
HAL Id: hal-01068248
https://hal.science/hal-01068248

Submitted on 25 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

deGoal a tool to embed dynamic code generators into
applications

Henri-Pierre Charles, Damien Couroussé, Victor Lomüller, Fernando A. Endo,
Rémy Gauguey

To cite this version:
Henri-Pierre Charles, Damien Couroussé, Victor Lomüller, Fernando A. Endo, Rémy Gauguey. deGoal
a tool to embed dynamic code generators into applications. 23rd International Conference on Compiler
Construction (CC), Apr 2014, Grenoble, France. pp.107-112, �10.1007/978-3-642-54807-9_6�. �hal-
01068248�

https://hal.science/hal-01068248
https://hal.archives-ouvertes.fr


deGoal a tool to embed dynamic code generators

into applications

Henri-Pierre Charles Damien Couroussé Victor Lomüller

Fernando A. Endo Rémy Gauguey

September 25, 2014

Abstract

The processing applications that are now being used in mobile and

embedded platforms require at the same time a fair amount of process-

ing power and a high level of flexibility, due to the nature of the data to

process. In this context we propose a lightweight code generation tech-

nique that is able to perform data dependent optimizations at run-time

for processing kernels.

In this paper we present the motivations and how to use deGoal a

tool designed to build fast and portable binary code generators called

compilettes.

1 Introduction

Today, software development is facing two competing objectives:

• Improve programmers efficiency by using generic and expressive program-
ming languages

• Generate efficient machine code to achieve the best execution speed and
energy efficiency

These two objectives are competing because the more expressive and abstract a
programming language is, the more difficult it is for a code generation tool-chain
to produce efficient machine code.

We believe that code optimization, driven by run-time data characteristics,
is a promising solution to tackle this issue. To achieve this, we propose deGoal
a lightweight runtime solution for code generation.

deGoal was designed with embedded systems computing power and memory
limitations in mind: our bottom-up approach allows code generation of special-
ized kernels, at runtime, depending on the execution context, the features of the
targeted processor, and furthermore on the data to process: their characteristics
and their values. Runtime code generation is achieved thanks to tiny ad hoc

code generators, called compilettes, which will be embedded into the application

1



and produce machine code at runtime. Compilettes have only the strict neces-
sary processing intelligence to perform the required code optimizations. As a
consequence, code generation is:

1. very fast : 10 to 100 times faster than typical JITs or dynamic compilers
which allow to use code generation inside the application and during the
code execution, not in a virtual machine.

2. lightweight : the typical size of compilettes is only a few kilobytes which
allows its use on constrained memory micro controllers such as the Texas
Instrument MSP430 which has only 512 bytes of available memory.

Standard code generators, such as LLC of the LLVM infrastructure, have
Mbytes of memory footprint, making their use impossible in this context.

3. produce compact code: as we are able to generate only the needed special-
ized code and not all variants at the same time.

4. portable across processor familly: i.e. a compiletteis portable on RISC
platforms or on GPU platforms.

5. able to perform cross-jit applications, i.e. a compilette can run on one
processor model and generate code for an other processor and download
the generated code.

2 Introduction to the deGoal Infrastructure

The deGoal infrastructure integrates a language for kernel description and a
small run-time environment for code generation. The tools used by the infras-
tructure are architecture agnostic, they only require a python interpreter and
an ANSI C compiler. We briefly introduce the language, how applications are
written with deGoal and how they’re are compiled and executed.

2.1 Kernel Description

We use a dedicated language to describe the kernel generation at runtime. This
language is mixed with C code, this latter allowing to control the code generation
performed in compilettes. This combination of C and deGoal code allows to
efficiently design a code generator able to:

1. inject immediate values into the code being generated,

2. specialize code according to runtime data, e.g. selecting instructions,

3. perform classical compilation optimizations such as loop unrolling or dead
code elimination.

deGoal uses a pseudo-assembly language whose instructions are similar to a
neutral RISC-like instruction set. The goal is to achieve:

2



Figure 1: deGoal work flow: from the writing of applications source code to the
execution of a kernel generated at run-time

Architecture Port
status

SIMD
support

Instruction
bundling

ARM Thumb-2 (+NEON/VFP) N/A

STxP70 (STHORM) N/A

PTX (NVIDIA) N/A

ARM32 N/A

MSP430 N/A N/A

K1

MIPS N/A

Table 1: deGoal support status

• A rich instruction set focused on vectorial and multimedia instructions.

