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Fig. I. Schematic drawing of ~o~~nf~~~ng jet 
mation of 8 function (shown dashed). 

approxi- 

performing the same task. The main advantages of 
the present applications of the NTDM over those 
in [4,5] are: (a) the use of the permitted discrepancy 
to reduce computation effort, and (b) a general 
fo~ulation that is easily applied to different types of 
PDEs. 

The application of the NTDM to the numerical 
solution of engineering field problems consists of two 
~nde~~dent steps: the controlled discrepancy (conti- 
nuity, discontinuity) and the implementation of the 
differential equation. As for the differential equation, 
its representation is independently developed and 
implemented. As an example for the application of 
the method to field probIems, two-dimensional non- 
linear heat conduction was designated. This should 
be viewed, however, as a representative example of a 
wider family of engineering problems such as struc- 
tural torsion or membrane stretching. An application 
of the method to two-dimensional elasticity will be 
given in a forthcoming work 161. 

It is evident that there is a great potential in further 
development of the NTDM. The results of this work 
indicate that the combination of controlled dis- 
crepancy between jets and the estimation of the 
truncation error, leads to improved efhciency. Ad- 
ditional motivation is provided by the work of Son- 
nemans et al. [7], who used the Taylor series 
expansions for the solution of ordinary differential 
equations, and showed that efficiency can be con- 
siderably improved by increasing the order of the 
Taylor series approximation” In the present work 
only second jets were used, but the order will be 
increased in further works. Yomdin and Wiener@] 
address some theoretical aspects related to the sol- 
ution of ordinary differential equations by the jet 
approach. 

In the following sections the formulation of some 
applications of the NTDM is described in three parts. 
In the first part the implementation of the PDE in two 
alternative methods is presented. The second part 
describes the implementation of the connectivity and 

boundary condition equations with controlled dis- 
crepancy. The third part describes the arrangement 
and solution of the algebraic equations. 

2.1. The ~~1~~~~~~~~~~~~ oftk PDE 

Consider the operator equation describing a 
boundary value problem for the function u in the 
domain a 

Au =f in Q, (1) 

where u is required to satisfy some boundary 
conditions. Among the various variational approxi- 

mation methods available for finding an approximate 
solution of this problem, we choose to use the 
collocation method and the method of weighted 
residuals. While the application of the collocation 
method was introduced in [l], we will emphasize 
here the application of the method of weighted 
residuals. 

Consider the N nodal points distributed arbitrarily 
in the domain Q and some additional nodes dis- 
tributed on the boundary (see Fig, 2). As mentioned 
in the in~oduc~ion the approximate solution will 
be represented by a colfection of pjl- k-jets 
{24,, i = 1, ” *. ,iV} about the internal nodes. With 
each node i, we associate a subdomain ST, of R 
containing a number of nodes on its boundary. We 
consider the solution of the partial differential 
equation in the domain f& subject to boundary 
conditions offered by the yet unknown values of the 
function at the boundary nodes of Qi. It is possible 
that some of the neighboring nodes are genuine 
boundary nodes. (Eventuahy, as mentioned in the 
introduction and as will be described in the next 
section, these conditions will bc satisfied only ag 
proximateIy.) 

Consider the base functions for polynomials of 
order k 

& = x’~; & = y/z; etc., 

Fig, 2. The discretization of the domain. 



in the local coordinate system: x’= x -xi; 
y’ = y - yi. We may write 

t 
ui= 1 qj4,; i=l,N, (2) 

j=l 

where the coefficients C, are those to be determined 
in order to solve the local boundary value problem. 
The substitution of the approximation (2) in the 
operator equation results in a residual 

E(x, y, cij) 2 A(q) -f # 0. (3) 

The collocation method states that choosing the 
point x’ = y’ = 0 as the collocation point, the 
residual at this point is set to zero. Thus, we have 
to satisfy 

[Ah) -fl.x,=v~=o = 0. (4) 

The method of weighted residuals obtains the 
coefficients cij by setting the integral (over the 
subdomain Q) of the weighted residual of 
the approximation (3) to zero 

vi(x’, y’)E(x’, y’, cij) dx’ dy’ = 0, (5) 

where vi is the weight function. In principle, 
additional equations can be written for each 
subdomain with the use of additional independent 
weight functions. In the present implementation, 
however, one weight function for each subdomain 
will be used so that the implementation of the 
PDE either by the collocation method or by the 
weighted residuals method will result in a single 
equation for the jet’s coefficients. Note that we may 
obtain eqn (4) from the requirement (5) for the 
problem case where vi(x’, y’) = 6(0,0), the Dirac 6 at 
the ith node. 

