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and set

� f � inf

�
�

d���
��x�� dV

f �
�
� (3)

where the infimum is taken over all virtual displacement fields 
 , ��
� denotes the virtual
strain field corresponding to 
 , and f �
� denotes the virtual work performed by the load f
for the virtual displacement field 
 . The number � f is referred to as the kinematic multi-
plier. Thus, it is the objective of the theory of limit analysis to prove that � f � � f , under
appropriate conditions.

A particular complication arises because the prevalent yield conditions are given in terms
of sets CY which are not bounded in the space of matrices. The yield conditions bound only
the deviatoric component 
 Di j � 
 i j � 1

3
 kk�i j of the stress. In such cases, the equality of the
multipliers still holds under appropriate technical conditions if in the definition of the kine-
matic multiplier, the infimum is taken over incompressible (isochoric) virtual displacements
only. Following [1], we refer to this quantity as the reduced kinematic multiplier. The preva-
lent proof (see [2, pp. 91–98] and [1, Chapter VI]) that the reduced kinematic multiplier
is equal to the static multiplier uses the pressure restoration theorem asserting, within the
framework of L2-stress fields, that a force that performs no work on incompressible vector
fields is the gradient of a hydrostatic pressure field1.

In this paper, we limit ourselves to the case where the yield function is given as a norm
on the space of deviatoric stress matrices. While this property holds for the prevalent yield
criteria, it implies that the yield function should give the same value to the matrices 
 and
�
 . This assumption enables us to study the problem using operator theory on Banach
spaces rather than convex analysis. Consequently, one obtains a compact formulation and
proof of this basic result of limit analysis and related issues described below. In particular,
the methods we use enable strength analysis of structures under a priori unknown loadings
(see [5]).

As an introduction to the mathematical framework, in Section 2 we consider the simpler
situation where the failure criterion, or equivalently cost function, is given in terms of a norm
on the space of stress fields. In Section 3 we present the main result and construction for the
case where the failure criterion is given in terms of a norm on the space of deviatoric stress
fields. In fact, the decomposition into spherical and deviatoric fields is just an example of a
Whitney sum structure needed for this formulation.

Forces considered in Sections 2 and 3 are modeled as elements of the dual space of the
vector spaces of virtual displacements. In the vast majority of applications, only subspaces of
all forces are considered. In addition, the norm used for forces was restricted by a technical
condition that we postulate and cannot be chosen according to some physical guidelines. A
framework for stress analysis of the body for an arbitrary loading in such a space of forces,
where the earlier restriction on the norm is removed, is presented in Section 4.

The mathematical framework of Sections 2–4 is abstract in the sense that no particular
choices are made for the classes of virtual displacements, forces, stresses, etc. To provide
an example of a situation where the assumptions made in earlier chapters indeed hold, in
Section 5 we give a natural such choice for the case of continuous bodies (rather than discrete
structures) in which stress fields are essentially bounded tensor fields over the body and
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virtual displacements are assumed to be integrable vector fields for which the corresponding
strain fields are integrable.

2. FAILURE CRITERIA GIVEN BY NORMS

We consider first the case where the failure criterion is given by a norm on the space of stress
fields.

2.1. Abstract Mathematical Framework

Our basic object is a Banach space � whose elements are interpreted physically as virtual
velocity fields or virtual displacement fields (depending on one’s favorite interpretation) for
a given configuration of the body in space. The dual space �� represents the collection of
generalized forces acting on the body at that a given configuration, so that for each linear
functional F � �� and 
 � �, F�
� is interpreted as the virtual power or virtual work
performed by the generalized force F on the field represented by 
 .

The space of virtual strain fields is denoted by � and is also assumed to be a Banach
space. The elements of its dual space �� are the stress fields and for � � ��, � � �, ����
is the virtual work performed by the stress object. The norms on the various Banach spaces
introduced so far are induced by a failure criterion for stress fields. Thus, we first assume
that the failure criterion, or alternatively, a yield function or a cost function, is given in terms
of a given norm � 	 � on the space of stresses such that the body does not fail if and only if
��� 
 sY , where sY may interpreted as the yield stress. Thus, the norm on � is related to the
failure criterion by

��� � sup
����

�
����

��� � ��� �� 0

�
	 (4)

It is assumed that there is a linear mapping

� : � � � (5)

that gives the virtual strain field � � ��
� corresponding to the virtual displacement field

 . The mapping � is assumed to have the following properties.

