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MONODROMY FILTRATION AND MOTIVES

ABHIJIT LASKAR

Abstract. Given a (pure) motive M over a number field F and a non-archimedean val-
uation v on F , we state an analogue of the weight monodromy conjecture for M , via a
local weight filtration W• on the `-adic realization H`(M). We prove special cases of this
conjecture. In some of these cases, we are able to show that the local L-factor at v, of the
L-function of M , is well-defined i.e., rational and independent of `.

0. Introduction and notation

Let F be a number field with an embedding τ : F ↪→ C; F̄ is a fixed algebraic closure of
F ; τ̄ : F̄ ↪→ C is an extension of τ . Let v be a discrete valuation on F ; Fv is the completion
of F at v; v̄ is an extension of v to F̄ ; F̄v is the localization of F̄ at v̄. The residue fields
of Fv and F̄v are denoted by kv and k̄v, respectively. The characteristic of kv is p > 0. We
write Γv := Gal(F̄v/Fv) ⊂ ΓF := Gal(F̄ /F ) and Iv ⊂ Γv is the inertia group. A geometric
Frobenius Ψv ∈ Γv is an element which induces the inverse of the Frobenius automorphism
φv of k̄v. We denote by Wv the Weil group of Fv, i.e., the dense subgroup formed by elements
w ∈ Γv which induce on k̄v an integral power φv

α(w). The map α : Wv → Z thus defined is
a group homomorphism and ker(α) = Iv. We will suppose all our algebraic varieties to be
geometrically irreducible.

Consider a (pure) motive M over F . For any prime number `, the `-adic realization
H`(M) gives us a representation ρ` : ΓF → GL(H`(M)) of ΓF . Let v be a non-archimedean
valuation of F , by restricting ρ` to Γv and using Grothendieck’s `-adic monodromy theorem,
we obtain a nilpotent morphism N` : H`(M)(1) → H`(M) of Γv-modules. This morphism
induces the local monodromy filtration M• on H`(M). In case if H`(M) ∼= Hr

ét(XF̄ ,Q`) ( as
ΓF -modules) for some smooth projective algebraic variety X over F , then Deligne’s weight
monodromy conjecture ( cf. [3]) predicts that for any element w ∈Wv, the eigenvalues of the
induced autormphisms ρ̄`,j(w) on the j-th graded of M•, are algebraic integers with identical

complex absolute value q
(r+j)α(w)/2
v . We generalize (see Con.3.2) this conjecture to the case of

any arbitrary motive M , via a local (w.r.t. v) weight filtration W• on H`(M). We verify this
conjecture (see Cor.3.7) for the category of motives which is ⊗-generated by Artin motives;
abelian varieties; surfaces; and smooth complete intersections in any projective space, as a
consequence of some more general results.

Next we prove (see Thm.4.4) that for any motive M and w ∈ Wv, the characteristic
polynomial of ρM,`(w) has coefficients in Q and is independent of `. This fact combined with
the above mentioned results, allows us to verify in a large number of new cases ( see Thm.4.2
and Cor.4.5), that the local L-factors in the expression for the L-function of motives, are
well-defined, i.e., rational and independent of `. In particular, we deduce that if X is finite
product of hyperkähler varieties of K3[n] type; unirational varieties of dim ≤ 4; uniruled
varieties of dim ≤ 3; cubic 4-folds; moduli spaces of stable vector bundles of coprime rank
and degree over smooth projective curves and Fermat hypersurfaces; then Hr

ét(XF̄ ,Q`) has
a well-defined L-function for 0 ≤ r ≤ 2 dimX, which is independent of the choice of `.
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1. Monodromy filtration

1.1. Generalities. Let A be an abelian category and A ∈ Ob(A). Let N ∈ End(A) be
a nilpotent endomorphism. Then, we define the kernel filtration associated to N , as the
increasing filtration F• on A satisfying

• FpA = Ker (Np+1 : A→ A) for p ≥ 0 and
• FpA = 0 for p < 0.

We define the image filtration G• associated to N , as the decreasing filtration on A, satisfying

• GqA = Im (N q : A→ A) for q > 0 and
• GqA = A for q ≤ 0.

The convolution M = F ∗G is the increasing filtration on A satisfying

MrA :=
∑
p−q=r

FpA ∩GqA for r ∈ Z,

where + stands for product in A. Now, by the universal property of coproducts, the

natural “inclusion” morphisms FpA ∩GqA
(0,···1,···0)−−−−−−→MrA induces a morphism

Π :
⊕
p−q=r

FpA ∩GqA→MrA,

where
⊕

stands for coproduct in A.
Now, note that the filtration G also induces a filtration

GqGrFpA := Im (GqA ∩ FpA→ GrFpA)

on the graded pieces GrFpA := FpA/Fp−1A. The following is an elementary, but useful
characterization of graded pieces of M•, in terms of the above filtration.

