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Didier Chauveau∗ Pierre Vandekerkhove†‡
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Abstract

Many recent and often adaptive Markov Chain Monte Carlo (MCMC) methods are
associated in practice to unknown rates of convergence. We propose a simulation-based
methodology to estimate MCMC efficiency, grounded on a Kullback divergence criterion
requiring an estimate of the entropy of the algorithm successive densities, computed from
iid simulated chains. We recently proved in Chauveau and Vandekerkhove (2013) some
consistency results in MCMC setup for an entropy estimate based on Monte-Carlo inte-
gration of a kernel density estimate based on Györfi and Van Der Meulen (1989). Since
this estimate requires some tuning parameters and deteriorates as dimension increases, we
investigate here an alternative estimation technique based on Nearest Neighbor estimates.
This approach has been initiated by Kozachenko and Leonenko (1987) but used mostly
in univariate situations until recently when entropy estimation has been considered in
other fields like neuroscience. Theoretically, we prove that, under certain uniform con-
trol conditions, the successive densities of a generic class of Adaptive Metropolis-Hastings
algorithms to which most of the strategies proposed in the recent literature belong can
be estimated consistently with our method. We then show that in MCMC setup where
moderate to large dimensions are common, this estimate seems appealing for both compu-
tational and operational considerations, and that the problem inherent to a non neglictible
bias arising in high dimension can be overcome. All our algorithms for MCMC simula-
tion and entropy estimation are implemented in an R package taking advantage of recent
advances in high performance (parallel) computing.
keywords Adaptive MCMC algorithms, Bayesian model, entropy, Kullback divergence,
Metropolis-Hastings algorithm, nearest neighbor estimation, nonparametric statistic.

1 Introduction

A Markov Chain Monte Carlo (MCMC) method generates an ergodic Markov chain for which
the stationary distribution is a given probability density function (pdf) f . For common
Bayesian inference, f is a posterior distribution of the model parameter θ over a state space
Θ ⊆ Rd. This posterior is typically known only up to a multiplicative normalizing constant,
and simulation or integration w.r.t. f are approximated by ergodic averages from the chain.
The Metropolis-Hastings (MH) algorithm (Hastings, 1970; Metropolis et al., 1953) is one of
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the most popular algorithm used in MCMC methods. Another commonly used method is the
Gibbs sampler introduced by Geman and Geman (1984).

Each step of a MH algorithm at a current position θt is based on the generation of the
proposed next move from a general proposal density q(·|θt). Historically, two popular MH
strategies used to be (i) the Independence Sampler (MHIS), which uses a proposal distribution
independent of the current position, and (ii) the Random Walk MH algorithm (RWMH), for
which the proposal is a random perturbation of the current position, most often drawn from
a Gaussian distribution with a fixed variance matrix that has to be tuned.

To actually implement a MCMC algorithm, many choices for the proposal density are
possible, with the goal of improving mixing and convergence properties of the resulting Markov
chain. For instance running a RWMH strategy requires the determination of a “good” scaling
constant, since the mixing depends dramatically on the variance matrix of the perturbation
(Roberts and Rosenthal, 2001). As a consequence, a growing interest in new methods appeared
this last decade, which purpose is to optimize in sequence the proposal strategy in MCMC
algorithms on the basis of the chain(s) history; see, e.g., Andrieu and Thoms (2008) for
a recent survey. These approaches called adaptive Markov Chain Monte Carlo (AMCMC)
can be described (not in an entirely general way) as follows: let f be the pdf of interest
and suppose that we aim to simulate efficiently from f given a family of Markov kernels
{Pϑ, ϑ ∈ E}. This can be done adaptively using a joint process (θt, ϑt)t≥0 such that the
conditional distribution of θt+1 given the information available up to time t is a kernel Pϑt
where ϑt is an Euclidean parameter tuned over time to fit a supposed relevant strategy. Some
general sufficient conditions insuring convergence (essentially ergodicity and the strong law of
large numbers) of such algorithms have been established by various authors, see Andrieu and
Thoms (2008). These conditions are informally based on the two following ideas.
Containment: for any (θ0, ϑ0), and any ε > 0, the stochastic process (Mε(θ

t, ϑt))t≥0 is bounded
in probability, where

Mε(θ, ϑ) = inf
{
t ≥ 1 : ‖P tϑ(θ, ·)− f(·)‖TV ≤ ε

}
is the “ε-time to convergence”.
Diminishing Adaptation: for any (θ0, ϑ0), limt→∞Dt = 0 in Pθ0,ϑ0-probability, where

Dt = sup
θ∈Θ
‖Pϑt+1(θ, ·)− Pϑt(θ, ·)‖TV ,

represents the amount of adaptation performed between iterations t and t+ 1.
Note that in Bai et al. (2008) two examples are provided to show that either Diminishing

Adaptation or Containment is not necessary for ergodicity of AMCMC, and diminishing
Adaptation alone cannot guarantee ergodicity. See also the very simple four-state Markov
Chain Example 1 in Rosenthal and Roberts (2007), which illustrates the fact that ergodicity
is not an automatic heritage when adapting a Markov Chain from its past.

These various and sometimes experimental algorithmic choices are associated in general
to unknown rates of convergence because of the complexity of the kernel, and the difficulty
in computing, when available, the theoretical bounds of convergence. For instance, Bai et al.
(2010) compare two AMCMC strategies in dimension d ≤ 5, and Vrugt et al. (2009) compare
two AMCMC’s against some benchmark in dimension d = 10. More recently Fort et al.
(2014) define the best interacting ratio for a simple equi-energy type sampler, by minimizing
the corresponding limiting variance involved in the Central Limit Theorem (see Fig. 1 in
Fort et al. (2014)). There are also recent works proposing tools or methods for MCMC
comparisons, showing that these questions are crucial in nowaday MCMC application and
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research. Thompson (2010) proposes the R package SamplerCompare for comparing several
MCMC’s differing by a single tuning parameter, using standard evaluation criterion.

