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An experimental method to determine drying kinetic at a particle scale and a pneumatic dryer model are

presented. The particle scale kinetics were obtained by immersion of a fixed mass of wet PVC particles (cake)

in a batch dense fluidized bed containing inert hot particles (glass bead). It appears clearly that the PVC drying

is controlled by a competition between internal and external transfers. The drying kinetic was described by a

shrinking core type model and integrated in a one-dimensional steady-state model simulating a pneumatic

dryer. A two-phase continuum model was used to describe the steady-state flow of a diluted dispersed phase

(wet PVC powder) and a continuous phase (humid air) through dryer. Themodel takes into account the convec-

tive heat, mass andmomentum transfers. The numerical results are comparedwith industrial experimental data.

The results show that the inlet temperature is the most important parameter in the operation.

1. Introduction

This study has been realized in the Chemical Engineering Laboratory

in Toulouse in partnership with INEOS ChlorVinyls. In PVC powder pro-

duction line, after the polymerization step, a suspension, composed

of water and PVC particles, is obtained. Most of this suspension water

is eliminated during a centrifugation step, leading to a wet porous pow-

der, called cake (with a humidity between 0.2 and 0.35 kg of water/kg

of dry PVC). The cake drying occurs essentially in a pneumatic dryer

coupledwith afluidized bed dryerwith a role of eliminating the residual

humidity of PVC (less than 0.05 kg of water/kg of dry PVC). This opera-

tion, which consumes a lot of energy, between 800 and 1500 kJ/kg dry

PVC, in accordance to the operating conditions and the PVC grade, rep-

resents 30% of the production cost.With the purpose of reducing drying

cost, it is important to understand the different physical phenomena

involved (mass transfer, heat transfer, hydrodynamic phenomena spe-

cific to the dryers). This study focuses firstly on the acquisition of the

kinetics data in a batch dense fluidized bed, and secondly on themodel-

ing of the dehydration of PVC particles in a pneumatic dryer.

The drying kinetic is obtained by immersing a small amount of PVC

particles (mean diameter: 143 μm) in a hot fluidized bed filled with

glass beads (mean diameter: 324 μm). These bigger particles' role is to

suppress the agglomeration phenomena between PVC particles and to

realize the drying in isothermal conditions. The experimental results

show that the drying kinetic is strongly dependent on air temperature

and humidity.

These experimental results were represented according to a

kinetic model based on heat and mass exchanges between PVC and

air (external transfers), and heat and mass diffusion inside the par-

ticle (intern transfers). That kinetic model is then included in a

steady-state one-dimensional pneumatic dryer model, which simu-

lates the industrial dryer.

2. Background

Porous media drying is a complex problem and still not well-

understood despite of the numerous studies that can be found in the

literature, due to the coupled exchanges (mass, heat, and momentum

transfers) between the gas and the particles [1], depending on solid par-

ticles' morphological parameters and water/solid affinity. As shown

in Fig. 1, during the drying of a porous particle, two periods can be dis-

tinguished. The first period consists in the elimination of free water

located at its surface. In this period the evaporation is controlled by

external transfers which can be, in accordance to the dryer technology,

e.g., conductive, convective or radiative. In our case (pneumatic and flu-

idized bed dryer), these transfers are convective and depend on the

local relative velocity between air and particles, called slip velocity.

These transfers depending on the drying technology have been widely

studied, and the literature provides a lot of correlations, sometimes
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contradictory, for its estimation ([2–4]). In the second period, the

water located in the particles' pores is eliminated: the drying is con-

trolled by a combination between internal and external transfers.

The internal transfers depend on the solid properties and structure.

The literature shows that many elementary phenomena may occur

during drying. Such phenomena are complex and depend on the

structure of the solid particle, the water–solid liaison, and the water

composition. These elementary mechanisms, represented in Fig. 2 can

be ([5,6]):

• capillary forces, depending on liquid wetting on the solid surface

(γLV ⋅ cos(θ)), temperature and particle pore size and distribution.

These last properties affect the saturation water vapor tension

at the solid/liquid interface and the internal liquid movement in

the pores.

• vapor diffusion through the pores under the influence of tempera-

ture and water vapor partial pressure,

• solid diffusion, corresponding to bound water migration on the

solid surface. This mechanism occurs in the case of a solid partially

dissolved in water and with a strong liaison between water and

solid (chemical interaction, hydrogen liaisons,…).

Thus, themodeling of awet particle drying by hot air has to consider:

water evaporation at the particle surface during constant drying rate

period, and the movement of an evaporation zone between the wet

core and the dry crust of the particle. This zone progresses from the par-

ticle surface to its core. Several numerical simulations were realized on

porous material ([7,8]). The thickness of that drying zone is due to the

wetting properties of the liquid in the pores: if the wetting is perfect,

the liquid can spread on the pores' internal surface and affect the ther-

mal gradient [9].

In the present case, the wetting properties of PVC, which depends

on the superficial tension (γLV) of the aqueous solution introduced

during the polymerization step and the affinity between the solid

particles and this solution, are represented by the contact angle (θ).

The low values of liquid superficial tension and high values of the

contact angle (between 80° and 94.7° [10,11]), lead to suppose that

the drying zone could be modeled by a surface of discontinuity.

Concerning the capillarity effect, the pore-size distribution of a PVC

particle, presented in Fig. 3, shows that the minimal pore size is

about 30 nm. The Kelvin law expresses water activity (pw/p
°) as a

function of pore radius and shows that, for pore radius higher than

10 nm, the water activity is equal to 1. Hence the capillary effect does

not influence the liquid/water equilibrium in this study. Concerning

the solid and liquid diffusion, previous analysis on INEOS's PVC shows

that it is non soluble in water and that the PVC has a small affinity

Fig. 1. Different phases of the particle drying.