Lemma 1.2. There is a natural isomorphism
⊕

p−q=r
GrqGGr

F
pA→ GrMr A

Proof. First note that the morphism Π : ⊕p−q=rFpA ∩GqA→MrA defined above is surjec-
tive, i.e., cokerΠ = 0. Now, as (GqA∩FpA)∩(Gq+1A∩Fp−1A) = (GqA∩Fp−1A)+(Gq+1A∩
FpA), it follows that

ker Π =
⊕
p−q=r

((GqA ∩ Fp−1A) + (Gq+1A ∩ FpA)).

Now, as

GrqGGr
F
pA = GqA ∩ Fp−1A/((G

qA ∩ Fp−1A) + (Gq+1A ∩ FpA)),

the assertion follows.
�

The next lemma is well-known

Lemma 1.3. The convolution M = F∗G is the unique filtration on A satisfying the following
properties :

(i) is an increasing filtration · · ·Mi−1A ⊂ MiA ⊂ Mi+1A · · · of Γv representations, such
that MiA = 0 for sufficiently small i and MiA = A for sufficiently large i.

(ii) N`(MiA) ⊆Mi−2A for all i.
(iii) Using the second condition we can define an induced map N̄ : GrMi A→ GrMi−2A, where

GrMi A = MiA/Mi−1A. Then N̄ r : GrMr A→ GrM−rA is an isomorphism for each r ≥ 0.
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1.4. Local monodromy filtration for motives. Let the notation be as §0. We denote by
VF the category of smooth projective varieties over F . In this article, we will be interested
in the following three different categories Mα(F ) of pure motives over F :

• the category of (Grothendeick) motives,Mhom(F ) defined in terms of algebraic cycles
modulo homological equivalence.
• the category of motives Mmot(F ), defined in terms of motivated correspondences;
• the category of motivesMAH(F ) defined in terms of absolute Hodge correspondences.

In each of these categories, there is a functor hα : VF →Mα(F ), such that classical Weil-
cohomology theories (with Tate twists) HB (Betti cohomology), H` ( `-adic cohomology, for
any prime number `) and HdR (De Rham cohomology) on VF , factors throughMα(F ). This
allows to define various realization functors on Mα(F ), corresponding to these cohomology
theories. In particular, if M := (X, p, n) ∈ ObMα(F ), then its `-adic realization is defined
as

H`(M) =

2 dimX⊕
w=0

p∗Hw+2n
et (XF̄ ,Q`)(n),

where p∗ denotes the image of p ∈ Corr0
α(X ×X) under the ΓF -invariant isomorphism

H2 dimX
et (XF̄ ×XF̄ ,Q`)(dimX) ∼=

2 dimX⊕
w=0

End(Hw
et(XF̄ ,Q`)).

It is also clear that the Q`-vector space V` := H`(M) has a natural action of ΓF . This
gives rise to the `-adic representations ρ

`
: ΓF → GL(V`), which in turn gives us the local

representations
ρ
`,v

: Γv → GL(V`).

For any prime number `, we denote by µ`n the group of `n-th roots of unity in k̄v and
Z`(1) := lim←−

n

µ`n . For any Q`-vector space U , we write U(1) := U ⊗
Q`

Q`(1), where Q`(1) =

Q` ⊗Z`
Z`(1).

The inertia group Iv ⊂ Γv fits into the following exact sequence

1→ P → Iv
t−→ Z(p′)(1)→ 1,

where P is a pro-p-group and Z(p′)(1) =
∏
`6=p

Z`(1). Let ` 6= p be a prime number. We

denote by t` : IK → Z`(1), the `-component of t. Explicitly, the surjective map t` is given

as x 7→
(
x(π

1
`n )/π

1
`n

)
n
, where π ∈ Ov is an uniformizer. The map t` is unique upto

multiplication by an element of Z×` .
By Grothendieck’s monodromy theorem there exists a unique nilpotent morphism N` :

V`(1)→ V` of Γv-representations such that for a sufficiently small open subgroup J of Iv we
have

(1) ρ
`,v

(x) = exp(t`(x)N`), for all x ∈ J.

The morphism N` is called the monodromy operator associated to ρ
`,v

. Let M• be the

unique filtration on V` induced by N` and satisfying the properties of Lemma 1.3.
We leave it to the reader to verify the validity of the next lemma.

Lemma 1.5. Let M and M ′ be motives in Mα(F ).

(a) If M is a sub-motive of M ′, then NM,` = NM ′,`|H`(M)
and MiH`(M) = MiH`(M

′)|
H`(M)

for all i.
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(b) The monodromy operator associated to the direct sum of motives M ⊕M ′, is given by
NM⊕M ′,` = NM,` ⊕NM ′,` and MiH`(M ⊕M ′) = MiH`(M)⊕MiH`(M

′).
(c) The monodromy operator associated to the tensor product of motives M ⊗M ′ is given

by NM⊗M ′,` = NM,` ⊗ Id + Id⊗NM ′,` and

MiH`(M ⊗M ′) =
∑
f+g

MfH`(M)⊗MgH`(M).