In this paper, we propose a methodological approach, and corresponding software tool,
only based on Monte Carlo simulation (i.e. not requiring a theoretical study typically MCMC
and/or target-specific) with two goals: (i) For MCMC users to easily select a good sam-
pler among possible candidates; (ii) For researchers to better understand which (A)MCMC
methods perform best in which circumstances. Let

H(p) :=

∫
p log p = Ep(log p) (1)

be the differential entropy of a probability density p over Θ, and pt be the marginal density
of the (A)MCMC algorithm at “time” (iteration) t. Our approach is grounded on a criterion
which is the evolution of the Kullback-Leibler divergence between pt and f ,

t 7→ K(pt, f) :=

∫
pt log

(
pt

f

)
= H(pt)−

∫
pt log f.

This Kullback “distance” is indeed a natural measure of the algorithm’s quality and has strong
connections with ergodicity of Markov chains and rates of convergence, see Harremoes and
Holst (2007) for recent results. In MCMC setup, Chauveau and Vandekerkhove (2013) showed
that if the proposal density of a Metropolis-Hastings algorithm satifies a uniform minorization
condition implying its geometric convergence as in Holden (1998), then K(pt, f) also decreases
geometrically.

In Section 2, we detail our approach which is methodological but relies on estimation
techniques that have been proved to be theoretically consistent in simple cases like Gaussian
unidimensional RWMH or independent samplers (Chauveau and Vandekerkhove, 2013). Our
estimation of H(pt) is grounded on the simulation of N parallel (iid) chains. In Section 3,
we prove the consistency of our entropy estimate based on Nearest Neighbor (NN) estimate
from Kozachenko and Leonenko (1987), adapted to our adaptive MCMC setup. Section 4
illustrates the good behavior of our criterion on synthetic multi-dimensional examples. These
examples also allow us to show the difficulty due to a bias coming from the curse of dimension
in nonparametric statistical estimation. In Section 5 we detail our methodological solution
for handling that bias problem, in such a way that our approach being still usable even in
large dimension, in practice for Bayesian models with dozens of parameters.

2 Entropy and Kullback estimation in MCMC context

Recent motivations for entropy estimation in other fields like molecular science appeared
recently in the literature (see, e.g. Singh et al., 2003), and are concerned by estimation of
H(p) for multivariate densities p. Most of the estimation techniques proved to be consistent
under various conditions are based on iid samples from p. There exists some results about
entropy estimation for dependent sequences, but these heavily rely on the mixing properties
of these sequences themselves, that are precisely what we want to capture by our simulation-
based approach without theoretical investigations concerning mixing properties of the Markov
kernel. More importantly, these approaches could be used to estimate H(f) but cannot
estimate H(pt) for each t.
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2.1 Simulation of iid copies of the (A)MCMC algorithm

Our approach is consequently based on the simulation of N parallel (iid) copies of (Adaptive)
Markov chains started from a diffuse initial distribution p0 and using the transition kernel
defined by the MCMC strategy under investigation. The N chains, started from θ0

1, . . . , θ
0
N

iid∼ p0, are denoted

chain # 1 : θ0
1 → θ1

1 → · · · → θt1 ∼ pt → · · ·
...

...

chain # N : θ0
N → θ1

N → · · · → θtN ∼ pt → · · ·

where “→” indicates the (eventually non-homogeneous) Markov dependence. At “time” (iter-
ation) t, the locations of the N simulated chains θt = (θt1, . . . , θ

t
N ) forms a N -sample iid∼ pt.

In an experimental framework where one wants to evaluate a new (A)MCMC algorithm
the target f often corresponds to a benchmark example, hence is completely known (as e.g.,
in Vrugt et al., 2009). In this case a strongly consistent estimate of

∫
pt log f is given by

Monte Carlo integration and the Strong Law of Large Numbers,

p̂tN (log f) =
1

N

N∑
i=1

log f(θti), (2)

so that estimation of K(pt, f) is in turn accessible provided H(pt) is. However, if the objective
is to evaluate an experimental MCMC method for an actual Bayesian model for which f is
a posterior density proportional to the likelihood, say f(·) ∝ φ(·) where the normalization
constant is not known, only p̂tN (log φ) is accessible. We will see that this is not really a flaw
since φ itself retains all the specificity (shape, modes, tails, . . . ) of f , and since we are mostly
interested in the stabilization in t of K(pt, f), not necessarily in knowing its limiting value,
as will be detailed in Section 5. In addition, the normalization problem can be eliminated
by comparing the MCMC under study to a benchmark MCMC algorithm (e.g., a gaussian
RWMH) for the same target f . Indeed, considering two MCMC strategies leading to two
sequences of marginal densities, say (pt1)t≥0 and (pt2)t≥0 allows the difference of the divergences
to be accessible to estimation since

D(pt1, p
t
2, f) = K(pt1, f)−K(pt2, f) = H(pt1)−H(pt2) + Ept2 [log φ]− Ept1 [log φ]. (3)

The Kullback criterion is the only usual divergence insuring this property and, in addition to
its connection with ergodicity, it motivates our choice. Note also that the Kullback divergence
is currently used as a criterion in other simulation approaches, see Douc et al. (2007). The
choice of this estimate also has the advantage of avoiding numerical integration in moderate or
high dimensional spaces (replaced by Monte Carlo integration), in contrary to other criterion
such as the L1-distance.

For estimating the entropy H(pt) a classical, plug-in approach, is to build a nonparametric
kernel density estimate of pt, and to compute the Monte Carlo integration of this estimate.
Techniques based on this approach have been suggested by Ahmad and Lin (1989), and studied
by many authors under different assumptions (see, e.g., the survey paper Beirlant et al., 1997).
Several consistency and asymptotic normality results pertaining to this approach have been
proved (see references in Eggermont and LaRiccia, 1999). However, most of these are not
suitable to estimate H(pt) even in the simplest MH cases, either because they do not apply
to multivariate densities, or because they require smoothness conditions that are far too
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restrictive to be proved for the sequences of densities pt we have to consider here. Up to our
best knowledge, the unique consistency result applicable in this MCMC simulation context is
the one proved in Györfi and Van Der Meulen (1989), that essentially requires a Lipschitz type
smoothness condition. Indeed, for that approach, Chauveau and Vandekerkhove (2013) have
proved that adequate smoothness and tail conditions on the “input ingredients” of the MH
algorithm (namely p0, q and f) propagate a Lipschitz condition to the successive marginals
pt, t = 1, . . . , n, so that the sequence of (H(pt))t=1,...,n can be consistently estimated. These
technical conditions have been proved to hold in simple univariate IS and RWMH cases, but
are not meant to be verified in general, since it would require tedious (and often unfeasible)
calculations.