To demonstrate a specific implementation of 
a PDE we consider the example of nonlinear 
steady state heat conduction. The problem of 
nonlinear steady state heat conduction is defined by 
Poisson’s equation with boundary conditions of 
imposed temperature or heat flux. The two- 
dimensional boundary value problem in Cartesian 
coordinates is 

Here T(x, y) is the temperature, 4(x, y) the heat 
source and we will consider the nonlinear case in 
which the dependence of the material conductivity k 
on the temperature is given by 

(11) 

k(T) = k,(l + aT). 

Here we suggest a function that is Co, has a value of 
one at the local origin and vanishes on the boundary. 
Figure 3 shows a local discrete domain at node 1 and 
the local Cartesian coordinates. In addition, n neigh- 

(7) boring points define the boundary of the subdomain 
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The following polynomial function T, is the ap- 
proximated, or discretized, temperature distribution 
over this region in the vicinity of node 1 

T,(x,y)=a,+b,x’+c,y’+d,x’y’+e,x’2+fiy’2. 
(8) 

Throughout this work a polynomial function of order 
2 is considered. For the neighborhood of any point 
i, the coefficients ai. . .f, of the approximation T,, are 
unknown and yet to be determined. In particular, 
points on the boundary are defined as neighboring 
points for internal nodes which are located near the 
boundary, but no polynomial approximation is intro- 
duced for boundary points. If we have N internal 
points, the total number of unknowns will be N times 
the number of coefficients in the polynomial function, 
which yields 6N in our case. 

To apply the collocation method (4) the jet (8) is 
substituted into the differential equation (6), differen- 
tiating, multiplying by k(T) (with T represented by 
the polynomial), and finally setting xi and yi to zero 
(stating that the polynomial function satisfies the 
differential equation at the central point i), will result 
in the equation 

2e +2f= -E--a[b2+c2+2t3(e +f)], (9) 
s 

where a to f are the coefficients which correspond to 
the central point i. In the above equation, the left- 
hand side contains the linear terms and the right- 
hand side the nonlinear terms, multiplied by a. 
Obviously, in case of temperature independent con- 
ductivity (a = 0, in eqn (7)), the nonlinearity vanishes 
also in equation (9). 

In order to apply the formulation by the weighted 
residual method the Poisson equation (6) is substi- 
tuted in (5) 

s ( Vi --&k(T):-;k(T)g-q 
> 

dxdy =O. 
u, 

(10) 

A weight function vi that is defined to be zero on the 
boundary of the local subdomain will simplify the 
form of the weak formulation (10). Using such a 
weighting function and Green’s theorem, the weak 
formulation takes the form 

dxdy=O. 
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Fig. 3. A local subdomain. 

S& (in Fig. 3, n = 6 for example). A weight function 
that satisfies the above conditions would be an n- 
faced pyramid of height 1 at the local origin node 1. 
The function v may be defined, therefore, separately 
over each triangle (shown hatched in Fig. 3) and for 
the triangle 123, it is 

%3 = 

A, - x’dy + y’Ax 

4, ’ 
(12) 

where A ?, =x;yj -x;y; is twice the area of the 
triangle 123, Ax = xi - xi and Ay = y; - y;. Substi- 
tuting (12), (8) and their derivatives into (11) (consid- 
ering for example six triangles as in Fig. 3) results in 

12, + 134 + 145 + ,156 -I- 167 + r,, = 0, 

where, for the first triangle 

(13) 

I23 = 

S[ fk3 

+)@I + dy’ + 24x’) 

23 

++)(c+dr.+2fy’) 

- l-~x’++$ Q(x,y) dx’dy’ 
23 > 1 

and similar integrals define the rest of the triangles. 
The number of integrals for which this process should 
be carried out is identical to the number of neighbor- 
ing points we consider. 