(d) The monodromy operator associated to the dual M∨ is given by NM∨,` = −tNM,` and

MiH`(M
∨) = (M−i−1H`(M))⊥.

Theorem 1.6. Let M be any motive over F and v a non-archimedean valuation on F . Then
there exists an open subgroup J of Iv such that ρM,`|J is unipotent for every ` 6= p.

Proof. Let M be a direct summand of a motive h(X)(n) for some smooth projective algebraic
variety X and n ∈ Z. Then it follows that the `-adic realization H`(M) of M , is a ΓF -
submodule of the `-adic realization H`(h(X)(n)) of h(x)(n). Let us denote by ρX,` : ΓF →
GL(H`(h(X))) the `-adic representation associated to the motive h(X). Let ξn,` : ΓF →
GL(Q`(n)) be the `-adic representation associated to the motive Q(n). Write ρX,`(n) :=
ρX,` ⊗ ξn,`, then it is clear that ρX,`(n) is the `-representation associated to the motive
h(X)(n). Assume that there exists a JX ⊂ Iv such that ρX,`|JX is unipotent for all ` 6= p,
i.e., there exists a r ∈ N such that (ρX,`(σ) − Id)r = 0 for all σ ∈ JX . As ξ1,` is unramified
at all non-archimedean places v of F , the same holds for ξn,` = (ξ1,`)

⊗n. Therefore,

(ρX,`(n)(σ)− Id)r = (ρX,`(σ)− Id)r ⊗ Id = 0, for all σ ∈ JX .
This implies that ρM,`|JX is unipotent for all ` 6= p.

It remains to show that that there exists a JX ⊂ Iv such that ρX,`|JX is unipotent for all
` 6= p. In order to see this, first note that h(X) has a direct sum decomposition as h(X) =
⊕2 dimX
i=0 hi(X). Let ρiX,` : ΓF → GL(H`(h

i(X))) be the `-adic representation associated to

the motive hi(X). Then it follows that

ρX,` =

2 dimX⊕
i=0

ρiX,`.

Assume that for every i, there exists a J iX ⊂ Iv such that ρiX,`|Ji
X

is unipotent for all ` 6= p.

By setting JX = ∩2 dimX
i=0 J iX , we see that ρX,`|JX is unipotent for all ` 6= p.

So we are reduced to showing that for every 0 ≤ i ≤ 2 dimX, there exists a J iX ⊂ Iv such
that ρiX,`|Ji

X
is unipotent for all ` 6= p.

First assume that XFv has a proper strictly semi-stable model X over the ring of integers
Ov of Fv. Let Xk̄v = X ⊗Ov k̄v be the geometric special fiber of X . Now it is a well-known
fact that Iv acts trivially on the sheaf of vanishing cycles RqΨ(Q`) on Xk̄v . It now follows
from the Γv-invariant spectral sequence of vanishing cycles

Ep,q2 = Hp
et(Xk̄v , R

qΨ(Q`))⇒ Hn
et(XF̄v

,Q`),

that for all σ ∈ Iv, (σ − Id)i+1 acts trivially on H i
et(XF̄v

,Q`) for every ` 6= p.
Now in general the existence of a semi-stable model for XFv is unknown. But we know

from [2, Thm. 6.5]that, there is a finite extension F ′v′ of Fv and a strictly semi-stable scheme
Y ′ over the ring of integers Ov′ of F ′v′ , with generic fiber X ′ and a Fv-alteration f : X ′ → XFv .
The induced morphism f ′ : X ′ → XF ′

v′
is again an alteration. Since f ′ is finite of degree

deg f ′ on some open dense subscheme of X ′, the pull back f ′∗ : H i
et(XF̄v

,Q`)→ H i
et(X

′
F̄v
,Q`)

and the pushforward f ′∗ : H i
et(X

′
F̄v
,Q`) → H i

et(XF̄v
,Q`) satisfy f ′∗ ◦ f ′∗ = deg f ′ · id. As f ′∗

and f ′∗ commute with the action of Γv′ , it follows that H i
et(XF̄v

,Q`) is a direct summand
4
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of H i
et(X

′
F̄v
,Q`), as Γv′-module and hence as Iv′ (inertia subgroup of Γv′) module. As X ′

has a semi-stable model, it follows from our previous discussion that Iv′ acts trivially on
H i
et(X

′
F̄v
,Q`) and hence on H i

et(XF̄v
,Q`), for every ` 6= p.