2.2 Estimates based on nearest neighbor distances

The plug-in estimate presented above requires the tuning of several parameters: a certain
threshold for truncating the data over the tails of pt, the choice of the kernel and the difficult
issue of the appropriate bandwidth matrix, particularly in high dimensions. All these issues
motivated us to find an alternative, and study the behavior of the somehow simpler Nearest
Neighbor (NN) estimate initiated by Kozachenko and Leonenko (1987) (see also Beirlant et al.,
1997, for a survey on these entropy estimates). In our setup, based on the sample θt iid∼ pt

in dimension d, this NN entropy estimate is

ĤN (pt) =
1

N

N∑
i=1

log(ρdi ) + log(N − 1) + log(C1(d)) + CE , (4)

where CE = −
∫∞

0 e−u log u du ≈ 0.5772 . . . is the Euler constant, C1(d) = πd/2

Γ(d/2+1) and where

ρi = min{ρ(θti , θ
t
j), j ∈ {1, 2, . . . , N}, j 6= i}

is the (Euclidean) distance ρ(·, ·) from the ith point to its nearest neighbor in the sample θt.
Kozachenko and Leonenko (1987) proved the mean square consistency of the NN entropy
estimate ĤN (h) as in (4) for a density h and any dimension d under the following Peak and
Tail (P&T) conditions.

Definition 1. A density h over Rd satisfies the P&T conditions if there exists α > 0 such
that ∫

| log h(x)|2+αh(x) dx < +∞ (5)∫ ∫
| log ρ(x, y)|2+αh(x)h(y) dx dy < +∞. (6)

This NN estimate seems more appealing than kernel density estimates in our situation,
both from an operational point of view (no tuning parameters like the threshold and band-
width), and from a computational point of view (the nearest distance can be computed faster
than a multivariate kernel density estimate in high dimension). Until recently, this nearest
neighbor approach has been used and studied mostly in univariate or bivariate (d = 2) sit-
uations, like in image processing. One interest of this study is to investigate its behavior in
higher dimensions and for MCMC sequences of marginals.
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3 Peak and tail conditions in adaptive MH case

In this section we introduce a generic class of Adaptive Metropolis-Hastings (AMH) algorithms
to which most of the AMCMC strategies proposed in the recent literature belong (see, e.g.,
Andrieu and Thoms, 2008). We prove that, under certain uniform control conditions, the
P&T conditions from Definition 1 required to estimate the entropy of successive densities pt

by the NN approach from Kozachenko and Leonenko (1987), hold for each fixed iteration
t ∈ N.

As recalled in the introduction, an AMCMC algorithm relies on a family of Markov kernels
based on a joint process (θt, ϑt)t≥0 such that the conditional distribution of θt+1 given the
information available up to time t is a kernel Pϑt where ϑt is a Euclidean parameter depending
on the past. In the case of a generic Adaptive MH processes (Xt)t≥0 valued in Ω ⊆ Rd,
each MH step at time t is based on the generation of the proposed next move y from an
adapted proposal density qϑt(y) ∈ F := {qϑ|ϑ ∈ Θ}, where ϑt := ϑ(xt0) is a strategically tuned
parameter possibly integrating the whole past trajectory denoted xt0 = (x0, . . . , xt).

For a starting value x0 ∼ p0, the t-th step xt → xt+1 of the AMH algorithm is as follows:

1. generate y ∼ qϑt(·)

2. compute αϑt(x
t, y) = min

{
1,
f(y)qϑt(x

t)

f(xt)qϑt(y)

}

3. take xt+1 =

{
y with probability αϑt(x

t, y)
xt with probability 1− αϑt(xt, y).

The proposition below gives the convergence of our NN entropy estimates for the successive
AMH marginal densities.

Proposition 1. If there exist nonnegative functions (ϕ1, ϕ2) both defined on Ω, a constant
a ∈ (0, 1) and α > 0 such that:

i) C1 =
∫
ϕ1(x)dx <∞, C2 =

∫
ϕ2

1(x)

ϕ2(x)
dx <∞, and C3 =

∫
ϕ2(x)dx <∞

ii) ϕ1 ≤ p0 ≤ ϕ2, and ϕ1 ≤ f

iii) af ≤ qϑ ≤ ϕ2 for all ϑ ∈ Θ

iv)

∫ ∣∣∣∣log

(
C
ϕ2

1(x)

ϕ2(x)

)∣∣∣∣2+α

ϕ2(x)dx < +∞ for any constant C > 0

v)

∫
|log (Cϕ2(x))|2+α ϕ2(x)dx < +∞ for any constant C > 0

vi)

∫ ∫
| log ρ(x, y)|2+αϕ2(x)ϕ2(y)dxdy < +∞,

then the successive densities of the Adaptive MH algorithm described above satisfy the P&T
conditions (5)–(6).

Note that the constant a introduced above can be understood as the minorization con-
stant used in, e.g., Holden (1998) and Mengersen and Tweedie (1996) conditions of geometric
ergodicity.
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Proof. For all t ≥ 0, we define Pϑt(x
t, ·), the generic adaptive transition kernel depending on

ϑt = ϑ(xt0):

Pϑt(x
t, dy) = qϑt(y)αϑt(x

t, y))dy

+

[
1−

∫
qϑt(z)αϑt(x

t, z)dz

]
δxt(dy).

We denote as before by pt the marginal density of the AMH algorithm at iteration t. Define
first the two nonnegative functions controlling pt from Lemma 1 in Appendix A.2, Equa-
tions (15) and (16) using conditions (i)–(iii) of Proposition 1:

At(x) := a2tC1C
t−1
2

ϕ2
1(x)

ϕ2(x)

Bt(x) := 2(C3 + 1)t−1ϕ2(x)

At(x) ≤ pt(x) ≤ Bt(x), t ≥ 1.