The calculation of the integral is simple only for the 
case when 4 is uniform and a = 0. In this case the 
discretized PDE obtained is identical to that obtained 
by the collocation method (that is if we substitute 
a = 0 in eqn (9)). As a more genera1 example, con- 
sider variable conductivity as defined in (7) and heat 
source that depends on the x coordinate as 

4(x) = qo(w* + w,x2 + w2x4 + w,x6). (14) 

Note that x is the global coordinate and when 
substituting (14) into (13), we used x = x, + x’. The 

substitution and the integration of (13) was per- 
formed by a computer program for symbolic manipu- 
lation. The following is the resulting expression for 
the first triangle 

I*,=2e+2f+C,a+C,~, (15) 
I 

where 

c,= w,+ w,(lox:+ 5x,x; +x;*+ 5x,x; 

+ xix; + x;l)/lo+ w,(35xf + 35x:x; 

+ 21x:x5* + 7x,x;’ + xi” + 35x:x; 

+ 21x:x;x; + 7x,x:x; +x:x; + 21x:x;* 

+ 7x,x;x;2+x;2x;r+ 7x,+3 +x;x;3+x;4)/35 

+ w,(84$ + 126x:x; + 126~;~;~ + 84~;~;~ 

+ 36~;~;~ + 9x,x;’ + xi6 + 126x:x; 

+ 126~;~;~; + 84x;~;~x; -t 36x:xi3x; 

+ 9x,xi4x; + x;‘x; + 126~:~;~ + 84x;x;x;* 

+ ~~x;.x;~x;~ + 9x,xi3x;* f x;“x;‘+ 84~;~;~ 

+ 36x:x;~;~ + 9x,x;*x;’ + xi3xi3 + 36x:x;’ 

+ ~x,x;x;~+x;~x;~ + 9x,xi5 f xix;’ + xi6)/84 

and 

c,= b2+cZ+2n(e +f)+$(x;+x;) 

+ e(y$ +Y;) + 3f(y; +Y;)) 

+$(x;+x;)+3e(x;+x;) 

+ d(y$+y;)) +$e2(x;*+x;x; f x;‘) 

d2 ef 
+"f2(y;2+y;y;+Y;2)+ -+- 5 ( > 10 5 

x (xi’ +x5x; + xi’+ y;* +y;y; -i-y;*) 

+ id((e +f)(2xX + xjy;+x;y;+2x;y;)). 

This was implemented in a Fortran computer pro- 
gram. In eqn (15) terms were discarded. These are the 
terms that cancel each other when the summation of 
(13) is performed. Although the result (13, 15) is more 
complex than (9), it is similar in principle. 

Equations (9) or (13), to which we will refer 
hereafter as the discretized PDE, are the only ones in 
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this algorithm, that are unique to the present example 
of heat conduction. When implementing this algor- 
ithm to a computer code, the relation of the dis- 
cretized PDE takes place as a separate subroutine 
that can be easily replaced whenever a different PDE 
is to be solved. From now on, the formulation of 
the algorithm is general and is applicable to any 
boundary value problem. 

2.2. The compatibility requirements 

The above-mentioned discretized PDE provides 
one out of at least six conditions, needed at each 
point, in order to determine the six unknown co- 
efficients of its jet. The other conditions are produced 
by the compatibility requirements. We require that at 
any neighboring nodej, the value of the jet about the 
node i (the origin) and the value of the jet about node 
j, be compatible. If j is an internal node then the 
condition is 

a, + bib, + cihY + dih,h, + e,hi +Jh: - aj = 0 + 6. 