Finally, as the `-adic realizationH`(h
i(X)) of the motive hi(X) is isomorphic toH i

et(XF̄v
,Q`)

as ΓF -modules, the proposition follows.
�

2. Weight Filtration

Definition 2.1. A Γv- mdoule U is said to have a (unique) weight filtration W• if it verifies
the following properties :

(i) W• is an increasing filtration · · ·Wi−1U ⊂ WiU ⊂ Wi+1U · · · of Γv-representations
such that WiU = 0 for sufficiently small i and Wi+1U = U for sufficiently large i;

(ii) the action of Iv on Grwi = WiU/Wi−1U is through a finite quotient;
(iii) the eigenvalues of the action of Ψv on Grwi = WiU/Wi−1U are all algebraic integers of

complex absolute value qi/2, where q = |kv|.

Example 2.2. Q`(1) is a one-dimensional Γv-representation which is unramified for every
v ( such that p 6= `). Moreover, we know that the action of any arithmetic Frobenius on
Q`(1) is through multiplication by q, hence the action of the geometric Frobenius is through
multiplication by q−1. This allows, us to define the weight filtration as following

WjQ`(1) = Q`(1) for j ≥ −2 and WjQ`(1) = 0 for j < −2.

Lemma 2.3. Let U , U ′ be Γv- modules.

(a) If U has weight filtration and U ′ is a sub-module of U , then U ′ has weight filtration.
(b) If both U and U ′ has weight filtrations, then the Γv-modules U⊕U ′ and U⊗U ′ has weight

filtrations.
(c) If U has weight filtration then the dual U∨1 has weight filtration.

Proof. (a) We verify that WiU
′ := WiU ∩ U ′ defines the weight filtration on U ′.

(b) We verify that Wi(U ⊕ U ′) := WiU ⊕WiU
′ defines the weight filtration on U ⊕ U ′ and

Wi(U ⊗ U ′) =
∑
f+g=i

WfU ⊗WgU
′,

defines the weight filtration on U ⊗ U ′.
(c) we verify that the dual filtration WiU

∨ := (W−i−1U)⊥ defines the weight filtration on
U∨.

�

Proposition 2.4. Let M be any motive over F . Then for every prime number ` 6= p, there
exists a weight filtration on the Γv-module H`(M).

Proof. Let M = (X, p, n) be a motive over F , where X is a smooth projective algebraic
variety, p ∈ Corr0(X ×X) and n ∈ Z. By definition, the `-adic realization of M is

H`(M) =
2 dimX⊕
w=0

p∗Hw+2n
et (XF̄ ,Q`)(n).

Now, p∗Hw+2n
et (XF̄ ,Q`) is a Γv-sub-representation of Hw+2n

et (XF̄ ,Q`) ∼= Hw+2n
et (XF̄v

,Q`).
Now suppose that Hw

et(XF̄v
,Q`) has a weight filtration. Then by 2.3(a) we get a weight

filtration on p∗Hw+2n
et (XF̄ ,Q`). Now, it follows from 2.2(i) and 2.3(b), that there exists

a weight filtration on p∗Hw+2n
et (XF̄ ,Q`) ⊗ Q`(1)⊗n = p∗Hw+2n

et (XF̄ ,Q`)(n). Finally, using
5
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2.3[(b)] we conclude that there exists a weight filtration on ⊕2 dimX
w=0 p∗Hw+2n

et (XF̄ ,Q`)(n) =
H`(M).

It remains to exhibit that Hw
et(XF̄v

,Q`) has a weight filtration. To start with let us assume
that XFv has a proper strictly semi-stable model X over the ring of integers Ov of Fv. Let
X1, · · · , Xm be the irreducible components of the special fiber of X , and set

X(k) :=
∐

1≤i1<···<ik≤m
Xi1 ∩ · · · ∩Xik .

Then X(k) is a proper smooth variety of dimension n − k + 1 over the residue field kv of
Fv. Now, by [6], there is a Γv- invariant spectral sequence

(2) E−r,w+r
1 =

⊕
k≥max{0,−r}

Hw−r−2k
et (X

(2k+r+1)

k̄v
,Q`(−r − k))⇒ Hw

et(XF̄v
,Q`).

Now the inertia group Iv acts trivially on each Ei,j1 and hence there is an action of

Gal(k̄v/kv). By the Weil conjectures, we know that Hw−r−2k
et (X

(2k+r+1)

k̄v
,Q`(−r − k)) has

weight (w − r − 2k)− 2(r − k) = w + r. Thus, Ei,j1 has weight j and the filtration induced
by the spectral sequence (2), is the required weight filtration defined in 2.1.