To prove that pt, for a fixed step t, satisfies the first P&T condition (5) from Definition 1, set
the domain Dt = {x ∈ Rd : pt(x) < 1}, D̄t = Rd \Dt, and let β = (2 + α). We have∫

| log pt(x)|β pt(x) dx =

∫
Dt

| log pt(x)|β pt(x) dx+

∫
D̄t

| log pt(x)|β pt(x) dx. (7)

Since for x ∈ Dt, 0 ≤ | log pt(x)| = − log pt(x) ≤ − logAt(x) = | logAt(x)|,∫
Dt

| log pt(x)|β pt(x) dx ≤
∫
Dt

| logAt(x)|β Bt(x) dx.

This last integral is finite from condition (iv) since∫
Dt

| logAt(x)|β Bt(x) dx ≤ C̃
∫ ∣∣∣∣log

(
C
ϕ2

1(x)

ϕ2(x)

)∣∣∣∣β ϕ2(x) dx <∞,

where C = a2tC1C
t−1
2 and C̃ = 2(C3 + 1)t−1 are both finite from condition (i). For the

rightmost integral in (7), it suffices to note that∫
D̄t

| log pt(x)|β pt(x) dx ≤
∫
D̄t

| logBt(x)|βBt(x) dx ≤ C̃
∫
| log(C̃ϕ2(x))|βϕ2(x) dx,

where the rightmost integral is finite from condition (v). The P&T condition (6) for pt is
obtained straightforwardly from condition (vi).

4 Experiments and simulations

All the estimation techniques and MCMC evaluation criterion presented in the previous Sec-
tions are based on intensive simulations and computations for which we provide a software
tool implemented in the EntropyMCMC package for the R statistical software (R Core Team,
2013), taking advantage of recent advances in High Performance Computing, that will be
publicly available in a near futur. This package includes some predefined target distribu-
tions and standard MCMC samplers, easy definition of additional ones, functions for running
simulations, estimating entropy and Kullback divergences, results visualization and sampler
comparison. For instance, Figs 2 and 3 have been done using simply a default plot() com-
mand from this package. The parallel simulations can be done from inside the package, or
imported from external files.
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4.1 Multidimensional Gaussian target density and iid sampler

Several authors, mostly from biology, statistics and information theory have recently shown
some evidence that estimation of functionals like the entropy suffers from the curse of dimen-
sionality (see for instance, Stowell and Plumbley (2009) and Sricharan et al. (2013)). In these
studies, the bias seems much more affected by the dimension than the variance.

To confirm this and also validate our software tool, we ran some experiments in Gaussian
situations. Let us denote by N µ,Σ

d the pdf of a d-multivariate Gaussian Nd(µ,Σ) with mean
vector µ and covariance matrix Σ. One reason for choosing Gaussian targets is that the true
entropy is known in this case,

H(N µ,Σ
d ) = −d(log(2π) + 1) + log(det(Σ))

2
. (8)

In this section and in Section 5, we use centered Gaussian distributions with spherical co-
variances matrices, and then simply denote by N σ

d the pdf of Nd(01d, σ
2Id), where 1d is the

unit column vector of size d, and Id is the d × d identity matrix. For these experiments we
coded a “fake” MCMC algorithm, i.e. we defined as a MCMC algorithm a simple iid sampler
from a completely known target such as N σ

d . In other words, pt ≡ N σ
d for t ≥ 1, so that

running n iterations of N iid “chains” from this algorithm corresponds exactly to simulating
n replications of N iid observations ∼ N σ

d , since there is no dependence with time.
Here, we try our entropy estimate on the simplest possible target: the pdf of the standard

Gaussian N 1
d . This allowed us to compare the entropy estimate based on the Monte-Carlo

(MC) integration of the known log(N 1
d ) from (2) and the NN estimates of H(N 1

d ) from (4). In
addition to knowing the true entropy from (8), another advantage is that we can reasonably
assume that the gaussian density pt ≡ N 1

d satisfies the P&T conditions required by the NN
entropy estimates (see a proof in Appendix A.3 for the univariate case). Our results also show
numerical evidence of consistency.

We ran this model for dimensions between 3 and 30, and N ranging from 500 to 30, 000
observations. Examples of typical results for d = 20 are provided in Table 1. We can see
that the bias of the NN estimation is much more affected by the dimension than the variance.
Remember that it is “unfair” to compare the MC estimator with the NN estimator, since the
former is a simple application of the Law of Large Numbers for a known log(N 1

d ), whereas in
the latter the density itself is estimated from the sample. We also observed that in this case,
the bias is negative for large d, leading to the under-estimation of H(N 1

d ). Bias considerations
in actual (A)MCMC setups will be discussed more deeply in Section 5.

Table 1: 100×Bias and standard dev’s for estimation of H(N 1
d ) over n = 100 replications of

samples of size N , for the d = 20 Gaussian target. Here the true H(N 1
d ) = −28.38.

N MC bias MC sd NN bias NN sd

500 1.6296 13.4395 -101.0047 15.2934
1000 -0.6200 10.4458 -88.8441 12.1195
5000 -0.0637 4.4483 -60.6133 5.4353

10,000 -0.4023 3.0028 -52.0266 3.3988
20,000 -0.0048 2.2053 -44.0156 2.6230
30,000 0.3701 1.9592 -39.2813 2.2468
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4.2 Multidimensional Gaussian mixtures

We illustrate here our methodology on a synthetic but more complex target density: a 3-
components mixture of multivariate, d-dimensional Gaussian distributions,

f(x) =

3∑
j=1

λj N
µj ,Σj

d (x),

The three weights are set to λj = 1/3, the mean vectors and (spherical ) covariance matrices
are set to (with the notations introduced in Section 4.1)

µ1 = 01d, µ2 = 41d, µ3 = −41d, Σj = jId, j = 1, 2, 3.

The advantage of such a synthetic model is that it is defined for any dimension, but the
complexity of the target increases with d (the distance between modes increases and the
modes get more and more separated and spiked). Note that here the normalizing constant
of f is known, so that theoretically the sequence of marginals pt from a proper (converging)
MCMC satisfies K(pt, f) → 0 as t → ∞. We compare several standard, well known MCMC
algorithms for recovering this target:

• Two RWMH with Gaussian proposals Nd(θt;σ2Id) resulting in slow or fast MCMC’s
depending on the magnitude σ2 of their (spherical) variance matrix that we set to
σ2 = 1 (algorithm called RW1 in the sequel) and 4 (RW4).