(16) 

If j is on the boundary, either 

a, + bib, + cihY + d,h,h, + e,hz +Jh: = Tj + E 

(17) 

or 

bi cos 7 + ci sin y + di(h, sin y + h, cos y) 

+ e,2h, cos y +1;2h, sin y = -- e +e’ (18) 
k(?) - 

apply. In (16-18) the permissible errors are 

(19) 

and h, and h, are the x and y components (respect- 
ively) of the relative position vector, h, between i and 
j (see Fig. 2). Equation (17), states that the expansion 
of T, at a neighboring node j on the boundary, should 
approximate the prescribed temperature q. For 
neighboring nodes on a boundary with prescribed 
flux, eqn (18) is used. It is the result of using the 
components of discretized temperature gradients 
dT/dx(xj, y,‘) and dT@y(xj’, y;) to calculate the 
normal heat flux and comparing it to the boundary 
condition. The error permitted in the flux boundary 
condition is computed with an order of expansion 
which is one lower than the former continuity con- 
ditions, since the Taylor expansion was differentiated 
once. 

The positive real number Q, in eqns (19), is a 
constant used to evaluate the order of the permissible 

t In the following equations the following matrix notation 
is used: [ .] denotes a matrix, { . } a column vector and L . J 
a row vector. 

discrepancy according to the relation 6 = O(hk + ’ ) for 
the truncation error (in our case the polynomial 
order, k, is equal to two). One may take e0 as one 
initially. After an approximate solution is computed, 
the error may be evaluated, and a better estimation 
for e0 can be obtained. 

In order to obtain the minimal number of con- 
ditions so that the coefficients of the jets can be 
determined uniquely, compatibility equations with 
five neighboring nodes should be written as in [I]. 
Then, having six equations for each internal point, 
and N arbitrarily distributed points in the domain, 
one may write a system of 6N equations and solve it 
for the 6N unknown coefficients of the various jets. 
A more general approach would consider a variable 
number of n > 5 neighboring points that would yield 
an overdetermined set of (n + l)N equations. As 
discussed in the introduction, this has the advantages 
of better geometrical flexibility and improved accu- 
racy [4,5]. Henceforth it is assumed that n > 5 is the 
number of compatibility equations used for the jet 
corresponding to any node i, i = 1,. . . , N. 

If possible, an effective way to solve the problem 
would be to treat first the blocks of n + 1 equations 
corresponding to each node (n compatibility 
equations and one discretized PDE), so that each 
such block is reduced to one equation. In such a way, 
we will have to solve eventually a system of N 
equations rather than a system of at least 6N 
equations (in case we take the minimal n = 5 compat- 
ibility equations). It turns out that it is convenient to 
reduce the block of (n + 1) equations obtained for the 
node i to a single equation in the coefficient a, and the 
n coefficients aj for the neighboring nodes. The pro- 
cedure for the reduction of such a block also takes 
care of the fact that the set of (n + 1)N equations is 
overdetermined. 

The block of n + 1 equations may be written in 
matrix form as? 

KlI-4 > = PI AZ w, (20) 

where [K] is of size (n + 1) x (n + 6), {A } is a column 
vector of dimension n + 6 which contains the six 
unknown polynomial coefficients of point i in 
addition to n coefficients, the a coefficients of 
the neighboring points. {F} and {E} are column 
vectors of dimension n + 1 containing the right-hand 
sides of conditions (9) or (13) and (16) to (18). 
Equation (20) is then segmented, dividing {A} to 
{Ai} = {ai, aj,, . . . ,ajn } and {A2} = {bi, Ci, 4, ei,A}, 
and so (20) breaks up into two equations 

LK,,J{A,j+LK,,J(A2)=F, (21) 

which is the vector form of the discretized PDE (9) 
or (13), and 

K211b41) + W221b421= IF21 f @2) (22) 
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which is the matrix form of the n compatibility or 
boundary conditions from (16)-(18). The set of n + 1 
equations with n + 6 unknowns (20), can be replaced 
by the following single equation with n + 1 un- 
knowns 

-F, ItLQJI41, (23) 

where 

LQJ = L~(IzJ~~~~~~~~~~II-~C~~;~I~~ 

In order to obtain (23) from (21), (22), some matrix 
manipulations were performed. In particular, we used 
a scheme for solving an overdetermined set of linear 
equations of the form [K](X) = fyj. In such a case, 
one premultiplies both sides of the set by the trans- 
pose of the matrix: [K]r[K){x 1 = [flr{yj to obtain 
the normal equations of the least square problem [9]. 