Fig. 2. Internal transfer in a porous particle [23].

Fig. 3. Pore size distribution of a PVC particle, determined by mercury porosimetry

(Micrometrics— Autopore IV).



with water. For example, in an atmosphere with 75% of relative hu-

midity, the equilibrium humidity of PVC is 2.4 g of water/kg of dry

PVC (at 50 °C). Hence the liquid and solid diffusion can also beneglected

in this study, and the only internal transfer remaining is the vapor diffu-

sion. This mechanism is influenced by temperature and water vapor

partial pressure gradients.

The SEM picture of a PVC particle (Fig. 4) shows a typical pellet–

grain structure [12], indeed each particle is a primary particle

stack. With such a structure two pore families can be distinguished

(Fig. 3):

• the space between the primary particles (pore size superior to 250 nm),

which is macroporosity (the average size of these pores is 3335.6 nm).

These pores are dried in the pneumatic dryer (93% of pore volume).

• the primary particles' own porosity (pore size inferior to 250 nm),

which is mesoporosity (the average size of these pores is 81.6 nm).

These pores are dried in the fluidized bed dryer (7% of pore volume).

A shrinking-core typemodel is used by numerous authors ([13–16])

to represent the evaporation front evolution with particles having a

pellet–grain structure. In this kind of model, the particle is divided

into two zones: a wet core, which shrinks over time, and a dry crust,

through which the evaporated water diffuses to the particle surface.

The elementarymechanisms involved here are conductive heat transfer

(fromparticle surface to its core) andwater vapor diffusion through the

pores. If the heat transfer leads the drying phenomena, the problem is

analogous to the classical Stefan problem for drop evaporation or freez-

ing ([17,18]).

Concerning the pneumatic dryer, this technology is commonly

used in order to eliminate free or barely-bound water. A pneumatic

dryer is a continuous, convective dryer with a diluted solid transport.

This technology presents numerous advantages ([19,20]) such as:

• the short resident time of particles allows the drying of thermosensible

product,

• in parallel flow, high temperature can be applied at the inlet, resulting

in a high thermal efficiency,

• the dryer can be used as a transport system.

From a hydrodynamic point of view, pneumatic drying is analogous

to pneumatic conveying. Hence several pneumatic conveying models

([21,22]) have inspired the pneumatic drying models presented in the

literature. These models ([4,23–25]) consider the interactions (mass,

heat, and momentum transfer) between a gas phase and a dispersed

phase coupled with internal mechanisms.

3. Material and methods

The experiments were realized with a cake provided by INEOS

Chlorvinyls France (the properties are presented in Table 1). The

particle size analysis realized on dry particles shows a Gaussian-type dis-

tribution with a mean particle diameter of 144 μm. The characteristic

sizes presented in Table 1 are determinedby laser granulometry (Malvern

Mastersizer 2000–Sirocco 2000 — ±0.1 μm). The particle density,

porosity, tortuosity, and pore-size distribution (Fig. 3) were deter-

mined by mercury porosimeter on dry product (Micrometrics —

Autopore IV —±0.1 nm). To determine the cake humidity, different

samples were placed in a ventilated oven at 50 °C during 24 h: the

cake initial humidity varies between 0.195 and 0.205 kg of water/kg

of dry PVC.

Preliminary experiments realized in a convective dryer have shown

that the drying kinetic strongly depends on the external conditions

(sample weight and thickness, air flowrate, …). The study of the

physical phenomena at a particle scale is then difficult to realize.

Hence, just as several studies realized in our laboratory, ([26,27])

the drying kinetic is studied by immersing a small sample of wet

PVC (about 3 g) in a hot fluidized bed containing 1.3 kg of glass

beads with a mean particle diameter of 324 μm (see properties in

Table 1).

The experimental pilot is represented in Fig. 5. The dryer is com-

posed of a 10 cm diameter and 40 cm height glass column. The

presence of an extended section on the top prevents the fine parti-

cles to be elutriated. The fluidization air is pre-heated in an electri-

cal heater, and when it is necessary, mixed up with water vapor

produces by an evaporator as shown in Fig. 4. A water flowrate is

spread on an electrical heater. The water is instantaneously evapo-

rated and carried into the warm air stream. The fluidization

flowrates (velocities) are chosen in agreement with the character-

istic velocities (minimal fluidization and terminal settling velocity)

of PVC particles and glass beads. These values determined at ambi-

ent temperatures are presented in Table 1. The air velocity range

chosen is from 25 to 40 cm/s, which corresponds to 3 and 4.5

times the minimal fluidization velocity of the glass beads.

The dryer is equipped with several temperatures (±0.1 °C) and

pressure (±0.1 mbar) sensors and two capacitive hygrometers

(temperature and humidity sensors). As shown in Fig. 4, a vacuum

pump collects the wet air to measure its humidity. The measure-

ment system, whose role is to ensure that the humidity measurements

are realized at constant conditions (air flowrate and temperature),

is equipped with: a filter to prevent particles to damage the sensor, a

thermostatic bath tomaintain a constant temperature and prevent con-

densation phenomena, the hygrometer, and a rotameter to maintain a

constant flowrate. This hygrometer measures the air dew point with

an accuracy of 0.1 °C. This hygrometer measurement is controlled

according to a secondhygrometer (whichmeasures the relative humid-

ity with an accuracy of 0.1%) placed at the cyclone outlet. To avoid

Fig. 4. SEM picture of a PVC particle.

Table 1

Powder PVC and glass bead physical properties (* experimental measurement ± 0.1 cm/s).

Properties PVC Glass beads

d50 (μm) 144 324

d10 (μm) 104 233

d90 (μm) 199 450

d3,2 (μm) 139 314

p (kg/m3) 1175 2500

τ (−) 3.0115 –

χ (%) 37.7 –

λp (W/(m · K)) 0.17 –

Cp (J/(kg · K)) 1670 –

Umf
⁎ (cm/s) 1.2 8.8

Ut (cm/s) 65.3 242.5



condensation near the sensor, the pipe is heated with heater cables.