• Three Independence Samplers (IS) with Gaussian proposals N σ
d and the choices σ2 = 2

(IS2 in the sequel), σ2 = 9 (IS9) and 16 (IS16).

The idea driving the choices above for the tuning parameters of the candidate MCMC’s
is that we want to compare fast, slow and even MCMC’s not converging in practice (i.e., in a
feasible amount of iterations). For this Gaussian mixture target in small dimensions (d ≤ 2),
it is easy to figure out how to obtain such algorithms. For instance, Fig. 1 displays the target
and five proposal densities for the one-dimensional case. For the IS’s, the practical support
of the proposal density, within which each proposed next move lies, is suppose to include the
region of interest of the target. This is definitely not the case for σ2 = 2, hence IS2 can
be viewed in practice as a non converging algorithm. Larger variances should lead to better
algorithms, but it is not easy to tell which value of σ2 is the best choice. Also, the IS converges
geometrically if the proposal have heavier tails than the target, which is not the case here.

Our method then shows how these strategies behave in higher dimension, where the three
components get more and more separated and spiked. We detail some results of our experi-
ments, associated to Figs 2 and 3.

Fig.2: In small dimensions like d = 2 (top panel), our criterion delivers the right answer
straightforwardly, since there is no noticeable bias in the estimates, even with N = 500
chains. All the convergent MCMC’s stabilized well before n = 1000 iterations. IS2 is not
converging and is almost stabilized to a non-zero value in these n = 1000 iterations. Similar
runs for more iterations show clearly its non convergence, and increasing N up to say 1000
reduces the variance, resulting in easier-to-read diagnostics. The bottom panel displays a
similar experiment, but now in dimension d = 10, and for N = 5000 chains to illustrate the
variance reduction resulting is smooth curves (so many chains are not needed to get a readable
diagnostic). The two RW’s converge, but note that RW4 is less performant than RW1 in this
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Figure 1: Target density (bold grey), IS proposal densities (solid lines), and RWHM proposal
densities (dashed lines, located on the arbitrary current position ∗, for d = 1.

higher dimension. IS2 is stabilized away from zero, indicating non convergence. It is hard to
tell in 1000 iterations wether IS9 and IS16 will converge at some point, but 1000 iterations are
sufficient to tell that these are slow, comparing with the RW’s fast stabilizations. Actually
running the experiment up to n = 10, 000 show that IS16 is slow but converging, whereas IS9
convergence is not clear. This is because the proposal “almost covers” the region of interest
of the mixture.

Fig.3: As expected, the scale of the number of iterations required to detect stabilization
increases with the difficulty associated to the dimension, hence in this figure two simulations in
the d = 20 dimensional case have been ran up to n = 10, 000 iterations. The difference between
top and bottom panels is just the number of iid chains, N = 500 (top) and N = 10, 000
(bottom). This last number has been chosen intentionnally huge to illustrate the variance
reduction, bias difficulty, and the fact that running so many chains is feasible but not needed
to obtain a meaningful criterion. Note that this example with d = 20, n = 10, 000 and
N = 500 only requires about about 25mn of CPU time per algorithm on a 12-cores single
workstation. The same example in dimension d = 30 required 32mn of CPU time.

One purpose of Fig.3 is precisely to illustrate the bias problem. Indeed, if we look at the top
panel and the three IS’s only, we conclude that IS16 and IS9 are non or very slowly converging,
and that IS2 quickly stabilizes near (and above) 0. Hence if we were only comparing algorithms
for stabilization near 0, we would falsely conclude that IS2 is the preferable algorithm. But
we already know that IS2 is not a convergent MCMC in this synthetic example. This bizarre
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results is due to a bias in H(pt) estimation. Looking now at the curves for the RW’s, we
see that these stabilize on a common negative value, which is theoretically impossible since
K(pt, f) ≥ 0. Hence there is a negative bias, more prominent in the top panel with just
N = 500 chains. Looking at the bottom panel, we see that estimating the entropy from
samples of size N = 10, 000 has the effect of reducing the variance giving more accurate
curves, but only slightly reducing the bias: all the curves are just shifted from a small amount
(enough to tell that IS2 is actually not convergent). The difference between these two plots
illustrate the fact that the bias reduces dramatically slowly with N , and that since all the
stabilization values are biased, we cannot rely on stabilization near 0 to assess convergence or
lack of convergence.

There are two reasons allowing us to evaluate the competing algorithms in view of Fig.3
top: (i) the property of the Kullback divergence says that K(pt, f) decreases when pt → f ,
so that if the bias is of the same order in all the algorithms, the faster decay and smaller
stabilization value is associated to the best algorithm; (ii) we have a prior knowledge that the
RW’s are convergent MCMC’s, without knowing their rates of convergence. The two RW’s can
be viewed here as convergent benchmarks, and since they stabilize at the same value, it means
that their biases are quite identical. To summarize, we can conclude that RW1 is preferable,
RW4 is convergent but slower (probably as a consequence of the more spiked component
modes so that its proposal variance is comparatively getting too large), IS2 is non convergent
since it stabilizes above the benchmark RW1, and IS9 and IS16 may be convergent but even
much slower. This diagnostic comes from the analysis of the top panel only, i.e. N = 500 is
enough to get a conclusion. The next section details all these methodological questions.

5 How to handle the bias in large dimension

The experiments from Section 4 show that some care shoud be taken in the analysis of
the plots of the estimates of t 7→ K(pt, f) delivered by our techniques, particularly in high
dimension (say d ≥ 10) where the bias becomes visible. This effect of the dimension on the bias
has actually been already noticed in recent literature since nowadays applications of entropy
estimation in other fields require moderate to high dimensions. Our results are in accordance
with, for instance, Stowell and Plumbley (2009) and Sricharan et al. (2013). These studies
show that inH(p) estimation, one can expect the variance to decreases as O(N−1) whereas the
bias only decreases as O(N−1/(d+1)), which these authors called a “glacially slow” rate, and
this phenomenon occurs both for Kernel density and NN-based estimates. These behaviors
has been confirmed in our case using an iid sampler for a Gaussian target of known entropy
(Section 4.1). Hence, trying to achieve in practice the asymptotic unbiasedness guaranteed
by the theory by “just” increasing N is hopeless when d gets large.