(i) It is assumed that � is injective. This assumption can be motivated as follows. Assuming
that the body is supported in such a way that rigid body motion is prevented, the only
virtual displacement field that corresponds to the zero strain field is the zero field. Thus,
Kernel � � 0 and the mapping � is one to one. It is noted that we do not assume that � is
surjective because it is natural to include in � strain fields that are incompatible, i.e. strain
fields that cannot be obtained from virtual velocity fields.

(ii) It is assumed that � is norm preserving, i.e.
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���
�� � �
�	 (6)

In fact, this requirement will determine the norm on �. As � is assumed to be injective,
given the norm on � as induced by the failure criterion on ��, Equation (6) defines a
unique norm on� .

Let F ��� be given. The principle of virtual work in this abstract setting is

F�
� � ����
�� � ������
�� for all 
 ��� (7)

where �� : �� ��� is the mapping dual to �. Thus, we refer to the equation

F � ���� � (8)

as the equilibrium equation. It is noted that �� is not injective as � was not surjective. This is
the abstract manifestation of statical indeterminacy. Thus, for a given force F ��� there is
an affine subset �F 
 �� containing all of the solutions � to the equilibrium equation.

In Section 5 we present natural candidates for these spaces and norms for the case of
continuous bodies.

2.2. The Optimal Stress-limit Analysis Problem

For a given force F � ��, the optimal stress problem seeks the infimum of the norms of
all stresses that are in equilibrium with F . This infimum, sopt

F , is referred to as the optimal
stress. Thus, for �F � �� � �� � F � ���� ��,

sopt
F � inf

���F

���	 (9)

If there exists a stress field � opt � �� equilibrating F such that �� opt� � sopt
F (so that sopt is

attained for � opt and not merely obtained as a limit), then we refer to � opt as the optimal stress
field. While it is natural to use a supremum norm for stress fields so that the optimal stress
field is an equilibrating stress field whose maximum is the least, it is possible to interpret the
norm of a stress field as a cost function as in traditional problems of structural optimization
(e.g. [6, 7]).

Given the abstract yield stress sY , we say that the force F is a collapse force if

sopt
F � sY (10)

and we refer to such a state of loading as a limit state.
Given a force F the static multiplier, limit design factor, or the factor of safety is defined

as

�F � sup
����

�
� � �� � �� � ��F � ��� 
 sY

�
	 (11)
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One can verify that

�F � sY

sopt
F

	 (12)

It is a result of plasticity theory, that for rigid perfectly plastic materials, bodies can
support the loads �F for all � � �F and will collapse for all � � �F . In other words, optimal
stress fields occur in rigid perfectly plastic bodies in the case where sopt

F � sY .

2.3. Optimal Stresses for Norm-failure Criteria

For F ���� the fact that � is injective and norm preserving implies that

�� � F � ��1 : Image � 
 � � � (13)

is a continuous linear functional on Image �. As

F�
� � �� � ��
�� (14)

we conclude that every stress � that equilibrates F is an extension of �� to �. It follows from
the Hahn–Banach theorem that there is an extension � hb � �� such that

�� hb� � sup
���

� hb���

��� � sup
�0�Image A

����0�

��0�
� sup


��
F�
�

�
� � �F�	 (15)

Since the norm of any extension � � �F of �� is greater than or equal to ���� � �F�, one
has

sopt
F � �F� � sup


��
F�
�

�
� (16)

and the optimum is actually attained for the Hahn–Banach extension � hb of �� . We ob-
serve that the norm for forces was induced by the failure criterion and cannot be defined
independently following some physical guidelines. This restriction is overcome using the
mathematical settings introduced in Section 4.