Both hygrometers are coupled with a data acquisition system, which

permits to record the temporal evolution of air humidity.

A previous study, realized on the hygrometers, showed that the

response times of the sensors are not neglectable regarding the opera-

tion time. Indeed, the response time to a humidity step signal (i.e., tran-

sition from a dry air atmosphere to a wet air atmosphere) is about 40 s

while the time of the experiments occurring in the fluidized bed is

about 1 min (Fig. 6). This study was realized with both hygrometers

by switching from a dry air atmosphere to a wet air atmosphere

(room atmosphere), according to the three-way valves for the hygrom-

eter placed in the humidity measurement system, and by removing

suddenly the sensor from the pilot. The sensor response is modeled by

the association of a plug-flow reactor (representing the lag during the

first seconds of the experiments) and a batch reactor with a time con-

stant of 9.5 s (Fig. 5). The experimental and numerical responses of

the hygrometer to a humidity step are presented in Fig. 5. As this

transfer function models correctly the hygrometer behavior, it is

used for the kinetic result exploitation and modeling. So it is impor-

tant to differentiate the experimental kinetic, given by the raw re-

sults of the sensor, and the inherent kinetic: the real drying kinetic

in the fluidized bed.

The temperature range chosen is from 30 to 60 °C: if the bed tem-

perature is higher than 70 °C the PVC surface becomes sticky and can

cause an agglomeration in the bed. The influence of surrounding air rel-

ative humidity is studied from 1.2 to 63.1%.

4. Methodology

The temporal evolution of the outlet air relative humidity (RH),

recorded during each experiment, permits to calculate at each instant

Y, the absolute air humidity (in kg of water/kg of dry air) and so,Wdrying,

the drying flowrate (in g of water/s), knowing the dry air flowrate (Fg
0 in

kg/s) going through the dryer:

Y ¼ 0:622 !
RH ! pB Thð Þ

P−RH ! pB Thð Þ
ð1Þ

pB Thð Þ ¼ exp
16:83 ! Th

228:74þ Th

þ 6:4075

 !

ð2Þ

Wdrying ¼ F
0
g ! Y ð3Þ

with Th as the temperature measured by the hygrometer (in
°C), p°(Th)

as the saturated water vapor pressure at this temperature, and P as

the absolute pressure in the dryer.

By integrating the curve representing the temporal evolution of the

dryingflowrate, the amount ofwater evaporated during the time t (mw)

and the total amount of water evaporated during the experiments

(a) General scheme. (b) Evaporator.

(c) Humidity measurement system.

Fig. 5. Experimental pilot.



(mw0) were determined. These informations enable the calculation of

the initial (X0) and the instantaneous (X) solid humidity (with m0 as

the dry sample weight).

X ¼
mw0−mw

m0

and X0 ¼
mw0

m0

: ð4Þ

The calculated initial humidity corresponds to the initial humidity

measured in the ventilated oven at 50 °C during 24 h with an error

inferior to 5%.

The temporal evolution of the normalized solid humidity (X/X0),

represented in Fig. 7, is used to determine characteristic times. t75,

t50, t25, and the drying time, tdry, correspond to the time necessary

for the normalized solid humidity to reach, respectively, 0.75, 0.50,

0.25, and 0.05.

5. Preliminary results

The cake (wet PVC) is a very cohesive powder, so the particles tend

to agglomerate themselves. This phenomenon reduces external and

internal transfers. Indeed the bigger the particles are, the lower the con-

vective transfer is. In the sameway, the internal transfer is reducedwith

particle agglomerates as the water vapor has a longer diffusion path. So

the evolution of outlet air humidity during batch drying is evaluated

with cake samples of different masses. The initial calculated humidity

was compared to the real sample's humidity. This study showed that

the optimal sample mass is between 2 and 4 g of cake. Indeed with

inferior mass the sensor precision is too low, and with higher mass

the sample is too sticky to disperse and the results are not reproducible.

To reduce this phenomenon, the sample is mixed upwith glass beads at

ambient temperatures before being introduced in thefluidized bed. This

proceeding breaks the bounds between wet particles, and so improves

the sample dispersion in the bed. Fig. 8 shows that the glass bead

mass ratio has an influence until 25%. For higher values, the drying

time stays constant. Hence, the following experiments are realized

with a glass bead mass ratio of 30%.

Fig. 9a and b shows an example of the results obtained with the

experimental conditions summarized in Table 2 (Experiment 1). It can

be observed that:

• the drying time is about 30 s, which is close to the response time of

the hygrometers,

• there is an initial 3 s lag, due to the sample injection and the time

needed for the wet air to reach the hygrometer,

• the absolute air humidity and the drying flowrate have a similar

evolution,

• the bed temperature decrease during the experiments stays below

1 °C, which shows that the drying is effectuated in isothermal

conditions.

In Fig. 8 the evolutions of the normalized solid humidity versus time

for different experiments realized in the same conditions (Exps. 1, 2, &

3) are presented. This figure shows that our experimental system is

reproducible and the variance of t50 is less than 1 s.

6. Experimental results

Table 2 sums up the experimental data (bed temperature, inlet air

absolute humidity, and air velocity) and characteristic times: t25, t50,

(a) Comparison between numerical and experimental results

(b) Hygrometer transfert function

Fig. 6. Hygrometer response to a step signal.

Fig. 7. Definition of the characteristic times.

Fig. 8. Evolution of solid humidity for different fraction of glass beads. Air velocity:

32.3 cm/s; Tbed = 34.2 °C; cake weight: 2.9 g.



and t75. Moreover the saturation air humidity (see Eq. (5)) is presented

in this table.