Another difficulty comes from the unknown normalizing constant. In our experiment the
target f in the Monte-Carlo estimate (2) was entirely known, but in practical situations
like Bayesian inference for a parameter θ, f is a posterior distribution only known up to a
multiplicative constant, f(θ) = Cφ(θ) where C = (

∫
φ(θ) dθ)−1 is the (unknown) normalizing

constant. Hence what can be actually estimated by our method is K(pt, φ), and we have

K(pt, φ) = H(pt)− Ept(log φ) = K(pt, f) + logC.

This is why in (3) we noticed that in the (estimate of the) difference between the Kullback
divergences issued from two MCMC strategies with marginal densities pt1 and pt2, the unknown
logC cancels out and D(pt1, p

t
2, f)→ 0 as t→∞ if both strategies are converging.
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More precisely, consider first the asymptotic in t, i.e. along the iterations of the algorithm.
Define by ptb the successive marginals of a converging MCMC algorithm (e.g., a benchmark
algorithm), and by ptn the successive marginals of a non converging MCMC. This means that,
as t→∞, ptb → f and ptn → g 6= f so that

K(ptb, φ) → logC (9)

K(ptn, φ) → K(g, f) + logC > logC. (10)

Consider now the estimation K̂N (·, φ) based on a N iid copies of each MCMC. For d small
(say d < 10), the consistency result applies so that, for any fixed t ≥ 1,

K̂N (pt, φ) →
N→∞

K(pt, φ).

Thus (for N large enough) our criterion provides a graphical tool comparing convergent
MCMC’s from the decays of their K̂N (pt, φ)’s. But it can also be used as a convergence as-
sessment tool due to (9)-(10) which imply that a non-converging MCMC will stabilize above
a converging one.

For large d, each Kullback estimate is biased. As seen previously this bias, which comes
from the estimation of the entropy H(p) of any d-dimensional pdf p, depends on p and d
and will be denoted biasN (p, d). We can sketch the behavior of the estimates for fixed but
large enough N so that the variance becomes neglictible but the bias still remains, which is
what is achievable in practice for d large. Informally, for fixed t, the estimate stabilizes at the
theoretical value plus this bias,

K̂N (pt, φ) ≈ K(pt, f) + logC + biasN (pt, d).

We assume that biasN (pt, d)→ biasN (f, d) when pt → f , which seems fairly reasonnable and
implies that biasN (pt, d) ≈ biasN (f, d) for pt and f “close enough”. This is needed in order to
compare decays of t 7→ K̂(pt, f) before convergence, and is supported by numerical evidence
from the experiments in Section 4 and other experiments detailed below. Intuitively, even
a slow MCMC, if converging, should never been too far from its target, leading to similar
biases. Finally, for our two strategies above, we have for both N and t large enough:

K̂N (ptb, φ) ≈ logC + biasN (f, d) (11)

K̂N (ptn, φ) ≈ K(g, f) + logC + biasN (g, d). (12)

Unfortunately, we cannot assume in this case that K(g, f)+biasN (g, d) > biasN (f, d) without
additionnal assumptions on g and f ; in particular the biases can be of any sign. We thus
provide below an additional experiment which purpose is to evaluate, in a Gaussian situation
and for several choices of distinc distributions f and g, the typical biases and K(g, f) we can
expect. The idea is to check wether, for f 6= g, typical biases may be such that biasN (g, d) ≈
biasN (f, d), and both smaller in comparison with K(g, f).

Let N σ
d denote the pdf of the d-dimensional centered multivariate Gaussian with spherical

covariance matrix of diagonal variances σ2 as in Section 4.1. For σ = 1, the target density
N 1
d corresponds to the standard multivariate Gaussian for which biasN (N 1

d , d) has been in-
vestigated in Table 1 from a Monte-Carlo experiment only using the code provided in the
EntropyMCMC package. The same code can be used similarly to estimate any H(N σ

d ). More-
over, the Kullback divergence between two multivariate Gaussian distribution is known and
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available in closed form: For N µj ,Σj

d = Nd(µj ,Σj), j = 1, 2, we have

K(N µ2,Σ2

d ,N µ1,Σ1

d ) =
1

2

[
Tr
(
Σ−1

1 Σ2

)
+ (µ1 − µ2)T Σ−1

1 (µ1 − µ2)− d− log

(
det(Σ2)

det(Σ1)

)]
.

(13)
Our experiments only involve centered Gaussian for simplicity, and compareK(g, f)+biasN (g, d)
against biasN (f, d). Since the entropy H(N µ,Σ

d ) is not affected by the mean, but the Kullback
divergence is, differences between means would result in even larger K(g, f)’s.

Tables 2 and 3 show the typical results we obtain in the Gaussian case, for dimensions
20 and 40. In these tables, the case σ = 1 corresponds to the target f ≡ N 1

d , and the other
Gaussian pdf’s with larger variances to densities g 6= f . The column rel.bias gives the relative
bias of the entropy estimates

(ĤN (N σ
d )−H(N σ

d ))

H(N σ
d )

.

It is clear that for any fixed dimension, the biases are similar and neglictible in comparison
with the Kullback distances. For instance, in the case d = 40, g ≡ N 5

d and running our
criterion for N = 5000, we obtain (Table 3, row 5) biasN (f, d) = −3.3139 almost equal to
biasN (g, d) = −3.3152, whereas K(g, f) = 23.9. To summarize, in all the experiments we
did, biasN (g, d) ≈ biasN (f, d), and both smaller in comparison with K(g, f) even for small
differences between f and g’s.

To summarize, in large dimension, our experiments provide numerical evidence that biases
in the entropy estimates are of the same order for different densities with roughly the same
shape (this means for convergent ptb ≈ f but also for non convergent ptn ≈ g 6= f) and
neglictible in comparison with K(g, f)’s. Our criterion based ultimately on (11)–(12) can
thus compare efficiency of convergent (A)MCMC’s, and detect non-convergent algorithms.

Table 2: True entropies for some target pdf N σ
d and Kullback distances to the reference N 1

d ,
together with estimated biases and standard deviations (sd) of the NN entropy estimate based
on n = 100 replications of N parallel chains, in dimension d = 20.