We now treat the general case. As in the proof of Thm.1.6, there is a finite extension
F ′v′ of Fv, such that there is a strictly semi-stable scheme Y ′ over the ring of integers Ov′ of
F ′v′ , with generic fiber X ′ and a Fv-alteration f : X ′ → XFv . It follows that Hw

et(XF̄v
,Q`) is

a direct summand of Hw
et(X

′
F̄v
,Q`), as Γv′-modules. As X ′ has a semi-stable model, hence

by the above observation, there is a weight filtration on Hw
et(X

′
F̄v
,Q`). It now follows from

Lemma 2.3, that Hw
et(XF̄v

,Q`) has a weight filtration.
�

3. On the purity of local monodromy filtration

Definition 3.1. Let M be a motive over F . The weight wt(M) of M is defined to be the
weight of the underlying Hodge structure of the Betti realization Hτ (M). It is independent
of the choice of the embedding τ .

The weight monodromy conjecture (WMC) predicts that the monodromy filtration on the
absolute `-adic cohomology of any proper smooth variety over Fv, coincides with the weight
filtration but upto a shift. This conjecture has the following analogue for motives.

Conjecture 3.2. Let M be any motive over F of weight w. Then,

MiH`(M) = Wi+wt(M)H`(M) ∀ i.

Proposition 3.3. Let M be an Artin motive over F . Then, conjecture 3.2 holds for M .

Proof. We know that the category of Artin motives M0
F
∼= RepQ(ΓF ). Let ρ : ΓF → GL(V )

be the image of M under this isomorphism. Then we have,

Hτ (M) = V and H`(M) = V ⊗Q`, as a ΓF −module.

Thus, the `-adic representation ρ
`

: ΓF → GL(H`(M)) associated to M , is simply ρ⊗Q`.
Now, as ρ is continuous for the Krull topology on ΓF and the discrete topology on V , there
exists a finite extension F ′/F , such that Gal(F̄ /F ′) acts trivially on V . In particular, if v′ is
an extension of v to F ′, then Gal(F̄v/F

′
v′) and hence the inertia group corresponding to this

extension, acts trivially on V . Thus, the `-adic representation ρ
`

is potentially unramified
at every v such that p 6= `. This implies that the monodromy operators corresponding to

6
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the local representations ρ
`,v

are all trivial. In particular, the monodromy filtration M• of

H`(M) is trivial, i.e.

MjH`(M) = H`(M) for j ≥ 0 and MjH`(M) = 0 for j < 0.

Now, as the weight of an Artin motive is 0, in order to prove the proposition, we only
need to show that the weight filtration on H`(M) coincides with the monodromy filtration
on H`(M). It is obvious that M•H`(M), verifies property (i) of 2.1. As, ρ

`
is potentially

unramified at every v, so M•H`(M) also verifies property (ii) of 2.1. Finally, note that
as ρ` = ρ ⊗ Q`, the eigenvalues of the action of Ψv on GrM0 H`(M) = H`(M) = V ⊗ Q`

are algebraic integers ( independent of ` ). Now, as Gal(F̄ /F ′) acts trivially on V , the

eigenvalues of the action of Ψ[k′
v′ :kv ] on V are all 1, where k′v′ denotes the residue field of F ′v′ .

This implies that the eigenvalue of the action of Ψv on V is a root of unity and hence of
complex absolute value q0/2 = 1. This establishes property (iii) of 2.1. By the uniqueness of
the weight filtration, we conclude that on H`(M), the monodromy filtration coincides with
the weight filtration. �

Definition 3.4. For β = mot orAH, we denote byMpmf
β (F ) the Tannakian subcategory of

Mβ(F ), which is ⊗-generated by the family C := (Mi| i ∈ I) of motives, such that each Mi

verifies Conjecture 3.2.

Proposition 3.5. Conjecture 3.2 holds for every M ∈ Ob(Mpmf
β (F )).

Proof. Any motive M ∈ Ob(Mpmf
β (F )) is isomorphic to a sub-quotient of an object of the

form P (M ′j) ( a polynomial expression), where {M ′j}j∈J⊂I consists of objects of C or their

duals and P (tj) ∈ N[tj ]j∈J ; multiplication in P (M ′j) is interpreted as ⊗ and addition as

⊕. As Mβ(F ) is a semi-simple Tannakian category, it follows that every quotient object
of P (M ′j), can be identified with a subobject. Thus, in view of 3.5, it suffices to verify the

conjecture for the motive P (M ′j). Now, by combining Lemma1.5 and Lemma2.3, we see that
Conjecture 3.2 is stable under sub-objects, ⊕, ⊗ and taking duals of motives. A repeated
application of this fact and the definition of C, implies the proposition. �

Definition 3.6. Define Macs
AH(F ) ( resp. Macs

mot(F )) to be the Tannakian subcategory of
MAH(F ) ( resp. Mmot(F ) ), which is ⊗-generated by the following motives

(i) Artin motives;
(ii) h1(A)’s of abelian varieties;
(iii) h2(S)’s of surfaces;
(iv) for any m ∈ N, hm(Y )’s of m-dimensional (smooth) complete intersections in any

projective space.