Y
%
¼ 0:622 !

pB TBedð Þ

P−pB TBedð Þ
: ð5Þ

The effect of bed temperature, air velocity, and air initial humidity

on the drying kinetic is presented in Figs. 10, 11, and 12. They show

that the drying is extremely fast even at low temperature. In the op-

erating conditions used, the drying time stays below 85 s. It is impor-

tant to note that this is overestimated because of the hygrometer

response time. These results also show that even in a strongly stirred

dryer, as the fluidized bed, the external transfer resistance is not

neglectable. These resistances, controlled by the hydrodynamic pa-

rameters of the system, determine the energy and mass flow ex-

change between the dryer atmosphere and the PVC particles.

Indeed, the experimental results in Fig. 10 show that a rise of the air

flowrate from 9.2 to 12.4 kg/h decreases the drying time from 53 to 36 s.

The higher the air velocity is, the higher the relative velocity between the

air and the particles is. Hence, the mass and heat transfers are increased

and the drying time is shorter. Regarding the bed temperature effect,

the results presented in Fig. 11 show that a rise from 35 to 55 °C strongly

decreases the drying time from 40 to 24 s. Indeed, a bed temperature in-

crease will improve the heat transfer between the fluidized bed and the

particles but also the mass transfer driving force (Y∗ − Y).

Fig. 12 shows the influence of air humidity on the drying kinetic and

drying characteristic times and presents the evolution of the normalized

solid humidity versus time. These results show that a rise of the air

absolute humidity from 16 to 25 g of water/kg of dry air increases the

drying time from 55 to 84 s. This can be explained by the effect of the

drying driving force: a rise of initial humidity results to an increase of

Y and so there is a drying driving force reduction.

All these results show that the drying kinetic of PVC particles is

directed by both external and internal humidity transfer.

7. Kinetic model

From our experimental results and knowing the properties of the

PVC powder, we determined a kinetic law. This law is implemented in

a model simulating our experimental setup: the kinetic model. In this

section, we described the hypothesis and the equations of this model,

and, in order to validate it, we compare its results to our experimental

results.

(a) Absolute air humidity& drying flowrate evolution (Exp.1)

(c) Reproductibility results: Evolution of normalised solid 

humidity (Exp. 1, 2, & 3)

(b) Solid humidity and bed temperature evolution (Exp. 1)

Fig. 9. Typical results example obtained during the drying of 2.9 g of wet PVC in fluidized

bed at 41.6 °C with an air mass flowrate of 10.8 kg/h.

Table 2

List of experiments.

Exp. TBed
(°C)

Fg
0

(kg/h)

Y0
(g/kg)

Y∗

(g/kg)

1 41.6 10.8 0.2 53.9

2 41.2 10.8 0.2 52.7

3 41.9 10.8 0.2 54.9

4 42.6 9.2 0.1 47.2

5 42.5 10.8 0.1 50.9

6 42.5 12.4 0.1 53.6

7 34.2 10.8 0.2 35.1

8 54.9 10.8 0.2 114.6

9 36.6 9.8 0.2 40.4

10 36.5 9.8 5.8 40.2

11 36.5 9.8 9.3 40.2

12 36.7 9.8 16.2 40.6

13 36.6 9.8 19.7 40.4

14 36.7 9.8 25.2 40.6

Exp. tdry (s) t25 (s) t50 (s) t75 (s)

1 30.0 21.0 15.2 10.7

2 31.1 22.0 16.3 11.8

3 30.1 20.4 14.3 9.9

4 53.0 32.1 21.0 14.4

5 46.4 27.8 19.8 14.6

6 35.8 21.8 15.7 11.5

7 40.8 27.0 18.8 12.9

8 24.2 16.6 11.7 8.0

9 36.5 23.9 17.0 11.6

10 45.5 26.0 18.2 13.0

11 41.3 23.3 17.4 12.7

12 54.7 32.5 23.4 16.8

13 72.4 45.3 28.5 18.7

14 83.6 54.2 36.3 24.3



7.1. Hypothesis and equations

Knowing the low affinity of water with the PVC surface, the dry-

ing inside the particle can be represented by the moving of an

evaporation front from the surface to the core of the particle

(Fig. 13). The shrinking core model principle is based on the fol-

lowing hypotheses:

• The particles are considered perfectly spherical and uniform.

• The evaporation occurs on the evaporation front.

• The fluidized bed is considered as a stirred tank.

• The wet core humidity and the dry crust humidity are respectively

considered equal to the particle initial humidity (X0) and null.

• Themass transfer is directed by thewater vapor diffusion through the

dry crust and the convection at the particle surface.

• The heat is transferred from the air to the particle by convection and is

diffused in the dry crust by conduction.

• The sample weight is low enough to assure the bed isothermicity.

• The particle temperature is considered uniform. This hypothesis

can be justified by the low value of the thermal Biot number. In ad-

dition, this hypothesis has been justified with an analog model cal-

culating the temperature profile in the dry crust.

• The instantaneous profile of the air humidity in the dry crust is

obtained with the quasi-stationary state hypothesis.

The equations of the model, solved with the variable steps Runge–

Kutta method, are presented below:

• Water vapor flux density at particle surface:

NwjR ¼
ky

BiM ! 1−R=rcð Þ þ 1
! Y

%
−Y

" #

; ð6Þ

• with BiM the mass Biot number, defined as:

BiM ¼
ky ! R

Dapp ! ρg

: ð7Þ

• Mass balance on the particle:

dX

dt
¼−

6 ! NwjR
ρp ! dp

: ð8Þ

• Instantaneous solid humidity:

X ¼
dc
dp

 !3

! X0: ð9Þ

• Wet core radius evolution:

drc
dt
¼

−ky ! R
2

ρp ! rc ! BiM ! R−rcð Þ þ rc½ (
!
Y%−Y

X0
: ð10Þ

• Heat balance on the particle

ρp ! Cph !
dTp

dt
¼
3 ! h

R
! T

∞

−Tp

& '

−ρp ! ΔHV !
dX

dt
;

ð11Þ

(a) Evolution of drying flowrate and normalised solid humidity

       versus time

(b) Evolution of characteristic times versus air mass flowrate

Fig. 10. Evolution of drying flowrate, normalized solid humidity, and characteristic times

for different air mass flowrate. Exps. 4, 5, & 6.