N σ2 H(N σ
d ) K(N σ

d ,N 1
d ) b̂iasN (N σ

d , d) rel.bias(%) NN sd

1 -28.4 0 -0.8652 3.0489 0.1097
1000 5 -44.5 23.9 -0.8685 1.9528 0.1160

10 -51.4 66.97 -0.8913 1.7338 0.1069

1 -28.4 0 -0.6061 2.1356 0.0518
5000 5 -44.5 23.9 -0.6099 1.3713 0.0558

10 -51.4 66.97 -0.6019 1.1709 0.0537

1 -28.4 0 -0.5084 1.7914 0.0376
10,000 5 -44.5 23.9 -0.5138 1.1553 0.0397

10 -51.4 66.97 -0.5207 1.0129 0.0364
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Table 3: True entropies for some target pdf N σ
d and Kullback distances to the reference N 1

d ,
together with estimated biases and standard deviations (sd) of the NN entropy estimate based
on n = 100 replications of N parallel chains, in dimension d = 40.

N σ2 H(N σ
d ) K(N σ

d ,N 1
d ) b̂iasN (N σ

d , d) relbias(%) NN sd

1 -56.8 0 -4.0243 7.09 0.1823
1000 5 -88.9 47.8 -3.9921 4.49 0.1644

10 -103 133.9 -4.0222 3.91 0.1636

1 -56.8 0 -3.3139 5.8387 0.0781
5000 5 -88.9 47.8 -3.3152 3.7272 0.0765

10 -103 133.9 -3.3147 3.2242 0.0749

1 -56.8 0 -3.0610 5.3932 0.0500
10,000 5 -88.9 47.8 -3.0784 3.4610 0.0448

10 -103 133.9 -3.0574 2.9739 0.0524

6 Conclusion

We have proposed a methodological approach to evaluate (A)MCMC efficiency and control of
convergence on the basis of intensive simulation only. The diagnostic is based on a practical,
easy-to-understand graphical criterion. To evacuate the difficulty induced by the bias in
high dimensions we have introduced a benchmark convergent MCMC which indicates when
stabilization means convergence.

Since our method requires intensive simulations that may be computationally demanding,
all our algorithms have been implemented in a package named EntropyMCMC for the R sta-
tistical software (R Core Team, 2013) that will be publicly available in a near futur. This
package takes advantage of recent advances in parallel, High Performance Computing (HPC)
using the Rmpi package (Yu, 2012). All the examples shown in this paper have been ran with
this package on multicore workstations and the regional cluster CCSC1. These simulations
(or part of it) from the best sampler are recyclable after comparisons, or can be re-used in
the fly for statistical inference.

Theoretically, we have shown that the peak and tail conditions required for the NN-
estimates consistency are satisfied by the successive densities of a generic class of MH including
Adaptive MH MCMC algorithms, under uniform conditions controlling the adaptation. Like
in Chauveau and Vandekerkhove (2013) for a Kernel density based entropy estimate, the
difficulty often comes from the fact that a MH kernel has a point mass at the chain’s current
position. We have then assumed that these conditions were satisfied for the MCMC algorithms
used in our experiment, and this have been supported by numerical evidence of consistency.

Recent researchs extend the NN idea to a k-th nearest neighbor distance estimate (Singh
et al., 2003), see also Wang and Kulkarni (2009). There are some hope that these extensions
together with recent computing strategies for computing approximate k-NN estimates reduce
the bias in entropy estimation. However, it also brings back a tuning parameter (how to
choose k) that plays somehow the role of the bandwidth in the kernel density estimation
approach. These considerations are perspective for futur work.

1Centre de Calcul Scientifique en région Centre
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A Appendix: Controlling the successive marginals

We provide in this Appendix some technical results which allow us to control the successive
marginals of some generic AMH algorithms, in order to prove the P&T conditions (5)–(6) in
Proposition 1.

A.1 The MH independence sampler case

To help intuition, we start here by showing how successive marginals of a simple independent
MH sampler can be controlled using the assumptions (i)–(iii) of Proposition 1 (where q does
also simply not depends on the past). Recall that “independent” here means that the proposal
density q does not depend on the current position of the chain. Let us denote the probability
of accepting the move y from x,

α(x, y) = min

(
1,
f(y)q(x)

f(x)q(y)

)
.

Then

p1(y) =

∫
p0(x)q(y)α(x, y)dx+

∫
p0(y)q(z)(1− α(y, z))dz

≥ aϕ1(y)

[∫
ϕ1(x)α(x, y)dx

]
.

We have also

α(x, y) ≥ min

(
1,
af(y)

q(y)

)
≥ min

(
1,
aϕ1(y)

ϕ2(y)

)
= a

ϕ1(y)

ϕ2(y)

since aϕ1 ≤ q ≤ ϕ2. This leads to

p1(y) ≥ a2ϕ
2
1(y)

ϕ2(y)

∫
ϕ1(x)dx = a2ϕ

2
1(y)

ϕ2(y)
C1.

Iterating, we have

p2(y) ≥ q(y)

∫
p1(x)α(x, y)dx ≥ a4C1

[∫
ϕ2

1(x)

ϕ2(x)
dx

]
ϕ2

1(y)

ϕ2(y)
. (14)

By induction we prove that

pt(y) ≥ q(y)

∫
pt−1(x)α(x, y)dx

≥ a2t

[∫
ϕ1(x)dx

]
.

[∫
ϕ2

1(x)

ϕ2(x)
dx

]t−1
ϕ2

1(y)

ϕ2(y)

= a2tC1C
t−1
2

ϕ2
1(y)

ϕ2(y)
.

To majorize p1(y) we can simply notice that p1(y) ≤ q(y) + p0(y) ≤ 2ϕ2(y) and iterate to
get pt(y) ≤ (t+ 1)ϕ2(y). However this will not hold in the adaptive case.
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A.2 The Adaptive MH (AMH) case

We turn now to the case of the AMH generic algorithm defined in Section 3. For more obvious
notations, we will not use the common description of an adaptive MCMC algorithm through
a Markov kernel indexed by ϑt = ϑ(xt0) as we did previously, but directly by the trajectory
from all the past xt0 to indicate dependence.