We also define Macs
hom(F ) to be the abelian ⊗-subcategory of Mhom(F ), generated by (i)

the Tate motive Q(1) (ii) abelian varieties (iii) 0 dimensional varieties (iv) surfaces and (v)
complete intersections in projective spaces.

Corollary 3.7. For α = hom,mot or AH, Conjecture 3.2 holds for every M ∈ Ob(Macs
α (F )).

Proof. First note that it suffices to show the corollary for Macs
AH(F )), as Mhom(F ) and

Mmot(F ) are subcategories ( a priori not full) of MAH(F ) and the the `-adic realization of
a motive is unchanged by passing from one category to the other.

Now, by Prop. 3.3 the Artin motives verifies Conjecture 3.2, by [1] we know that h1(A)’s
for A any abelian variety, verifies the conjecture, by [6] the conjecture is true for h2(S)
for any surface S, and finally by [8], the conjecture holds for hm(Y )’s (for any m ∈ N )
of m-dimensional (smooth) complete intersections in any projective space. It follows that

Macs
AH(F ) is a subcategory of Mpmf

AH (F ) and hence verifies Conjecture 3.2. �
7
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Remark 3.8. Denote by Mnum(F ) the category of (Grothendieck) motives for numerical
equivalence on algebraic cycles. Let Mav

num(F ) be the abelian ⊗-subcategory of Mnum(F ),
generated by (i) the Tate motive Q(1) (i) abelian varieties and (iii) 0 dimensional varieties.
By [4], we know thatMav

num(F ) is a F -linear semi-simple Tannakian category. As homological
equivalence coincides with numerical equivalence for zero dimensional varieties and abelian
varieties [5], we can identify Mav

num(F ) to a subcategory of Macs
AH(F ). Hence it makes sense

to speak of `-adic realizations of motives in Mav
num(F ). The previous corollary then implies

that Conjecture 3.2 holds for objects in Mav
num(F ).

Corollary 3.9. Let X be a smooth projective variety over F which is a finite product of

(i) hyperkähler varieties of K3[n] type;
(ii) unirational varieties of dim ≤ 4;

(iii) uniruled varieties of dim ≤ 3;
(iv) cubic 4-folds;
(v) moduli spaces of stable vector bundles of coprime rank and degree over smooth projective

curves;
(vi) Fermat hypersurfaces;

(vii) curves;
(viii) surfaces;

(ix) abelian varieties;

then the weight monodromy conjecture holds for H i(XF̄ ,Q`) for any i ≥ 0.

Proof. In view of 3.5, it suffices to establish the result for each of the varieties in the list.
If X is either a hyperkähler variety of K3[n] type, a cubic 4-fold, a unirational variety of
dim ≤ 3, a Fermat hypersurface, moduli space of stable vector bundles of coprime rank and
degree over a smooth projective curve, then the motive h(X) ∈ Ob(Mav

F ). So, in these cases
the weight monodromy conjecture follows from 3.7.

The case of curves [1] and surfaces [6], are well known. The case of unirational varieties
of dimension 4, follows from the fact that the motive of any such variety is an object of the
Tannakian category generated by the motive of variety of dimension at most 2. Similarly,
the motive of a uniruled 3-fold belongs to the Tannakian category of motives generated by
a surface, and hence the WMC holds in this case as well.

In the case of any abelian variety A the only new thing that we obtain is that WMC
holds for the higher cohomology groups H i(A/F̄v

,Q`) (i ≥ 2) as well, since the motive

hi(A) = ∧ih1(A). �

4. L-functions

Let M be any motive in Mα(F ), for α = hom, mot or AH. For any prime number `, we
denote by V` := H`(M). For any non-archemdean valuation v on F of residual characteristic
p, consider the characteristic polynomial

Z(V`, T ) := detQ`
(1− TρM,`(Ψv)|V Iv

` )), (l 6= p)

for the action of a geometric Frobenius element Ψv ∈ Γv on the inertia invariant part V Iv
`

part of V`. By definition, Z(V`, T ) ∈ Q`[T ].

Definition 4.1. A motive M as above is said to have a well-defined L-function, if Z(V`, T ) ∈
Q[T ] and is independent of `. In this case, the L-function of M is defined as the Euler product

L(M, s) =
∏
v

Lv(M, s),

8
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where the local L-factors Lv(M, s) is defined as

Lv(M, s) =
1

Z(V`, q
−s
v )

, for ` 6= p.

Theorem 4.2. Let M ∈ ObMpmf
AH (F ) be a motive, such that for every non-archemdean val-

uation v on F and w ∈Wv, the characteristic polynomial P`(w, T ) of ρM,`(w) has coefficients
in Q and is independent of `. Then M has a well-defined L-function.