(a) Evolution of drying flowrate and normalised solid humidity

        versus time

(b) Evolution of characteristic times versus air temperature

Fig. 11. Evolution of drying flowrate, normalized solid humidity, and characteristic times

for different temperatures. Exps. 1, 7, & 8.



• with Cph the specific heat of the wet particle, defined as:

Cph ¼ Cpp þ X ! Cpl: ð12Þ

To solve these equations, the apparent diffusion and the mass and

heat transfer coefficients are calculated using the below correlations:

• The apparent diffusion coefficient is calculated from the binarymolec-

ular diffusion coefficient.

Dapp ¼ Dair−H2O
!
χ

τ
ð13Þ

• with χ and τ given in Table 1. The binary molecular diffusion coeffi-

cient is calculated from the Fuller, Schettler, and Giddings correlation

[28]:

Dair−H2O
¼ 1:1757) 10

−9
! T
1:75
g : ð14Þ

• The heat transfer coefficient is calculated from the Baeyens correla-

tion [29]:

Nu ¼ 0:15 ! Re: ð15Þ

• The mass transfer coefficient is calculated from the Chilton and

Colburn analogy, which is classically used in drying:

h

ky
¼ Cph !

Sc

Pr

 !2=3

: ð16Þ

7.2. Model validation

In Figs. 14 and 15 typical numerical results are presented. These

results show that the real drying time is about 11 s, which is four

Fig. 13. Shrinking core model.

(a) Evolution of the normalised solid humidity versus time

(b) Evolution of characteristic times versus inlet air

       absolute humidity

Fig. 12. Evolution of the normalized solid humidity and characteristic times for different

initial relative humidity. Exps. 9 to 14.

(a) Evolution of air absolute humidity and PVC humidity

(b) Evolution of particle temperature

Fig. 14. Modeling results: inherent kinetic. Operating parameters: Y∞ = 0 kg/kg;

T∞ = 41.6 °C; Fg
0 = 9.87 kg/h; X0 = 0.167 kg/kg; T0 = 15 °C; m0 = 2.487 g.

–



times faster than the time observed with the hygrometer and that

the drying operation occurs in three phases:

• The sample warming-up period, from 0 to 3 s (phase 1).

• The constant drying rate period, from 3 to 10.5 s (phase 2).

• The falling drying rate period, from 10.5 to 13 s (phase 3).

In order to compare the numerical results with the experimental

data, the hygrometer transfer function is integrated in the model. The

theoretical results are compared with the experimental finding (Exps.

1, 2, and 3). Fig. 15 indicates a good concordance between the model

predictions and the experimental data.

To have a better understanding of the relative influence of the

internal and external resistances to mass transfer, the sensitivity

of the mass Biot number was studied. Its expression is remembered

below:

BiM ¼
ky ! R

Dapp ! ρg

¼
ky=ρg

Dapp=R
ð17Þ

¼
internal resistance

external resistance
:

In the previous simulation conditions, the Biot number estimated by

the model is equal to 1.44, which means a competition between both

transfer resistances. Fig. 16 shows the outlet air absolute humidity evo-

lution versus time for different Biot number values (from0.1 to 10 times

the Biot number calculated by the model). These results show that

the drying is longer and more difficult with the high Biot number. So

in our case, the external resistance is not negligible in front of internal

resistance. This phenomenon can be explained by the morphological

parameters of PVC particles. The low internal resistance can be attribut-

ed to the evaporation of water inside the macroporosity of small parti-

cles and to the low affinity with water.

Themodel considers amonodisperse granulometry, while in real-

ity the PSD shows a Gaussian-type distribution (d10, d50, and d90
presented in Table 1). Fig. 17 shows that, in our case, the particle di-

ameter has a small influence on the characteristic times. So, the

monodisperse hypothesis does not alter significantly the model

results.

Fig. 18 shows the comparison between the characteristic times given

by themodel and by the experimental data. These results show that the

model predicts correctly the effect of: bed temperature (Fig. 17), inlet

air humidity between 0 and 16 g ofwater/kg of dry air (Fig. 17), and flu-

idization air flowrate up to 11 kg/s (Fig. 17), on the characteristic times.

Besides, at lower air fluidization air flowrate and at higher inlet air

humidity (N16 g of water/kg of dry air) the model underestimates the

characteristic times, especially t25.

This phenomenon can be explained by different reasons:

• The effect of inlet air humidity and fluidization air flowrate on the

cake dispersion. Indeed, a rise of inlet humidity and a decrease of flu-

idization flowrate disfavor this phenomenon.

• The effect of air humidity on the local equilibrium, which is not taken

into account.

• And by considering the PVC particle as a homogeneous media (i.e., a

uniform pore size). Indeed, an increase of air humidity can lead to a

slowdown of the drying rate.Moreover, the presence ofmesoporosity

in the PVC particles can explain the gaps observed, especially at the

(a) Evolution of air absolute humidity versus time

(b) Evolution of PVC normalised humidity versus time

Fig. 15. Comparison between experimental and numerical results. Drying of 2.9 g of wet

PVC in fluidized bed at 41.6 °C with an air velocity of 32.3 cm/s.

Fig. 16. Air absolute humidity evolution versus time for different Biot number values.