Lemma 1. Let (ϕ1, ϕ2) be nonnegative functions satisfying conditions (i)–(iii) of Proposi-
tion 1, and qxt0(y) be an adaptive proposal density depending on the past such that af ≤ qxt0 ≤
ϕ2 for any xt0 ∈ Ωt+1. Then, for all y ∈ Ω,

a2tC1C
t−1
2

ϕ2
1(y)

ϕ2(y)
≤ pt(y) (15)

and
pt(y) ≤ 2(C3 + 1)t−1ϕ2(y), (16)

where the constants a,C1, C2, C3, are defined in Proposition 1.

Proof. For all t ≥ 1, we define the generic AMH transition a kernel depending on the past
xt−1

0 = (x0, . . . , xt−1):

Pxt−1
0

(xt−1, dy) = qxt−1
0

(y)αxt−1
0

(xt−1, y)dy

+

∫
qxt−1

0
(z)
[
1− αxt−1

0
(xt−1, z)

]
dz δxt−1(y) dy (17)

where

αxt−1
0

(xt−1, y) = min

(
1,
f(y)qxt−1

0
(xt−1)

f(xt−1)qxt−1
0

(y)

)
is the probability of accepting the move y from xt−1 in the MH step.

We handle first the minorization part (15). The technique is similar to the simplest inde-
pendence sampler case of Appendix A.1, except that here we need to minorize the transition
kernel itself as follows:

Pxt−1
0

(xt−1, dy) ≥ qxt−1
0

(y)αxt−1
0

(xt−1, y) dy.

Similarly to the independent sampler case we have:

αxt−1
0

(xt−1, y) ≥ min

(
1,

af(y)

qxt−1
0

(y)

)
≥ aϕ1(y)

ϕ2(y)
,

which implies

Pxt−1
0

(xt−1, dy) ≥ a2ϕ
2
1(y)

ϕ2(y)
dy.

Proceeding in that way we have the following minorization for the densities:

pt(y) dy =

∫
p0(x0) dx0Px0(x0, dx1)Px10(x1, dx2) . . . Pxt−1

0
(xt−1, dy)

≥ a2t

∫
ϕ1(x0)

ϕ2
1(x1)

ϕ2
2(x1)

. . .
ϕ2

1(xt−1)

ϕ2(xt−1)
dxt−1

0

ϕ2
1(y)

ϕ2(y)
dy

= a2tC1C
t−1
2

ϕ2
1(y)

ϕ2(y)
dy.
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To obtain the majorization (16) of the densities, we notice from (17) that:

Pxt−1
0

(xt−1, dy) ≤ qxt−1
0

(y)dy + δxt−1(y) dy ≤ ϕ2(y)dy + δxt−1(y) dy = Φ(xt−1, dy),

where
Φ(x, dy) := ϕ2(y)dy + δx(y) dy

is a non-normalized transition kernel, i.e.
∫

Φ(x, dy) = C3 + 1. This leads to

pt(y) dy =

∫
p0(x0) dx0Px0(x0, dx1)Px10(x1, dx2) . . . Pxt−1

0
(xt−1, dy)

≤
∫
p0(x0) dx0Φ(x0, dx1)Φ(x1, dx2) . . .Φ(xt−1, dy).

We can now study separately the right hand side term of the above inequality. For the first
step we have:

p1(x1) dx1 =

∫
p0(x0) dx0Px0(x0, dx1) ≤

∫
p0(x0) dx0Φ(x0, dx1)

=

∫
p0(x0)

[
ϕ2(x1)dx1 + δx0(x1) dx1

]
dx0

= ϕ2(x1)

[∫
p0(x0)dx0

]
dx1 +

[∫
p0(x0)I{x1}(x0) dx0

]
dx1

≤ ϕ2(x1) dx1 + p0(x1)dx1

≤ 2ϕ2(x1) dx1.

Similarly for the second step (the integrals being w.r.t. dx0 and dx1),

p2(x2) dx2 =

∫ [∫
p0(x0)Px0(x0, dx1) dx0

]
Px10(x1, dx2)

≤
∫ [

2ϕ2(x1) dx1
]

Φ(x1, dx2)

≤
(∫

ϕ2(x1) dx1

)
2ϕ2(x2) dx2 + 2ϕ2(x2) dx2

= 2(C3 + 1)ϕ2(x2) dx2.

So that, by induction,
pt(xt) dxt ≤ 2(C3 + 1)t−1ϕ2(xt) dxt.

This bound degenerates as t→ +∞ but it is finite for each fixed iteration t.

A.3 P&T conditions in the Gaussian case

We check here that the P&T conditions are satisfied when f is the pdf of the standard normal
N (0, 1). P&T condition (5) is obvious. For P&T condition (6), let

I :=

∫
R×R

log(|x− y|)2+αf(x)f(y) dx dy. (18)
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We remark that ∫
R×R
| log(|x− y|)|2+αe−

1
2

(|x|2+|y|2)dxdy = I1 + I2,

where

I1 :=

∫
R

(∫
|x−y|<ε

| log(|x− y|)|2+αe−
1
2

(|x|2+|y|2)dy

)
dx,

and

I2 :=

∫
R

(∫
|x−y|≥ε

| log(|x− y|)|2+αe−
1
2

(|x|2+|y|2)

)
dx.

I2 is trivially convergent. For I1, by the change of variable u = y−x and a symmetry argument
we have:

I1 =

∫
R

(∫
|u|<ε

| log(|u|)|2+αe−
1
2

(|x|2+|x−u|2)du

)
dx

≤
∫
R

(∫
|u|<ε

| log(|u|)|2+α du

)
e−

1
2

(|x|2) dx <∞,

where the last integral in convergent because, for ε < 1/e,∫
|u|<ε

| log(|u|)|2+α du = 2

∫ ε

0
| log(u)|2+αdu ≤ 2

∫ ε

0
log(u)4 du <∞.
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Figure 2: Kullback estimates t 7→ K̂N (pt, f) for n = 1000 iterations of the 5 MCMC strategies
RW1 (black), RW4 (red), IS2 (green), IS9 (blue), IS16 (light blue). Top: d = 2 and N = 500
chains; bottom: d = 10 and N = 5000 chains.
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Figure 3: Kullback estimates t 7→ K̂N (pt, f) for d = 20 and n = 10, 000 iterations of the 5
MCMC strategies RW1 (black), RW4 (red), IS2 (green), IS9 (blue), IS16 (light blue). Top:
N = 500 chains; bottom: N = 10, 000 chains.
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