• The capability to use the run-time information in the specialized code.

• Cross-platform code generation: the architecture targeted by the com-

pilette may also be different from the architecture on which the code gen-
erator runs.

• Fast code generation, thanks to the “multiple time” compilation scheme.
The intermediate representation (IR) is processed at static compile time.
At run time the application has only to generate binary code mixed with
data.

2.2 Compilation Chain

To achieve fast code generation, the compilation chain is split into several steps
that run at different “times” (Figure 1).

3



Static compilation The compilette is rewritten into a standard C file by the
degoaltoc tool. The C version of the compilette is then statically com-
piled and linked to the targeted architecture deGoal back-end using the
C compiler of the target platform.

Runtime The application first invocates the compilette to generate the ma-
chine code of the kernel, once the optimizing data from the execution
context are available. The kernel can then be executed as a standard
procedure.

Given that the back-end is composed of portable C functions, our compilation
chain is able to generate cross-platform code.

2.3 Run-time

At runtime, the compilette generates code according to run-time data and en-
vironment (rightmost block on Figure 1). At this time, registers are allocated,
instructions scheduled and bundled (for VLIW architectures).

3 Current Status

Table 1 details the current support status of deGoal (MIPS is a work in progress).
The column “SIMD support” shows the ability to take advantage of hardware
vectors efficiently. The last column indicates if deGoal is able to generate code
for VLIW processors.

The basic infrastructure is licensed under a BSD style license but all specific
developments are restricted to their respective owners.

4 Related works

There is an extensive amount of literature about approaches related to our work
with deGoal. Other works are related :

Java JIT mix interpretation and dynamic compilation for hostpots. Such tech-
niques usually require large memory to embed JIT framework, and per-
formance overhead. Some research works have tried to tackle these limita-
tions: memory footprint can be reduced to a few hundreds of KB [6], but
the binary code produced often presents a lower performance because of
the smaller amount of optimizing intelligence embedded in the JIT com-
piler [12].

Java JITs are unable to directly take data value as parameters. They use
indirect hotspot detection by tracing the application activity at runtime.

In deGoal, the objective is to reduce the cost incurred by runtime code
generation. Our approach allows to generate code at least 10 times faster
than traditional JITs: JITs hardly go below 1000 cycles per instruction

4



generated while we obtain 25 to 80 cycles per instruction generated on the
STxP70 processor.

LLVM [9] (Low Level Virtual Machine) is a compilation framework that can
target many architectures, including x86, ARM or PTX. One of its ad-
vantages is the unified internal representation (LLVM IR) that encode a
virtual low-level instruction with some high-level information embedded
on it. Various tools were built on top of it.

In deGoal, we don’t use IR at run-time, we keep only calls (with param-
eters) to binary code generators.

Partial evaluation Our approach is similar to partial evaluation techniques
[4, 8], which consists in pre-computing during the static compilation passes
the maximum of the generated code to reduce the run-time overhead. At
run-time, the finalization of the machine code consists in: selecting code
templates, filling pre-compiled binary code with data values and jump
addresses.

Using deGoal we compile statically an ad hoc code generator (the com-
pilette) for each kernel to specialize. The originality of our approach relies
in the possibility to perform run-time instruction selection depending on
the data to process [2].

DyC [7] is a tool that creates code generators from an annotated C code. Like
`C, it adds some tokens such as @ to evaluate C expressions and inject
the results as an immediate value into the machine code.

deGoal is different from DyC because the parameters given to the bi-
nary run-time generators can drive specialized optimization such as loop-
unrolling or vectorizers.

5 Application domain examples

As examples, here are some references of work in different application domains
where compilettes have been used:

Specialized memory allocator : memory allocators are specialized depend-
ing on the data size they can handle. Lhuilier et al [10] built an example
with a very low memory footprint, able to adapt itself to the size of data
set.

