin B with IY - XI ;::; r", IDUXi(Y) - r(D"xj, X) (Y) I< 0/2. 

Writing v> Jt for the multi-indices v and Jt if vp > Jtp, P = 1,2,3, and 
Ivl >1 Jtl one has 

v! 
D"(X - yy = (X - y)v-"

(v - Jt)! 

for v >Jt and D"(X - yy = 0 for v < Jt. Hence, 

DW "( X) (Y) - ~ (Y - XY "D", (X)
J Xi' -.:.. ( )' Xj

Ivl~" v - f1 ..-,;;" 

and letting 1'} = v - f1 ~ 0 one has 

On the other hand, 

(Y- Xp 
r(lYxi' X) (Y) = L ,D~(D"x;) (X) 

1~I$n 1'}. 

(Y- Xp 
= L: , D~+"x;(X) 

I~l::;;;n 1'}. 



35 Locality and Continuity in Constitutive Theory 

so that DJ.ljn('Xj, X) is the Taylor expansion of jn(DI-''Xj, X) of order (n - Ifll). 
Thus, by Taylor's theorem, 

. Ijn(DJ.l'Xj, X) (Y) - DJ.ljn('Xj, X)(Y) I
1~ -0 
y-+x I Y - Xln 1J.l1 - . 

It follows that, for any r5 > ° and every multi-index fl, there is an r~ > Osuch 
that Ir(DI-''Xj, X) (Y) - Dl-'r('Xj, X) (Y) 1< r5J2 for any Y with I Y - Xl < r~. 
By the triangle inequality one obtains 

r5 > Ijn(DJ-''Xj, X) (Y) - DJ.ljn('Xj, X) (Y) I + IDI-''X;(Y) - jn(DI-''Xj, X) (Y) I 

> IDI-''Xj( Y) - Dl-'jn('Xh X)( Y) I 

for all Y such that IY - XI < eJ.l = min {r~, rJ.l}' Set e = minO;:;;;IJ.lI;:;;;n{eJ.l} to 
conclude that for a configuration 'X, a point X E B and any r5 > 0, one can find 
a e> ° such that dQ('XIP,r('X, X) IP) < r5 for any subbody P contained in a 
ball of radius e centered at X. 

Lemma 4.3. Given 'X E QB, X E B, and r5 > 0, let r = sup {e} for all e such 
that dQ('X1 p,r('X, X) IP) < r5 for subbodies P contained in a closed ball of radius 
e centered at X. Similarly given another configuration 'X' E QB, let r' = sup {e'} 
for all e' such that dQ('X'\p',r('X', X) IP') < r5 for subbodies P' contained in a ball 
of radius e' centered at X. Then. 

(i) for each e> ° there is ad> 0 such that r' > r - e if dQ('X, 'X') < d; 
(ii) r depends continuously on 'X. 

Proof of Lemma 4.3. (i) In order to prove this part of the lemma it is sufficient 
to show that for each r5 > 0 and each 0 < e< r there is ad> 0 such that, 
for all subbodies P contained in a closed ball of radius e centered at X, dQ('X, 'X') < d 
implies that dQ('X'1 p,r('X', X) IP) < r5. 

Given any e< r, let 

m = max {I DV'Xj( Y) - D'T('Xj, X)( Y) I}·
IY-XI;:;;;e 
v~n 

Since the closed ball is compact, m exists, and moreover m < r5. Let 

m' = max {IDv'X;(y) - D~r('X;, X)(Y) I}.
iY-XI;:;;;e 
v~n 

One has 

m' = max {I DV'X;(Y) - DV'Xj(y) + DV'X;(Y) - D''.r('Xj, X) (Y)
!Y-XI;:;;;e 

v~n 

+ D"r('Xj, X) (Y) - D''.r('X;, X) (Y) I} 
< max {IDv'X;(y)-Dv'Xj(Y)I}+ max {ID"'Xi(Y)-D~r('Xj,X)(Y)I} 

IY-XI;:;;;e IY-XI;:;;;e 
v~n v~n 
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In addition, 

Thus, 

m' < dQ(x, x') + m + dQ(x, x') ~ e:. 
1~I;;;;n 1]. 