2.3. The solution of the equations 

The single row (23), expresses the relation between 
the coefficients a,, ai,, . . . , a,” for each nodal point. It 
is substituted in a global matrix in the form of 
eqn (20), which relates the a coefficients of all the 
points inside the domain. From the definition of the 
jet (8) it is clear that the value of the unknown 
dependent variable at any point i is a,. Hence, if in 
a linear case, onfy the values of Tat the nodal points 
are needed, the solution of global matrix equation 
provides the complete solution of the problem. 

It is only natural that the system of equations we 
obtained in the NTDM will be solved by an iterative 
method so that the accuracy of their solution will be 
according to the truncation error we expect. With this 
in mind, the solution is done in the present work by 
the Gauss-Seidel iterative method with successive 
over-relaxation [lo]. The conditions of permissible 
discrepancy are used when the associated error E, for 
each local relation (23) becomes the criterion for 
convergent of the dependent variable aj when solv- 
ing the global matrix by iterations. Stopping the 
iterative process whenever the values of the respective 
dependent variables are changed by magnitude that is 
less than E,, enables us to control the magnitude of 
the discrepancy according to an estimation of the 
truncation error that would result an~ay from the 
order of jets and grid spacing. The ability to save 
computation time using this method depends on 
whether it is possible to use an iterative method, that 
is if the solution will converge. Accelerating and 
assuring convergence may be done using some other 
iterative methods [lo] which are getting more atten- 
tion during the last decade [I l] and are being used 
also by the FEM. 

In a nonlinear problem, or in the case when values 
of T between nodes are also needed, it is necessary to 
obtain the rest of the polynomial coefficients, bi. . -f;. 

This is done by rewriting the relations (I 6)-( 18), this 
time the coefficients a, are known. Thus, for each 
node, an n x 5 overdetermined matrix is obtained 
and solved separately by the normal equations 
method. A nonlinear problem is solved by first 
assuming values for bi. . .f;, and after a linear soIution 
is obtained, these coefficients are determined and 
are substituted into the right-hand side of the dis- 
cretized PDF (9) or (13). Then, the whole process is 
performed iteratively until the successive values of 
coefficients aj differ in less than K$. Hence, the non- 
linear iterative procedure, as well as the whole sol- 
ution, are performed until all local desired accuracies 
are obtained. 1 

The procedure described above is very efficient 
for nonlinear problems, since the number of 
Gauss-Seidel iterations needed for the solution of the 
global matrix, decreases with nonlinear iteration 
steps. This is achieved by using the latest nonlinear 
iteration’s solution as an initial guess for the next 
Gauss-Seidel solution of the global matrix. 

3. A ONEDIMENSIONAL TEST CASE 

A one-dimensional test case of nonlinear conduc- 
tion, is considered, (eqn (6) is taken for the x direction 
only). The conductivity is temperature dependent (7) 
and heat generation may be nonuniform (14). The 
boundary conditions for the problem are 

dT 
‘;TT = 0; Tf,=, = T,. (24) 
0°C Ix-0 

The exact solution for this problem is 

T(x) = 
-1 -l-J2uF(x)+(l +aTL)2 

7 (25) 
a 

where 

F(x)=$ w~(L2-x2)+!$(L*-x4) 
s i 

+$6-X6)+$(L8--X8) , (26) 1 
The numerical solution by the NTDM is per- 

formed using different modes, namely with five or 
eight neighbors, in the collocations (differential) or 
weighted residuals (integral) formulations, and in 
combinations of those, in order to verify the algor- 
ithm in those modes. The numerical computation was 
performed using a general purpose two-dimensional 
code, but since the problem is one-dimensional the 
results in the y direction and the number of grid 
points in that direction are irrelevant. Figure 4 shows 
the absolute reiative errors obtained in each case as 
a function of the number of grid point in the x 
direction. The relative error is defined as the mean of 
ratios of the absolute error to the maximum of the 
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AA-.M.A Integral, 5 neigbors 
A-A&- Differential, 5 neigbors 
v Integral, 8 neigbors 
WBW Differential, 8 neigbors 

lo-‘,.~~‘,~~,,I.‘.‘.“.“““““” 0 
grid potits (in x &ection) 

30 

Fig. 4(a). 