It is noted that the normalized optimal stress,

KF � sopt
F

�F� � (17)

(to which we referred in [8–10] as the optimal stress concentration factor) is independent of
the force and is always equal to one.
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3. FAILURE CRITERIA GIVEN BY SEMINORMS

3.1. Mathematical Framework

Traditional yield conditions for plasticity do not satisfy the foregoing conditions as they are
semi-norms on the space of stresses rather than norms. For such yield conditions we have
the following structure. The space � has the structure of a Whitney sum

� � D � P (18)

with projections

�D : � � D� � P : � � P� (19)

onto the complete subspaces D and P , interpreted as the deviatoric and spherical components
of the strain, respectively. The projections are the left inverses of the formal inclusions

ID : D � �� IP : P � �	 (20)

In particular, we note for further reference that

� P � ID � 0	 (21)

The Whitney sum structure on � induces a Whitney sum structure

�� � D� � P� (22)

on �� such that every stress field � may be written uniquely as

� � � D � � P� (23)

where we naturally refer to � D as the deviatoric component of the stress and to � P as the
pressure component of the stress. Thus, one has

���� � � D�� D�� � P�� P� (24)

where � D � �D��� � D and � P � � P��� � P are the deviatoric and pressure components
of the virtual strain. The components of a stress are given using the projections provided by
the dual mappings

I �D : �� � D�� I �P : �� � P� (25)

and are included in the space of stresses by

��
D : D� � ��� ��

P : P� � ��	 (26)
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The failure criterion is now assumed to be of the form

���D � �I �D����� (27)

where � 	 � is a given norm on ��. It is clear that � 	 �D is a seminorm because its value will
vanish for all stresses � with � D � I �D�� � � 0, i.e. for pure hydrostatic pressures.

3.2. Optimal Stresses for Seminorm-failure Criteria

In this section we develop the analog of Equation (16) to the case where the failure criterion
is given by Equation (27), i.e. we look for

sopt
F � inf

��I �D���� � � � �F

�
	 (28)

Assumption 3.1. The mapping � P � � : � � P has a closed image.

We consider the following two closed subspaces of�:

�D � Kernel �� P � ��� �P � Kernel ��D � �� (29)

so that �D contains incompressible displacement fields and �P contains purely expansive
fields, that is, vector fields whose corresponding strain fields are deviatoric and spherical,
respectively. One has natural inclusions

�D : �D ��� �P : �P ��� (30)

and the mappings

�D � �D � � � �D� �P � � P � � � �P (31)

as shown in the commutative diagrams below. Let u � �D, with �D�u� � 0. Then, since
by definition � P����D�u��� � 0, and �D����D�u��� � 0, as both �D and � are injections,
one concludes that u � 0 so that �D is also injective. In addition, since �, �D and ID are all
injective and norm preserving, one has

�u� � �� � �D�u�� � �ID � �D�u�� � �ID��D�u�� � ��D�u��� (32)

and it follows that �D is norm preserving. Obviously, the analogous observations hold for
�P .

(33)
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Similarly to the framework of Section 2.1, one has the dual spaces ��
D and ��

P . Dual
to the natural inclusions �D� �P� one has the natural projections

��D : �� ���
D� ��P : �� ���

P (34)

and the resulting dual commutative diagrams:

(35)

Consider FD ���
D and the corresponding reduced equilibrium equation

FD � ��D�� D�� � D � ��D	 (36)

We use the notation

�D
FD
� �� D � ��D � FD � ��D�� D�

�
(37)

for the collection of solutions of the restricted equilibrium equation. Thus, one may consider
the reduced (restricted) stress optimization problem

sopt
FD
� inf

� D��D
FD

�� D�	 (38)

Since the mapping �D has the same properties as the mapping �, the results of Section 2.3
hold for the reduced problem and we conclude that

sopt
FD
� �FD� � sup

u��D

FD�u�

�u� 	 (39)

We now prove a useful lemma for the restricted equilibrium problem.

Lemma 3.2. Given F ���� then

I �D ��F� � �D
��D�F�	 (40)

Proof. We first show that I �D ��F� 
 �D
��D�F�. Let � � �F , so F�
� � ����
��, for any


 �� . Thus, for any incompressible velocity field � ��D one has

��D�F���� � F��D���� � �����D�����
� �I �D���� I �P�� �� [�D ����D������� P ����D�����]

� I �D�� � [�D ����D�����] � ��D � �� ���
D�I

�
D�� ����� � ��D�I �D�� �����	 (41)
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We conclude that if F is in equilibrium with � , then

��D�F� � ��D�I �D�� ��� (42)

so ��D�F� is in equilibrium with I �D�� �.
To show that I �D ��F� � �D

��D�F�, we consider an arbitrary 
 � �D
��D�F� so that

��D�F� � ��D�
�	 (43)