Let d be any positive number such that 

e~ 
lJ-m>d+d~,. 

1~I;;;;n 1]. 

Then, for any x' such that dQ(x, x') < d, m' < lJ as required. 
(ii) Reverse the roles of x and x' in part (i) of the lemma to conclude that for each 
e> 0 there is ad> 0 such that dQ(x, x') < d implies that r> r' - e. Hence, 
for each e > 0 there is ad> 0 such that Ir - r ' I < e if do(x, x') < d. 

Lemma 4.4. Given a motion H: [to, t] -? QB and a point X E B, let r(H, X): 
[to, t] -? Cn(B, R 3 

) be the motion such that r(H, X) (r) = r(H(r), X). Then, for 
any lJ > 0, there is a e> 0 such that dM(HIP, r(H, X) ;P) < lJ for each P 
contained in a closed ball of radius e centered at X. 

Proof ofLemma 4.4. Given Hand lJ > 0, let r(r) be the r defined in Lemma 4.3 
corresponding to the configuration H(r). Since H is a continuous function, it 
follows from Lemma 4.3 that r(r) depends continuously on T. As [to, t] is compact, 
r(r) has a minimum and any e< min..{r(r)} will satisfy the required condition. 

Proof of Proposition 4.1. The continuity of 'PB implies that for any e> 0 there 
exists a lJ> 0 such that II'PB(H') - 'PB(H)II < E if d(H' , H) < lJ. By the 
definition of the norm on EB it follows that if d~H', H) < lJ, then 

!a'/i(Y)-aII(Y)I<e for all YEB, /,i=I,2,3, 

where a;, = 'PB(H')li and ali = 'PB(H)n. In addition, given any X EBand 
e > 0, it follows from WHITNEY'S extension theorem [5] that there is a closed 
ball Po centered at X such that if dM(H'IPo, HIPo) < lJ implies 'PPo(H') 
- 'PPo(H)11 < e, then dM(H' IP, HIP) < lJ implies II'Pp(H') - 'PP(H)II <. E 

for all closed balls PCP0 centered at X. In other words, it is sufficient that 
two configurations be close to one another in a neighborhood of X in order for 
the resulting stresses to be close to one another in that neighborhood. Let H 
be any motion of B and let (8.)., s = 1,2, .. " be a sequence of positive real 
numbers converging to zero. For X E B, let e. > 0 be the real number satis­



37 Locality and Continuity in Constitutive Theory 

fying dMCHIP,jR(H, X) IP) < b. for any subbody P contained in a ball of 
radius e. centered at X, where b. > 0 is a positive real number such that 
dM(H'\P, HIP) < b. implies lI'Pp(H'IP) - 'Pp(HIP) II < B.. Finally, for each 
s = 1, 2, ... , let p. be a subbody containing the point X such that p. is contained 
in a ball of radius e. centered at X. It follows that 

I'Pp.cr(HIP., X))1i (Y) - 'Pp.(HIP.)1i (Y) I< B. 

for all YEP., i, I = 1, 2, 3 and all s. By Proposition 3.1 

'PP/HIP.)Ii(Y) = 'PB(H)Ii(Y), YE P., 

'Pp.cr(H IP.,X))uCy) = 'Pp.cr(H,x)IP.)Ii(Y) = 'PB(j"(H,X))Ii(Y), YE P., 

and one has I'PBCj"(H,X))nCy) - 'PB(H)Ii(Y) I < B., for all i,I, YE p. and 
all s. However, X E f\ p. so that I'PBCr(H, X))1i (X) - 'PB(H)1i (X) I < B. for 
all s, and one concludes that 

'PBCr(H, X))1i (X) = 'PB(H)lI (X). 

Since jR(H, X) depends only on jRHx , there is a mapping "Px: C([to, t], J")--+ 
L(R3, R3) such that 'PB(H){X) = "PxU"Hx ). Thus the proposition follows. 