A++A+ Integral, 5 neigbors 
W~A-A Differential, 5 neigbors 
BWXB+I Integral, 8 neigbors 
w%w Differential, 8 neigbors 

Fig. 4(c). 

- Integral, 5 neigbors 
-&A-A Differential, 5 neigbors 
D%%%o Integral, 8 neigbors 
E-EJBW Differential, 8 neigbors 

0 

grid poiits (in x &action) 
xc 

Fig. 4(b). 

A+A-A-A Integral, 5 neigbors 
-h- Differential, 5 neigbors 
weesc Integral, 8 neigbors 
c-a*- Differential, 8 neigbors 

10-~1.~.,~..,.,.,...,.,~,~,~,~,~~,1 0 
grid po%ts (in x &-ection),, . 

30 

Fig. 4(d). 

Fig. 4. Relative error vs number of grid points in various cases. (Linear-z = 0, k, = 0.2738, nonlinear- 
a = 8.439 x IO-‘, k, = 0.3294, uniform--w, = { 1, 0, 0, 0), nonuniform-w, = { 1, - 1, -0.5,0.1}.) 

temperature distribution (obtained by the exact sol- 
ution for each case). This was done in order to 
normalize the error, as the temperature distributions 
vary from case to case. Each case (a)-(d) is the result 
of applying the NTDM to a different problem, 
namely either to uniform or nonuniform heat gener- 
ation 4, and to either a linear or nonlinear problem 
(temperature independent or dependent conductivity, 
respectively). 

It is clear from all the graphs in Fig. 4 that the 
integral formulation (continuous curves) is more ac- 
curate and converges faster than the collocations 
formulation (dashed curves). In the linear and uni- 
form case (a), accuracy is good in all models even for 
coarse grids. It seems that there is no advantage in 
increasing the number of neighboring points with the 
collocations formulation, but this may be different in 
a more general test case. It was observed that the 
errors in the calculations are either above the exact 
solution or below it depending on the method of 
implementation of the NTDM used. This phenom- 
enon cannot be observed in the graphs since they 
show absolute values of the errors only. When con- 
sidering the signs of the errors, it seems that when 

integral formulation results are upperbounds, the 
collocations formulation results are lower bounds, 
and vice-versa. The phenomenon may be useful in 
order to verify that convergence is achieved by com- 
paring results of both formulations. It is particularly 
meaningful in nonlinear problems where it is difficult 
to determine when convergence is reached. 

4. TWO-DIMENSIONAL TEST CASES 

The purpose of the following two-dimensional test 
cases of nonlinear conduction is to demonstrate the 
ability of the NTDM to handle complex geometries 
and different boundary conditions, and to compare 
the results to those obtained by the FEM. 

Firstly, we consider a two-dimensional region with 
uniformly distributed internal heat source and tem- 
perature dependent conductivity. Figure 5 shows the 
mesh for the region as done by an automatic mesh 
generator for the FEM. Two mesh densities are 
shown, a basic coarse mesh (Fig. 5a) and a finer mesh 
(Fig. 5b) obtained by dividing each element of the 
coarse mesh to four elements. Note the irregularity of 
the meshes. A pre-processor that reads the data of the 
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;‘ESCRlBED 

HEAT 
FLUX 

TIME 1.000 

r-l 
100.0 

Fig. S(a). FEM course mesh. 

;IIESCR*BED 
HEAT 
FLUX 

TIME 1.000 

l-l 
100.0 

e 

B - 

Fig. 5(b). Four-fold refined FEM mesh. 