Hardware support thanks to the fast generation code scheme we are able to
generate specialized code which run faster with a low overhead. We have
used this support in

Mono-core specialization in an MPSoC context where each node is
able to generate an optimized version of a matrix multiplication func-
tion [5].

5



GPU code specialization on an NVIDIA GPU we have developped a
“cross-JIT” approach where a CPU generate a specialized GPU code
depending on data sets [3].

Microcontroller with no floating point support, we are able to generate
specialized floating point routine on the fly[1]

Video compression need specialized code depending on data sets as shown
in [11]. deGoal can be used in this domain.

Thanks to the low memory footprint of both code generator and generated code,
deGoal is perfect for embedded systems.

This article is only a functional tutorial, results with discussions about ac-
celeration and produced code size can be found in the following bibliography.

References

[1] Aracil, C., Couroussé, D.: Software acceleration of floating-point multi-
plication using runtime code generation. In: Proceedings of the 4th Inter-
national Conference on Energy Aware Computing. Istanbul, Turkey (Dec
2013)

[2] Charles, H.P.: Basic infrastructure for dynamic code gener-
ation. In: Charles, H.P., Clauss, P., Ptrot, F. (eds.) Work-
shop ”Dynamic Compilation Everywhere”, in conjunction with
the 7th HiPEAC conference. Paris, France (january 2012),
https://sites.google.com/site/dynamiccompilationeverywhere/home/accepted-papers

[3] Charles, H.P., Lomüller, V.: GPU design pattern, chap. Data Size and Data
Type Dynamic GPU Code Generation. Saxe-Coburg publications (2012)

[4] Consel, C.: A general approach for run-time specialization and its applica-
tion to c. pp. 145–156. ACM Press (1996)

[5] Couroussé, D., Lomüller, V., Charles, H.P.: Introduction to dynamic code
generation – an experiment with matrix multiplication for the sthorm
platform. In: Smart Multicore Embedded Systems, chap. 6, pp. 103–124.
Springer Verlag (2013)

[6] Gal, A., Eich, B., Shaver, M., Anderson, D., Mandelin, D., Haghighat,
M.R., Kaplan, B., Hoare, G., Zbarsky, B., Orendorff, J., Ruderman, J.,
Smith, E.W., Reitmaier, R., Bebenita, M., Chang, M., Franz, M.: Trace-
based just-in-time type specialization for dynamic languages. In: Proceed-
ings of the 2009 ACM SIGPLAN conference on Programming language
design and implementation. pp. 465–478. PLDI ’09, ACM, New York, NY,
USA (2009), http://doi.acm.org/10.1145/1542476.1542528

6



[7] Grant, B., Mock, M., Philipose, M., Chambers, C., Eggers,
S.J.: DyC: an expressive annotation-directed dynamic com-
piler for C. Theor. Comput. Sci. 248(1-2), 147–199 (Oct 2000),
http://dx.doi.org/10.1016/S0304-3975(00)00051-7

[8] Jones, N.D.: An introduction to partial evaluation.
ACM Comput. Surv. 28, 480–503 (September 1996),
http://doi.acm.org/10.1145/243439.243447

[9] Lattner, C.: LLVM: An Infrastructure for Multi-Stage Optimization. Mas-
ter’s thesis, Computer Science Dept., University of Illinois at Urbana-
Champaign, Urbana, IL (2002)

[10] LHUILLIER, Y., COUROUSSÉ, D.: Embedded system memory allocator
optimization using dynamic code generation. In: Inproceedings of the 1st
workshop on ”Dynamic compilation everywhere” DCE2012 (January 2012)

[11] Sajjad, K., Tran, S.M., Barthou, D., Charles, H.P., Preda, M.: A global ap-
proach for mpeg-4 avc encoder optimization. 14th Workshop on Compilers
for Parallel Computing (2009)

[12] Shaylor, N.: A just-in-time compiler for memory-constrained low-power
devices. In: Java VM’02. pp. 119–126. USENIX Association, Berkeley, CA,
USA (2002)

7