Fig. 17. Influence of particle diameter on the characteristic times.



end of the drying operations. In that case, transfers are controlled by a

combination between molecular and Knudsen diffusion.

8. Pneumatic dryer model

The aim of this study is to model a pneumatic dryer (macroscopic

model) using the particle scale kinetics previously elaborated. As shown

in Fig. 1, the drying occurs in two periods:

• the removal of surface water, which is governed by a convective

mechanism.

• the removal of porewater, which is driven by convective and diffusive

mechanisms. This period is modeled with the shrinking core model

described in the previous parts.

8.1. Hypothesis and equations

In this model, a two-phase continuum model was used to describe

the steady-state flow of a diluted dispersed phase (wet powder) and a

continuous phase through a pneumatic dryer. The model is based on

the following assumptions:

• Mass, energy and momentum balances occur between the two phases.

• The friction forces between the dispersed phase and the wall can be

neglected.

• The continuous phase, composed of amixture of water vapor and other

gas, is considered as an ideal gas.

• Theparticles are spherical and composedof ahomogeneousporousma-

trix.

• The particle size distribution is considered as monodisperse.

• Electrostatic forces and surface tension effects are neglected.

• The wall heat loss is neglected.

The mass, energy, and momentum balances developed in one-

dimensional steady-state for the k-phase and the transport equations

for solid and gas humidity, deducted from the mass balances are

presented below. In this work, the k-phase can be either the gas phase

(k = g) or the particle phase (k = p).

• Mass balance:

d

dz
αk ! ρk ! Ukð Þ ¼ Γk ð18Þ

• with Γk the volume rate of mass transfer of the k-phase, expressed

from the water vapor flow density Nw:

Γp ¼−Γg ¼−αp ! sp ! Nw ð19Þ

• whereαp is the local volume fraction of solid and sp the specific surface

area of a particle. Thewater vapor flux density can be expressed as the

product of a “global mass-transfer coefficient” and the drying driving

force:

Nw ¼ Ky ! Y
%
−Y

" #

: ð20Þ

• The global mass-transfer coefficient is expressed as a function of the

mass Biot number (as seen in the previous part in Eq. (6)): 0.43

Ky ¼
ky

BiM !
X

X0

 !

−1=3

−1

( )

þ 1

!
1

X0−Xc

: ð21Þ

• Eq. (21) is valuable for solid humidity less than or equal to the critical

humidity, Xc:

Xc ¼
ρwater ! χ

ρp

: ð22Þ

• This case is commonly observed when the pneumatic dryer is fed

by a cake obtained by an efficient centrifugation. In opposite, when

the initial humidity is greater than Xc, the evaporation takes place es-

sentially on a continuous liquidfilm at the particle surface (convective

transfer). The reduction of this film thickness during the evaporation

decreases the drying surface. In this case the global mass transfer co-

efficient can be estimated by:

Ky ¼ ky !
ρp ! X

ρwater

þ 1−χ

 !2=3

for XNXc: ð23Þ

• Energy balance:

F
0
k !

dHk

dz
¼ Qq→k þ Qw→k þ Ac ! Γk ! H

g
w ð24Þ

(a) Influence of the bed temperature

(b) Influence of the air inlet humidity

(c) Influence of the dry air flowrate

Fig. 18. Comparison of experimental and numerical characteristic times.



• with Qq→ k as the energy exchanged from the q-phase to the k-phase

and Qw→ k is the heat loss of the k-phase.

Qg→p ¼−Qp→g ¼ αp ! Ac ! sp ! h ! Tg−Tp

& '

ð25Þ

• where Ac is the pipe cross section, h is the heat-transfer coefficient,

and Tp and Tg, are the solid and gas phase temperatures, respectively.

As the solid flow is very diluted, the heat loss of the solid phase is

neglected; for the gas phase it is expressed as:

Qw→g ¼ hwall ! Twall−Tg

& '

: ð26Þ

• Momentum balance:

d

dz
αk ! ρk ! U

2
k

& '

¼ αk !
dP

dz
−αk ! ρk ! g þ Iq→k

þ Up−Uk

& '

! Γk þ F f ;w→k:
ð27Þ

• The first two terms on the right-hand side of this equation represent,

respectively, the influence of pressure and gravity on the flows, Iq→ k

represents the interactions between thephases and Ff,w→ k represents

the friction forces between thewall and the k-phase. In thismodel, the

only interaction taken into account is the drag:

Ig→p ¼−Ip→g ¼
3 ! αp ! ρg ! U

2
r ! Cd

4 ! dp
ð28Þ

• whereUr is the slip velocity (Ur = Ug − Up). The drag coefficient, Cd is

calculated by the Wen and Yu correlation [30]:

Cd ¼
24

Re
1þ 0:15 ! Re

0:687
& '

! α
−1:7
g : ð29Þ

• The friction force between the pipe and the continuous phase is esti-

mated by:

F f ;w→g ¼
f ! ρg

2 ! Dpipe

! U
2
g : ð30Þ

• The friction factor, f, is calculated by the Blasius formula:

f ¼
64

Repipe
if Repipeb2100 ð31Þ

f ¼
0:0791

Re1=4pipe

if RepipeN10;000: ð32Þ

• As the solid flow is much diluted, the particle friction forces are

neglected.

• Humidity transport equations:

dX

dz
¼

Ac ! Γp

F0p
ð33Þ

dY

dz
¼

Ac ! Γg

F0g
¼−

F0p

F0g
!
dX

dz
ð34Þ

• with Fp
0 and Fg

0 as the dry flowrate of the solid and gas phases.

• Transfer coefficients

Some dimensionless empirical correlations can be used to calculate

the heat-transfer coefficient in a pneumatic dryer:

• Baeyens correlation [29] see Eq. (15),

• De Brandt correlation [29]:

Nu ¼ 0:16 ! Re
1:3
! Pr

0:67
ð35Þ

• Bandrowski correlation [31]

Nu ¼ 0:00114 ! α
−0:5984
p ! Re

0:8159
ð36Þ

The Chilton and Colburn analogy (see Eq. (16)) is used in order to

calculate the mass transfer coefficient.