One has to show that there is a stress � � ��F , i.e. F � ���� �, such that I �D�� � � 
 . Set
� 0 � ��

D�
� � ��, F0 � ���� 0� � �� � ��
D�
 � ���, and F1 � F � F0. For any � ��D

one has

F1��D���� � F��D����� F0��D���� � ��D�F����� �� ���
D�
���D����

� ��D�
����� ��D � �� ���
D�
���� � 0	 (44)

It follows that ��D�F0� � ��D�F�. In addition, let � 1 � �� be a stress in equilibrium with F1,
i.e. F1 � ���� 1�, then

F � F1 � F0 � ���� 1�� ���� 0�� (45)

and it follows that F � ���� 1�� 0�. It remains to show that I �D�� 1� � 0 so that I �D�� 0�� 1� �

 . (Note that so far we have ��D � ���� 1� � 0, however, this is not enough because �� is not
injective.) Thus, we want to prove that � 1 may be chosen from ��P .

It is noted that Equation (44) implies that

F1 � ��D�
� � �Kernel �� P � ����	 (46)

Now, in Assumption 3.1 we postulated that � P � � has a closed image. We recall that Ba-
nach’s closed range theorem asserts that for any Banach space X and a bounded linear map-
ping A : X � Y having a closed image in the Banach space Y , Image �A�� � �Kernel A��

(e.g. [11, p. 70]). We conclude that

��D�
� � �Kernel �� P � ���� � Image ��� P � ���� 	 (47)

Thus, for some � P � ��P , F1 is of the form

F1 � �� P � ����� P� � �����
P�� P��� (48)

and � 1 is of the form

� 1 � ��
P�� P�� � P � ��P 	 (49)
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It follows that

I �D�� 1� � I �D��
�
P�� P�� � �� P � ID�

��� P� � 0	 (50)

�

It is noted that unlike stresses and strain spaces, we do not use a Whitney sum structure
on� (e.g. the Helmholtz–Weyl decomposition as in [3, Section 1.2] and [12, p. 98]).

The following theorem provides the main result for the stress optimization or limit analy-
sis problem for the seminorm failure criterion ���D � �I �D�� �� (Equation (27)). It asserts
that for a seminorm failure criterion, we will obtain the same result if we either compute the
optimal stress for the given force F using the definition in Equation (28) or we solve the re-
stricted stress optimization problem for the restriction of the given force to ‘incompressible’
virtual displacements, i.e. we compute the optimal deviatoric stress for FD as in Equation
(39).

Theorem 3.3. For F ���, let

sopt
F � inf ����D � � � �F� (51)

and for G ���
D, let

sopt�D
G � inf

��� D� � � D � �D
G 
 ��D

�
	 (52)

Then,

sopt
F � sopt�D

��D�F�	 (53)

Proof. Using Lemma 3.2, one has

sopt
F � inf

��I �D�� �� � � � �F

� � inf
��� D� � � D � I �D ��F�

�
� inf

�
�� D� � � D � �D

��D�F�

�
� sopt�D

��D�F�	 (54)

�

Using the definition of the dual of the inclusion mapping one obtains immediately the
following result.

Corollary 3.4. For the case of a seminorm-failure criterion, one has,

sopt
F � ���D�F�� � sup

u��D

F�u�

�u� 	 (55)
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4. APPLIED LOADINGS, STRESS SENSITIVITY AND LOAD CAPACITY

The following analysis allows one to consider forces in subspaces of �� and norms other
than the one that makes � an isometry. Thus, it is assumed that there is a Banach space �
and a continuous linear mapping

� : � ��	 (56)

Considering forces in�� of the form F � ��� f � for f ���, we set

sopt
��� f � � ���D���� f ��� � sup

���D

��� f ����

��� 	 (57)

The notions of stress sensitivity (or generalized stress concentration factors in [8–10])
and load capacity ratios of perfectly plastic bodies (see [8–10]) are used when, rather than
one particular load case, an entire class of loadings is considered. Consider a homogeneous
isotropic rigid perfectly plastic body or a structure whose yield stress is sY . Then, the load
capacity ratio is the largest number C that depends only on the geometry of the body such
that the body will not collapse plastically under any loading whose norm � f � satisfies

� f � 
 sY C (58)

independently of the distribution of the load.
Using the terminology introduced above, and considering all loadings f � ��, the

stress sensitivity, K�, is defined as largest ratio of the optimal stress sopt
��� f � to norm of f ,

i.e.