Let m be an integer such that 1 < m < n, and denote by Q~ the set of con­
figurations ).: B --+ R3 of class m. Clearly , QB C Q~, and by the definitions 
of the topologies of these sets, the inclusion mapping iQ : QB --+ Q~ is contin­
uous. Similarly, let M~ denote the corresponding set of motions {H: [to, t] --+ Q~}. 

Again, MB C M~ and the inclusion mapping iM:MB --+ M~ is continuous. 
Hence, if 'P~: M~ --+ LB is a continuous constitutive relation, 'P~ iM: M B --+ L B,0 

which is the restriction of 'P~ to M B, is a continuous constitutive relation. Thus, 
if a material is of grade m with 1 ~ m < n, it is also of grade n as expected. 

5. Some Properties of Local Constitutive Relations 

Proposition 5.1. The mapping "Px: C([to, t], J") --+ L(R3, R3) is continuous, i.e., 
the stress at a point X depends continuously on the history of the jet of the configu­
rations at X. 

Proof By Propositions 3.1 and 4.1 one has 

"PxV"Hx ) = 'PB(j"(H, X)) (X) = 'Pp(j"(H, X)IP) (X) 

for all motions Hand subbodies P containing X where 'Pp is continuous. Thus, 
it is sufficient to prove that for all B > 0 there is a b > 0 such that for any two 
motions Hand H' of B, dc(j"Hx,j"H!¥) < b implies that 

/'PpCr(H, X)IP) (X) - 'Pp(j"(H', X)/P) (X) I < B 

for some subbody P containing X. By the continuity of 'Pp, it is sufficient to 
prove that for all ). > 0, there is a b> 0 and a subbody P containing X, such 
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that ddpHx,FH'x) < (j implies that dM(r(H, X)IP,F(H', X)IP) < A. One 
has 

dM(r(H, X)IP,F(H', X)IP) 

= SUPTE[lo,tl{supYEB{maxll'l~n{IDUjnH(r); (Y) - DI'FH'(r); (Y) 1m 

(Y - X)V-I'sUPTE[to,tl r (v _ ,u)! (D"H(r); (X) - D"H'(r); (X») .= sUPYEP maxll'l~n l'~1nj j 
Thus, 

dM(r(H, X)IP,F(H', X)IP) < dcunHx,jnH'x) {~ Q"}, 
1"I~n 

where Q is the diameter of P. This completes the proof. 

Proposition 5.2. The mapping "P: Bx C([to, t], r) --7- L(R3, R3) given by 

"P(X,FHx) = "Px(PHx) 

is continuous in its first argument, i.e., the "jet local constitutive relation" varies 
continuously with X. 

Proof One has to show that for every CE C([to, t], r) and every e> 0, there 
is a CJ > 0 such that II "Py(C) - "Px(C) II < e if II Y - XII < CJ. Let H be a motion 
of B such that jnHy = C, YE B. Given any e> 0, let CJ = min {CJ 1 , CJ 2}, where 
CJ 1 > 0 and (j2 > 0 satisfy 

IlrpB(H)(y) - rpB(H) (X) II < e/2 for II Y - XII < {jl'
 

/1"Px(FHx) - "PxUnHy) II < e/2 for II Y - XII < {j2'
 

The existence of {jl is guaranteed by the continuity of the stress field corresponding
 
to H. The existence of {j2 is guaranteed by the continuity (for each r) ofFH(r) (X)
 
with respect to X (since H(r) is n-times continuously differentiable) and by the
 
continuity of "Px proved in Proposition 5.1. To show that CJ statisfies the required 
condition, I write 

IlrpB(H)(Y) - rpB(H)(X)1I = II "Py(rHy) - "PxUnHx ) II 

= II "PyUnHy) - "PxUnHy) - ("Px(rHx ) - "Px(FHy»)1I 

> II "PyUnHy) - "PxUnH y )II-II"PxCfHx ) - "PxUnHy) II , 
where in the first line Proposition 4.1 is used. Hence, 

IlrpB(H)(Y) - rpB(H)(X) II + II"PxUnHx ) - "PxUnHy ) II 2: /I"PY(C) - "Px(C)11 

and by hypothesis, for II Y - XII < (j, e> II"PY(C) - "PAC)II. 
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