FEM mesh and generates automatically the input for On these meshes two cases of boundary conditions 
the NTDM code was written. A plot of this mesh is were considered. In the first case we specify heat flux 
of no interest since the NTDM grid uses the same through the arc (as shown in Fig. 5), constant tem- 
nodes as the FEM. peratures on the upper and lower boundaries, and the 
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977 

Fig. 6(a). FEM result for case 1. 

_______-------______ -______---- 
-_ ____----------___ - -..._ _-- _ _ -_----- -----...____ -__e-- - 

_ _ _ _--------_.___ 

__ _--- ---- ----___ 

500.0 

1000.0 

1500.0 

2DOfJ.O 

2500.0 

3000.0 

3500.0 

u000.0 

~500.0 

5000.0 

5500.0 

6000.0 

6500.0 

Fig. 6(b). NTDM result for case I. 

left, right and hole boundaries are insuiated. Figure a post-processor whiih produces quality drawings of 
6 shows the result of the computations as obtained by constant temperature contours (Fig. 6a). For the task 
FEM (Fig. 6a) and by the NTDM (Fig. 6b) for the of drawing the contours of constant temperature it is 
finer mesh (Fig. Sb). The FEM program IX& here has possible to develop an algorithm that takes advantage 
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Fig. 7(a). FEM result for case 2. 
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Fig. 7(b). NTDM for case 2. 

of the fact that the results obtained in the NTDM are (Fig. 6b). The qualitative comparison of the figures 
in the form of jets about the various nodes. We used shows good agreement between the methods. 
a primative program that follows the jet approach For the second case we consider the same region 
and produces less accurate but faster drawings and material where all the boundaries are at T = 0. 



Modified algorithms for NTDM 979 

Fig. 8. Comparison of absolute errors of FEM and NTDM 

The results for this test case using the NTDM and the 
FEM are shown in Fig. 7. Good agreement between 
the methods is manifested also in this case. 

To compare the errors obtained, an additional 
study of the second test case was performed. Using 
the FEM, the mesh of Fig. S(b) was refined in two 
more stages, thus providing results of the same 
problem for four degrees of refinement of the same 
region. Since an analytical result is not available for 
this problem, and since the FEM results seemed to 
converge with mesh refinement, we considered the 
finest mesh’s results as the ‘accurate result’. 

Resulting temperatures for six selected nodes were 
compared to this accurate result, and the absolute 
relative error was plotted in Fig. 8 for both methods 
as a function of grid density (number of elements). 
The NTDM computation was performed only for the 
two coarsest grids. The FEM results of the finest grid 
are not plotted for the obvious reason that they serve 
as a reference. The results show that both the FEM 
and NTDM converge, although the NTDM does not 
converge as fast or may converge to a slightly differ- 
ent solution. The differences may be small from an 
engineering point of view, but the ability to solve the 
same problem by different methods with a little 
additional effort may be of advantage when consider- 
ing nonlinear problems. This may increase one’s trust 
in the numerical results. 

5. DISCUSSION 

In [l] the following advantages of the nonconform- 
ing Taylor discretization method were considered: the 
convenient implementation of various partial differ- 
ential equations, the efficient solution of the algebraic 
equations and the geometrical flexibility that the 
method allows. 

Here, we suggest improved application of the 
general scheme using a variable number of neighbor- 
ing nodes for the compatibility conditions and 
weighted residual discretization of the PDE. 

The use of the method of weighted residuals is 
more complicated than the collocation method used 
in [l]. However, using a symbolic manipulator the 
discretized PDE is readily obtained. The resulting 
improved accuracy is evident in the cases considered. 

The use of the variable number of neighboring 
nodes further improves the geometrical flexibility. In 
addition, as noted in [4], a singular system of 
equations may be obtained if neighboring nodes are 
not chosen properly. An overdetermined set of conti- 
nuity conditions will result a non-singular set of 
equations. The possibility of having a variable num- 
ber of points and the method specified for the 
manipulation of the compatibility equations will pre- 
vent the singularity. This is of importance particu- 
larly if the neighboring nodes for the compatibility 
conditions are chosen by computer automatically 
from an arbitrary grid. 
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