Baeyebs andDe Brandt correlations predict the transfer coefficient in

a diluted phase. In order to model the effects of collisions between par-

ticles on the transfer rate, Bandrowski correlation [31] expressed the

Nusselt number as a function of the solid volume fraction, αp. This rela-

tion indicates that in the inlet section of a pneumatic dryer, the impor-

tant value of αp can counterbalance the high values of slip velocity. In

other words, it takes into account the effect of solid dispersion in the

inlet zone.

9. Results and discussion

Firstly, the model predictions are compared with the experimental

measurements effectuated by Baeyens [29] on an industrial pneumatic

dryer. Secondly, they are confronted with our preliminary industrial re-

sults obtained at INEOS ChlorVinyls company.

The simulation data, PVC properties, geometrical and operating pa-

rameters, are resumed in Table 3.

9.1. Comparison with literature findings

In the case of the industrial experiments published by Baeyens [29],

the inlet PVC humidity (0.26) is greater than the critical humidity

(0.134), so the drying rate is controlled by a two stage process. The

first stage corresponds to the surface water evaporation and the second

to the pore water evaporation. Fig. 19 represents the theoretical results

obtained using the different correlations previously presented and the

experimental measurements effectuated by Baeyens [29] on an indus-

trial process. Fig. 18 represents the evolution of solid humidity versus

Table 3

Simulation data [29].

Data Baeyens INEOS

Particle properties

Mean particles diameter (μm) 180 160

Solid density (kg/m3) 1116 1016

Inlet PVC humidity (kg/kg) 0.26 0.33

Porosity (−) 0.15 0.367

Tortuosity (−) 8.0 3.2562

Dryer geometry

Pipe diameter (m) 1.25 1.7

Pipe length (m) 25 22

Operating parameters

Inlet air temperature (°C) 127 180

Inlet air humidity (kg/kg) 0.003 0.004

Dry air flowrate (t/h) 46.48 45

Dry PVC flowrate (t/h) 6.670 8.545

Thermal loss (kW/m) 25 25



pipe length while Fig. 18 represents the evolution of air temperature

versus pipe length.

The differences observed between experimental data and theo-

retical results can be explained by theworst dispersion of the wet co-

hesive PVC in the gas phase at the pipe's inlet zone. The theoretical

results which fit the best the experimental data were obtained

using the Bandrowski correlation. This can be explained by the effect

of the slip velocity on the Reynolds number, and so on the heat and

mass transfer coefficients. As shown in Fig. 20, this magnitude is re-

ally important at the inlet and progressively decreases along the

dryer. This leads to very important variations of the transfer coeffi-

cients (see Fig. 21). In the Bandrowski correlation, this effect is atten-

uated by the solid volume fraction of the dispersed phase.

9.2. Comparison with INEOS ChlorVinyls results

To establish the humidity and temperature profiles along the

pneumatic dryer, INEOS' industrial dryer is equipped with several

hygrometers and thermocouples. Fig. 22 shows the comparison be-

tween industrial data and numerical results obtained using the

Bandrowski correlation. It can be noticed that the temperature pro-

file is correct while some differences appear on the drying flowrate

evolution: in the industrial dryer, the humidity is barely constant

in the first meters while in themodel results, humidity rises strongly.

This is due to the dispersion phenomenon (not taken into account in

the model) which slows down the drying in the acceleration zone.

9.3. Parameter study

The results of the following simulations were obtained using the

Bandrowski correlation and Baeyens parameters (see Table 3).

The effect of dry air mass flowrate was examined between 25 and

46.4 t/h. As shown in Fig. 23, this parameter has a small influence on

the drying rate above 35 t/h. The air velocity influences the drying

rate only in the acceleration zone, then the slip velocity is equal to

the terminal settling velocity. At the dryer outlet the air is far to be

saturated, so the decrease of the dry air flowrate does not affect the dry-

ing driving force significantly (e.g., a decrease of dry air flowrate from

46 t/h to 35 t/h increases the outlet solid humidity from 0.054 to

0.067 kg water/kg dry PVC, and a decrease of dry air flowrate from

35 t/h to 25 t/h increases the outlet solid humidity from 0.067 to

0.097 kg water/kg dry PVC).

Concerning the inlet air temperature, Fig. 24 shows a dominant

effect (e.g., an increase of inlet air temperature from 96 °C to 156 °C

decreases the outlet solid humidity from 0.097 to 0.014 kg water/kg

dry PVC). Indeed, increasing the temperature leads to amore important

heat-transfer driving force. But as the equilibrium humidity depends on

the temperature, it will also increase the mass-transfer driving force.

Fig. 21. Evolution of global mass transfer coefficient versus solid humidity for different

correlations.

Fig. 22. Comparison between numerical results and INEOS industrial data.Fig. 20. Evolution of slip velocity versus pipe length.

(a) Evolution of solid humidity versus time for different correlations

(b) Evolution of air temperature versus time for different correlations

Fig. 19. Comparison between experimental and numerical results for different correlations.



The inlet air humidity effects were investigated between 0 and

0.0105 kg water/kg dry air. The last value corresponds to an atmo-

spheric air (15 °C) almost saturated (98.4% of relative humidity).

As shown in Fig. 25, such an increase of inlet air humidity increases

the outlet solid humidity from 0.052 to 0.054 kg water/kg dry PVC.

This increase shows that the inlet air humidity, which is a sustained

parameter, slightly influences the drying driving force. It can be

noticed that the solid temperature is influenced by:

• the dry air flowrate during the falling drying rate period only,

• the air humidity during the constant drying rate period only, and

• the air temperature influences it during both periods.