Proof. We need to verify that Z(V`, T ) has coefficients in Q and is independent of `.
First consider the non-archemdean valuations v, where M has good reduction, i.e., V` is

unramified at v for every ` 6= p. In this case

Z(V`, T ) = P`(Ψv, T ),

hence by hypothesis, Z(V`, T ) has coefficients in Q and is independent of `.

Now consider the non-archemdean valuations v, where M has bad reduction. As V Iv
` is a

subspace of V`, it follows from the hypothesis, that for every w ∈Wv, the coefficients of the
characteristic polynomial detQ`

(1− TρM,`(w)|V Iv
` )) are algebraic numbers independent of `.

Thus, in order to prove our claim, it suffices to show that Tr(w∗ : V Iv
` ) ∈ Q and independent

of ` and then use Newton’s lemma.
Let ρ̄`,j : Γv → GL(GrMj V`) denote the representation induced by ρM,` on the graded

parts of the local monodromy filtration M• on V`. For every w ∈ Wv, let P̄`,j(w, T ) be the
characteristic polynomial of ρ̄`,j(w).

Lemma 4.3. Fix a w ∈Wv, then for every j, P̄`,j(w, T ) ∈ Q[T ] and is independent of `.

Proof. Let L be the sub-field of an algebraic closure Q̄` of Q`, generated by the roots of
P`(w, T ). By hypothesis, P`(w, T ) ∈ Q[T ] and has coefficients independent of `. This implies
that if P`(w, β) = 0, then P`(w, σ(β)) = 0, for every σ ∈ Gal(L/Q). Now, from linear
algebra, we know that P`(w, T ) =

∏
j P̄`,j(w, T ). Let η be an eigenvalue ρ̄`,j(w) and hence

of ρ`(w). By Prop. 3.5, the complex absolute value

(3) |η|C = q(wt(M)+j)α(w)/2
v for every j.

As |β|C = |σ(β)|C, it follows from (3), that β and σ(β) occurs as the roots of a same factor
(say) P̄`,j0(w, T ) of P`(w, T ). Now suppose P̄`,j0(w, T ) = Tm +

∑m
r=1 am−rT

m−r. As the
coefficients ar’s are symmetric polynomials in the roots of P̄`,j0(w, T ), it follows from the
previous observation that σ(ar) = ar, for every σ ∈ Gal(L/Q). In other words, ar ∈ Q,
i.e., P̄`,j0(w, T ) ∈ Q[T ] and is independent of `. By varying β over all roots of P`(w, T ), we
conclude the P̄`,j(w, T ) ∈ Q[T ] and is independent of `, for every j. �

Now, let us denote by F• and G• the kernel filtration and image filtration on V`. By lemma
1.2, we have an equality of Γv-modules

GrM−j+1V` = GrjGGr
F
1V` ⊕Gr

M
−j−1V`(1), for every j ≥ 0.

As, GrjGGr
F
1V` = GrjGF0V` (this is the graded for the filtration induced by G• on F0V`), we

get that

GrM−j+1V` = GrjGF0V` ⊕GrM−j−1V`(1)

for every j ≥ 0. This implies that the traces Tr(w∗ : GrjGF0V`) ∈ Q and is independent of `.
It now follows from linear algebra that Tr(w∗ : F0V`) ∈ Q and is independent of `.

Now, the action of Iv on F0V` factors through a finite quotient Iv/J and V Iv
` = (F0V`)

Iv/J .
9
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Hence for a complete set of T ⊂ Iv of representatives of Iv/J , we have

[Iv : J ] · Tr(w∗ : V Iv
` ) =

∑
τ∈T

Tr((w ◦ τ)∗ : F0V`).

Now by our previous discussion, Tr((w ◦ τ)∗ : F0V`) ∈ Q and is independent of ` and by

Thm.1.6, [Iv : J ] is independent of `. It follows that Tr(w∗ : V Iv
` ) ∈ Q and independent of `.

This completes the proof of the theorem. �

Theorem 4.4. Assume that the Künneth Standard conjecture holds for (absolute) `-adic
cohomology (with Tate twists) of varieties defined over F . Then, for every motive M ∈
Mhom(F ), and non-archimedean valuation v on F , the characteristic polynomial PM,`(w, T )
for the action of any element w ∈Wv, has coefficients in Q and is independent of `.

Proof. First note that it suffices to show that for every w ∈ Wv, the traces Tr (ρM,`(w))
are in Q and is independent of `, for then one can resolve the Newton’s identities relating
symmetric polynomials and power sums, to conclude that the polynomial PM,`(w, T ) ∈ Q[T ]
and is independent of `.

Let M := (X, p, n) and M ′ := (X, p, 0). Then it is easy to see that

Tr (ρM,`(w)) = χn` (w) · Tr
(
ρM ′,`(w)

)
,

where χ` : ΓF → Q×` is the `-adic cyclotomic character of ΓF . As χ`(λ) = 1, for every λ in
the inertia subgroup Iv, it follows that if w = Ψm

v · λ (for some m ∈ Z), then

χn` (w) = qmnv .