K� � sup
f ���

sopt
��� f �

� f � 	 (59)

It can be shown (see [8–10] for details) that the load capacity is given by

C � 1

K� 	 (60)

The following results are concerned with stress sensitivity and load capacity ratios. Ex-
amples for the computations of C and corresponding worst case loadings for various struc-
tures are given in [5].

Theorem 4.1. Let

K � sup
F���

sopt
F

�F� 	 (61)

Then, K � 1.
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Proof. Using Corollary 3.4, one has

K � sup
F���

���D�F��
�F� � ���D� � ��D� � sup

���D

��D����
��� � 1� (62)

where we used the fact that the norm of a dual map is equal to the norm of the original map
and the fact that �D is just the inclusion mapping so it preserves norms. �

It is noted that unlike the case of a norm-failure criterion, for a generic F ���,

sopt
F

�F� �
���D�F��
�F� �� 1	 (63)

In particular, for a stress � 1 � ��
P�p�, p � ��P , F1 � ���� 1�, one has ��D�F1� � 0, �� 1�D �

0. It follows that sopt
F1
� inf

��I �D�� �� � � � �F1

� � 0 while �F1� �� 0.

Theorem 4.2. The stress sensitivity is given by

K� � �� � �D�	 (64)

Proof. Using Equation (57), the expression for K� may be written as

K� � sup
f ���

���D���� f ���
� f � � ���D � ��� � �� � �D�	 (65)

�

5. PERFECTLY PLASTIC CONTINUOUS BODIES

Consider a continuous body that in a given configuration in the physical space �3 occupies
the region �. It is assumed that � is an open subset of �3 and that its boundary �� is
Lipschitz. Furthermore, there are two open subsets �0 
 �� and �t 
 �� such that �0 is
the region where the body is supported and �t is the region where the body is not supported
so that a surface traction field t may be exerted on the body on �t . Thus, it is natural to
assume that �0 and �t are non-empty and disjoint, �0 � �t � ��, and � � ��0 � ��t is a
curve on ��.

Identifying a symmetric 3 � 3 stress matrix with an element of �6, a stress field is a
symmetric tensor field � : � � �

6. The spherical projection and deviatoric projection are
defined for a symmetric matrix 
 by

� P�
�i j � 1

3

 kk�i j � � D�
� � 
 � � P�
�� (66)

and the condition that the body does not collapse is of the form
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sup
x��
�� D�� �x��� 
 sY � (67)

where � 	 � is a norm on the space of matrices. For example, the von Mises yield criterion uses
the 2-norm �
 �2 � 
 i j
 i j . For technical reasons one usually allows higher stresses on subsets
of the body of zero volume and sets

���D � �� D � ��� :� ess sup
x��
�� D�� �x��� 	 (68)

Thus, it is natural to set

� � L1����6�� � P � � P � �� �D � � D � �� (69)

with D and P being, respectively, the spaces of deviatoric (incompressible) and spherical
L1-strain fields. The L1-norm

���1 :�
	
�

���x�� dV (70)

should be used on �, where for the values of a strain field, � 	 � is the dual norm on the space of
matrices to the one used for stress matrices. It follows that �� � L�����6�with L�-norm

���� � ess sup
x��
���x�� 	 (71)

In order for the strain mapping �, with

��
� � 1

2


�
 � ��
�T� � (72)

to be an isometry, the norm of a virtual displacement field 
 should be given by

�
� � ���
��1	 (73)

The preceding natural setting motivates the use of the Banach space L D���, see [2,
13–14], for the space � . Indeed, let L D��� be the Banach space of L1-vector fields on �,
having integrable strain fields, and equipped with the norm

�
�L D � �
�1 � ���
��1	 (74)

Then, L D��� is a Banach space having a well-defined bounded trace mapping

� : L D���� L1�����3� (75)

that agrees with the restrictions of continuous functions defined on �. Let L D����0 be
the subspace of L D��� containing virtual displacements whose traces (boundary values)
vanish on �0 so they satisfy the kinematic boundary conditions. Then, it is implied by the
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results of [2] that L D���0 is indeed a Banach space with the norm �
� � ���
��1. Thus,
� � L D���0 satisfies all of the requirements we specified in Section 2.1. It is shown next
that Assumption 1 is also satisfied.