In fact the temperature stage value of the constant drying period is

controlled by the drying driving forces. As shown in Eqs. (19) and

(20), this force depends only on the air humidity, Y∞, and the equilibri-

um humidity, Y∗, which is directly related to the solid temperature. In

the falling drying rate period, the solid temperature increases until the

thermal equilibrium with the air, this equilibrium is controlled by the

dry air flowrate and temperature.

10. Conclusion

An experimental and numerical protocol was developed to study

the drying kinetic of porous media at the particle scale. The results

show the significant influence of the operating parameters, essentially

air temperature and humidity. It appears clearly that the PVC drying is

controlled by a competition between internal and external transfers.

The use of a shrinking-core type model to simulate the particle-scale

drying was confirmed by the experimental results.

PVC is essentially constituted of macropores (dpore b 250 nm).

The volume fraction of mesopores (10 b dpore b 250 nm) is inferior to

10%. So we choose a shrinking core type model, supposing that the par-

ticles can be represented like a spheric pseudo-homogeneous sphere

(i.e., uniform porosity and pore size). This model permits the drying

kinetic to be simulated correctly. The gaps observed at the end of the

drying operation is probably related to the transfers in the

mesoporosity (primary particles).

A one-dimensional steady-state model for pneumatic dryer was

established. This model is applied for the drying process of wet PVC

powder. The drying rate is controlled by the convective transfer in the

first period and by the convective and diffusive transfers in the second.

The first period corresponds to the surface water drying; besides the

second corresponds to the evaporation of the water in the pores, simu-

lated by a shrinking core model. The model takes into account the con-

vective heat, and mass and momentum transfers. The parameter study

shows that the inlet temperature is the most important parameter in

the operation. But thismodel does not take into account thewet powder

dispersion, which is certainly the limiting step of this process.

Nomenclature

Roman symbols

Ac Pipe cross-section m2

Cd Drag coefficient –

Cp Specific heat J ⋅ kg−1 ⋅ K−1

dp Particle diameter m

d3,2 Sauter diameter m

d50 Median diameter m

Dapp Apparent diffusion coefficient m2 ⋅ s−1

DH2O Water vapor/air binary diffusion coefficient m2 ⋅ s−1

Dpipe Pipe diameter m

f Friction factor –

Ff,w→ k Wall friction force on k phase kg ⋅ m−2 ⋅ s−2

g Acceleration of gravity m ⋅ s−2

h Convective heat transfer coefficient W ⋅ m−2 ⋅ K−1

Hk k-phase mass enthalpy J ⋅ kg−1

Hg
w Water vapor mass enthalpy J ⋅ kg−1

Iq→ k Interface forces from q to k phase kg ⋅ m−2 ⋅ s−2

ky Convective mass transfer coefficient kg ⋅ m−2 ⋅ s−1

Ky Global mass transfer coefficient kg ⋅ m−2 ⋅ s−1

m0 Dry sample mass kg

mw Mass of evaporated water at t time kg

mw0 Total mass of evaporated water kg

Nw Mass transfer rate kg ⋅ m−2 ⋅ s−1

p∘ Saturated water vapor pressure Pa

pw Water vapor partial pressure Pa

P Absolute pressure Pa

Qq→ k Heat transfer from q to k phase W ⋅ m−1

Qw→ k k-phase wall heat loss W ⋅ m−1

rc Wet core radius mFig. 24. Evolution of solid humidity and temperature versus pipe length for different inlet

temperatures: 126, 96, and 156 °C.

Fig. 25. Evolution of solid humidity and temperature versus pipe length for different inlet

air humidity.
Fig. 23. Evolution of solid humidity and temperature versus pipe length for different dry

air flowrates: 46.4, 35, and 25 t/h.



Roman symbols

R Particle radius m

RH Air relative humidity –

sp Particle Specific Surface m2 ⋅ m−3

tdry Time when X reaches 0.05 ⋅ X0 s

t25 Time when X reaches 0.25 ⋅ X0 s

t50 Time when X reaches 0.50 ⋅ X0 s

t75 Time when X reaches 0.75 ⋅ X0 s

Tk k-phase temperature °C

Uk k-phase velocity m ⋅ s−1

Umf Minimal fluidization velocity m ⋅ s−1

Ur Relative velocity m ⋅ s−1

Ut Settling velocity m ⋅ s−1

Wdrying Drying flowrate kg ⋅ s−1

X Solid humidity kg ⋅ kg−1

Xc Critical humidity kg ⋅ kg−1

Xpore Pore humidity kg ⋅ kg−1

Y Air absolute humidity kg ⋅ kg−1

Y∗ Saturated air humidity kg ⋅ kg−1

Z Pipe length m

Greek symbols

αk k-phase volume fraction –

γLV Superficial tension N ⋅ m−1

Γk Volumic mass transfer rate kg ⋅ m−3 ⋅ s−1

ΔHV Vaporization enthalpy J ⋅ kg−1

θ Contact angle °

λk k-phase thermal conductivity W ⋅ m−1 ⋅ K−1

μk k-phase viscosity Pa ⋅ s

ρk k-phase density kg ⋅ m−3

τ Pore tortuosity –

χ Particle porosity –

Subscripts

g Gas phase

h Humid

l Liquid

p Particle phase

w Wall

0 Initial/inlet

Dimensionless numbers

Nu Nusselt number Nu ¼ h!dp
λg

Pr Prandtl number Pr ¼ Cpg !μg

λg

Re Particle Reynolds number Re ¼ ρg !Ur !dp
μg

Repipe Pipe Reynolds number Repipe ¼
ρg !Ug !Dpipe

μg

Sc Schmidt number Sc ¼ μg

ρg !D

Sh Sherwood number Sh ¼ ky !dp
D
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