As qmnv ∈ Q and is independent of `, thus it suffices to show the proposition for motives of
the form M ′ = (X, p, 0).

First, we make an observation. Let e, e′ ∈ CHd(X ×X) be any two algebraic correspon-
dences. Then, by definition

e′ ◦ e = pr13∗(pr
∗
12e · pr∗23e

′),

where prαβ denotes the projection maps from X × X × X to X × X, for α, β ∈ {1, 2, 3}.
Write d := dimX and γdX×X : CHd(X ×X)→ H2d

et (XF̄ ×XF̄ ,Q`)(d) be the cycle class map
to `-adic cohomology of X ×X. As cycle class maps are compatible with push-forward , we
get γdX×X(e′◦e) = pr13∗(γ

d
X×X×X(pr∗12e ·pr∗23e

′)). Since cycle class maps are compatible with

intersection products in CH∗(−) and cup products in cohomology, we have γdX×X(e′ ◦ e) =

pr13∗(γ
d
X×X×X(pr∗12e) · γdX×X×X(pr∗23e

′)). Finally, as cycle class maps are compatible with

pull-backs we get γdX×X(e′ ◦ e) = pr13∗(pr
∗
12(γdX×X(e)) · pr∗23(γdX×X(e′))). But this is by

definition the composition of correspondneces γdX×X(e′) ◦ γdX×X(e) under the identification

(4) H2d
et (XF̄ ×XF̄ ,Q`)(d) ∼= ⊕r≥0EndQ`

(Hr
et(XF̄ ,Q`)).

Hence, writing e := γdX×X(e), when viewing it as a Q`-linear endomorphism of the (graded)

vector space V := ⊕2d
r≥0Hr

et(XF̄ ,Q`) (under the identification (4)), we conclude that

e′ ◦ e = e′ ◦ e.
Now consider the motive M ′ = (X, p, 0), by definition p is an idempotent in CHd(X×X),

i.e., p ◦ p = p. It follows from the above discussion that p is an idempotent linear map. This
implies that

V = Ker(p)⊕ Im(p),

as ΓF -modules. Let w∗ be the automorphism of V , induced by the action of w. It now
follows by linear algebra that

Tr
(
ρM ′,`(w)

)
= Tr

(
w∗|Im(p)

)
= Tr

(
w∗ ◦ p

)
.

10
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Thus in order to prove the proposition it suffices to show that Tr
(
w∗ ◦ p

)
∈ Q and is inde-

pendent of `.
For brevity, let us denote by Tralt(w∗ ◦ p) the alternating sum

2d∑
r=0

(−1)rTr(w∗ ◦ p : Hr
et(XF̄ ,Q`)).

By hypothesis the Künneth standard conjecture holds for X, i.e, for every 0 ≤ r ≤ 2d, there
exists an algebraic cycle πr such that πr is the canonical projection

V � Hr
et(XF̄ ,Q`) ↪→ V,

followed by inclusion. It now follows from the above discussion that

Tr
(
w∗ ◦ (p ◦ πr)

)
= Tr

(
w∗ ◦ p : Hr

et(XF̄ ,Q`)
)

= Tralt
(
w∗ ◦ (p ◦ πr)

)
.

By [7, Thm 0.1], Tralt
(
w∗ ◦ (p ◦ πr)

)
∈ Q and is independent of `. It follows that

2d∑
r=0

Tr
(
w∗ ◦ p : Hr

et(XF̄ ,Q`)
)

=
2d∑
r=0

Tr
(
w∗ ◦ (p ◦ πr)

)
= Tr

(
w∗ ◦ (p ◦∆X×X)

)
= Tr

(
w∗ ◦ p

)
,

is in Q and is independent of `.
�

Corollary 4.5. Every motive M ∈Macs
hom(F ) has a well-defined L-function.

Proof. As Macs
hom(F ) is a subcategory of Mpmf

AH (F ), thus in view of Thm.4.2, we only need
to verify that for any non-archemdean valuation v on F and w ∈ Wv, the characteristic
polynomial PM,`(w, T ) of ρM,`(w) has coefficients in Q and is independent of `.

Write M = (X, p, n), then X is a product of abelian varieties, zero dimensional varieties,
surfaces or complete intersection in projective spaces. As each of these varieties satisfies
Künneth standard conjecture, it follows that X satisfies Künneth standard conjecture. It
now follows from the proof of Thm.4.4, that PM,`(w, T ) ∈ Q[T ] and is independent of `. �

Corollary 4.6. Let X be as in Cor. 3.9. Then, for every i ∈ N, the cohomology groups
H i
et(X/F̄ ,Q`) has well defined L-function, which is independent of the choice of `.
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