Lemma 5.1. The mappings

�D � � : � � D� and � p � � : � � P� (76)

have closed images.

Proof. By a standard result on linear operators (e.g., [7, pp. 67–68]) the image of a bounded
linear A : X � Y is closed if there is a number C � 0 such that for all x � X

inf
y�Kernel A

�x � y� � C�A�x��	 (77)

This property holds for � since Kernel � � �0� and ������ � �
�. Thus, Image � is closed
in �.

Consider the restriction �� P of the deviatoric projection to Image �

�� P � � P �Image � : Image �� P	 (78)

To show that Image �� P � Image �� P � �� is closed, we observe that P 
 Image �, that is
all spherical tensor fields are compatible. If � � � I � P is smooth (so the real function � is
smooth), then, there is a vector field u that solves the equation

� 	 u � ui�i � 3�	 (79)

(See, for example, [2, Section III.3] for the existence theorem.) In other words, � � � I �
� P � ��u�, so � � Image �. Since the subset of smooth functions is dense (by regularization)
in L1���, for any � P � P , there is a sequence � n � � P such that � n � P are smooth
and hence, � n may be also regarded as elements �� n of Image �. As Image � is closed, the
sequence �� n has a limit �� � Image �. Since for each n, �D��� n� � 0 and �D is continuous, it
follows that �D���� � 0 so that �� � P . Furthermore, �� P���� � � P . We conclude that �� P is
surjective and its image is simply the Banach space P .

Next, consider the restriction ��D of the deviatoric projection to Image �

��D � �D�Image � : Image �� D	 (80)

We want to show that ��D has a closed image. To obtain that, we show that for each �0 �
�0D � � 0P � Image �,

inf
� P�Kernel ��D

��0 � � P� � inf
� P�Kernel ��D

��0D � �0P � � P� � ���D��0��	 (81)
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Now

inf
� P�Kernel ��D

��0D � �0P � � P� � ��0D� � inf
� P�Kernel ��D

��0P � � P� (82)

and since ���D��0�� � ��0D�, it is sufficient to show that

inf
� P�Kernel ��D

��0P � � P� � 0 (83)

for the assertion to hold. Note that � P0 need not be compatible a-priori, while � P is required
to be compatible by definition. However, since �� P is surjective, �0P is compatible also, that
is �0P � Kernel ��D, and we may simply choose �0P � � P , to show that Equation (83)
holds. �

As it is customary in continuum mechanics to consider loadings of continuous bodies
that consist of body force fields on � and surface force fields on �t , we use the loading
space

�� � L�����3�� L���t ��
3�	 (84)

Thus, naturally,

� � L1����3�� L1��t ��
3�� (85)

and the mapping

� : L D���10 � L����3�� L1��t ��
3� (86)

is given by

��
� � 

� � �
� ��t

�
	 (87)

Thus, for a load f � �b� t� ���,

� f � � max

�
ess sup

x��
�b�x�� � ess sup

y��t

�t �y��
�
	 (88)

In particular, for the case of vanishing body forces, so � � L1��t ��
3�, the parameter

C � 1�K�, will be the largest bound such that the body will not collapse for any boundary
loading t as long as

ess sup
y��t

�t�y�� 
 sY C	 (89)
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Evidently, one may consider cases where loads on other parts of the body or its boundary
are considered. A number of examples for the computations of C for structures, i.e. cases in
which the dimension of� is finite, are presented in [5].

As a final remark it is noted that using the terminology of optimal stresses, the only
constitutive information one uses is the failure criterion. On the other hand, we cannot claim
that virtual displacement are related in any way to actual displacement fields. It is the the-
ory of rigid, perfectly plastic bodies as in [1, 2] that relates, using a flow rule, extremizing
sequences of virtual displacements with the collapse velocity fields.

NOTE

1. Temam [2] refers the readers to [3] and his [4] for the proof and [1] considers the pressure field restora-
tion in Section (VI.2).
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